JP6999893B2 - Manufacturing method of composition for purification of petroleum-contaminated soil - Google Patents

Manufacturing method of composition for purification of petroleum-contaminated soil Download PDF

Info

Publication number
JP6999893B2
JP6999893B2 JP2017065031A JP2017065031A JP6999893B2 JP 6999893 B2 JP6999893 B2 JP 6999893B2 JP 2017065031 A JP2017065031 A JP 2017065031A JP 2017065031 A JP2017065031 A JP 2017065031A JP 6999893 B2 JP6999893 B2 JP 6999893B2
Authority
JP
Japan
Prior art keywords
petroleum
contaminated soil
biomass
unfermented
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017065031A
Other languages
Japanese (ja)
Other versions
JP2018166418A (en
Inventor
幹 久保
希和子 荒木
瑞穂 川村
静郎 佐々木
伸行 門倉
順也 村上
大樹 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Kumagai Gumi Co Ltd
Original Assignee
Ritsumeikan Trust
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust, Kumagai Gumi Co Ltd filed Critical Ritsumeikan Trust
Priority to JP2017065031A priority Critical patent/JP6999893B2/en
Publication of JP2018166418A publication Critical patent/JP2018166418A/en
Application granted granted Critical
Publication of JP6999893B2 publication Critical patent/JP6999893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、石油汚染土壌の浄化用組成物の製造方法、石油汚染土壌の浄化用組成物、及び石油汚染土壌の浄化方法に関する。 The present invention relates to a method for producing a composition for purifying petroleum-contaminated soil, a composition for purifying petroleum-contaminated soil, and a method for purifying petroleum-contaminated soil.

石油を運搬する際の事故や工場からの漏洩などに起因する「石油系炭化水素による土壌汚染」が従来から問題となっており、法整備や漏洩対策が進められている。石油系炭化水素汚染土壌対策の法律としては、まずアメリカが1980年に「スーパーファンド法」を制定した。この法律では土壌汚染に関わった当事者全てに浄化費用等の負担を求め、土壌中の全石油系炭化水素(TPH)濃度を1,000 mg/kg以下にすることが義務付けられている。 "Soil pollution caused by petroleum-based hydrocarbons" caused by accidents during transportation of petroleum and leaks from factories has been a problem for some time, and legislation and measures against leaks are being promoted. As a law for measures against petroleum-based hydrocarbon-contaminated soil, the United States first enacted the "Superfund Law" in 1980. The law requires all parties involved in soil contamination to bear purification costs, etc., and requires that the total petroleum hydrocarbon (TPH) concentration in the soil be 1,000 mg / kg or less.

日本では2002年に「土壌汚染対策法」が制定されたが、石油系炭化水素汚染への対策が十分に整っていないことを理由に石油を汚染物質の対象としていなかった。その後、2006年に「油汚染対策ガイドライン~鉱油類を含む土壌に起因する油臭・油膜問題への土地所有者等による対応の考え方~」が発表され、石油系炭化水素汚染土壌の浄化では「油臭・油膜の解消」と「土壌中の油分濃度の低減」が必要となった。さらに、2010年4月からは「土壌汚染対策法」の改正により汚染土壌の運搬が制限され、できる限り原位置で汚染土壌を浄化することが求められるようになった。 In Japan, the "Soil Contamination Countermeasures Law" was enacted in 2002, but petroleum was not targeted as a pollutant because the countermeasures against petroleum-based hydrocarbon pollution were not sufficiently prepared. After that, in 2006, "Guidelines for Oil Contamination Countermeasures-Concept of Response by Land Owners to Oil Smell and Oil Film Problems Caused by Soil Containing Mineral Oil-" was announced, and in the purification of petroleum-based hydrocarbon-contaminated soil, " It was necessary to "eliminate oily odors and oil slicks" and "reduce the oil concentration in the soil". Furthermore, from April 2010, the amendment of the "Soil Contamination Countermeasures Law" restricted the transportation of contaminated soil, and it became necessary to purify the contaminated soil in the in-situ as much as possible.

現在、石油系炭化水素汚染土壌の浄化には主に重油を利用した焼却処理や加熱分解処理が行われている。これらの方法では、まず汚染土壌を掘り起こし、処理場まで運搬しなければならない。しかしながら、土壌汚染対策法の改正により汚染土壌の運搬が制限されることとなったため、本処理方法は適さなくなった。また、焼却処理では汚染油分の10倍もの燃料が必要となり、石油価格によってコストが大きく変動するという課題がある。さらに、焼却後の土壌は微生物を含め有機物がなくなることから、土壌の再利用が難しい。 Currently, incineration treatment and heat decomposition treatment using heavy oil are mainly performed for purification of petroleum-based hydrocarbon-contaminated soil. With these methods, the contaminated soil must first be dug up and transported to the treatment plant. However, the amendment of the Soil Contamination Countermeasures Law has restricted the transportation of contaminated soil, making this treatment method unsuitable. Incinerator requires 10 times as much fuel as contaminated oil, and there is a problem that the cost fluctuates greatly depending on the oil price. Furthermore, since the soil after incineration is free of organic matter including microorganisms, it is difficult to reuse the soil.

そこで近年、微生物機能により汚染を浄化するバイオレメディエーション(bioremediation)の研究が進んでいる。バイオレメディエーションは焼却処理や洗浄処理に比べて省資源であり、土壌が再利用できる利点がある。さらに、原位置で土壌を浄化できることから、今後の土壌汚染対策法の改正で更なる普及が見込まれる。バイオレメディエーションには、微生物の栄養分を投与して土着の微生物を活性化するバイオスティミュレーション(biostimulation)と、汚染物質の分解能を有する微生物を外部から投入するバイオオーグメンテーション(bioaugmentation)がある。 Therefore, in recent years, research on bioremediation, which purifies pollution by microbial function, has been progressing. Bioremediation is resource-saving compared to incineration and cleaning, and has the advantage of reusing soil. Furthermore, since the soil can be purified in-situ, it is expected to become more widespread with future revisions to the Soil Contamination Countermeasures Law. Bioremediation includes biostimulation, which administers microbial nutrients to activate indigenous microorganisms, and bioaugmentation, in which microorganisms with pollutant resolution are introduced from the outside.

本発明者らは、これまでに石油汚染土壌のバイオレメディエーションの効率化のために、難分解性の炭化水素を分解できる石油分解菌の単離を行った(特許文献1)。また、特定の組成を有する培地を用いて前培養及び本培養を行うことにより、高分解機能を有する高活性なバイオレメディエーション用の微生物製剤を得ることができることを報告している(特許文献2)。さらに、土壌中の栄養成分(Total-C・Total-N・Total-P)の重量とその比を特定の範囲に調整することにより土壌微生物数を増加・維持し、油分分解を促進できることを報告している(特許文献3)。 The present inventors have so far isolated petroleum-degrading bacteria capable of decomposing persistent hydrocarbons in order to improve the efficiency of bioremediation of petroleum-contaminated soil (Patent Document 1). It has also been reported that by performing preculture and main culture using a medium having a specific composition, it is possible to obtain a microbial preparation for highly active bioremediation having a highly degrading function (Patent Document 2). .. Furthermore, it was reported that the number of soil microorganisms could be increased and maintained and oil decomposition could be promoted by adjusting the weight and ratio of nutrient components (Total-C, Total-N, Total-P) in the soil to a specific range. (Patent Document 3).

本発明者らは、堆肥中には石油分解菌が自然土壌より多いことを見出し、このような堆肥を石油汚染土壌に添加した上で石油汚染土壌中の栄養成分の含量を特定の範囲に調整することにより、効率的に石油汚染浄化を行えることを報告している(特許文献4)。 The present inventors have found that there are more petroleum-degrading bacteria in compost than in natural soil, and after adding such compost to petroleum-contaminated soil, the content of nutritional components in petroleum-contaminated soil is adjusted to a specific range. It is reported that petroleum contamination can be efficiently purified by doing so (Patent Document 4).

特開2007-135425号公報Japanese Unexamined Patent Publication No. 2007-135425 特開2008-228623号公報Japanese Unexamined Patent Publication No. 2008-228623 特開2012-71255号公報Japanese Unexamined Patent Publication No. 2012-71255 特開2014-61489号公報Japanese Unexamined Patent Publication No. 2014-61489

特許文献2のように培地を使用して石油分解菌を培養した場合、培地及びエネルギーにコストがかかってしまう。それに対して、特許文献4のように堆肥のようなバイオマス(有機資材)を汚染土壌に投入する場合、培地を使用して石油分解菌を培養する場合と比べてコストを低減させることはできる。しかしながら、石油汚染浄化のためには、石油分解菌の増殖及び菌数と活性の維持に更に優れたバイオマスが必要とされている。 When petroleum-degrading bacteria are cultivated using a medium as in Patent Document 2, the medium and energy are costly. On the other hand, when biomass (organic material) such as compost is put into contaminated soil as in Patent Document 4, the cost can be reduced as compared with the case where petroleum-degrading bacteria are cultivated using a medium. However, for the purification of petroleum pollution, more excellent biomass is required for the growth of petroleum-degrading bacteria and the maintenance of the number and activity of the bacteria.

本発明は、石油汚染浄化の効率が高く且つ低コストである石油汚染土壌の浄化用組成物の製造方法、及び石油汚染土壌の浄化用組成物を提供することを目的とする。さらに、本発明は、該石油汚染土壌の浄化用組成物を用いた石油汚染土壌の浄化方法を提供することを目的とする。 It is an object of the present invention to provide a method for producing a composition for purifying petroleum-contaminated soil and a composition for purifying petroleum-contaminated soil, which have high efficiency and low cost for purifying petroleum pollution. Furthermore, an object of the present invention is to provide a method for purifying petroleum-contaminated soil using the composition for purifying petroleum-contaminated soil.

本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、石油分解菌の培養のために、大豆かすやピートモスのような未発酵資材を使用することによって上記目的を達成することができるという知見を得た。 As a result of diligent research to achieve the above object, the present inventor can achieve the above object by using an unfermented material such as soybean residue or peat moss for culturing petroleum-degrading bacteria. I got the finding.

本発明は、これら知見に基づき、更に検討を重ねて完成されたものであり、次の石油汚染土壌の浄化用組成物の製造方法、石油汚染土壌の浄化用組成物、及び石油汚染土壌の浄化方法を提供するものである。 The present invention has been completed by further studies based on these findings, and is the following method for producing a composition for purifying petroleum-contaminated soil, a composition for purifying petroleum-contaminated soil, and purifying petroleum-contaminated soil. It provides a method.

項1.未発酵資材を含む有機資材に石油分解菌を植菌し培養する工程を含む石油汚染土壌の浄化用組成物の製造方法。
項2.前記有機資材中のC/N比が10~30である、項1に記載の製造方法。
項3.前記未発酵資材が前記有機資材中に60質量%以上含まれる、項1又は2に記載の製造方法。
項4.前記未発酵資材が、大豆かす、油かす、籾殻、魚粉、米ぬか、おから、ココナッツファイバー、ピートモス、稲ワラ、水苔、水草、おが屑、チップ、わら、落ち葉、刈草、及びバークからなる群から選択される少なくとも1種である、項1~3のいずれか一項に記載の製造方法。
項5.1×106 cells/g以上の石油分解菌、及び60質量%以上の未発酵資材を含む石油汚染土壌の浄化用組成物。
項6.前記未発酵資材が、大豆かす、油かす、籾殻、魚粉、米ぬか、おから、ココナッツファイバー、ピートモス、稲ワラ、水苔、水草、おが屑、チップ、わら、落ち葉、刈草、及びバークからなる群から選択される少なくとも1種である、項5に記載の組成物。
項7.項1~4のいずれか一項に記載の製造方法により製造された汚染土壌の浄化用組成物、又は項5若しくは6に記載の組成物を石油汚染土壌に添加する工程を含む石油汚染土壌の浄化方法。
Item 1. A method for producing a composition for purifying petroleum-contaminated soil, which comprises a step of inoculating and culturing petroleum-degrading bacteria in an organic material including an unfermented material.
Item 2. Item 2. The production method according to Item 1, wherein the C / N ratio in the organic material is 10 to 30.
Item 3. Item 2. The production method according to Item 1 or 2, wherein the unfermented material is contained in the organic material in an amount of 60% by mass or more.
Item 4. The unfermented material consists of soybean meal, oil cake, rice husk, fish flour, rice bran, okara, coconut fiber, peat moss, rice straw, water moss, waterweed, rice cake, chips, straw, fallen leaves, cut grass, and bark. Item 6. The production method according to any one of Items 1 to 3, which is at least one selected.
Item 5.1 A composition for purifying petroleum-contaminated soil containing petroleum-degrading bacteria of 1 × 10 6 cells / g or more and 60% by mass or more of unfermented materials.
Item 6. The unfermented material consists of soybean meal, oil cake, rice husk, fish flour, rice bran, okara, coconut fiber, peat moss, rice straw, water moss, aquatic plant, rice cake, chips, straw, fallen leaves, cut grass, and bark. Item 5. The composition according to Item 5, which is at least one selected.
Item 7. A composition for purifying contaminated soil produced by the production method according to any one of Items 1 to 4, or an oil-contaminated soil comprising a step of adding the composition according to Item 5 or 6 to the oil-contaminated soil. Purification method.

本発明によれば、石油分解菌の増殖及び菌数と活性の維持に優れた有機資材を使用することで、石油汚染浄化の効率が高い石油汚染土壌の浄化用組成物を低コストで製造することができる。また、本発明の石油汚染土壌の浄化用組成物を使用することで、効率的に石油汚染浄化を行うことが可能となる。 According to the present invention, by using an organic material excellent in the growth of petroleum-degrading bacteria and the maintenance of the number and activity of petroleum-degrading bacteria, a composition for purifying petroleum-contaminated soil with high efficiency of petroleum-contaminated purification can be produced at low cost. be able to. Further, by using the composition for purifying petroleum-contaminated soil of the present invention, it becomes possible to efficiently purify petroleum pollution.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

なお、本明細書において「含む(comprise)」とは、「本質的にからなる(essentially consist of)」という意味と、「のみからなる(consist of)」という意味をも包含する。 It should be noted that, in the present specification, "comprise" also includes the meaning of "essentially consist of" and the meaning of "consist of".

本明細書で使用している用語の定義を以下に示す。 Definitions of terms used herein are given below.

「全炭素」(本明細書においてTCと呼ぶこともある)とは、土壌中の有機態炭素及び無機態炭素の総和を意味する。全炭素は全有機炭素計(TOC-VCPH、株式会社島津製作所)及び固体試料燃焼装置(SSM-5000A、株式会社島津製作所)により測定することができる。 "Total carbon" (sometimes referred to herein as TC) means the sum of organic and inorganic carbons in soil. Total carbon can be measured with a total organic carbon meter (TOC-V CPH , Shimadzu Corporation) and a solid sample combustion device (SSM-5000A, Shimadzu Corporation).

「全窒素」(本明細書においてTNと呼ぶこともある)とは、土壌中の有機態窒素及び無機態窒素の総和を意味する。全窒素はケルダール法及びインドフェノール青法により測定することができる。 "Total nitrogen" (sometimes referred to herein as TN) means the sum of organic and inorganic nitrogen in the soil. Total nitrogen can be measured by the Kjeldahl method and the indophenol blue method.

「C/N比」とは、全炭素/全窒素(TC/TN)の比を意味する。 "C / N ratio" means the ratio of total carbon / total nitrogen (TC / TN).

下記の石油分解菌数は、実施例、特開2014-60966号公報、特開2014-61489号公報などに記載されている方法により求めることができる。 The following petroleum-degrading bacteria count can be determined by the methods described in Examples, JP-A-2014-60966, JP-A-2014-61489 and the like.

石油汚染土壌の浄化用組成物の製造方法
本発明の石油汚染土壌の浄化用組成物の製造方法は、未発酵資材を含む有機資材に石油分解菌を植菌し培養する工程を含むことを特徴とする。
Method for Producing Composition for Purifying Petroleum-Contaminated Soil The method for producing a composition for purifying petroleum -contaminated soil of the present invention is characterized by including a step of inoculating and culturing petroleum-degrading bacteria in an organic material including an unfermented material. And.

本発明における石油汚染土壌としては、本発明により浄化が可能である石油汚染土壌であれば特に限定されず、例えば、ガソリン、灯油、原油、軽油、重油、潤滑油、エンジンオイル等で汚染された土壌が挙げられる。そのような土壌としては、工場跡地、工場敷地、ガソリンスタンド跡地、焼却場、パイプライン周辺、石油汚染事故現場等における土壌が挙げられる。 The petroleum-contaminated soil in the present invention is not particularly limited as long as it is petroleum-contaminated soil that can be purified by the present invention, and is contaminated with, for example, gasoline, kerosene, crude oil, light oil, heavy oil, lubricating oil, engine oil, or the like. The soil is mentioned. Examples of such soil include soil at a factory site, a factory site, a gas station site, an incineration plant, a pipeline area, an oil pollution accident site, and the like.

石油汚染土壌に含まれる炭化水素としては、具体的には、シクロプロパン、シクロブタン、シクロペンタン、シクロヘプタン、シクロヘキサン、シクロオクタン、デカリン等のシクロアルカン;ベンゼン、トルエン、エチルベンゼン、キシレン、フェノール、クレゾール等の単環芳香族炭化水素;ナフタレン、アントラセン、フエナンスレン、ビフェニル、フェノールフタレイン、トリフェニルメタン等の多環芳香族炭化水素;1,1-ジクロロエタン、クロロホルム、1,2-ジクロロプロパン、ジブロモクロロメタン、1,1,2-トリクロロエタン、2-クロロエチルビニルエーテル、テトラクロロエテン(PCE)、クロロベンゼン、1,2-ジクロロエタン、1,1,1-トリクロロエタン、ブロモジクロロメタン、トランス-1,3-ジクロロプロペン、シス-1,3-ジクロロプロペン、ブロモホルム、クロロメタン、ブロモメタン、塩化ビニル、クロロエタン、1,1-ジクロロエテン、トランス-1,2-ジクロロエテン、トリクロロエテン(TCE)、ジクロロベンゼン、シス-1,2-ジクロロエテン、ジブロモエタン、1,4-ジクロロブタン、1,2,3-トリクロロプロパン、ブロモクロロメタン、2,2-ジクロロプロパン、1,2-ジブロモメタン、1,3-ジクロロプロパン等の含ハロゲン炭化水素;長鎖直鎖炭化水素;長鎖環状炭化水素等が例示される。 Specific examples of hydrocarbons contained in petroleum-contaminated soil include cycloalkanes such as cyclopropane, cyclobutane, cyclopentane, cycloheptane, cyclohexane, cyclooctane, and decalin; benzene, toluene, ethylbenzene, xylene, phenol, cresol, and the like. Monocyclic aromatic hydrocarbons; polycyclic aromatic hydrocarbons such as naphthalene, anthracene, phenanthrene, biphenyl, phenolphthalene, triphenylmethane; 1,1-dichloroethane, chloroform, 1,2-dichloropropane, dibromochloromethane , 1,1,2-Trichloroethane, 2-chloroethylvinyl ether, tetrachloroethane (PCE), chlorobenzene, 1,2-dichloroethane, 1,1,1-trichloroethane, bromodioxide, trans-1,3-dichloropropene, Sis-1,3-dichloropropene, bromoform, chloromethane, bromomethane, vinyl chloride, chloroethane, 1,1-dichloroethane, trans-1,2-dichloroethene, trichloroethene (TCE), dichlorobenzene, cis-1,3- 2-dichloroethane, dibromoethane, 1,4-dichlorobutane, 1,2,3-trichloropropane, bromochloromethane, 2,2-dichloropropane, 1,2-dibromomethane, 1,3-dichloropropane, etc. Examples thereof include halogen-containing hydrocarbons; long-chain linear hydrocarbons; and long-chain cyclic hydrocarbons.

本発明における有機資材としては、未発酵資材を含むものである限り特に制限されず、未発酵資材を60質量%以上含むものが好ましく、70質量%以上含むものがより好ましく、80質量%以上含むものが更に好ましく、未発酵資材のみからなるものが特に好ましい。また、未発酵資材の含有量の上限としては、100質量%、95質量%、90質量%、85質量%などが挙げられる。未発酵資材の含有量が多い方が、石油分解菌の増殖及び菌数と活性の維持に優れるため望ましい。 The organic material in the present invention is not particularly limited as long as it contains an unfermented material, and a material containing 60% by mass or more of the unfermented material is preferable, a material containing 70% by mass or more is more preferable, and a material containing 80% by mass or more is preferable. Further preferred, those consisting only of unfermented materials are particularly preferred. Further, the upper limit of the content of the unfermented material is 100% by mass, 95% by mass, 90% by mass, 85% by mass and the like. It is desirable that the content of the unfermented material is high because it is excellent in the growth of petroleum-degrading bacteria and the maintenance of the number and activity of petroleum-degrading bacteria.

未発酵資材としては、発酵が行われていない有機資材である限り特に限定されず、例えば、大豆かす、油かす、籾殻、魚粉、米ぬか、おから、ココナッツファイバー、ピートモス、稲ワラ、水苔、水草、おが屑、チップ、わら、落ち葉、刈草、バークなどが挙げられる。未発酵資材は、1種単独で又は2種以上を組み合わせて使用することができる。 The unfermented material is not particularly limited as long as it is an organic material that has not been fermented. Examples include waterweed, rice husk, chips, straw, fallen leaves, cut grass, and bark. The unfermented material can be used alone or in combination of two or more.

本発明における有機資材には、本発明の効果が得られる範囲において、未発酵資材以外のものを含ませることができ、そのようなものとしては、堆肥、化学肥料などが挙げられる。 The organic material in the present invention may contain materials other than unfermented materials as long as the effects of the present invention can be obtained, and examples thereof include compost and chemical fertilizers.

堆肥としては、バーク堆肥などの植物堆肥、馬糞堆肥、鶏糞堆肥、牛糞堆肥、豚糞堆肥などの家畜堆肥、海藻堆肥などが挙げられる。特許文献4に記載されているように、堆肥には比較的多くの石油分解菌が含まれている。 Examples of compost include plant compost such as bark compost, horse manure compost, chicken manure compost, cow manure compost, pig manure compost and other livestock compost, and seaweed compost. As described in Patent Document 4, compost contains a relatively large amount of petroleum-degrading bacteria.

化学肥料としては、尿素、硝酸アンモニウム、硝酸苦土アンモニウム、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム、硝酸ソーダ、硝酸カルシウム、硝酸カリウム、塩化カリウム、硫酸カリウム、石灰窒素、過リン酸石灰、重過リン酸石灰、溶成リン肥、苦土過リン酸、苦土リン酸、硫リン酸、リン硝安カリウム、塩リン安、硫酸カリソーダ、硫酸カリ苦土、重炭酸カリウム、リン酸カリウムなどが挙げられる。 Chemical fertilizers include urea, ammonium nitrate, ammonium nitrate, ammonium chloride, ammonium sulfate, ammonium phosphate, sodium nitrate, calcium nitrate, potassium nitrate, potassium chloride, potassium sulfate, lime nitrogen, lime perphosphate, and lime heavy phosphate. , Phosphoric acid, Phosphoric acid, Phosphoric acid, Sulfuric acid, Phosphoric acid potassium, Salt Phosphoric acid, Potassium sulfate, Potassium sulfate, Potassium bicarbonate, Potassium phosphate and the like.

有機資材中のC/N比は、好ましくは10~30、より好ましくは10~25である。C/N比がこの範囲にある有機資材は、石油分解菌の増殖及び菌数と活性の維持に優れる。1種の有機資材で上記C/N比を満足していない場合は、複数の有機資材を用いることでC/N比を上記範囲とすることができる。このようなC/N比の調整は、各種有機資材の全炭素及び全窒素の含有量を計測した後、C/N比が上記範囲となるような混合比で有機資材を混合することにより行うことができる。 The C / N ratio in the organic material is preferably 10 to 30, more preferably 10 to 25. Organic materials with a C / N ratio in this range are excellent in the growth of petroleum-degrading bacteria and the maintenance of the number and activity of petroleum-degrading bacteria. If one type of organic material does not satisfy the above C / N ratio, the C / N ratio can be set within the above range by using a plurality of organic materials. Such adjustment of the C / N ratio is performed by measuring the total carbon and total nitrogen contents of various organic materials and then mixing the organic materials at a mixing ratio such that the C / N ratio is within the above range. be able to.

本発明における有機資材は、全炭素の含有量が150,000 mg/kg以上、全窒素の含有量が5,000 mg/kg以上であることが望ましい。 It is desirable that the organic material in the present invention has a total carbon content of 150,000 mg / kg or more and a total nitrogen content of 5,000 mg / kg or more.

本発明における石油分解菌とは、石油、特に石油に含まれる炭化水素を分解可能な細菌を示す。このような石油分解菌としては、例えば、ゴルドニア属(Gordonia)(例えば、ゴルドニア・テラエ(Gordonia terrae))、ロドコッカス属(Rhodococcus)(例えば、ロドコッカス・エリスロポリス(Rhodococcus erythropolis))、アシネトバクター属(Acinetobacter)、バチルス属(Bacillus)、シュードモナス属(Pseudomonas)、アクロモバクター属(Achromobacter)、アルカリゲネス属(Alcaligenes)、ミコバクテリウム属(Mycobacterium)、スフィンゴモナス属(Sphingomonas)、ラルストニア属(Ralstonia)等の細菌が例示される。これらの微生物の内、石油で汚染された土壌から単離されたものは、一般的に石油の分解能が高いため好適に使用できる。 The petroleum-degrading bacterium in the present invention means a bacterium capable of decomposing petroleum, particularly hydrocarbons contained in petroleum. Examples of such petrolytic bacteria include the genus Gordonia (eg, Gordonia terrae), the genus Rhodococcus (eg, Rhodococcus erythropolis), and the genus Acinetobacter. ), Bacillus, Pseudomonas, Achromobacter, Alcaligenes, Mycobacterium, Sphingomonas, Ralstonia, etc. Bacteria are exemplified. Among these microorganisms, those isolated from soil contaminated with petroleum can be preferably used because of the high resolution of petroleum in general.

有機資材中に石油分解菌を植菌する量は、好ましくは1×104 cells/g以上、より好ましくは1×105cells/g以上、更に好ましくは1×106~1×107 cells/gである。 The amount of petroleum-degrading bacteria inoculated into the organic material is preferably 1 × 10 4 cells / g or more, more preferably 1 × 10 5 cells / g or more, and further preferably 1 × 10 6 to 1 × 10 7 cells. / g.

石油分解菌の培養は、公知の方法、例えば、室温で静置することにより行うことができる。また、培養は、堆積させた有機資材に対して、切り返しを繰り返すことでも行うこともできる。有機資材の水分量を培養に適した量に調整するために、水を適宜添加してもよい。有機資材を培養に適した温度に調整するために、有機資材を適宜加温してもよい。培養の期間は、通常、1日~3ヶ月、好ましくは5日~1ヶ月である。 Culturing of petroleum-degrading bacteria can be carried out by a known method, for example, by allowing to stand at room temperature. In addition, the culture can also be performed by repeatedly cutting back the deposited organic material. Water may be added as appropriate in order to adjust the water content of the organic material to an amount suitable for culturing. In order to adjust the temperature of the organic material to a temperature suitable for culturing, the organic material may be appropriately heated. The culture period is usually 1 day to 3 months, preferably 5 days to 1 month.

本発明の製造方法により得られた浄化用組成物中の石油分解菌数は、好ましくは1×106 cells/g以上、より好ましくは1×107 cells/g以上、更に好ましくは1×108~1×1011 cells/gである。 The number of petroleum-degrading bacteria in the purifying composition obtained by the production method of the present invention is preferably 1 × 10 6 cells / g or more, more preferably 1 × 10 7 cells / g or more, and further preferably 1 × 10 8 to 1 × 10 11 cells / g.

石油汚染土壌の浄化用組成物
本発明の石油汚染土壌の浄化用組成物は、1×106 cells/g以上の石油分解菌、及び60質量%以上の未発酵資材を含むことを特徴とする。
Composition for Purifying Petroleum-Contaminated Soil The composition for purifying petroleum-contaminated soil of the present invention is characterized by containing 1 × 10 6 cells / g or more of petroleum-degrading bacteria and 60% by mass or more of unfermented material. ..

当該浄化用組成物は前述する方法により製造することができる。石油分解菌、未発酵資材などは前述するものと同様である。 The purification composition can be produced by the method described above. Petroleum-degrading bacteria, unfermented materials, etc. are the same as those described above.

本発明の浄化用組成物中の石油分解菌数は、好ましくは1×107 cells/g以上、より好ましくは1×108~1×1011 cells/gである。 The number of petroleum-degrading bacteria in the purifying composition of the present invention is preferably 1 × 10 7 cells / g or more, and more preferably 1 × 10 8 to 1 × 10 11 cells / g.

本発明における浄化用組成物は、未発酵資材を好ましくは70質量%以上含み、より好ましくは80質量%以上含み、更に好ましくは未発酵資材のみからなる。また、未発酵資材の含有量の上限としては、100質量%、95質量%、90質量%、85質量%などが挙げられる。ここでの未発酵資材の含有量とは、石油分解菌を培養する前の原料としての未発酵資材の含有量を意味する。 The purification composition in the present invention preferably contains 70% by mass or more of an unfermented material, more preferably 80% by mass or more, and further preferably contains only an unfermented material. Further, the upper limit of the content of the unfermented material is 100% by mass, 95% by mass, 90% by mass, 85% by mass and the like. The content of the unfermented material here means the content of the unfermented material as a raw material before culturing the petroleum-degrading bacteria.

本発明の浄化用組成物には、本発明の効果が得られる範囲において、未発酵資材以外のものを含ませることができ、そのようなものとしては、堆肥、化学肥料などが挙げられる。 The purifying composition of the present invention may contain materials other than unfermented materials as long as the effects of the present invention can be obtained, and examples thereof include compost and chemical fertilizers.

石油汚染土壌の浄化方法
本発明の石油汚染土壌の浄化方法は、上記製造方法により製造された汚染土壌の浄化用組成物、又は上記の浄化用組成物を石油汚染土壌に添加する工程を含むことを特徴とする。
Method for Purifying Oil-Contaminated Soil The method for purifying oil -contaminated soil of the present invention includes a step of adding a composition for purifying contaminated soil produced by the above-mentioned production method or the above-mentioned purification composition to oil-contaminated soil. It is characterized by.

石油汚染土壌に対する浄化用組成物の添加量としては、通常1~10容量%、好ましくは2~8容量%である。石油汚染土壌中の全炭素の含有量、C/N比などを、特定の範囲(例えば、特許文献4に開示の範囲)となるように浄化用組成物の添加量を設定することで、石油汚染浄化の効率を向上させることもできる。 The amount of the purification composition added to the petroleum-contaminated soil is usually 1 to 10% by volume, preferably 2 to 8% by volume. By setting the amount of the purification composition added so that the total carbon content, C / N ratio, etc. in the oil-contaminated soil are within a specific range (for example, the range disclosed in Patent Document 4), petroleum It is also possible to improve the efficiency of decontamination.

また、石油汚染土壌を浄化するのに必要な日数は、通常1.5ヶ月以上、好ましくは2~6ヶ月である。 In addition, the number of days required to purify petroleum-contaminated soil is usually 1.5 months or more, preferably 2 to 6 months.

本発明の石油汚染土壌の浄化方法では、上記の浄化用組成物の添加に加えて、必要により、石油分解菌の投与、石油分解菌の栄養分の投与などの追加処理を行い得る。 In the method for purifying petroleum-contaminated soil of the present invention, in addition to the addition of the above-mentioned purification composition, additional treatments such as administration of petroleum-degrading bacteria and nutrients of petroleum-degrading bacteria can be performed, if necessary.

本発明の製造方法は、培地を使用して石油分解菌を培養した場合と比べて、石油汚染土壌の浄化用組成物を低コストで製造することができる。また、本発明の石油汚染土壌の浄化用組成物は、石油分解菌の菌数と活性の維持に優れているので、効率的に石油汚染浄化を行うことができる。その上、本発明により石油汚染浄化後には、植生の回復も期待できる。 The production method of the present invention can produce a composition for purifying petroleum-contaminated soil at a lower cost than in the case of culturing petroleum-degrading bacteria using a medium. In addition, the composition for purifying petroleum-contaminated soil of the present invention is excellent in maintaining the number and activity of petroleum-degrading bacteria, so that petroleum-contaminated purification can be performed efficiently. Moreover, according to the present invention, recovery of vegetation can be expected after purification of petroleum pollution.

以下、本発明を更に詳しく説明するため実施例を挙げる。しかし、本発明はこれら実施例等になんら限定されるものではない。 Hereinafter, examples will be given to explain the present invention in more detail. However, the present invention is not limited to these examples and the like.

[実験方法]
・総細菌数
(1) 滅菌(121℃、15分間)した50 ml容ファルコンチューブに試料1.0 g、下記表1に示すDNA抽出緩衝液(pH 8.0) 8.0 ml、及び20%(w/v)ドデシル硫酸ナトリウム溶液1.0 mlを加えた。
[experimental method]
・ Total number of bacteria
(1) 1.0 g of sample in a 50 ml falcon tube sterilized (121 ° C, 15 minutes), 8.0 ml of DNA extraction buffer (pH 8.0) shown in Table 1 below, and 20% (w / v) sodium dodecyl sulfate solution. 1.0 ml was added.

Figure 0006999893000001
Figure 0006999893000001

(2) 攪拌機にファルコンチューブをセットし、攪拌(1,500 rpm、室温、20分間)した。
(3) 攪拌後の溶液1.5 mlを滅菌済みエッペンドルフチューブに分取し、遠心分離(8,000 rpm、20℃、10分間)した。
(4) 水層700μlを新たなエッペンドルフチューブに分取し、クロロホルム・イソアミルアルコール(24:1, v/v) 700 mlを加えて緩やかに攪拌し、遠心分離(14,000 rpm、20℃、10分間)した。
(5) 水層500μlを新たなエッペンドルフチューブに分取し、2-プロパノール300μlを加えて緩やかに攪拌し、遠心分離(14,000 rpm、20℃、20分間)した。
(6) 水層を除去し、70%(v/v)エタノールを1.0 ml加え、遠心分離(14,000 rpm、20℃、5分間)した。
(7) 水層を除去し、減圧乾燥(アスピレーターで30分間)した。
(8) 下記表2に示す10:1 TE 緩衝液(pH 8.0)を50μl加えて溶解し、eDNA溶液とした。
(2) A falcon tube was set in a stirrer and stirred (1,500 rpm, room temperature, 20 minutes).
(3) 1.5 ml of the stirred solution was separated into a sterilized Eppendorf tube and centrifuged (8,000 rpm, 20 ° C., 10 minutes).
(4) Divide 700 μl of the aqueous layer into a new Eppendorf tube, add 700 ml of chloroform / isoamyl alcohol (24: 1, v / v), stir gently, and centrifuge (14,000 rpm, 20 ° C., 10 minutes). )did.
(5) 500 μl of the aqueous layer was separated into a new Eppendorf tube, 300 μl of 2-propanol was added, the mixture was gently stirred, and the mixture was centrifuged (14,000 rpm, 20 ° C., 20 minutes).
(6) The aqueous layer was removed, 1.0 ml of 70% (v / v) ethanol was added, and the mixture was centrifuged (14,000 rpm, 20 ° C., 5 minutes).
(7) The aqueous layer was removed and dried under reduced pressure (30 minutes with an aspirator).
(8) 50 μl of 10: 1 TE buffer (pH 8.0) shown in Table 2 below was added and dissolved to prepare an eDNA solution.

Figure 0006999893000002
Figure 0006999893000002

(9) eDNA溶液(5μl)をアガロースゲル電気泳動に供した。また、マーカーとしてsmart Ladder (株式会社ニッポンジーン)を用いた。
(10) 画像解析ソフトウェアKODAK 1D Image Analysis software (KODAK)を用いてsmart LadderのDNAバンドを解析し、蛍光強度に対するDNA量の検量線を作成し、この検量線を用いてゲルDNA量を得た。
(11) 得られたゲルDNA量から、下記式によりeDNA量を算出した。
(9) The eDNA solution (5 μl) was subjected to agarose gel electrophoresis. In addition, smart Ladder (Nippon Gene Co., Ltd.) was used as a marker.
(10) The DNA band of smart Ladder was analyzed using the image analysis software KODAK 1D Image Analysis software (KODAK), a calibration curve of the amount of DNA with respect to the fluorescence intensity was created, and the amount of gel DNA was obtained using this calibration curve. ..
(11) From the obtained gel DNA amount, the eDNA amount was calculated by the following formula.

Figure 0006999893000003
Figure 0006999893000003

(12) 算出したeDNA量から、下記式により試料1.0 gあたりの総細菌数を算出した。
総細菌数(cells/g-soil)=eDNA量(μg/g)×1.70×108[R2=0.938]
(12) From the calculated amount of eDNA, the total number of bacteria per 1.0 g of sample was calculated by the following formula.
Total number of bacteria (cells / g-soil) = amount of eDNA (μg / g) x 1.70 x 10 8 [R 2 = 0.938]

・石油分解菌数
前述するのと同様の方法で、eDNA溶液を調製した。eDNA溶液15μlをアガロースゲル電気泳動に供した。アガロースゲルからDNAバンドを切り出し、eDNAを精製した。KAPA SYBR (登録商標) FAST qPCR Master Mixを10μl、10μMのフォワードプライマー(5'-AACTAYMTCGARCAYTAYGG-3':配列番号1)及びリバースプライマー(5'-TGRTCKSWRTGNCGYTGVARGTG-3':配列番号2)を1μl、ROX highを0.4μl、精製したeDNAを1~5μl含む20μlの反応液を200μl容チューブに加え、Applied Biosystems 7300 Real Time System (Applied Biosystems)にセットして、リアルタイムPCRを行った。PCRの反応条件は、95℃・5~10分の加熱後、95℃・15~30秒、60℃・30~60秒の反応を40サイクルとした。なお、リアルタイムPCRに用いた試料のうち、KAPA SYBR、ROX highは、KAPA SYBR qPCR kit (Kapa Biosystems)のプロトコールに従って用いた。得られたCt値から以下の式を使って石油分解菌数を算出した。
石油分解菌数(cells/g-sample) = (3×1014) × e(-0.516×Ct値)
この方法により、石油分解菌を特異的に高感度で定量することができる。
-Number of petroleum-degrading bacteria An eDNA solution was prepared by the same method as described above. 15 μl of the eDNA solution was subjected to agarose gel electrophoresis. A DNA band was excised from the agarose gel and the eDNA was purified. KAPA SYBR® FAST qPCR Master Mix 10 μl, 10 μM forward primer (5'-AACTAYMTCGARCAYTAYGG-3': SEQ ID NO: 1) and reverse primer (5'-TGRTCKSWRTGNCGYTGVARGTG-3': SEQ ID NO: 2) 1 μl, ROX A 20 μl reaction solution containing 0.4 μl of high and 1 to 5 μl of purified eDNA was added to a 200 μl volume tube and set in the Applied Biosystems 7300 Real Time System (Applied Biosystems) for real-time PCR. The reaction conditions for PCR were heating at 95 ° C. for 5 to 10 minutes, followed by reactions at 95 ° C. for 15 to 30 seconds and 60 ° C. for 30 to 60 seconds for 40 cycles. Of the samples used for real-time PCR, KAPA SYBR and ROX high were used according to the protocol of the KAPA SYBR qPCR kit (Kapa Biosystems). From the obtained Ct value, the number of petroleum-degrading bacteria was calculated using the following formula.
Petroleum-degrading bacteria count (cells / g-sample) = (3 × 10 14 ) × e (-0.516 × Ct value)
By this method, petroleum-degrading bacteria can be specifically quantified with high sensitivity.

[試験例1]各種有機資材(バイオマス)の含有成分の分析
発酵資材として牛糞堆肥(発酵乾燥牛ふん、京種株式会社)と鶏糞堆肥(発酵鶏ふん、アグリエヌワイ)を、未発酵資材として大豆かす(加工大豆、株式会社J-オイルミルズ)とピートモス(ピートモス, グリーンメール)を選択した。各バイオマスの乾燥状態の総炭素量(TC)を全有機体炭素計(TOC-V CPH、株式会社島津製作所)及び固体試料燃焼装置(SSM-5000A、株式会社島津製作所)を用いて測定した。また、総窒素量(TN)をケルダール法及びインドフェノール青法で測定した。乾燥状態のバイオマスのTC、TN及びC/N比を以下の表3に示す。
[Test Example 1] Analysis of components contained in various organic materials (biomass) Cow dung compost (fermented dried cow dung, Kyoshu Co., Ltd.) and chicken manure compost (fermented chicken manure, Agrienwai) are used as fermented materials, and soybean waste (fermented chicken manure, Agrienwai) is used as unfermented materials. Processed soybeans, J-Oil Mills Co., Ltd.) and Pete Moss (Pete Moss, Green Mail) were selected. The total carbon content (TC) of each biomass in a dry state was measured using a total organic carbon meter (TOC-V CPH, Shimadzu Corporation) and a solid sample combustion device (SSM-5000A, Shimadzu Corporation). In addition, the total nitrogen content (TN) was measured by the Kjeldahl method and the indophenol blue method. The TC, TN and C / N ratios of the dry biomass are shown in Table 3 below.

Figure 0006999893000004
Figure 0006999893000004

[試験例2]発酵資材及び発酵資材と未発酵資材を用いた炭化水素分解菌数の生育(ロドコッカス・エリスロポリスNDKK6)
発酵資材のみの混合バイオマスと発酵資材と未発酵資材を用いた混合バイオマスでのロドコッカス・エリスロポリスNDKK6の生育挙動を解析した。培養は、バイオマス300 mlに、5×105 cells/g-biomassとなるように植菌し、室温、静置培養で行った。また、バイオマスはオートクレーブ滅菌したものを使用した。各混合バイオマス1 g中のロドコッカス・エリスロポリスNDKK6数をロドコッカス・エリスロポリスNDKK6が有するalkB R2遺伝子を用いたreal-time PCRによって4週間定量した。結果を以下の表4に示す。
[Test Example 2] Growth of the number of hydrocarbon-degrading bacteria using fermented materials, fermented materials and unfermented materials (Rhodococcus erythropolis NDKK6)
We analyzed the growth behavior of Rhodococcus erythropolis NDKK6 in mixed biomass using only fermented materials and mixed biomass using fermented and unfermented materials. The culture was carried out by inoculating 300 ml of biomass so as to have 5 × 10 5 cells / g-biomass, and culturing at room temperature and statically. The biomass used was sterilized by autoclave. The number of Rhodococcus erythropolis NDKK6 in 1 g of each mixed biomass was quantified for 4 weeks by real-time PCR using the alkB R2 gene possessed by Rhodococcus erythropolis NDKK6. The results are shown in Table 4 below.

Figure 0006999893000005
Figure 0006999893000005

牛糞堆肥+鶏糞堆肥の混合バイオマスにおいて、窒素源の多いC/N比が19の混合バイオマスでは、1週目でロドコッカス・エリスロポリスNDKK6数が減少したが、2週目までに0週目と比べ1.9倍まで増加した。その後4週目にかけて減少し、4週目で1.29×106 cells/g-biomassを維持していた。窒素源の少ないC/N比が21の混合バイオマスでは、1週目で菌数が最大に達し、4週目で1.92×106 cells/g-biomassを維持していた。2種類の牛糞堆肥+鶏糞堆肥の混合バイオマスでは、ロドコッカス・エリスロポリスNDKK6の生育挙動に大きな変化は見られなかった。 In the mixed biomass of cow dung compost + chicken manure compost, the number of Rhodococcus erythropolis NDKK6 decreased in the first week in the mixed biomass with a high nitrogen source and a C / N ratio of 19, but compared to the 0th week by the second week. It increased up to 1.9 times. After that, it decreased in the 4th week and maintained 1.29 × 10 6 cells / g-biomass in the 4th week. In the mixed biomass with a low nitrogen source and a C / N ratio of 21, the bacterial count reached the maximum at the 1st week and maintained 1.92 × 10 6 cells / g-biomass at the 4th week. No significant change was observed in the growth behavior of Rhodococcus erythropolis NDKK6 in the mixed biomass of two types of cow dung compost + chicken manure compost.

一方、牛糞堆肥+大豆かすの混合バイオマスにおいて、窒素源の多いC/N比が13の混合バイオマスでは、1週目までで0週目と比べ約57倍に増加した。また、3週目まで同程度の菌数を維持したが、4週目では7.38×106 cells/g-biomassに減少した。窒素源の少ないC/N比16の混合バイオマスでは、1週目までに0週目と比べ約56倍に増加した。その後、2週目までに菌数が減少し、4週目では1.37×106 cells/g-biomassを維持していた。牛糞堆肥+大豆かすの混合バイオマスでは、窒素源の多いC/N比が13の混合バイオマスの方がロドコッカス・エリスロポリスNDKK6を維持・活性化していた。 On the other hand, in the mixed biomass of cow dung compost + soybean meal, the mixed biomass with a large nitrogen source and a C / N ratio of 13 increased by about 57 times by the first week compared to the 0th week. The number of bacteria was maintained at the same level until the 3rd week, but decreased to 7.38 × 10 6 cells / g-biomass at the 4th week. In the mixed biomass with a C / N ratio of 16 with a small nitrogen source, it increased by about 56 times by the 1st week compared to the 0th week. After that, the number of bacteria decreased by the 2nd week, and 1.37 × 10 6 cells / g-biomass was maintained by the 4th week. In the mixed biomass of cow dung compost + soybean meal, the mixed biomass with a large nitrogen source and a C / N ratio of 13 maintained and activated Rhodococcus erythropolis NDKK6.

牛糞堆肥+鶏糞堆肥の混合バイオマスよりも未発酵有機資材を用いた牛糞堆肥+大豆かすの混合バイオマスの方が、石油分解菌ロドコッカス・エリスロポリスNDKK6数が増加したことから、牛糞堆肥+大豆かすの混合バイオマスの方がロドコッカス・エリスロポリスNDKK6の生育に適していた。また、4種の混合バイオマスのうち、牛糞堆肥+大豆かすのC/N比が13の混合バイオマスで最もロドコッカス・エリスロポリスNDKK6が維持・活性化された。 Compared to the mixed biomass of cow dung compost + chicken manure compost, the mixed biomass of cow dung compost + soybean waste using unfermented organic materials increased the number of petrolytic bacteria Rodcoccus erythropolis NDKK6, so cow dung compost + soybean waste Mixed biomass was more suitable for the growth of Rodococcus erythropolis NDKK6. Of the four types of mixed biomass, Rhodococcus erythropolis NDKK6 was the most maintained and activated in the mixed biomass with a C / N ratio of cow dung compost + soybean meal of 13.

次に、それぞれのバイオマス中の総細菌数を測定した。結果を表5に示す。その結果、石油分解菌ロドコッカス・エリスロポリスNDKK6とほぼ同様の挙動を示した。このことより、環境中に存在する細菌も未発酵資材を加えた方が生育には適しており、また窒素が多い方が生育は良好であった。 Next, the total number of bacteria in each biomass was measured. The results are shown in Table 5. As a result, it showed almost the same behavior as the petroleum-degrading bacterium Rhodococcus erythropolis NDKK6. From this, the bacteria existing in the environment were more suitable for growth when the unfermented material was added, and the growth was better when the nitrogen content was high.

Figure 0006999893000006
Figure 0006999893000006

[試験例3]発酵資材及び発酵資材と未発酵資材を用いた炭化水素分解菌数の生育(ゴルドニア・テラエNDKY76A)
試験例2と同様に発酵資材のみの混合バイオマスと発酵資材と未発酵資材を用いた混合バイオマスでの石油分解菌ゴルドニア・テラエNDKY76Aの生育挙動を解析した。各混合バイオマス1 g中のゴルドニア・テラエNDKY76A数をゴルドニア・テラエNDKY76Aが有するalkB GT遺伝子を用いたreal-time PCRによって4週間定量した。結果を表6に示す。
[Test Example 3] Growth of the number of hydrocarbon-degrading bacteria using fermented materials, fermented materials and unfermented materials (Gordonia Terrae NDKY76A)
Similar to Test Example 2, the growth behavior of the petroleum-degrading bacterium Gordonia terae NDKY76A in the mixed biomass using only the fermented material and the mixed biomass using the fermented material and the unfermented material was analyzed. The number of Gordonia terae NDKY76A in 1 g of each mixed biomass was quantified for 4 weeks by real-time PCR using the alkB GT gene possessed by Gordonia terae NDKY76A. The results are shown in Table 6.

Figure 0006999893000007
Figure 0006999893000007

牛糞堆肥+鶏糞堆肥の混合バイオマスにおいて、窒素源の多いC/N比が19の混合バイオマスでは、順調に増加していき3週目では3.07×106 cells/g-biomassまで増加した。その後4週目にかけて減少したが、4週目で1.34×106 cells/g-biomassを維持していた。窒素源の少ないC/N比が21の混合バイオマスでは、2週目で菌数が最大に達し(2.78×106 cells/g-biomass)、4週目で若干減少したが2.04×106 cells/g-biomassを維持していた。2種類の牛糞堆肥+鶏糞堆肥の混合バイオマスでは、ロドコッカス・エリスロポリスNDKK6と同様にゴルドニア・テラエNDKY76Aの生育挙動に大きな変化はなかった。 In the mixed biomass of cow dung compost + chicken manure compost, the mixed biomass with a large nitrogen source and a C / N ratio of 19 increased steadily and increased to 3.07 × 10 6 cells / g-biomass in the third week. After that, it decreased in the 4th week, but maintained 1.34 × 10 6 cells / g-biomass in the 4th week. In mixed biomass with a low nitrogen source and a C / N ratio of 21, the number of bacteria reached the maximum in the 2nd week (2.78 × 10 6 cells / g-biomass) and decreased slightly in the 4th week, but 2.04 × 10 6 cells. / g-biomass was maintained. In the mixed biomass of two types of cow dung compost + chicken manure compost, there was no significant change in the growth behavior of Gordonia terae NDKY76A as in Rhodococcus erythropolis NDKK6.

一方、牛糞堆肥+大豆かすの混合バイオマスにおいて、窒素源の多いC/N比が13の混合バイオマスでは、1週目までで0週目と比べ約33倍に増加した。また、4週目まで増加が続き、4週目では8.67×106 cells/g-biomassに減少した。窒素源の少ないC/N比16の混合バイオマスでは、1週目までに0週目と比べ約16倍に増加した。その後、減少に転じ、4週目では1.22×106 cells/g-biomassになった。牛糞堆肥+大豆かすの混合バイオマスでは、窒素源の多いC/N比が13の混合バイオマスの方がゴルドニア・テラエNDKY76A NDKK6を維持・活性化していた。これは、石油分解菌ロドコッカス・エリスロポリスと同じ挙動であった。 On the other hand, in the mixed biomass of cow dung compost + soybean meal, the mixed biomass with a large nitrogen source and a C / N ratio of 13 increased by about 33 times by the first week compared to the 0th week. The increase continued until the 4th week, and decreased to 8.67 × 10 6 cells / g-biomass at the 4th week. In the mixed biomass with a C / N ratio of 16 with a small nitrogen source, it increased about 16 times by the 1st week compared to the 0th week. After that, it started to decrease, and by the 4th week, it became 1.22 × 10 6 cells / g-biomass. In the mixed biomass of cow dung compost + soybean meal, the mixed biomass with a large nitrogen source and a C / N ratio of 13 maintained and activated Gordonia terae NDKY76A NDKK6. This was the same behavior as the petroleum-degrading bacterium Rhodococcus erythropolis.

牛糞堆肥+鶏糞堆肥の混合バイオマスよりも未発酵有機資材を用いた牛糞堆肥+大豆かすの混合バイオマスの方が、石油分解菌ゴルドニア・テラエNDKY76A数が増加したことから、牛糞堆肥+大豆かすの混合バイオマスの方がゴルドニア・テラエNDKY76A NDKK6の生育に適していた。また、4種の混合バイオマスのうち、牛糞堆肥+大豆かすのC/N比が13の混合バイオマスで最もゴルドニア・テラエNDKY76Aが維持・活性化された。この結果は、石油分解菌ロドコッカス・エリスロポリスNDKK6とほぼ同じであった。 Compared to the mixed biomass of cow dung compost + chicken manure compost, the mixed biomass of cow dung compost + soybean waste using unfermented organic materials increased the number of petrolytic bacteria Gordonia terae NDKY76A, so the mixed biomass of cow dung compost + soybean waste Biomass was more suitable for the growth of Gordonia Terrae NDKY76A NDKK6. Of the four types of mixed biomass, the mixed biomass with a C / N ratio of cow dung compost + soybean meal was the most maintained and activated. This result was almost the same as that of the petroleum-degrading bacterium Rhodococcus erythropolis NDKK6.

次に、それぞれのバイオマス中の総細菌数を測定した。結果を表7に示す。その結果、石油分解菌ロドコッカス・エリスロポリスNDKK6とほぼ同様の挙動を示した。このことより、環境中に存在する細菌も未発酵資材を加えた方が生育には適しており、また窒素が多い方が生育は良好であった。 Next, the total number of bacteria in each biomass was measured. The results are shown in Table 7. As a result, it showed almost the same behavior as the petroleum-degrading bacterium Rhodococcus erythropolis NDKK6. From this, the bacteria existing in the environment were more suitable for growth when the unfermented material was added, and the growth was better when the nitrogen content was high.

Figure 0006999893000008
Figure 0006999893000008

[試験例4]未発酵資材を用いた炭化水素分解菌の生育(ロドコッカス・エリスロポリスNDKK6)
未発酵資材のみを用いた混合バイオマス(大豆かす・ピートモス)中のロドコッカス・エリスロポリスNDKK6の生育挙動を試験例2と同様に解析した。結果を表8に示す。
[Test Example 4] Growth of hydrocarbon-degrading bacteria using unfermented materials (Rhodococcus erythropolis NDKK6)
The growth behavior of Rhodococcus erythropolis NDKK6 in mixed biomass (soybean meal / peat moss) using only unfermented materials was analyzed in the same manner as in Test Example 2. The results are shown in Table 8.

Figure 0006999893000009
Figure 0006999893000009

大豆かすとピートモスを用いた混合バイオマスは、いずれのC/N比においても、発酵資材と未発酵資材を用いた場合よりも4週目で高い菌数を示した。これは、未発酵資材の方が石油分解菌ロドコッカス・エリスロポリスNDKK6の生育が良いことを示しており、石油分解菌の増殖に適した資材であることが明らかとなった。また、何れの資材も7週目においても高い菌数を保持しており、新たな石油分解菌供給手法となる。 The mixed biomass using soybean meal and peat moss showed a higher bacterial count at 4 weeks than the case where the fermented material and the unfermented material were used in both C / N ratios. This indicates that the unfermented material has better growth of the petroleum-degrading bacterium Rhodococcus erythropolis NDKK6, and it has been clarified that the material is suitable for the growth of the petroleum-degrading bacterium. In addition, all the materials maintain a high number of bacteria even in the 7th week, which is a new method for supplying petroleum-degrading bacteria.

次に、未発酵の混合資材中の総菌数を調べた。結果を表9に示す。その結果、総細菌数は何れの混合資材も石油分解菌ロドコッカス・エリスロポリスNDKK6の生育と同様の挙動を示していた。また、総菌数のほとんどはロドコッカス・エリスロポリスNDKK6であり、これらの資材は有効なロドコッカス・エリスロポリスNDKK6生育資材であることが明らかとなった。 Next, the total number of bacteria in the unfermented mixed material was examined. The results are shown in Table 9. As a result, the total number of bacteria showed the same behavior as the growth of the petroleum-degrading bacterium Rhodococcus erythropolis NDKK6 in all the mixed materials. In addition, most of the total number of bacteria was Rhodococcus erythropolis NDKK6, and it was clarified that these materials are effective Rhodococcus erythropolis NDKK6 growth materials.

Figure 0006999893000010
Figure 0006999893000010

[試験例5]未発酵資材を用いた炭化水素分解菌の生育(ゴルドニア・テラエNDKY76A)
未発酵資材のみを用いた混合バイオマス(大豆かす・ピートモス)中のゴルドニア・テラエNDKY76Aの生育挙動を試験例2と同様に解析した。結果を表10に示す。
[Test Example 5] Growth of Hydrocarbon Degrading Bacteria Using Unfermented Materials (Gordonia Terrae NDKY76A)
The growth behavior of Gordonia terae NDKY76A in mixed biomass (soybean meal / peat moss) using only unfermented materials was analyzed in the same manner as in Test Example 2. The results are shown in Table 10.

Figure 0006999893000011
Figure 0006999893000011

大豆かすとピートモスを用いた混合バイオマスは、いずれのC/N比においても、発酵資材と未発酵資材を用いた場合よりも3~4週目で高い菌数を示した。これは、発酵資材よりも未発酵資材の組み合わせ方が石油分解菌ゴルドニア・テラエNDKY76Aの生育が良いことを示しており、石油分解菌の増殖に適した資材であることが明らかとなった。また、何れの資材も7週目においても高い菌数を保持しており、新たな石油分解菌供給手法である。これらの傾向は、石油分解菌ロドコッカス・エリスロポリスNDKK6と同様であった。 The mixed biomass using soybean meal and peat moss showed higher bacterial counts at 3 to 4 weeks than when fermented and unfermented materials were used at any C / N ratio. This indicates that the combination of unfermented materials has better growth of the petroleum-degrading bacterium Gordonia Terrae NDKY76A than the fermented material, and it has been clarified that the material is suitable for the growth of petroleum-degrading bacteria. In addition, all the materials maintain a high number of bacteria even in the 7th week, which is a new method for supplying petroleum-degrading bacteria. These tendencies were similar to those of the petroleum-degrading fungus Rhodococcus erythropolis NDKK6.

次に、未発酵の混合資材中の総菌数を調べた。結果を表11に示す。その結果、総菌数は何れの混合資材も石油分解菌ゴルドニア・テラエNDKY76Aの生育と同様の挙動を示していた。また、総菌数のほとんどはゴルドニア・テラエNDKY76Aであり、これらの資材は有効なゴルドニア・テラエNDKY76A生育資材であることが明らかとなった。この結果もロドコッカス・エリスロポリスNDKK6と同様であり、これらの資材は、何れの石油分解菌でも適応可能であることが明らかとなった。 Next, the total number of bacteria in the unfermented mixed material was examined. The results are shown in Table 11. As a result, the total number of bacteria showed the same behavior as the growth of the petroleum-degrading bacterium Gordonia terae NDKY76A in all the mixed materials. In addition, most of the total number of bacteria was Gordonia terae NDKY76A, and it was clarified that these materials are effective Gordonia terae NDKY76A growth materials. This result was also similar to Rhodococcus erythropolis NDKK6, and it was clarified that these materials can be applied to any petroleum-degrading bacteria.

Figure 0006999893000012
Figure 0006999893000012

[試験例6]ロドコッカス・エリスロポリスNDKK6含有バイオマス資材を用いたバイオレメディエーション
ロドコッカス・エリスロポリスNDKK6の生育に適したバイオマスを探索したところ、未発酵資材である大豆かすとピートモスを混合させたC/N比が20のバイオマスでロドコッカス・エリスロポリスNDKK6が維持・活性化されることが分かった。そこで、このバイオマスを用いて炭化水素汚染土壌のバイオレメディエーションを行った。
[Test Example 6] Bioremediation using biomass material containing Rhodococcus erythropolis NDKK6 When we searched for biomass suitable for growth of Rhodococcus erythropolis NDKK6, we found that C / N was a mixture of unfermented soybean residue and peat moss. It was found that Rhodococcus erythropolis NDKK6 was maintained and activated by biomass with a ratio of 20. Therefore, bioremediation of hydrocarbon-contaminated soil was performed using this biomass.

試験例2と同様に、大豆かす+ピートモス(C/N:20)にロドコッカス・エリスロポリスNDKK6を植菌し室温で3週間培養した(微生物含有資材)。その後、基油(潤滑油)5,000 mg/kgを添加した汚染土壌に微生物含有資材を1%(v/v)添加した。対照実験として、大豆かす+ピートモスのみを同様の汚染土壌に1%(v/v)添加後、培養したロドコッカス・エリスロポリスNDKK6を1×107 cells/g-土壌になるように添加した。油分解析は、公定法である赤外分析法を用いた。 Similar to Test Example 2, Rhodococcus erythropolis NDKK6 was inoculated into soybean meal + peat moss (C / N: 20) and cultured at room temperature for 3 weeks (microorganism-containing material). Then, 1% (v / v) of the microbial-containing material was added to the contaminated soil to which the base oil (lubricating oil) of 5,000 mg / kg was added. As a control experiment, only soybean meal + peat moss was added to the same contaminated soil at 1% (v / v), and then cultured Rhodococcus erythropolis NDKK6 was added to 1 × 10 7 cells / g-soil. For the oil content analysis, an infrared analysis method, which is an official method, was used.

炭化水素汚染土壌中のロドコッカス・エリスロポリスNDKK6数の結果を表12に、総細菌数の結果を表13に、ベースオイル濃度の結果を表14にそれぞれ示す。 Table 12 shows the results of Rhodococcus erythropolis NDKK6 counts in hydrocarbon-contaminated soil, Table 13 shows the results of total bacterial counts, and Table 14 shows the results of base oil concentration.

Figure 0006999893000013
Figure 0006999893000013

混合資材中で石油分解菌ロドコッカス・エリスロポリスNDKK6を増やし汚染土壌に投入したものと、従来と同様の手法で培養したロドコッカス・エリスロポリスNDKK6を汚染土壌に投入したものを比較すると、ロドコッカス・エリスロポリスNDKK6の数はほとんど同等であった(表12)。このことより、石油分解菌ロドコッカス・エリスロポリスNDKK6は、エネルギーコストのかからない資材中で増殖させる手法でも有効に機能することが明らかとなった。 Comparing Rhodococcus erythropolis NDKK6, which is a petroleum-degrading bacterium, and putting it into contaminated soil in a mixed material, and Rhodococcus erythropolis NDKK6, which was cultivated by the same method as before, were put into contaminated soil. The numbers of NDKK6 were almost the same (Table 12). From this, it was clarified that the petroleum-degrading bacterium Rhodococcus erythropolis NDKK6 functions effectively even in a method of growing in a material with no energy cost.

Figure 0006999893000014
Figure 0006999893000014

同様に汚染土壌の総細菌数を測定したところ、総細菌数もほぼ同様の挙動を示し、混合資材中で増殖させる手法が有効であることが明らかとなった(表13)。 Similarly, when the total number of bacteria in the contaminated soil was measured, the total number of bacteria showed almost the same behavior, and it was clarified that the method of growing in the mixed material was effective (Table 13).

Figure 0006999893000015
Figure 0006999893000015

最終的に、残存する油分を解析したところ、ほぼ同等な油分分解が示された(表14)。これらのことから、高価な菌株培養の代わりに有機資材中で石油分解菌を増殖させる新たな手法の有効性が示された。 Finally, when the remaining oil content was analyzed, almost the same oil content decomposition was shown (Table 14). These results indicate the effectiveness of a new method for growing petroleum-degrading bacteria in organic materials instead of expensive strain culture.

[試験例7]ゴルドニア・テラエNDKY76A含有バイオマス資材を用いたバイオレメディン
石油分解菌ロドコッカス・エリスロポリスNDKK6と同様に、石油分解菌ゴルドニア・テラエNDKY76Aの生育に適したバイオマスを探索したところ、未発酵資材である大豆かすとピートモスを混合させたC/N比が20のバイオマスでゴルドニア・テラエNDKY76Aが維持・活性化されることが分かった。この結果は、石油分解菌ロドコッカス・エリスロポリスNDKK6と同様であった。そこで、このバイオマスを用いて炭化水素汚染土壌のバイオレメディエーションを行った。
[Test Example 7] Biomass using biomass material containing Gordonia Terrae NDKY76A Similar to Rhodococcus erythropolis NDKK6, a biomass that is suitable for the growth of the petroleum-degrading bacterium Gordonia terae NDKY76A was searched for unfermented. It was found that Gordonia terae NDKY76A is maintained and activated by biomass with a C / N ratio of 20, which is a mixture of soybean cake and peat moss, which are the materials. This result was similar to that of the petroleum-degrading bacterium Rhodococcus erythropolis NDKK6. Therefore, bioremediation of hydrocarbon-contaminated soil was performed using this biomass.

実験は、試験例6と同様に、大豆かす+ピートモス(C/N:20)にゴルドニア・テラエNDKY76Aを植菌し室温で3週間培養した(微生物含有資材)。その後、基油(潤滑油) 5,000 mg/kgを添加した汚染土壌に微生物含有資材を1%(v/v)添加した。対照実験として、大豆かす+ピートモスのみを同様の汚染土壌に1%(v/v)添加後、培養したゴルドニア・テラエNDKY76Aを1×107 cells/g-土壌になるように添加した。 In the experiment, as in Test Example 6, soybean meal + peat moss (C / N: 20) was inoculated with Gordonia terae NDKY76A and cultured at room temperature for 3 weeks (microorganism-containing material). Then, 1% (v / v) of microbial-containing material was added to the contaminated soil to which 5,000 mg / kg of base oil (lubricating oil) was added. As a control experiment, only soybean meal + peat moss was added to the same contaminated soil at 1% (v / v), and then cultured Gordonia terae NDKY76A was added to 1 × 10 7 cells / g-soil.

炭化水素汚染土壌中のゴルドニア・テラエNDKY76A数の結果を表15に、総細菌数の結果を表16に、ベースオイル濃度の結果を表17に示す。 Table 15 shows the results of the Gordonia terae NDKY76A number in the hydrocarbon-contaminated soil, Table 16 shows the result of the total number of bacteria, and Table 17 shows the result of the base oil concentration.

Figure 0006999893000016
Figure 0006999893000016

混合資材中で石油分解菌ゴルドニア・テラエNDKY76Aを増やし汚染土壌に投入したものと、従来と同様の手法で培養したゴルドニア・テラエNDKY76Aを汚染土壌に投入したものを比較すると、ゴルドニア・テラエNDKY76Aの数はほとんど同等であった(表15)。このことより、石油分解菌ゴルドニア・テラエNDKY76Aは、エネルギーコストのかからない資材中で増殖させる手法でも有効に機能することが明らかとなった。この結果は、石油分解菌ロドコッカス・エリスロポリスNDKK6と同様であった。 Comparing the number of Gordonia terae NDKY76A NDKY76A cultivated by the same method as the conventional method and the NDKY76A NDKY76A cultivated in the contaminated soil. Were almost equivalent (Table 15). From this, it was clarified that the petroleum-degrading bacterium Gordonia Terrae NDKY76A functions effectively even in a method of growing in materials with low energy cost. This result was similar to that of the petroleum-degrading bacterium Rhodococcus erythropolis NDKK6.

Figure 0006999893000017
Figure 0006999893000017

同様に汚染土壌の総細菌数を測定したところ、総細菌数もほぼ同様の挙動を示し、混合資材中で増殖させる手法が有効であることが明らかとなった(表16)。 Similarly, when the total number of bacteria in the contaminated soil was measured, the total number of bacteria showed almost the same behavior, and it was clarified that the method of growing in the mixed material was effective (Table 16).

Figure 0006999893000018
Figure 0006999893000018

最終的に、残存する油分を解析したところ、ほぼ同等な油分分解が示された(表17)。これらのことから、石油分解菌ゴルドニア・テラエNDKY76Aは、石油分解菌ロドコッカス・エリスロポリスNDKK6同様、高価な菌株培養の代わりに、コストが大幅に低減できる有機資材中で石油分解菌を増殖させる新たな手法の有効性が示された。 Finally, when the remaining oil content was analyzed, almost the same oil content decomposition was shown (Table 17). Based on these facts, the petroleum-degrading bacterium Gordonia Terrae NDKY76A, like the petroleum-degrading bacterium Rhodococcus erythropolis NDKK6, is a new method for growing petroleum-degrading bacteria in organic materials that can significantly reduce costs, instead of culturing expensive strains. The effectiveness of the method was shown.

Claims (4)

未発酵資材を含む有機資材に石油を分解可能な細菌を植菌し培養する工程を含む石油汚染土壌の浄化用組成物の製造方法であって、
前記細菌が、ゴルドニア属(Gordonia)及び/又はロドコッカス属(Rhodococcus)の細菌であり、
前記未発酵資材が、大豆かす及びピートモスからなる群から選択される少なくとも1種である、方法
A method for producing a composition for purifying petroleum-contaminated soil, which comprises a step of inoculating and culturing a bacterium capable of decomposing petroleum in an organic material including an unfermented material.
The bacterium is a bacterium of the genus Gordonia and / or the genus Rhodococcus.
The method, wherein the unfermented material is at least one selected from the group consisting of soybean meal and peat moss .
前記有機資材中のC/N比が10~30である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the C / N ratio in the organic material is 10 to 30. 前記未発酵資材が前記有機資材中に60質量%以上含まれる、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the unfermented material is contained in the organic material in an amount of 60% by mass or more. 請求項1~のいずれか一項に記載の製造方法により製造された汚染土壌の浄化用組成物を石油汚染土壌に添加する工程を含む石油汚染土壌の浄化方法。 A method for purifying petroleum-contaminated soil, which comprises a step of adding a composition for purifying contaminated soil produced by the production method according to any one of claims 1 to 3 to petroleum-contaminated soil.
JP2017065031A 2017-03-29 2017-03-29 Manufacturing method of composition for purification of petroleum-contaminated soil Active JP6999893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017065031A JP6999893B2 (en) 2017-03-29 2017-03-29 Manufacturing method of composition for purification of petroleum-contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017065031A JP6999893B2 (en) 2017-03-29 2017-03-29 Manufacturing method of composition for purification of petroleum-contaminated soil

Publications (2)

Publication Number Publication Date
JP2018166418A JP2018166418A (en) 2018-11-01
JP6999893B2 true JP6999893B2 (en) 2022-02-04

Family

ID=64017470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017065031A Active JP6999893B2 (en) 2017-03-29 2017-03-29 Manufacturing method of composition for purification of petroleum-contaminated soil

Country Status (1)

Country Link
JP (1) JP6999893B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230286844A1 (en) * 2018-07-06 2023-09-14 Iga Bio Research Co., Ltd. Method for decontaminating environment polluted with petroleum-related material, and material used
CN109821886A (en) * 2018-12-30 2019-05-31 广州草木蕃环境科技有限公司 A kind of plant restoration method of Tailings Dam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025172A (en) 2002-05-09 2004-01-29 Nisshin Flour Milling Inc Method of purifying contaminated soil
JP2006314858A (en) 2005-05-10 2006-11-24 Petroleum Energy Center Method of purifying soil or water contaminated with heavy oil
JP2009166027A (en) 2007-12-20 2009-07-30 Ehime Univ Method cleaning soil contaminated with petroleum
JP2014061489A (en) 2012-09-21 2014-04-10 Ritsumeikan Decontamination method of petroleum contaminated soil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004025172A (en) 2002-05-09 2004-01-29 Nisshin Flour Milling Inc Method of purifying contaminated soil
JP2006314858A (en) 2005-05-10 2006-11-24 Petroleum Energy Center Method of purifying soil or water contaminated with heavy oil
JP2009166027A (en) 2007-12-20 2009-07-30 Ehime Univ Method cleaning soil contaminated with petroleum
JP2014061489A (en) 2012-09-21 2014-04-10 Ritsumeikan Decontamination method of petroleum contaminated soil

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Applied Biochemistry and Biotechnology,2011年,Vol.164,pp.1071-1082
第71回土木学会年次学術講演会講演概要集,2016年,pp.1381-1382

Also Published As

Publication number Publication date
JP2018166418A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
Brar et al. Photoautotrophic microorganisms and bioremediation of industrial effluents: current status and future prospects
David et al. Biodegradation of palm oil mill effluent (POME) by bacteria.
Ganapathy et al. Bioremediation of palm oil mill effluent (POME) using indigenous Meyerozyma guilliermondii
Safwat et al. Environmental applications of effective microorganisms: a review of current knowledge and recommendations for future directions
US10478652B2 (en) Method for biodegrading high molecular weight polycyclic aromatic hydrocarbon pyrenes with halophilic bacteria
Amin et al. Bioremediation of different waste waters-a review
Gielnik et al. Bacterial seeding potential of digestate in bioremediation of diesel contaminated soil
Parmar et al. Microorganism: An ecofriendly tool for waste management and environmental safety
JP5692718B2 (en) Soil purification method
Bertrand et al. Applied microbial ecology and bioremediation: Microorganisms as major actors of pollution elimination in the environment
Surkatti et al. Isolation and identification of organics-degrading bacteria from gas-to-liquid process water
JP6999893B2 (en) Manufacturing method of composition for purification of petroleum-contaminated soil
Zribi et al. Trends in microalgal-based systems as a promising concept for emerging contaminants and mineral salt recovery from municipal wastewater
Gouda et al. Bioremediation of kerosene II: a case study in contaminated clay (Laboratory and field: scale microcosms)
Bao et al. Urea addition as an enhanced strategy for degradation of petroleum contaminants during co-composting of straw and pig manure: Evidences from microbial community and enzyme activity evaluation
JP6153304B2 (en) Purification method for oil-contaminated soil
Soccol et al. Bioremediation: An important alternative for soil and industrial wastes clean-up
Yang et al. Dynamics of functional genes and bacterial community during bioremediation of diesel-contaminated soil amended with compost
Fathi et al. Isolation and identification of polycyclic aromatic hydrocarbons (PAHs) degrading bacteria from Arak petrochemical wastewater.
Groppa et al. Optimization of a bioremediation strategy for an urban stream of Matanza-Riachuelo basin
Dhar et al. Bioremediation and Its Application in Aquaculture
Banerjee et al. Role of algal-bacterial association in combined wastewater treatment and biohydrogen generation: An overview on its challenges and future
Williams et al. Comparative Bioremediation Potentials of Pseudomonas aeruginosa KX828570 and Bacillus megaterium KY085976 on Polluted Terrestrial Soil Treated with Oil Spill dispersant
Wurochekke et al. Phycoremediation: a green technology for nutrient removal from greywater
Sun et al. Pilot-scale field studies on activated microbial remediation of petroleum-contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R150 Certificate of patent or registration of utility model

Ref document number: 6999893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150