JP6998056B2 - A new method for identifying proteins using yeast and a fragmented cDNA library - Google Patents

A new method for identifying proteins using yeast and a fragmented cDNA library Download PDF

Info

Publication number
JP6998056B2
JP6998056B2 JP2018521014A JP2018521014A JP6998056B2 JP 6998056 B2 JP6998056 B2 JP 6998056B2 JP 2018521014 A JP2018521014 A JP 2018521014A JP 2018521014 A JP2018521014 A JP 2018521014A JP 6998056 B2 JP6998056 B2 JP 6998056B2
Authority
JP
Japan
Prior art keywords
protein
cdna
gene encoding
prey
yeast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018521014A
Other languages
Japanese (ja)
Other versions
JPWO2017209280A1 (en
Inventor
昭世 岸田
浩史 小山
想子 岸田
幹雄 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Publication of JPWO2017209280A1 publication Critical patent/JPWO2017209280A1/en
Application granted granted Critical
Publication of JP6998056B2 publication Critical patent/JP6998056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/02Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • C40B40/08Libraries containing RNA or DNA which encodes proteins, e.g. gene libraries

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、例えば酵母と断片化cDNAライブラリーを用いたタンパク質の同定方法に関する。 The present invention relates to, for example, a method for identifying proteins using yeast and a fragmented cDNA library.

細胞内外での複数の分子の会合又は結合が、細胞の増殖や分化、接着等を制御する生体シグナルとして働くことが知られている。特に、ホルモン等各種のリガンド分子の生理作用を解明するためには、細胞膜上のレセプター分子の同定が有用である。これらの目的には、免疫沈降等でレセプター分子を含むタンパク質複合体を濃縮し、質量分析を行う方法や培養細胞を用いたパンニング法等が一般化しつつある。しかしながら、未だに受容体の不明な「オーファンリガンド」が多数知られている。その受容体同定は、各種疾患病態と関連する可能性が高く注目されているが、スクリーニング方法の煩雑さ、検出感度の不足等から進んでいない。 It is known that the association or binding of a plurality of molecules inside and outside the cell acts as a biological signal that controls cell proliferation, differentiation, adhesion, and the like. In particular, identification of receptor molecules on the cell membrane is useful for elucidating the physiological actions of various ligand molecules such as hormones. For these purposes, a method of concentrating a protein complex containing a receptor molecule by immunoprecipitation or the like and performing mass spectrometry, a panning method using cultured cells, or the like is becoming popular. However, many "orphan ligands" with unknown receptors are still known. The receptor identification has been attracting attention because it is highly likely to be related to various pathological conditions, but it has not progressed due to the complexity of the screening method and the lack of detection sensitivity.

一方、細胞内(細胞質)の分子の結合同定法として、酵母two-hybrid法が知られている(非特許文献1~3)。酵母two-hybrid法では、遺伝子ベクターを用いて核内移行シグナルを付加した既知遺伝子と核内移行シグナルを付加した全長cDNAキメラ遺伝子(市販品では通常はオリゴdTプライマーで逆転写したもの)を2種類発現させ、分子同士の結合が核内で形成された場合、発現誘導されるレポーター遺伝子の活性や発光等で分子間の結合を検出する。 On the other hand, the yeast two-hybrid method is known as a method for identifying the binding of intracellular (cytoplasmic) molecules (Non-Patent Documents 1 to 3). In the yeast two-hybrid method, a known gene to which a nuclear translocation signal is added using a gene vector and a full-length cDNA chimeric gene to which a nuclear translocation signal is added (usually reverse-transcribed with an oligo dT primer in commercial products) are 2 When expression is performed and a bond between molecules is formed in the nucleus, the bond between molecules is detected by the activity of the reporter gene whose expression is induced, luminescence, or the like.

酵母two-hybrid法において、リガンド分子や受容体等の膜タンパク質をコードする遺伝子をベクターに挿入した場合、5'末端のシグナルペプチドや3'末端付近の細胞膜貫通領域の発現により、キメラ遺伝子を核内で発現させることが困難であり、従来の酵母two-hybrid法はリガンド-受容体の結合の解析には適していない。 In the yeast two-hybrid method, when a gene encoding a membrane protein such as a ligand molecule or a receptor is inserted into a vector, the chimeric gene is nucleated by expressing the signal peptide at the 5'end or the transmembrane region near the 3'end. It is difficult to express within, and the conventional yeast two-hybrid method is not suitable for analysis of ligand-receptor binding.

また、酵母two-hybrid法の改変が多数報告されている。例えば、使用する細胞を酵母以外の生物に変えたり、レポータージーン部分の開発による改良を目指したものが挙げられる。しかしながら、従来において、(膜)タンパク質の部分領域ライブラリーとして核内で発現させて、本来細胞外で起こる相互作用を核内で検出しようとする意図の酵母two-hybrid法の改変は知られていなかった。 In addition, many modifications of the yeast two-hybrid method have been reported. For example, the cells used may be changed to organisms other than yeast, or the reporter gene portion may be developed for improvement. However, in the past, modifications of the yeast two-hybrid method intended to be expressed in the nucleus as a partial region library of (membrane) proteins and to detect interactions that originally occur extracellularly in the nucleus have been known. There wasn't.

Young, K., Biol. Reprod., 1998年, 58(2), pp. 302-11Young, K., Biol. Reprod., 1998, 58 (2), pp. 302-11 Joung, J.ら, Proc. Natl. Acad. Sci. U.S.A., 2000年, 97(13), pp. 7382-7Joung, J. et al., Proc. Natl. Acad. Sci. U.S.A., 2000, 97 (13), pp. 7382-7 Fields, S.及びSong, O., Nature, 1989年, 340(6230), pp. 245-246Fields, S. and Song, O., Nature, 1989, 340 (6230), pp. 245-246

上述のように、5'末端のシグナルペプチドや3'末端付近の細胞膜貫通領域の発現により、従来の酵母two-hybrid法はリガンド-受容体の結合の解析には適していない。そこで、本発明は、酵母two-hybrid法を改変し、リガンド-受容体を含むタンパク質間の結合の解析に好適な方法を提供することを目的とする。 As mentioned above, the expression of the signal peptide at the 5'end and the transmembrane region near the 3'end makes the conventional yeast two-hybrid method unsuitable for analysis of ligand-receptor binding. Therefore, it is an object of the present invention to modify the yeast two-hybrid method to provide a method suitable for analysis of a binding between a protein containing a ligand and a receptor.

上記課題を解決するため鋭意研究を行った結果、従来の酵母two-hybrid法(オリゴdTプライマーによる逆転写での作製)とは異なり、cDNAライブラリー作製時に、ランダムプライマーを用いて任意の個所から逆転写したcDNAや超音波処理等で切断して意図的に断片化したcDNAをベクターに挿入した断片化cDNAライブラリーを用いて、酵母two-hybrid法を行うことで、当該断片化cDNAライブラリーには、膜タンパク質であっても5'末端のシグナルペプチドや3'末端付近の細胞膜貫通領域の欠損したクローンが含まれているので、核内で安定して発現させることが可能となり、細胞外でのリガンドと受容体の細胞外部分との結合を核内で再現し、レポータージーンを利用した結合の検出という過程で従来法では行えなかった結合解析が可能となることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, unlike the conventional yeast two-hybrid method (preparation by reverse transcription with an oligo dT primer), when preparing a cDNA library, a random primer is used from any location. The fragmented cDNA library is obtained by performing the yeast two-hybrid method using a fragmented cDNA library in which a back-transcribed cDNA or a cDNA that has been intentionally fragmented by cleavage by ultrasonic treatment is inserted into a vector. Contains a signal peptide at the 5'end and a clone lacking the transmembrane region near the 3'end, even if it is a membrane protein, so that it can be stably expressed in the nucleus and extracellularly. The present invention was completed by reproducing the binding between the ligand and the extracellular part of the receptor in the nucleus and finding that binding analysis that could not be performed by the conventional method becomes possible in the process of detecting the binding using the reporter gene. Came to do.

すなわち、本発明は、以下を包含する。
(1)第1及び第2のベクターを導入した酵母形質転換体を培養する工程を含む、タンパク質の同定方法であって、第1のベクターは、核内移行シグナルをコードする遺伝子とDNA結合タンパク質をコードする遺伝子とおとりタンパク質をコードする遺伝子とを含み、第2のベクターは、核内移行シグナルをコードする遺伝子と転写活性化タンパク質をコードする遺伝子と断片化した部分cDNAとを含み、該断片化した部分cDNAは、シグナルペプチド、細胞膜若しくは細胞内小器官局在化配列又は細胞膜貫通領域が欠損した獲物タンパク質をコードするものであり、且つ、前記酵母形質転換体の核内において、前記核内移行シグナルとDNA結合タンパク質とおとりタンパク質とを含む融合タンパク質、及び前記核内移行シグナルと転写活性化タンパク質と断片化した部分cDNAによりコードされる獲物タンパク質とを含む融合タンパク質が発現し、該おとりタンパク質と該獲物タンパク質との結合を、レポーター遺伝子の活性を指標に検出する、前記方法。
(2)おとりタンパク質がリガンドであり、且つ獲物タンパク質が受容体タンパク質である、(1)記載の方法。
(3)おとりタンパク質が各種局在シグナル配列を除いた部分cDNAによりコードされるタンパク質である、(1)記載の方法。
(4)ランダムプライム逆転写によって得られた、長さ100~1800bpを有するcDNA。
(5)長さが100~1000bpである、(4)記載のcDNA。
(6)核内移行シグナルをコードする遺伝子と転写活性化タンパク質をコードする遺伝子と断片化した部分cDNAとを含むベクターであって、該断片化した部分cDNAが(4)又は(5)記載のcDNAである、前記ベクター。
(7)(4)若しくは(5)記載のcDNA又は(6)記載のベクターを含む、(1)~(3)のいずれか1記載のタンパク質の同定方法用試薬キット。
That is, the present invention includes the following.
(1) A method for identifying a protein, which comprises a step of culturing a yeast transformant into which the first and second vectors have been introduced, wherein the first vector is a gene encoding a nuclear translocation signal and a DNA-binding protein. The second vector contains a gene encoding a nuclear translocation signal, a gene encoding a transcriptional activation protein, and a fragmented partial cDNA, which comprises a gene encoding a decoy protein and a gene encoding a decoy protein. The transformed partial cDNA encodes a prey protein lacking a signal peptide, a cell membrane or an intracellular small organ localized sequence or a transmembrane region, and in the nucleus of the yeast transformant, in the nucleus. A fusion protein containing a translocation signal, a DNA-binding protein, and a decoy protein, and a fusion protein containing the nuclear translocation signal, a transcriptional activation protein, and a prey protein encoded by fragmented partial cDNA are expressed, and the decoy protein is expressed. The method for detecting the binding between the protein and the prey protein using the activity of the reporter gene as an index.
(2) The method according to (1), wherein the decoy protein is a ligand and the prey protein is a receptor protein.
(3) The method according to (1), wherein the decoy protein is a protein encoded by a partial cDNA excluding various localized signal sequences.
(4) A cDNA having a length of 100 to 1800 bp obtained by random prime reverse transcription.
(5) The cDNA according to (4), which has a length of 100 to 1000 bp.
(6) A vector containing a gene encoding a nuclear translocation signal, a gene encoding a transcriptional activation protein, and a fragmented partial cDNA, wherein the fragmented partial cDNA is described in (4) or (5). The vector, which is a cDNA.
(7) A reagent kit for identifying a protein according to any one of (1) to (3), which comprises the cDNA according to (4) or (5) or the vector according to (6).

本明細書は本願の優先権の基礎となる日本国特許出願番号2016-112107号の開示内容を包含する。 This specification includes the disclosure of Japanese Patent Application No. 2016-112107, which is the basis of the priority of the present application.

本発明によれば、オーファンリガンドの受容体解明や、膜タンパク質が結合する分子を検索同定することで各種疾患に関わるシグナル分子の解明に寄与できる。 According to the present invention, it is possible to contribute to elucidation of signal molecules involved in various diseases by elucidating receptors for orphan ligands and searching and identifying molecules to which membrane proteins bind.

本発明に係るタンパク質の同定方法(以下、「本方法」と称する)は、第1及び第2のベクターを導入した酵母形質転換体を培養する工程を含み、ここで、
第1のベクターは、核内移行シグナルをコードする遺伝子とDNA結合タンパク質をコードする遺伝子とおとり(bait)タンパク質をコードする遺伝子とを含み、
第2のベクターは、核内移行シグナルをコードする遺伝子と転写活性化タンパク質をコードする遺伝子と断片化した部分cDNAとを含み、該断片化した部分cDNAは、シグナルペプチド、細胞膜若しくは細胞内小器官局在化配列又は細胞膜貫通領域が欠損した獲物(prey)タンパク質をコードするものであり、且つ、
該酵母形質転換体の核内において、該核内移行シグナルとDNA結合タンパク質とおとりタンパク質とを含む融合タンパク質、及び該核内移行シグナルと転写活性化タンパク質と断片化した部分cDNAによりコードされる獲物タンパク質とを含む融合タンパク質が発現し、該おとりタンパク質と該獲物タンパク質との結合を、レポーター遺伝子の活性を指標に検出する、
方法である。
The method for identifying a protein according to the present invention (hereinafter referred to as "the method") comprises a step of culturing a yeast transformant into which the first and second vectors have been introduced, wherein the method comprises the same.
The first vector contains a gene encoding a nuclear translocation signal, a gene encoding a DNA binding protein, and a gene encoding a bait protein.
The second vector contains a gene encoding a nuclear translocation signal, a gene encoding a transcriptional activation protein, and a fragmented partial cDNA, which is a signal peptide, cell membrane or intracellular small organ. It encodes a prey protein lacking a localized sequence or transmembrane region and is
In the nucleus of the yeast transformant, a fusion protein containing the nuclear translocation signal, a DNA-binding protein, and a decoy protein, and a prey encoded by the nuclear translocation signal, a transcriptional activation protein, and fragmented partial cDNA. A fusion protein containing a protein is expressed, and the binding between the decoy protein and the prey protein is detected using the activity of the reporter gene as an index.
The method.

一般に、従来の酵母two-hybrid法では、DNA結合タンパク質と興味のある分子(おとりタンパク質)との融合タンパク質及び転写活性化タンパク質と全長cDNAから成るcDNAライブラリー(由来の)分子(獲物タンパク質)との融合タンパク質を酵母の核内で発現させ、おとりタンパク質とライブラリー由来分子との結合が生じたときに発現誘導が起こるレポーター遺伝子の活性を指標に、当該おとりタンパク質とライブラリー由来分子との結合を検出する。 In general, in the conventional yeast two-hybrid method, a fusion protein of a DNA-binding protein and a molecule of interest (decoy protein) and a cDNA library (derived) molecule (prey protein) consisting of a transcriptional activation protein and full-length cDNA are used. The binding of the decoy protein to the library-derived molecule is based on the activity of the reporter gene, which induces expression when the decoy protein is bound to the library-derived molecule by expressing the fusion protein in yeast. Is detected.

酵母two-hybrid法は、二分子の結合を指標とする安価な大規模スクリーニングの手法として広く普及した。しかしながら、cDNAライブラリー由来のタンパク質がシグナルペプチド、細胞膜や各種細胞内小器官へ局在させる配列を含む場合、核内で該当分子を発現させられないため、おとりタンパク質との結合を核内で形成させることができず、レポーター遺伝子の発現を検出できない。そのため、酵母two-hybrid法は、一般に細胞内タンパク質同士の結合を検出する手法という位置づけで利用されている。また、従来において市販されているライブラリーは、oligo dTプライマーを用いてmRNAの3'末端側から逆転写合成した(ほぼ完全長の)cDNAを挿入したものである。 The yeast two-hybrid method has become widespread as an inexpensive large-scale screening method using the binding of two molecules as an index. However, when a protein derived from a cDNA library contains a signal peptide, a sequence localized in a cell membrane or various intracellular small organs, the relevant molecule cannot be expressed in the nucleus, and thus a bond with a decoy protein is formed in the nucleus. The expression of the reporter gene cannot be detected. Therefore, the yeast two-hybrid method is generally used as a method for detecting the binding between intracellular proteins. In addition, the library commercially available in the past is a library in which a (almost full-length) cDNA reversely transcribed and synthesized from the 3'end side of mRNA using an oligo dT primer is inserted.

一方、本方法では、意図的に断片化したcDNAを挿入したcDNAライブラリーを使用するため、従来法において見逃していた膜タンパク質や各種の局在配列を含む分子の部分領域を酵母核内で発現させることで、おとりタンパク質との結合を検出でき、通常細胞外で起こるリガンド-受容体の結合や、細胞内外を問わず膜タンパク質同士の会合を酵母の核内で検出することができる。 On the other hand, since this method uses a cDNA library in which a fragmented cDNA is intentionally inserted, a partial region of a molecule containing a membrane protein or various localized sequences that was overlooked in the conventional method is expressed in the yeast nucleus. By doing so, the binding to the decoy protein can be detected, and the ligand-receptor binding that normally occurs outside the cell and the association between membrane proteins both inside and outside the cell can be detected in the nucleus of yeast.

本方法では、先ず、第1及び第2のベクターを準備する。 In this method, first, the first and second vectors are prepared.

第1のベクターは、核内移行シグナルをコードする遺伝子とDNA結合タンパク質をコードする遺伝子とおとりタンパク質類をコードする遺伝子とを機能的に連結した融合遺伝子を含む。第1のベクターとしては、酵母で機能するベクターであればよく、例えばpBTM116、pGBKT7、pGBT9等が挙げられる。 The first vector contains a fusion gene that functionally links a gene encoding a nuclear translocation signal, a gene encoding a DNA binding protein, and a gene encoding decoy proteins. The first vector may be any vector that functions in yeast, and examples thereof include pBTM116, pGBKT7, and pGBT9.

第1のベクターにおいては、上記のDNA結合タンパク質をコードする遺伝子とおとりタンパク質類をコードする遺伝子とを含む融合遺伝子によりコードされる融合タンパク質を酵母の核内に移行すべく、核内移行シグナルをコードする遺伝子が当該融合遺伝子に内包、あるいは予め付加(例えばLarge T 抗原 residues 47 to 54 (PKKKRKVE:配列番号1)、LexAタンパク質の内在性の核局在シグナル配列(KRLKK:配列番号2)等)されていなければならない。 In the first vector, a nuclear localization signal is used to transfer a fusion protein encoded by a fusion gene containing the above-mentioned gene encoding a DNA-binding protein and a gene encoding decoy proteins into the nucleus of yeast. The encoding gene is included or preliminarily added to the fusion gene (for example, Large T antigen residues 47 to 54 (PKKKRKVE: SEQ ID NO: 1), endogenous nuclear localization signal sequence of LexA protein (KRLKK: SEQ ID NO: 2), etc.). Must have been.

また、DNA結合タンパク質としては、例えばGal4タンパク質のDNA結合ドメイン(DBD)、LexAタンパク質のDBD等が挙げられる。 Examples of the DNA-binding protein include the DNA-binding domain (DBD) of the Gal4 protein and the DBD of the LexA protein.

さらに、おとりタンパク質類としては、例えば受容体の不明なオーファンリガンド、各種局在シグナル(細胞膜貫通ドメインや細胞内小器官への局在シグナル配列等)を除いた部分cDNAによりコードされるタンパク質等が挙げられる。 Further, as decoy proteins, for example, orphan ligands having unknown receptors, proteins encoded by partial cDNA excluding various localization signals (localization signal sequences to transmembrane domains and organelles, etc.), etc. Can be mentioned.

このように、第1のベクターでは、例えばN末端からC末端の方向に、順に核内移行シグナル-DBD-おとりタンパク質を含む融合タンパク質を発現させるべく、各遺伝子を機能的に連結した形で含む。 Thus, in the first vector, for example, in the direction from the N-terminal to the C-terminal, each gene is functionally linked in order to express a fusion protein containing a nuclear translocation signal-DBD-decoy protein. ..

第2のベクターは、核内移行シグナルをコードする遺伝子と転写活性化タンパク質をコードする遺伝子と断片化した部分cDNAとを機能的に連結した融合遺伝子を含む。第2のベクターとしては、酵母で機能するベクターであればよく、例えばpACT2、pGADT7、pGAD10等が挙げられる。 The second vector contains a fusion gene that functionally links a gene encoding a nuclear translocation signal, a gene encoding a transcriptionally activated protein, and a fragmented partial cDNA. The second vector may be any vector that functions in yeast, and examples thereof include pACT2, pGADT7, and pGAD10.

第2のベクターにおいては、上記の転写活性化タンパク質をコードする遺伝子と断片化した部分cDNAとを含む融合遺伝子によりコードされる融合タンパク質を酵母の核内に移行すべく、当該融合遺伝子に核内移行シグナルが内在又は予め付加(例えば、Large T 抗原residues 47 to 54 (PKKKRKVE:配列番号1)、LexAタンパク質の内在性の核局在シグナル配列(KRLKK:配列番号2)等)されていなくてはならない。 In the second vector, the fusion protein encoded by the fusion gene containing the gene encoding the transcriptional activation protein and the fragmented partial cDNA is transferred into the fusion gene in the nucleus of the yeast. The translocation signal must be endogenous or pre-added (eg, Large T antigen residues 47 to 54 (PKKKRKVE: SEQ ID NO: 1), LexA protein endogenous nuclear localization signal sequence (KRLKK: SEQ ID NO: 2), etc.). It doesn't become.

また、転写活性化タンパク質としては、第1のベクター中に含まれる融合遺伝子によりコードされるDNA結合タンパク質と共に、酵母中のレポーター遺伝子の制御配列(プロモーター等)上に近接に位置した場合に転写活性能を有し、レポーター遺伝子の転写を活性化するものであり、例えば、Gal4タンパク質のDBDに対応するGal4タンパク質のアクティベータードメイン(AD)等が挙げられる。 The transcriptional activation protein includes the DNA-binding protein encoded by the fusion gene contained in the first vector and the transcriptional activity when it is located close to the control sequence (promoter, etc.) of the reporter gene in yeast. It has a function and activates the transcription of a reporter gene, and examples thereof include the activator domain (AD) of the Gal4 protein corresponding to the DBD of the Gal4 protein.

一方、断片化した部分cDNAは、オリゴdTプライマーを用いて作製した全長遺伝子のcDNAライブラリーと異なり、例えば公知のcDNAライブラリー作製(例えば、cDNA Library Construction Kit(タカラバイオ株式会社)等の市販のキットを用いたcDNAライブラリー作製)において、任意の生物や組織から採取したmRNAとランダムプライマー(例えば、下記の実施例で使用される配列番号3に記載の塩基配列から成るランダムプライマー)を用いて任意の個所から逆転写したcDNAライブラリー、又は超音波処理等で切断して意図的に断片化したcDNAライブラリーである。ランダムプライム逆転写によって得られたcDNAは、例えば長さ100~1800bp(好ましくは、100~1000bp)を有する。超音波処理等を用いた切断による断片化したcDNAライブラリーは、例えば、EcoRIアダプターを末端に付加し、EcoRI断端を持つ大過剰のベクターと結合させることにより作製する。当該部分cDNAは、シグナルペプチド、細胞膜若しくは細胞内小器官局在化配列又は細胞膜貫通領域が欠損した、リガンドや膜タンパク質と結合する獲物タンパク質をコードするものを含む。獲物タンパク質としては、例えば受容体タンパク質等が挙げられる。 On the other hand, the fragmented partial cDNA is different from the full-length gene cDNA library prepared by using the oligo dT primer, and is commercially available, for example, a known cDNA library preparation (for example, cDNA Library Construction Kit (Takara Bio Co., Ltd.)). In the preparation of a cDNA library using the kit), using mRNA collected from any organism or tissue and a random primer (for example, a random primer consisting of the base sequence shown in SEQ ID NO: 3 used in the examples below). It is a cDNA library reversely transcribed from an arbitrary location, or a cDNA library that is intentionally fragmented by being cleaved by ultrasonic treatment or the like. The cDNA obtained by random prime reverse transcription has, for example, a length of 100 to 1800 bp (preferably 100 to 1000 bp). Fragmented cDNA libraries by cleavage using sonication or the like are prepared, for example, by adding an EcoRI adapter to the end and binding to a large excess vector with an EcoRI stump. The partial cDNA includes a signal peptide, a cell membrane or an intracellular small organ localized sequence, or a prey protein that binds to a ligand or a membrane protein lacking a transmembrane region. Examples of the prey protein include a receptor protein and the like.

このように、第2のベクターでは、例えばN末端からC末端の方向に、順に核内移行シグナル-Gal4アクティベータードメイン(AD)-断片化cDNAによりコードされる獲物タンパク質を含む融合タンパク質を発現させるべく、各遺伝子を機能的に連結した形で含む。 Thus, in the second vector, for example, from the N-terminus to the C-terminus, in order to express a fusion protein containing a prey protein encoded by a nuclear translocation signal-Gal4 activator domain (AD) -fragmented cDNA. , Contains each gene in a functionally linked form.

本方法では、次に第1及び第2のベクターを酵母に形質転換し、第1及び第2のベクターを発現する酵母形質転換体を作製する。酵母としては、例えば出芽酵母(サッカロマイセス・セレビシエ(Saccharomyces cerevisiae))等が挙げられる。なお、酵母の核内には、第1のベクター中に含まれる融合遺伝子によりコードされるDNA結合タンパク質と第2のベクター中に含まれる融合遺伝子によりコードされる転写活性化タンパク質とにより転写が活性化される制御配列とその下流に位置するレポーター遺伝子が存在する。当該制御配列としては、例えば、Gal4タンパク質についてはUASG(Upstream Activation Sequences for galactose)と称される塩基配列等が挙げられる。また、レポーター遺伝子としては、例えばβ-ガラクトシダーゼをコードする遺伝子やHIS3等が挙げられる。制御配列とその下流に位置するレポーター遺伝子は、ゲノムDNAに組み込まれているために酵母の核内に存在する。 In this method, the first and second vectors are then transformed into yeast to produce yeast transformants expressing the first and second vectors. Examples of the yeast include budding yeast (Saccharomyces cerevisiae) and the like. In the nucleus of yeast, transcription is activated by a DNA-binding protein encoded by the fusion gene contained in the first vector and a transcriptional activation protein encoded by the fusion gene contained in the second vector. There is a control sequence to be converted and a reporter gene located downstream thereof. Examples of the control sequence include a base sequence called UASG (Upstream Activation Sequences for galactose) for Gal4 protein. Examples of the reporter gene include a gene encoding β-galactosidase and HIS3. The control sequence and its downstream reporter gene are present in the yeast nucleus because they are integrated into genomic DNA.

酵母への第1及び第2のベクターの導入方法としては、酵母にDNAを導入する方法であれば特に限定されず、例えばエレクトロポレーション法、スフェロプラスト法、酢酸リチウム法等が挙げられる。 The method for introducing the first and second vectors into yeast is not particularly limited as long as it is a method for introducing DNA into yeast, and examples thereof include an electroporation method, a spheroplast method, and a lithium acetate method.

次いで、得られた酵母形質転換体を生育可能な条件下で培養する。当該酵母形質転換体の核内において、核内移行シグナルとDNA結合タンパク質とおとりタンパク質とを含む融合タンパク質、及び核内移行シグナルと転写活性化タンパク質と断片化した部分cDNAによりコードされる獲物タンパク質とを含む融合タンパク質が発現し、該おとりタンパク質と該獲物タンパク質とが相互作用することで該DNA結合タンパク質と該転写活性化タンパク質とが近接し、レポーター遺伝子上流に位置する制御配列に結合することで、レポーター遺伝子の転写が促進される。従って、当該レポーター遺伝子の活性を指標に、おとりタンパク質と獲物タンパク質との結合を確認し、おとりタンパク質に対応する獲物タンパク質を同定することができる。 Then, the obtained yeast transformant is cultured under viable conditions. In the nucleus of the yeast transformant, a fusion protein containing a nuclear translocation signal, a DNA-binding protein, and a decoy protein, and a prey protein encoded by a nuclear translocation signal, a transcriptional activation protein, and a fragmented partial cDNA. By expressing the fusion protein containing, and interacting with the decoy protein and the prey protein, the DNA-binding protein and the transcriptionally activated protein are in close proximity and bind to a control sequence located upstream of the reporter gene. , The transcription of the reporter gene is promoted. Therefore, using the activity of the reporter gene as an index, the binding between the decoy protein and the prey protein can be confirmed, and the prey protein corresponding to the decoy protein can be identified.

酵母形質転換体の培養においては、形質転換体が生育し、且つレポーター遺伝子によりコードされるレポータータンパク質が失活しないように、温度は、例えば25~30℃に設定し、培地のpHは例えばpH5.8付近に設定し、各種アッセイに必要な量の菌体が得られるまでの期間は培養を続ける。 In culturing the yeast transformant, the temperature is set to, for example, 25 to 30 ° C., and the pH of the medium is, for example, pH 5 so that the transformant grows and the reporter protein encoded by the reporter gene is not inactivated. Set to around .8 and continue culturing until the required amount of cells for various assays is obtained.

レポーター遺伝子の活性が確認された酵母形質転換体において、第2のベクターに含まれる断片化した部分cDNAの配列を決定することで、部分的な獲物タンパク質をコードする遺伝子断片を同定することができる。さらに、同定した部分的な獲物タンパク質をコードする遺伝子断片を、例えば既知のデータベースに登録された遺伝子配列と比較することで、(登録されている場合には)獲物タンパク質をコードする遺伝子や当該遺伝子によりコードされる全長の獲物タンパク質を同定することもできる。 In yeast transformants in which the activity of the reporter gene has been confirmed, the gene fragment encoding the partial prey protein can be identified by sequencing the fragmented partial cDNA contained in the second vector. .. In addition, by comparing the identified partial prey protein-encoding gene fragment to, for example, a gene sequence registered in a known database, the gene encoding the prey protein (if registered) or the gene concerned. It is also possible to identify the full length prey protein encoded by.

本方法によれば、培養細胞でのパンニング法を行った際に比べて、酵母のレポーター遺伝子のシステムを利用することにより、結合の検出感度(最大で1μM程度のKdの結合まで検出できると見込まれる)とS/N比の向上、スクリーニングの迅速化(100万クローン程度の結合判定に通常は14日間程度が必要となる)、回収する遺伝子の安定性、クローニングの迅速化、経済性等が期待される。また、オーファンリガンドの受容体同定は、創薬に直結する可能性があり、本方法をオーファンリガンドの受容体同定に適用することができる。さらに、本方法を幅広く膜タンパク質同士の結合スクリーニングに適用することも可能である。 According to this method, it is expected that the detection sensitivity of binding (up to about 1 μM Kd binding can be detected by using the yeast reporter gene system, compared to the panning method in cultured cells. ) And improvement of S / N ratio, speeding up of screening (usually about 14 days are required to determine the binding of about 1 million clones), stability of the gene to be recovered, speeding up of cloning, economic efficiency, etc. Be expected. In addition, the receptor identification of the orphan ligand may be directly linked to drug discovery, and this method can be applied to the receptor identification of the orphan ligand. Furthermore, this method can be widely applied to screening for binding between membrane proteins.

また、本発明は、上記のランダムプライム逆転写によって得られたcDNA自体、第2のベクター自体、当該ランダムプライム逆転写によって得られたcDNA又は第2のベクターを含む本方法用試薬キットに関する。当該試薬キットは、例えば、本方法に使用するバッファーや容器、使用説明書等を更に含むことができる。 The present invention also relates to a reagent kit for the present method containing the cDNA obtained by the above random prime reverse transcription itself, the second vector itself, the cDNA obtained by the random prime reverse transcription, or the second vector. The reagent kit may further include, for example, a buffer, a container, an instruction manual, etc. used in this method.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。
1.断片化cDNAの合成
断片化cDNAの合成は、cDNA Library Construction Kit(タカラバイオ株式会社)の方法を、一部条件を改変して行った。
Hereinafter, the present invention will be described in more detail with reference to examples, but the technical scope of the present invention is not limited to these examples.
1. 1. Synthesis of fragmented cDNA Fragmented cDNA was synthesized by modifying the method of the cDNA Library Construction Kit (Takara Bio Inc.) with some conditions.

(1) 1st strand cDNAの合成
制限酵素XhoIの認識配列(5'-CTCGAG-3')の3'側に、dATPとdCTPとdGTPとdTTPの4種類のヌクレオチドをランダムに6個付加したプライマー(配列5'-TAGAACTCGAGNNNNNN-3'(配列番号3);以下、「ランダムプライマー」と称する)(600 μM、1 μl)と、任意の生物や組織から採取したmRNA 5 μgと、dNTP混合液(dATP, 5-methyl dCTP, dGTP, dTTP)(各10 mM) 1.2 μlをマイクロ遠心チューブ内で混合し、RNaseを含まない水で10 μlにした。これを65℃で5分間加熱して、氷上で急冷して変性させた。これに、逆転写酵素(PrimeScript RTase タカラバイオ株式会社)(200 U/μl) 1 μlと、RNase阻害剤(40 U/μl) 1 μlと、反応用緩衝液(250 mM Tris-HCl(pH 8.3), 375 mM KCl, 15 mM MgCl2) 4 μlと、RNaseを含まない水4 μlを加え20 μlにし、42℃で1時間逆転写反応を行なった。1時間経過後、氷上で2分間冷却した。この反応で合成されたcDNAを1st strand cDNAとした。
(1) Synthesis of 1st strand cDNA A primer in which 6 nucleotides of 4 types, dATP, dCTP, dGTP, and dTTP, were randomly added to the 3'side of the recognition sequence (5'-CTCGAG-3') of the limiting enzyme XhoI (5'-CTCGAG-3'). Sequence 5'-TAGAACTCGAGNNNNNN-3'(SEQ ID NO: 3); hereinafter referred to as "random primer") (600 μM, 1 μl), 5 μg of mRNA collected from any organism or tissue, and dNTP mixture (dATP). , 5-methyl dCTP, dGTP, dTTP) (10 mM each) 1.2 μl was mixed in a microcentrifuge tube to 10 μl with RNase-free water. This was heated at 65 ° C. for 5 minutes and then quenched on ice for denaturation. To this, 1 μl of reverse transcriptase (PrimeScript RTase Takara Bio Co., Ltd.) (200 U / μl), 1 μl of RNase inhibitor (40 U / μl), and a reaction buffer (250 mM Tris-HCl (pH 8.3)). ), 375 mM KCl, 15 mM MgCl 2 ) 4 μl and 4 μl of water containing no RNase were added to make 20 μl, and a reverse transcription reaction was carried out at 42 ° C. for 1 hour. After 1 hour, it was cooled on ice for 2 minutes. The cDNA synthesized by this reaction was used as the 1st strand cDNA.

(2) 2nd strand cDNAの合成
1st strand cDNAにdNTP混合液(dATP, dCTP, dGTP, dTTP) 4.5 μlと、RNaseHとDNA ligaseの混合液 2 μl、DNA polymerase I(20 U/μl) 2 μl、反応用緩衝液 30 μl、RNaseを含まない水87.5 μlを加え146 μlにし、16℃で2時間反応させた。2時間経過後、70℃で10分間静置後、室温で5分間以上静置した。この反応で合成された二本鎖cDNAを2nd strand cDNAとした。
(2) Synthesis of 2nd strand cDNA
4.5 μl of dNTP mixture (dATP, dCTP, dGTP, dTTP), 2 μl of RNase H and DNA ligase mixture, 2 μl of DNA polymerase I (20 U / μl), 30 μl of reaction buffer, RNase on 1st strand cDNA 87.5 μl of water containing no water was added to make 146 μl, and the mixture was reacted at 16 ° C. for 2 hours. After 2 hours, the mixture was allowed to stand at 70 ° C. for 10 minutes and then at room temperature for 5 minutes or longer. The double-stranded cDNA synthesized by this reaction was used as the 2nd strand cDNA.

(3) 2nd strand cDNAの末端の平滑化
2nd strand cDNAに、T4 DNA polymerase(1 U/μl) 4 μlを加え、37℃で10分間反応させ、2nd strand cDNAの末端を平滑化した。これに等量のフェノール/クロロホルム/イソアミルアルコール(25:24:1混合液)を添加し、よく混合後、遠心分離を行い、上層を新しいマイクロ遠心チューブに移した。これに等量のクロロホルム/イソアミルアルコール(24:1混合液)を添加し、よく混合後、遠心分離を行い、上層を新しいマイクロ遠心チューブに移した。これに1/10量の3 M 酢酸ナトリウム緩衝液(pH 5.2)と、2.5倍量のエタノールを加え、よく混合後、室温で15,000 rpmで30分間遠心分離を行い、上清を除去した。沈殿に70%エタノールを200 μl加え、沈殿をリンス後、室温で15,000 rpmで3分間遠心分離を行い、上清を除去した。沈殿を乾燥させた後、RNaseを含まない水を12.5 μl加え沈殿を溶解した。これを末端平滑化2nd strand cDNAとした。
(3) Smoothing of the ends of 2nd strand cDNA
4 μl of T4 DNA polymerase (1 U / μl) was added to the 2nd strand cDNA and reacted at 37 ° C for 10 minutes to smooth the ends of the 2nd strand cDNA. An equal amount of phenol / chloroform / isoamyl alcohol (25:24: 1 mixture) was added to this, and after mixing well, centrifugation was performed and the upper layer was transferred to a new microcentrifuge tube. An equal amount of chloroform / isoamyl alcohol (24: 1 mixed solution) was added to this, and after mixing well, centrifugation was performed and the upper layer was transferred to a new microcentrifuge tube. To this, 1/10 amount of 3 M sodium acetate buffer (pH 5.2) and 2.5 times amount of ethanol were added, mixed well, and then centrifuged at 15,000 rpm for 30 minutes at room temperature to remove the supernatant. 200 μl of 70% ethanol was added to the precipitate, the precipitate was rinsed, and the precipitate was centrifuged at 15,000 rpm for 3 minutes at room temperature to remove the supernatant. After the precipitate was dried, 12.5 μl of RNase-free water was added to dissolve the precipitate. This was used as the terminal smoothed 2nd strand cDNA.

(4) 末端平滑化2nd strand cDNAへのEcoRIアダプターの付加
末端平滑化2nd strand cDNA溶液12.5 μlに、EcoRI-SmaIアダプター(5'末端を脱リン酸化した5'-AATTCCCGGG-3'の一本鎖DNA(配列番号4)と、5'-CCCGGG-3'の一本鎖DNAをアニーリングさせたもの)(0.4 μg/μl) 3.5 μlと、T4 DNA ligase(350 U/μl) 2 μlと、反応用緩衝液2 μlを加え、全量を20 μlとした。これを、よく混合した後、8℃で一晩以上反応させた。反応後、70℃で30分間静置し、T4 DNA ligaseを失活させた後、室温でさらに5分間静置した。これをアダプター付加2nd strand cDNAとした。
(4) Addition of EcoRI adapter to terminal smoothed 2nd strand cDNA 12.5 μl of terminal smoothed 2nd strand cDNA solution with EcoRI-SmaI adapter (5'-AATTCCCGGG-3'single strand with dephosphorylated 5'end DNA (SEQ ID NO: 4) and 5'-CCCGGG-3'single-stranded DNA annealed) (0.4 μg / μl) 3.5 μl and T4 DNA ligase (350 U / μl) 2 μl. 2 μl of buffer solution was added to make the total volume 20 μl. This was mixed well and then reacted at 8 ° C. overnight or longer. After the reaction, the mixture was allowed to stand at 70 ° C. for 30 minutes to inactivate T4 DNA ligase, and then allowed to stand at room temperature for another 5 minutes. This was used as the 2nd strand cDNA with an adapter.

(5) アダプター付加2nd strand cDNAの制限酵素XhoIによる切断
アダプターを付加した2nd strand cDNA溶液20 μlに、XhoI(10 U/μl) 3 μlと、反応用緩衝液(500 mM Tris-HCl(pH 7.5), 100 mM MgCl2, 10 mM dithiothreitol, 1 M NaCl) 5 μlと、0.1% BSA(ウシ血清アルブミン) 5 μlと、RNaseを含まない水を17 μl加え、全量を50 μlとした。これを、よく混合した後、37℃で3時間反応させた。この反応で、ランダムプライマー内のXhoI認識配列が切断されるが、cDNA内のXhoI認識配列には1st strand cDNA合成時に5-methyl dCTPが使用されている為、XhoIで切断されない。
(5) Cleavage of 2nd strand cDNA with adapter added XhoI to 20 μl of 2nd strand cDNA solution with adapter, 3 μl of XhoI (10 U / μl) and reaction buffer (500 mM Tris-HCl (pH 7.5)) ), 100 mM MgCl 2 , 10 mM dithiothreitol, 1 M NaCl) 5 μl, 0.1% BSA (bovine serum albumin) 5 μl, and RNase-free water 17 μl were added to make the total volume 50 μl. This was mixed well and then reacted at 37 ° C. for 3 hours. This reaction cleaves the XhoI recognition sequence in the random primer, but it is not cleaved by XhoI because 5-methyl dCTP is used in the 1st strand cDNA synthesis for the XhoI recognition sequence in the cDNA.

(6) 短鎖DNAの除去
ゲル濾過やシリカベースのビーズを用いて未反応のアダプターや数十残基以下の短鎖DNAの除去を行う。TE緩衝液(10 mM Tris-HCl(pH 8.0), 1 mM EDTA)で平衡化したゲル濾過カラム(目的とするcDNAのサイズによりゲルの種類を選択する)に、XhoIで切断した2nd strand cDNAを添加し、遠心分離(条件はカラムによる)を行った。この遠心操作で、未反応のEcoRI-SmaIアダプターや、XhoIで切断された短いDNA断片を含まない、一定サイズ以上のcDNAを取得した。これに等量のフェノール/クロロホルム/イソアミルアルコール(25:24:1混合液)を添加し、よく混合後、遠心分離を行い、上層を新しいマイクロ遠心チューブに移した。これに等量のクロロホルム/イソアミルアルコール(24:1混合液)を添加し、よく混合後、遠心分離を行い、上層を新しいマイクロ遠心チューブに移した。これに1/10量の3 M 酢酸ナトリウム緩衝液(pH 5.2)と、2.5倍量のエタノールを加え、よく混合後、室温で15,000 rpmで30分間遠心分離を行い、上清を除去した。沈殿に70%エタノールを200 μl加え、沈殿をリンス後、室温で15,000 rpmで3分間遠心分離を行い、上清を除去した。沈殿を乾燥させた後、RNaseを含まない水を15 μl加え、沈殿を溶解し、これをEcoRI-XhoI切断処理済みcDNAとした。
(6) Removal of short-chain DNA Remove unreacted adapters and short-chain DNA of several tens of residues or less using gel filtration or silica-based beads. Xho I cleaved 2nd strand cDNA on a gel filtration column (select the gel type according to the size of the desired cDNA) equilibrated with TE buffer (10 mM Tris-HCl (pH 8.0), 1 mM EDTA). It was added and centrifuged (conditions depend on the column). By this centrifugation, cDNA of a certain size or larger was obtained, which did not contain an unreacted EcoRI-SmaI adapter or a short DNA fragment cleaved by XhoI. An equal amount of phenol / chloroform / isoamyl alcohol (25:24: 1 mixture) was added to this, and after mixing well, centrifugation was performed and the upper layer was transferred to a new microcentrifuge tube. An equal amount of chloroform / isoamyl alcohol (24: 1 mixed solution) was added to this, and after mixing well, centrifugation was performed and the upper layer was transferred to a new microcentrifuge tube. To this, 1/10 amount of 3 M sodium acetate buffer (pH 5.2) and 2.5 times amount of ethanol were added, mixed well, and then centrifuged at 15,000 rpm for 30 minutes at room temperature to remove the supernatant. 200 μl of 70% ethanol was added to the precipitate, the precipitate was rinsed, and the precipitate was centrifuged at 15,000 rpm for 3 minutes at room temperature to remove the supernatant. After the precipitate was dried, 15 μl of RNase-free water was added to dissolve the precipitate, which was used as EcoRI-XhoI cleavage-treated cDNA.

(7) ベクターへのEcoRI-XhoI切断処理済みcDNAの結合
目的に応じたベクターをEcoRIとXhoIで切断したものと、EcoRI-XhoI切断処理済みcDNAをDNA ligaseを用い結合した。
(7) Binding of EcoRI-XhoI cleaved cDNA to the vector A vector cleaved with EcoRI and XhoI and a cDNA cleaved with EcoRI-XhoI were bound using DNA ligase.

次いで、ベクターとEcoRI-XhoI切断処理済みcDNAを結合したものを、大腸菌にエレクトロポレーション法で導入し、任意の10クローンを選んでPCR法で挿入されている断片化cDNAのサイズを解析したところ100~1000塩基であることを確認した後、大腸菌からcDNAライブラリーを回収した。 Next, a vector bound to EcoRI-XhoI cleavage-treated cDNA was introduced into Escherichia coli by the electroporation method, and any 10 clones were selected and the size of the fragmented cDNA inserted by the PCR method was analyzed. After confirming that it was 100 to 1000 bases, the cDNA library was recovered from Escherichia coli.

2.マウス脳由来分子のスクリーニング
上記第1節に準じて、マウスの脳から回収したmRNAを元に作製したcDNAをベクターpACT2に挿入したライブラリーを、pBTM116-HA-KM-hENHOで形質転換した出芽酵母L40に導入し、SD-Leu-Trp-His+3-AT培地に播種した(3-AT = 3-amino-1,2,4-triazole)。ここで、cDNAを挿入したベクターpACT2は、5'末端から3'末端の方向に、順にLarge T 抗原 residues 47 to 54 (PKKKRKVE:配列番号1)をコードする遺伝子とGal4タンパク質のアクティベータードメイン(AD)をコードする遺伝子と作製したcDNAとを有する。また、ベクターpBTM116-HA-KM-hENHOは、5'末端から3'末端の方向に、順にLexAタンパク質の内在性の核局在シグナル配列(KRLKK:配列番号2)とDNA結合ドメイン(DBD)をコードする遺伝子と、おとりタンパク質をコードする遺伝子としてヒトのアドロピン(hENHO)をコードする遺伝子とを有する。さらに、出芽酵母L40は、UASGの下流の制御下にβ-ガラクトシダーゼをコードする遺伝子(レポーター遺伝子)とHIS3遺伝子を有する。細胞内で二つのプラスミドから発現される分子が結合するとHIS3遺伝子の発現により、His欠乏培地でも酵母細胞は生育可能となる。
2. 2. Screening of Molecules Derived from Mouse Brain Saccharomyces cerevisiae transformed with pBTM116-HA-KM-hENHO in a library in which cDNA prepared from mRNA collected from mouse brain was inserted into vector pACT2 according to Section 1 above. It was introduced into L40 and seeded in SD-Leu-Trp-His + 3-AT medium (3-AT = 3-amino-1,2,4-triazole). Here, the vector pACT2 in which the cDNA was inserted is a gene encoding Large T antigen residues 47 to 54 (PKKKRKVE: SEQ ID NO: 1) in order from the 5'end to the 3'end, and the activator domain (AD) of the Gal4 protein. It has a gene encoding the above and the prepared cDNA. In addition, the vector pBTM116-HA-KM-hENHO sequentially produces the endogenous nuclear localization signal sequence (KRLKK: SEQ ID NO: 2) and DNA binding domain (DBD) of the LexA protein in the direction from the 5'end to the 3'end. It has a gene encoding and a gene encoding human adropin (hENHO) as a gene encoding a decoy protein. In addition, Saccharomyces cerevisiae L40 has a gene encoding β-galactosidase (reporter gene) and a HIS3 gene under the control downstream of UASG. When the molecules expressed from the two plasmids bind to each other in the cell, the expression of the HIS3 gene enables yeast cells to grow even in a His-deficient medium.

播種した培地を30℃の培養器に移し、コロニーが視認出来るまで数日間培養した。コロニーを新しいSD-Leu-Trp培地に移し、30℃の培養器で培養した。増殖した酵母の一部を使用し、β-ガラクトシダーゼアッセイを行い、β-ガラクトシダーゼ活性陽性のクローン群を解析したところ、膜タンパク質の部分cDNAを含むものが含まれていた。 The seeded medium was transferred to an incubator at 30 ° C. and cultured for several days until the colonies were visible. The colonies were transferred to fresh SD-Leu-Trp medium and cultured in an incubator at 30 ° C. A β-galactosidase assay was performed using a part of the grown yeast, and a group of clones positive for β-galactosidase activity was analyzed. As a result, those containing a partial cDNA of a membrane protein were included.

本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (3)

第1及び第2のベクターを導入した酵母形質転換体を培養する工程を含む、オーファンリガンドの受容体同定方法であって、
第1のベクターは、核内移行シグナルをコードする遺伝子とDNA結合タンパク質をコードする遺伝子とおとりタンパク質をコードする遺伝子とを含み、
第2のベクターは、核内移行シグナルをコードする遺伝子と転写活性化タンパク質をコードする遺伝子と断片化した部分cDNAとを含み、該断片化した部分cDNAは、ランダムプライマーを用いた逆転写により得られたcDNAライブラリーであり、シグナルペプチド、細胞膜若しくは細胞内小器官局在化配列又は細胞膜貫通領域が欠損した獲物タンパク質をコードし、且つ長さ100~1000bpを有するcDNAを含むよう作製されたものであり、
前記おとりタンパク質がオーファンリガンドであり、且つ前記獲物タンパク質が受容体タンパク質であり、且つ、
前記酵母形質転換体の核内において、前記核内移行シグナルとDNA結合タンパク質とおとりタンパク質とを含む融合タンパク質、及び前記核内移行シグナルと転写活性化タンパク質と断片化した部分cDNAによりコードされる獲物タンパク質とを含む融合タンパク質が発現し、該おとりタンパク質と該獲物タンパク質との結合を、レポーター遺伝子の活性を指標に検出する、
前記方法。
A method for identifying an orphan ligand receptor , which comprises a step of culturing a yeast transformant into which the first and second vectors have been introduced.
The first vector contains a gene encoding a nuclear translocation signal, a gene encoding a DNA binding protein, and a gene encoding a decoy protein.
The second vector contains a gene encoding a nuclear translocation signal, a gene encoding a transcriptional activation protein, and a fragmented partial cDNA, and the fragmented partial cDNA is obtained by reverse transcription using a random primer. A cDNA library prepared to encode a prey protein lacking a signal peptide, cell membrane or intracellular small organ localized sequence or transmembrane region, and containing cDNA having a length of 100-1000 bp. And
The decoy protein is an orphan ligand, and the prey protein is a receptor protein, and
In the nucleus of the yeast transformant, a prey encoded by a fusion protein containing the nuclear translocation signal, a DNA-binding protein, and a decoy protein, and a partial cDNA fragmented with the nuclear translocation signal and a transcriptional activation protein. A fusion protein containing a protein is expressed, and the binding between the decoy protein and the prey protein is detected using the activity of the reporter gene as an index.
The method.
おとりタンパク質が各種局在シグナル配列を除いた部分cDNAによりコードされるタンパク質である、請求項1記載の方法。 The method according to claim 1, wherein the decoy protein is a protein encoded by a partial cDNA excluding various localized signal sequences. 核内移行シグナルをコードする遺伝子と転写活性化タンパク質をコードする遺伝子と断片化した部分cDNAとを含むベクターを含む、請求項1又は2記載のオーファンリガンドの受容体同定方法用試薬キットであって、前記断片化した部分cDNAは、ランダムプライマーを用いた逆転写により得られたcDNAライブラリーであり、シグナルペプチド、細胞膜若しくは細胞内小器官局在化配列又は細胞膜貫通領域が欠損した獲物タンパク質をコードし、且つ長さ100~1000bpを有するcDNAを含むよう作製されたものであり、前記獲物タンパク質が受容体タンパク質である、前記キット。 The reagent kit for a method for identifying an orphan ligand receptor according to claim 1 or 2 , which comprises a vector containing a gene encoding a nuclear translocation signal, a gene encoding a transcriptional activation protein, and a fragmented partial cDNA. The fragmented partial cDNA is a cDNA library obtained by reverse transcription using a random primer, and is a prey protein lacking a signal peptide, a cell membrane or an intracellular small organ localized sequence, or a transmembrane region. The kit, which is encoded and made to contain cDNA having a length of 100-1000 bp , wherein the prey protein is a receptor protein .
JP2018521014A 2016-06-03 2017-06-02 A new method for identifying proteins using yeast and a fragmented cDNA library Active JP6998056B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016112107 2016-06-03
JP2016112107 2016-06-03
PCT/JP2017/020614 WO2017209280A1 (en) 2016-06-03 2017-06-02 Novel protein identification method using yeast and fragmented cdna library

Publications (2)

Publication Number Publication Date
JPWO2017209280A1 JPWO2017209280A1 (en) 2019-04-11
JP6998056B2 true JP6998056B2 (en) 2022-01-18

Family

ID=60477622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018521014A Active JP6998056B2 (en) 2016-06-03 2017-06-02 A new method for identifying proteins using yeast and a fragmented cDNA library

Country Status (2)

Country Link
JP (1) JP6998056B2 (en)
WO (1) WO2017209280A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050518A1 (en) 2003-11-20 2005-06-02 Keio University Method of forming interaction map with the use of gene and/or protein data base and software and apparatus for the embodiment thereof
JP2012523836A (en) 2009-04-17 2012-10-11 ニューヨーク ユニバーシティ Peptides that target TNF family receptors and antagonize TNF action, compositions, methods and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079493A2 (en) * 2001-03-29 2002-10-10 Hybrigen, Inc. Improved hybrid gene libraries and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050518A1 (en) 2003-11-20 2005-06-02 Keio University Method of forming interaction map with the use of gene and/or protein data base and software and apparatus for the embodiment thereof
JP2012523836A (en) 2009-04-17 2012-10-11 ニューヨーク ユニバーシティ Peptides that target TNF family receptors and antagonize TNF action, compositions, methods and uses thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHIEN, Cheng-Ting et al.,The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest,Proc. Natl. Acad. Sci. U. S. A.,1991年,Vol. 88,pp. 9578-9582
pGBT9 DNA-BD Vector Information,CLONTECH Laboratories, Inc.,1998年
ProQuest Two-Hybrid System with Gateway Technology,Invitrogen life technologies,2002年
SILVER, Pamela A. et al.,Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization,Proc. Natl. Acad. Sci. U. S. A.,1984年,Vol. 81,pp. 5951-5955
ZHU, Jianwei et al.,Analysis of a peptide hormone-receptor interaction in the yeast two-hybrid system,Proc. Natl. Acad. Sci. U. S. A,1997年,Vol. 94,pp. 13063-13068

Also Published As

Publication number Publication date
WO2017209280A1 (en) 2017-12-07
JPWO2017209280A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
Chevray et al. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun.
AU781103B2 (en) Zinc finger domains and methods of identifying same
JP4064452B2 (en) Interaction supplementary system for detecting protein interactions
Ingley et al. A novel ADP‐ribosylation like factor (ARL‐6), interacts with the protein‐conducting channel SEC61β subunit
Cheng et al. The murine LIM-kinase gene (limk) encodes a novel serine threonine kinase expressed predominantly in trophoblast giant cells and the developing nervous system
Veis et al. Activation of the G2/M-specific gene CLB2 requires multiple cell cycle signals
Yamada et al. Human ZHX1: cloning, chromosomal location, and interaction with transcription factor NF-Y
AU2003215094B2 (en) Zinc finger libraries
JP6998056B2 (en) A new method for identifying proteins using yeast and a fragmented cDNA library
JP5804520B2 (en) Nucleic acid construct, method for producing complex using the same, and screening method
JP2001517435A (en) Potential effectors of the GRB7 family of signaling proteins
JP2000505652A (en) New CREBa isoform
US20080248958A1 (en) System for pulling out regulatory elements in vitro
EP0995797A1 (en) Methods for detecting and isolating nuclear transport proteins
WO1993008701A1 (en) C-myc dna binding partners, motifs, screening assays, and uses thereof
EP1085024A1 (en) Peptides having nuclear transport activity
US7932030B2 (en) System for pulling out regulatory elements using yeast
US7670787B2 (en) Protein forming complex with c-Fos protein, nucleic acid encoding the same and method of using the same
WO2005061706A1 (en) PROTEIN FORMING COMPLEX WITH c-Jun PROTEIN, NUCLEIC ACID ENCODING THE SAME AND METHOD OF USING THE SAME
JP2002530074A (en) Methods for validating polypeptide targets that correlate with cell phenotype
Bidwai et al. Multiple, closely spaced alternative 5′ exons in the DmCKIIβ gene of Drosophila melanogaster
JP7410480B2 (en) Fusion genes in cancer
KR100436869B1 (en) Zinc Finger Domains and Method of Identifying Same
Tanaka et al. Intracellular localization and domain organization of human TRIM41proteins
JP2002253267A (en) Transformed yeast for constructing combinatorial protein library

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 6998056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150