JP6998051B2 - Negative thermal expansion materials, complexes, and usage - Google Patents

Negative thermal expansion materials, complexes, and usage Download PDF

Info

Publication number
JP6998051B2
JP6998051B2 JP2018110575A JP2018110575A JP6998051B2 JP 6998051 B2 JP6998051 B2 JP 6998051B2 JP 2018110575 A JP2018110575 A JP 2018110575A JP 2018110575 A JP2018110575 A JP 2018110575A JP 6998051 B2 JP6998051 B2 JP 6998051B2
Authority
JP
Japan
Prior art keywords
thermal expansion
negative thermal
negative
expansion material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018110575A
Other languages
Japanese (ja)
Other versions
JP2019210201A (en
Inventor
雄樹 酒井
正樹 東
孟 山本
孝 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Institute of Industrial Science and Technology
Original Assignee
Kanagawa Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Institute of Industrial Science and Technology filed Critical Kanagawa Institute of Industrial Science and Technology
Priority to JP2018110575A priority Critical patent/JP6998051B2/en
Publication of JP2019210201A publication Critical patent/JP2019210201A/en
Application granted granted Critical
Publication of JP6998051B2 publication Critical patent/JP6998051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

特許法第30条第2項適用 The 2nd International Symposium on Negative Thermal Expansion and Related Materials(ISNTE-II)、平成29年12月12日(発行日) [刊行物等] The 2nd International Symposium on Negative Thermal Expansion and Related Materials(集会名)、平成29年12月13日(開催日) [刊行物等] 公益社団法人日本セラミックス協会 2018年年会 講演予稿集、平成30年3月1日(発行日) [刊行物等] 公益社団法人日本セラミックス協会 2018年年会(集会名)、平成30年3月17日(開催日) [刊行物等] 日本物理学会第73回年次大会 概要集 http://w4.gakkai-web.net/(掲載アドレス)、平成30年3月1日(掲載日) [刊行物等] 日本物理学会 第73回年次大会(集会名)、平成30年3月22日(開催日) [刊行物等] Angewandte Chemie International Edition,DOI:10.1002/anie.201804082 https://doi.org/10.1002/anie.201804082(掲載アドレス)、平成30年5月11日(掲載日)Application of Article 30, Paragraph 2 of the Patent Act The 2nd International Symposium on Negative Thermal Expansion and Related Materials (ISNTE-II), December 12, 2017 (Issued date) [Publications, etc.] and Reserved Materials (meeting name), December 13, 2017 (date) [Publications, etc.] Ceramic Society of Japan 2018 Annual Meeting Proceedings, March 1, 2018 (issue date) [ Publications, etc.] Ceramic Society of Japan 2018 Annual Meeting (meeting name), March 17, 2018 (Date) [Publications, etc.] Summary of the 73rd Annual Meeting of the Physical Society of Japan http: // w4. gakkai-web. net / (published address), March 1, 2018 (published date) [Publications, etc.] The 73rd Annual Meeting of the Physical Society of Japan (meeting name), March 22, 2018 (date) [Published Things, etc.] Angewandte Chemie International Edition, DOI: 10.1002 / anie. 201880482 https: // doi. org / 10.1002 / anie. 2018804882 (posted address), May 11, 2018 (posted date)

本発明は、負熱膨張性材料、複合体、及び使用方法に関する。 The present invention relates to negative thermal expansion materials, composites, and methods of use.

ペロブスカイト型化合物PbVOは、Pb2+の6s孤立電子対の立体化学的活性とPb-Oの共有結合性、V4+(3d)のピラミッド型ヤーン・テラー変形により、巨大な正方晶歪み(c/a比1.23)をもつ。3GPaの高圧力印加により、正方晶から立方晶への相転移が起こり、10%以上の巨大な体積収縮と絶縁体-金属転移が起こる(非特許文献1参照)。V4+への電子ドープを行ったPb1-xBiVOでは、PbVOよりも正方晶歪み(c/a比)と正方晶-立方晶転移圧力が低下することが報告されている(非特許文献2参照)。 The perovskite-type compound PbVO 3 has a large tetragonal distortion (due to the stereochemical activity of the 6s 2 lone pair of Pb 2+ , the covalent bond of Pb-O, and the Pyramid Jahn-Teller deformation of V 4+ (3d 1 ). It has a c / a ratio of 1.23). When a high pressure of 3 GPa is applied, a phase transition from a tetragonal crystal to a cubic crystal occurs, and a huge volume shrinkage of 10% or more and an insulator-metal transition occur (see Non-Patent Document 1). It has been reported that Pb 1-x Bi x VO 3 subjected to electron doping to V 4+ has lower tetragonal strain (c / a ratio) and tetragonal-cubic transition pressure than PbVO 3 . See Non-Patent Document 2).

A.Belik,M.Azuma et al,Chem.Mater.17,269,2005.A. Belik, M. et al. Azuma et al, Chem. Mater. 17,269,2005. 山本孟等、日本セラミックス協会 第30回秋季シンポジウム講演予稿集、3D07.Meng Yamamoto et al., Proceedings of the 30th Autumn Symposium of the Ceramic Society of Japan, 3D07.

本発明者らは、上述した化合物について鋭意研究を重ねた結果、Pb1-xBiVOが巨大な負熱膨張性を示すこと、また、Pb1-xBiVOのPb2+サイトにLa3+を置換することで、室温付近での負熱膨張を実現できることを見出し、本発明を完成させるに至った。 As a result of intensive studies on the above-mentioned compounds, the present inventors have shown that Pb 1- x Bi x VO 3 exhibits a huge negative thermal expansion, and that Pb 1-x Bi x VO 3 has a Pb 2+ site. We have found that negative thermal expansion can be realized near room temperature by substituting La 3+ with La 3+, and have completed the present invention.

本発明はこうした状況に鑑みてなされたものであり、その目的のひとつは、新規な負熱膨張性材料を提供することにある。 The present invention has been made in view of these circumstances, and one of the objects thereof is to provide a novel negative thermal expansion material.

本発明のある態様は、負熱膨張性材料である。該負熱膨張性材料は、下記式(1)で表される化合物を含む。
Pb1-x-yBiVO ・・・(1)
[式(1)中、Mは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Yからなる群より選択される1種の元素を示し、
0.05≦x≦0.4を満たし、
0.025≦y≦0.1を満たす。]
One embodiment of the present invention is a negatively thermally expandable material. The negative thermal expansion material contains a compound represented by the following formula (1).
Pb 1-x- y My Bi x VO 3 ... (1)
[In the formula (1), M is one selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y. Indicates the element of
Satisfy 0.05 ≤ x ≤ 0.4,
Satisfy 0.025 ≦ y ≦ 0.1. ]

本発明の他の態様は、複合体である。該複合体は、上記の態様の負熱膨張性材料と、樹脂材料と、を含む。 Another aspect of the invention is a complex. The complex includes a negative thermal expansion material of the above aspect and a resin material.

本発明の他の態様は、450K~750Kのいずれかの温度で負熱膨張性を示す負熱膨張性材料としての下記式(2)で表される化合物の使用方法である。
Pb1-xBiVO ・・・(2)
[式(2)中、xは0.05≦x≦0.4を満たす。]
Another aspect of the present invention is a method of using a compound represented by the following formula (2) as a negative thermal expansion material exhibiting negative thermal expansion at any temperature of 450K to 750K.
Pb 1-x Bi x VO 3 ... (2)
[In the formula (2), x satisfies 0.05 ≦ x ≦ 0.4. ]

本発明によれば、新規な負熱膨張性材料を提供することができる。 According to the present invention, it is possible to provide a novel negative thermal expansion material.

実施例1の負熱膨張性材料の単位格子体積の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the unit lattice volume of the negative thermal expansion material of Example 1. 実施例2の負熱膨張性材料の単位格子体積の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the unit lattice volume of the negative thermal expansion material of Example 2. 実施例3の負熱膨張性材料の単位格子体積の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the unit lattice volume of the negative thermal expansion material of Example 3. 実施例4の負熱膨張性材料の単位格子体積の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the unit lattice volume of the negative thermal expansion material of Example 4. 実施例5の負熱膨張性材料の単位格子体積の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the unit lattice volume of the negative thermal expansion material of Example 5. 実施例6の負熱膨張性材料の単位格子体積の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the unit lattice volume of the negative thermal expansion material of Example 6. 実施例7の負熱膨張性材料の単位格子体積の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the unit lattice volume of the negative thermal expansion material of Example 7. 実施例8の負熱膨張性材料の単位格子体積の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the unit lattice volume of the negative thermal expansion material of Example 8. 実施例5の負熱膨張性材料の線熱膨張率の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the linear thermal expansion rate of the negative thermal expansion material of Example 5. 実施例8の負熱膨張性材料の線熱膨張率の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the linear thermal expansion rate of the negative thermal expansion material of Example 8.

(実施形態1)
実施形態1に係る負熱膨張性材料は、母物質であるPbVOにおいて、Pbの一部が金属元素MとBiで同時置換された化合物である。具体的には、実施形態1に係る負熱膨張性材料は、負の熱膨張性を有し、下記式(1)で表される化合物を含む。
Pb1-x-yBiVO ・・・(1)
[式(1)中、Mは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Yからなる群より選択される1種の元素を示し、
0.05≦x≦0.4を満たし、
0.025≦y≦0.1を満たす。]
(Embodiment 1)
The negative thermal expansion material according to the first embodiment is a compound in which a part of Pb is co-substituted with metal elements M and Bi in PbVO 3 which is a mother substance. Specifically, the negative thermal expansion material according to the first embodiment has a negative thermal expansion property and contains a compound represented by the following formula (1).
Pb 1-x- y My Bi x VO 3 ... (1)
[In the formula (1), M is one selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y. Indicates the element of
Satisfy 0.05 ≤ x ≤ 0.4,
Satisfy 0.025 ≦ y ≦ 0.1. ]

上記式(1)で表される化合物の母物質であるPbVOは、巨大な正方晶歪み(c/a比1.23)をもつペロブスカイト型化合物である。圧力印加で非常に大きな体積変化ΔV/V=-10.6%を伴う正方晶(P4mm)から立方晶(Pm-3m)への構造相転移が起きるが、常圧下での昇温による構造相転移は起こらない。2価の鉛イオンを、一部が3価のビスマスイオンと元素Mのイオンで置換して電子ドープを行うことで、室温を挟む180K~550Kの温度域で巨大な負熱膨張(最大でΔV/V=-8.8%)が実現できる。 PbVO 3 , which is the parent substance of the compound represented by the above formula (1), is a perovskite-type compound having a huge tetragonal strain (c / a ratio 1.23). A structural phase transition from tetragonal (P4 mm) to cubic (Pm-3 m) with a very large volume change ΔV / V = -10.6% occurs when pressure is applied, but the structural phase due to temperature rise under normal pressure No metastasis occurs. By partially substituting divalent lead ions with trivalent bismuth ions and element M ions for electron doping, huge negative thermal expansion (maximum ΔV) occurs in the temperature range of 180K to 550K across room temperature. / V = -8.8%) can be realized.

上記式(1)において、元素Mは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Yからなる群より選択され、好ましくはLaである。 In the above formula (1), the element M is preferably selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y. Is La.

本実施形態に係る負熱膨張性材料は、180K~550Kのいずれかの温度で負熱膨張を示す。上記式(1)の化合物において元素Mの比率(すなわちy)を変化させることで、負の熱膨張性を示す温度範囲を変化させることができる。より大きな負熱膨張を達成するという観点から、xは0.1~0.2であることが好ましく、yは0.06以下であることが好ましい。 The negative thermal expansion material according to the present embodiment exhibits negative thermal expansion at any temperature of 180K to 550K. By changing the ratio (that is, y) of the element M in the compound of the above formula (1), the temperature range showing negative thermal expansion can be changed. From the viewpoint of achieving a larger negative thermal expansion, x is preferably 0.1 to 0.2, and y is preferably 0.06 or less.

本実施の形態の負熱膨張性材料をエンジニアリングプラスチックなどの樹脂材料中に分散させ、樹脂材料の熱膨張が負熱膨張性材料の負の熱膨張で相殺するように材料の選択や各成分の含有量を設定することにより、ゼロ熱膨張材料を得ることができる。 The negative thermal expansion material of the present embodiment is dispersed in a resin material such as engineering plastic, and the material selection and each component are selected so that the thermal expansion of the resin material is offset by the negative thermal expansion of the negative thermal expansion material. By setting the content, a zero thermal expansion material can be obtained.

(負熱膨張性材料の製造方法)
上記式(1)で表される化合物の作製方法は特に限定されないが、各金属元素が均一に固溶した複合金属酸化物を合成して任意の形状に成形できる方法であると好ましい。例えば、Pb、Bi、M、Vの各酸化物を目的物と同じモル比で混合して高圧(例えば2GPa以上)を付与しながら焼結すると、各金属元素が均一に固溶した複合金属酸化物が得られる。得られた酸化物を粉砕してから、成形して前記焼結の温度以下で焼き固めると、上記一般式(1)で表される化合物からなる熱膨張抑制部材が得られる。この他、本実施の形態に係る負熱膨張性材料は、上述した作製方法に限られず、スパッタ法、化学溶液法、レーザアブレ-ション法などによる、単結晶基板上の薄膜育成によっても作製することができる。
(Manufacturing method of negative thermal expansion material)
The method for producing the compound represented by the above formula (1) is not particularly limited, but a method capable of synthesizing a composite metal oxide in which each metal element is uniformly dissolved and forming an arbitrary shape is preferable. For example, when each oxide of Pb, Bi, M, and V is mixed at the same molar ratio as the target product and sintered while applying a high pressure (for example, 2 GPa or more), composite metal oxidation in which each metal element is uniformly dissolved. You get things. When the obtained oxide is crushed, molded, and baked at a temperature equal to or lower than the sintering temperature, a thermal expansion suppressing member made of the compound represented by the general formula (1) can be obtained. In addition, the negative thermal expansion material according to the present embodiment is not limited to the above-mentioned production method, but can also be produced by growing a thin film on a single crystal substrate by a sputtering method, a chemical solution method, a laser ablation method, or the like. Can be done.

(実施形態2)
実施形態2に係る使用方法は、450K~750Kのいずれかの温度で負熱膨張を示す負熱膨張性材料として下記式(2)で表される化合物を使用する方法である。
Pb1-xBiVO ・・・(2)
[式(2)中、xは0.05≦x≦0.4を満たす。]
(Embodiment 2)
The method of use according to the second embodiment is a method of using a compound represented by the following formula (2) as a negative thermal expansion material exhibiting negative thermal expansion at any temperature of 450K to 750K.
Pb 1-x Bi x VO 3 ... (2)
[In the formula (2), x satisfies 0.05 ≦ x ≦ 0.4. ]

上記式(2)で表される化合物の母物質であるPbVOは、上述したように巨大な正方晶歪みを有し、圧力印加により巨大な体積収縮が起こるが、昇温による負熱膨張は見られない。Pb2+の一部をBi3+へ置換することで、正方晶歪みが大きく減少し、常圧下での昇温により、450K~750Kの温度域で巨大な負熱膨張が起きる。したがって、上記式(2)で表される化合物は、450K~750Kのいずれかの温度で負熱膨張を示す負熱膨張性材料として有用である。そのような負熱膨張性材料も本発明の実施形態の一つである。 As described above, PbVO 3 , which is the parent material of the compound represented by the above formula (2), has a huge tetragonal strain, and a huge volume shrinkage occurs when pressure is applied, but negative thermal expansion due to temperature rise occurs. can not see. By substituting a part of Pb 2+ with Bi 3+ , the tetragonal strain is greatly reduced, and the temperature rise under normal pressure causes a huge negative thermal expansion in the temperature range of 450K to 750K. Therefore, the compound represented by the above formula (2) is useful as a negative thermal expansion material exhibiting negative thermal expansion at any temperature of 450K to 750K. Such a negative thermal expansion material is also one of the embodiments of the present invention.

(実施形態3)
実施形態3に係る複合体は、上述したいずれかの実施形態に係る負熱膨張性材料と、正の熱膨張性を有する樹脂材料または金属材料と、を含む。複合体に用いられる樹脂材料は特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、ポリカーボネート等が挙げられる。複合体に用いられる金属材料は特に限定されないが、銅、アルミニウム等が挙げられる。
(Embodiment 3)
The complex according to the third embodiment includes a negative heat-expandable material according to any one of the above-described embodiments, and a resin material or a metal material having a positive heat-expandability. The resin material used for the composite is not particularly limited, and examples thereof include epoxy resin, phenol resin, and polycarbonate. The metal material used for the composite is not particularly limited, and examples thereof include copper and aluminum.

負熱膨張性材料と、樹脂材料または金属材料との混合比(体積比)は、使用する負熱膨張性材料、及び樹脂材料あるいは金属材料の熱膨張係数にもよるが、例えば5:95~80:20である。本実施の形態によれば、樹脂材料または金属材料の正の熱膨張を、負熱膨張性材料の負の熱膨張によって相殺することができる。これにより、温度変化に対する寸法変化の割合が小さい材料を提供することができる。 The mixing ratio (volume ratio) of the negative heat-expandable material and the resin material or the metal material depends on the negative heat-expandable material used and the coefficient of thermal expansion of the resin material or the metal material, for example, from 5:95. It is 80:20. According to this embodiment, the positive thermal expansion of the resin material or the metal material can be offset by the negative thermal expansion of the negative thermal expansion material. This makes it possible to provide a material having a small ratio of dimensional change with respect to temperature change.

本発明は、上述の各実施の形態に限定されるものではなく、各実施の形態を組み合わせたり、当業者の知識に基づいて各種の設計変更などの変形を加えることも可能であり、そのような、組み合わせられた又は変形が加えられた実施の形態も本発明の範囲に含まれる。例えば、上記式(1)で表される化合物と上記式(2)で表される化合物とをともに含む負熱膨張性材料も、本発明の範囲に含まれる。 The present invention is not limited to the above-described embodiments, and it is possible to combine the embodiments and to make various design changes and other modifications based on the knowledge of those skilled in the art. Also included in the scope of the invention are embodiments that have been combined or modified. For example, a negative thermal expansion material containing both the compound represented by the above formula (1) and the compound represented by the above formula (2) is also included in the scope of the present invention.

以下、本発明の実施例を説明するが、これら実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。 Hereinafter, examples of the present invention will be described, but these examples are merely examples for suitably explaining the present invention, and do not limit the present invention in any way.

(実施例1~8)
アルゴン充填グローブボックス内にて、出発原料PbO、Bi、La、V、Vを化学量論比で混合し、Ptカプセル内に封入した。その後、試料を、キュービックアンビル型高圧合成装置を用いて6GPa、1200℃、1時間の条件で処理して、実施例1~8の負熱膨張性材料を作製した。実施例1~8の材料の組成はそれぞれ下記の通りである。
実施例1:Pb0.85La0.05Bi0.1VO
実施例2:Pb0.84La0.06Bi0.1VO
実施例3:Pb0.82La0.08Bi0.1VO
実施例4:Pb0.775La0.025Bi0.2VO
実施例5:Pb0.76La0.04Bi0.2VO
実施例6:Pb0.75La0.05Bi0.2VO
実施例7:Pb0.8Bi0.2VO
実施例8:Pb0.7Bi0.3VO
(Examples 1 to 8)
In an argon-filled glove box, the starting materials PbO, Bi 2 O 3 , La 2 O 3 , V 2 O 3 , and V 2 O 5 were mixed at a stoichiometric ratio and encapsulated in a Pt capsule. Then, the sample was treated with a cubic anvil type high pressure synthesizer under the conditions of 6 GPa, 1200 ° C. and 1 hour to prepare a negative thermal expansion material of Examples 1 to 8. The compositions of the materials of Examples 1 to 8 are as follows.
Example 1: Pb 0.85 La 0.05 Bi 0.1 VO 3
Example 2: Pb 0.84 La 0.06 Bi 0.1 VO 3
Example 3: Pb 0.82 La 0.08 Bi 0.1 VO 3
Example 4: Pb 0.775 La 0.025 Bi 0.2 VO 3
Example 5: Pb 0.76 La 0.04 Bi 0.2 VO 3
Example 6: Pb 0.75 La 0.05 Bi 0.2 VO 3
Example 7: Pb 0.8 Bi 0.2 VO 3
Example 8: Pb 0.7 Bi 0.3 VO 3

実施例1~8の各負熱膨張性材料について、SPring-8のBL02B2ビームラインに設置された大型デバイ-シェラーカメラを用いて、λ=0.42Åで、シンクロトロンX線回折(SXRD)パターンを測定し、RIETAN-FPソフトウェアを用いて分析した(S.Kawaguchi,et al.,Rev.Sci.Instrum.2017,88,085111;F.Izumi,K.Momma,Appl.Crystallogr.2007,130,15-20)。実施例5、実施例8の負熱膨張性材料の直径3mm、高さ1mmの焼結体において線熱膨張率を、熱機械分析装置(TMA8310,Rigaku)を用いて150K~460Kにて測定した。図1~図8のそれぞれに、実施例1~8の各負熱膨張性材料の単位格子体積の温度依存性を示す。図9に実施例5の負熱膨張性材料の線熱膨張率の温度依存性を示し、図10に実施例8の負熱膨張性材料の線熱膨張率の温度依存性を示す。表1に実施例1~8の各負熱膨張性材料の負熱膨張性を示す温度範囲および格子体積変化率を示す。

Figure 0006998051000001
For each negative thermal expansion material of Examples 1-8, a synchrotron X-ray diffraction (SXRD) pattern at λ = 0.42 Å using a large Debye-Scherrer camera installed in the BL02B2 beamline of SPring-8. Was measured and analyzed using RIETAN-FP software (S. Kawaguchi, et al., Rev. Sci. Instrument. 2017, 88, 085111; F. Izumi, K. Momma, Apple. Synchrotron. 2007, 130, 15-20). The linear thermal expansion coefficient was measured at 150K to 460K using a thermomechanical analyzer (TMA8310, Rigaku) in the sintered body of the negative thermal expansion material of Examples 5 and 8 having a diameter of 3 mm and a height of 1 mm. .. FIGS. 1 to 8 show the temperature dependence of the unit cell volume of each negative thermal expansion material of Examples 1 to 8. FIG. 9 shows the temperature dependence of the linear thermal expansion coefficient of the negative thermal expansion material of Example 5, and FIG. 10 shows the temperature dependence of the linear thermal expansion coefficient of the negative thermal expansion material of Example 8. Table 1 shows the temperature range and the rate of change in lattice volume showing the negative thermal expandability of each of the negative thermal expansion materials of Examples 1 to 8.
Figure 0006998051000001

図1~図6に示すように、実施例1~6では、Pbの一部をBiおよびLaで同時置換することにより、室温を挟む温度域で大きな負の熱膨張が起きることを確認した。図7、図8に示すように、実施例7、8では、Pbの一部をBiで置換することにより、450K~750Kの温度域で大きな負の熱膨張が起きることを確認した。 As shown in FIGS. 1 to 6, in Examples 1 to 6, it was confirmed that by simultaneously substituting a part of Pb with Bi and La, a large negative thermal expansion occurs in a temperature range sandwiching room temperature. As shown in FIGS. 7 and 8, in Examples 7 and 8, it was confirmed that by substituting a part of Pb with Bi, a large negative thermal expansion occurs in the temperature range of 450K to 750K.

図9に示すように、実施例5では、280~310Kの温度域でマクロな負熱膨張を確認した。実施例5の焼結体の膨張計測値から概算した体積変化(ΔV/V~3ΔL/L)は、約8.5%であった。これは、表1に示す実施例5の負熱膨張性材料のX線回折から得られた格子体積変化(ΔV/V=-6.7%)よりも大きかった。図10に示すように、実施例8では、460~500Kの温度域でマクロな負熱膨張を確認した。 As shown in FIG. 9, in Example 5, macroscopic negative thermal expansion was confirmed in the temperature range of 280 to 310 K. The volume change (ΔV / V to 3ΔL / L) estimated from the expansion measurement value of the sintered body of Example 5 was about 8.5%. This was larger than the lattice volume change (ΔV / V = −6.7%) obtained from the X-ray diffraction of the negative thermal expansion material of Example 5 shown in Table 1. As shown in FIG. 10, in Example 8, macroscopic negative thermal expansion was confirmed in the temperature range of 460 to 500 K.

本発明は、負の熱膨張性を有する材料に利用可能である。 The present invention can be used for materials having negative thermal expansion properties.

Claims (5)

負の熱膨張性を有する負熱膨張性材料であって、
下記式(1)で表される化合物を含むことを特徴とする負熱膨張性材料。
Pb1-x-yBiVO ・・・(1)
[式(1)中、Mは、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Yからなる群より選択される1種の元素を示し、
0.05≦x≦0.4を満たし、
0.025≦y≦0.1を満たす。]
A negative thermal expandable material with negative thermal expandability,
A negative thermal expansion material comprising a compound represented by the following formula (1).
Pb 1-x- y My Bi x VO 3 ... (1)
[In the formula (1), M is one selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y. Indicates the element of
Satisfy 0.05 ≤ x ≤ 0.4,
Satisfy 0.025 ≦ y ≦ 0.1. ]
MがLaであることを特徴とする請求項1に記載の負熱膨張性材料。 The negative thermal expansion material according to claim 1, wherein M is La. 180K~480Kのいずれかの温度で負熱膨張を示すことを特徴とする請求項1または2に記載の負熱膨張性材料。 The negative thermal expansion material according to claim 1 or 2, wherein the negative thermal expansion is exhibited at any temperature of 180K to 480K. 請求項1乃至3のいずれか1項に記載の負熱膨張性材料と、正の熱膨張性を有する樹脂材料または金属材料と、を含むことを特徴とする複合体。 A composite comprising the negative heat-expandable material according to any one of claims 1 to 3 and a resin material or a metal material having a positive heat-expandability. 450K~750Kのいずれかの温度で負熱膨張を示す負熱膨張性材料としての下記式(2)で表される化合物の使用方法。
Pb1-xBiVO ・・・(2)
[式(2)中、xは0.05≦x≦0.4を満たす。]
A method for using a compound represented by the following formula (2) as a negative thermal expansion material exhibiting negative thermal expansion at any temperature of 450K to 750K.
Pb 1-x Bi x VO 3 ... (2)
[In the formula (2), x satisfies 0.05 ≦ x ≦ 0.4. ]
JP2018110575A 2018-06-08 2018-06-08 Negative thermal expansion materials, complexes, and usage Active JP6998051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018110575A JP6998051B2 (en) 2018-06-08 2018-06-08 Negative thermal expansion materials, complexes, and usage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018110575A JP6998051B2 (en) 2018-06-08 2018-06-08 Negative thermal expansion materials, complexes, and usage

Publications (2)

Publication Number Publication Date
JP2019210201A JP2019210201A (en) 2019-12-12
JP6998051B2 true JP6998051B2 (en) 2022-01-18

Family

ID=68845726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018110575A Active JP6998051B2 (en) 2018-06-08 2018-06-08 Negative thermal expansion materials, complexes, and usage

Country Status (1)

Country Link
JP (1) JP6998051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116646471B (en) * 2023-07-27 2023-12-19 宁德时代新能源科技股份有限公司 Negative electrode plate, preparation method thereof, secondary battery and power utilization device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056830A (en) 2010-08-12 2012-03-22 Canon Inc Thermal expansion suppressing member and anti-thermally-expansive member
WO2014030293A1 (en) 2012-08-21 2014-02-27 国立大学法人東京工業大学 Negative thermal expansion material
JP2018002577A (en) 2015-10-07 2018-01-11 日本化学工業株式会社 Negative thermal expansion material and composite material containing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012056830A (en) 2010-08-12 2012-03-22 Canon Inc Thermal expansion suppressing member and anti-thermally-expansive member
WO2014030293A1 (en) 2012-08-21 2014-02-27 国立大学法人東京工業大学 Negative thermal expansion material
JP2018002577A (en) 2015-10-07 2018-01-11 日本化学工業株式会社 Negative thermal expansion material and composite material containing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN Xing-Yuan et al.,The magnetoelectric properties of A- or B-site-doped PbVO3 films: A first-principles study,Chin. Phys. B,2013年,Vol. 22, No. 8,pp. 087703-1 - 087703-7
ZHAO Pan et al.,Colossal Volume Contraction in Strong Polar Perovskites of Pb(Ti,V)O3,J. Am. Chem. Soc.,2017年,139,pp. 14865-14868

Also Published As

Publication number Publication date
JP2019210201A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
Bocher et al. CaMn1− x Nb x O3 (x≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials
Selbach et al. Structure and properties of multiferroic oxygen hyperstoichiometric BiFe1− x Mn x O3+ δ
Kim et al. Two new non-centrosymmetric n= 3 layered Dion–Jacobson perovskites: polar RbBi2Ti2NbO10 and nonpolar CsBi2Ti2TaO10
Xu et al. Synthesis and piezoelectric and ferroelectric properties of (Na0. 5Bi0. 5) 1− xBaxTiO3 ceramics
JP6143197B2 (en) Negative thermal expansion material
Ramarao et al. Structural, lattice vibrational, optical and microwave dielectric studies on Ca1− xSrxMoO4 ceramics with scheelite structure
EP2418923B1 (en) Thermal expansion suppressing member and anti-thermally-expansive member
Pan et al. Large negative thermal expansion induced by synergistic effects of ferroelectrostriction and spin crossover in PbTiO3-based perovskites
JP2010006688A (en) Metal oxide, piezoelectric material and piezoelectric element
Tang et al. Boosting the high performance of BiFeO3-BaTiO3 lead-free piezoelectric ceramics: one-step preparation and reaction mechanisms
Delgado et al. Synthesis and crystal structure of the quaternary compound AgFe2GaTe4
Ueda et al. Crystal structure of LaCuOS1− xSex oxychalcogenides
Delgado et al. Crystal structure of the quaternary compounds CuFe 2 AlSe 4 and CuFe 2 GaSe 4 from X-ray powder diffraction
Niranjan et al. Investigation of structural, vibrational and ferroic properties of AgNbO3 at room temperature using neutron diffraction, Raman scattering and density-functional theory
Ogata et al. Melting of d xy orbital ordering accompanied by suppression of giant tetragonal distortion and insulator-to-metal transition in Cr-substituted PbVO3
JP6998051B2 (en) Negative thermal expansion materials, complexes, and usage
Azuma et al. Systematic charge distribution changes in Bi-and Pb-3d transition metal perovskites
Stojanovic et al. Mechanically activating formation of layered structured bismuth titanate
Sagarna et al. Influence of the Oxygen Content on the Electronic Transport Properties of Sr x Eu1–x TiO3-δ
Luo et al. Anomalous thermal expansion in Ta2WO8 oxide semiconductor over a wide temperature range
Para et al. Synthesis of ZnSnO3 nanostructure by sol gel method
Cuong et al. Observation of room-temperature ferromagnetism in Co-doped Bi 0.5 K 0.5 TiO 3 materials
Tamerd et al. Modelling of the ferroelectric and energy storage properties of PbZr1− xTixO3 thin films using Monte Carlo simulation
Pan et al. Tolerance factor control of tetragonality and negative thermal expansion in PbTiO3-based ferroelectrics
Jaita et al. Energy harvesting, electrical, and magnetic properties of potassium bismuth titanate-based lead-free ceramics

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 6998051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150