JP6996973B2 - A partition wall penetrating structure of the reaction vessel and a boiler having this structure - Google Patents

A partition wall penetrating structure of the reaction vessel and a boiler having this structure Download PDF

Info

Publication number
JP6996973B2
JP6996973B2 JP2017252961A JP2017252961A JP6996973B2 JP 6996973 B2 JP6996973 B2 JP 6996973B2 JP 2017252961 A JP2017252961 A JP 2017252961A JP 2017252961 A JP2017252961 A JP 2017252961A JP 6996973 B2 JP6996973 B2 JP 6996973B2
Authority
JP
Japan
Prior art keywords
pipe
partition wall
reaction vessel
seal member
flange portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017252961A
Other languages
Japanese (ja)
Other versions
JP2019120411A (en
Inventor
佑樹 田原
健太郎 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Power Ltd filed Critical Mitsubishi Power Ltd
Priority to JP2017252961A priority Critical patent/JP6996973B2/en
Publication of JP2019120411A publication Critical patent/JP2019120411A/en
Application granted granted Critical
Publication of JP6996973B2 publication Critical patent/JP6996973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、反応容器の隔壁部貫通構造及び該構造を備えたボイラに関する。 The present disclosure relates to a partition wall penetrating structure of a reaction vessel and a boiler having the structure.

従来、反応容器の隔壁を貫通し該反応容器の内部と外部とを連通するように設けられる配管の隔壁部貫通構造が知られている。例えば、特許文献1には、ボイラにおける伝熱管の炉壁貫通部において、配管の熱収縮を吸収する伸縮部材(所謂エキスパンション)の伸縮量を増加させるための構造が開示されている。 Conventionally, there is known a structure for penetrating a partition wall of a pipe provided so as to penetrate the partition wall of the reaction vessel and communicate the inside and the outside of the reaction vessel. For example, Patent Document 1 discloses a structure for increasing the expansion / contraction amount of an expansion / contraction member (so-called expansion) that absorbs heat shrinkage of a pipe at a furnace wall penetrating portion of a heat transfer tube in a boiler.

特開2000-329307号公報Japanese Unexamined Patent Publication No. 2000-329307

しかし、上記特許文献1に記載の構造は、伸縮部材の伸縮部(所謂ベローズ)とその内側に延在する配管との隙間に炉内から排ガスが流入し、この隙間に滞留した排ガスが酸露点温度以下となった際には配管に腐食が生ずる虞があるという問題があった。 However, in the structure described in Patent Document 1, exhaust gas flows into the gap between the expansion / contraction portion (so-called bellows) of the expansion / contraction member and the pipe extending inside the expansion / contraction member, and the exhaust gas staying in this gap is the acid dew point. There is a problem that the piping may be corroded when the temperature drops below the temperature.

上記事情に鑑み、本発明の少なくとも一実施形態は、隔壁貫通部における配管の腐食を抑制することを目的とする。 In view of the above circumstances, at least one embodiment of the present invention aims to suppress corrosion of pipes in a partition wall penetrating portion.

(1)本発明の少なくとも一実施形態に係る反応容器の隔壁部貫通構造は、
前記反応容器の内部と外部とを区画する隔壁と、
前記隔壁を貫通して前記反応容器の前記内部と前記外部とを連通する少なくとも1本の配管と、
前記反応容器の前記外部に設けられるシール装置であって、
前記配管の周方向の全周に亘って前記配管の前記外周面に気密に接続される第1シール部材、
前記配管の前記外周面よりも外側において、前記配管の周方向の全周に亘って前記隔壁の外面又は前記隔壁の前記外面に設けられる外面形成部材に気密に接続される第2シール部材、及び
一端が前記第1シール部材に気密に接続されるとともに、前記一端よりも前記隔壁とは反対側に配置される他端が前記第2シール部材に気密に接続される伸縮部材であって、前記配管の管軸方向の収縮を吸収するように形成された伸縮部材、を含むシール装置と、
を備えている。
一般に、反応容器の隔壁を配管が貫通する貫通部では、熱収縮による配管の寸法差を吸収するとともに、配管と隔壁との隙間を通って反応容器から流出するガスを封止するための伸縮部材が配管の外周を覆うように設けられる。伸縮部材と配管との隙間にはガスが滞留し易く、また、反応容器の外側では隔壁から離れるほど低温になる。このため、反応容器内における反応の前後に含まれ得る腐食性ガスが、隔壁と配管との隙間から反応容器の外側に延在する配管と伸縮部材との隙間に流入する構造の場合、該隙間に滞留した腐食性ガスの温度が酸露点温度以下に低下して腐食が生ずる原因となり得る。
この点、上記(1)の構成によれば、第1シール部材が配管の全周に亘って該配管の外周面に気密に接続され、配管の外周面より外側において該配管の全周に亘って第2シール部材が隔壁の外面又は外面形成部材に気密に接続され、さらに、伸縮部材の一端が第1シール部材に気密に接続されるとともに該一端より隔壁とは反対に配置される他端が第2シール部材に気密に接続される。従って、反応容器の外側では配管と伸縮部材との間に腐食性ガスが流入せず、配管に腐食性ガスが接することがない。よって、隔壁貫通部における反応容器の外側において、配管の腐食を効果的に抑制することができる。
(1) The partition wall penetrating structure of the reaction vessel according to at least one embodiment of the present invention is
A partition wall that separates the inside and the outside of the reaction vessel,
At least one pipe that penetrates the partition wall and communicates between the inside and the outside of the reaction vessel.
A sealing device provided on the outside of the reaction vessel.
A first seal member, which is airtightly connected to the outer peripheral surface of the pipe over the entire circumference in the circumferential direction of the pipe.
A second seal member airtightly connected to an outer surface of the partition wall or an outer surface forming member provided on the outer surface of the partition wall over the entire circumference in the circumferential direction of the pipe, outside the outer peripheral surface of the pipe. One end is an elastic member that is airtightly connected to the first seal member, and the other end that is arranged on the opposite side of the one end to the partition wall is airtightly connected to the second seal member. A sealing device that includes a telescopic member, which is formed to absorb the contraction of the pipe in the pipe axis direction.
It is equipped with.
Generally, at the penetration portion where the pipe penetrates the partition wall of the reaction vessel, an elastic member for absorbing the dimensional difference of the pipe due to heat shrinkage and sealing the gas flowing out from the reaction vessel through the gap between the pipe and the partition wall. Is provided so as to cover the outer periphery of the pipe. Gas tends to stay in the gap between the telescopic member and the pipe, and the temperature on the outside of the reaction vessel becomes lower as the distance from the partition wall increases. Therefore, in the case of a structure in which corrosive gas that may be contained before and after the reaction in the reaction vessel flows into the gap between the pipe and the expansion / contraction member extending to the outside of the reaction vessel from the gap between the partition wall and the pipe, the gap. The temperature of the corrosive gas staying in the water may drop below the acid dew point temperature, which may cause corrosion.
In this respect, according to the configuration of (1) above, the first seal member is airtightly connected to the outer peripheral surface of the pipe over the entire circumference of the pipe, and extends over the entire circumference of the pipe outside the outer peripheral surface of the pipe. The second seal member is airtightly connected to the outer surface or the outer surface forming member of the partition wall, and one end of the telescopic member is airtightly connected to the first seal member and the other end is arranged opposite to the partition wall from the one end. Is airtightly connected to the second seal member. Therefore, on the outside of the reaction vessel, the corrosive gas does not flow between the pipe and the expansion / contraction member, and the corrosive gas does not come into contact with the pipe. Therefore, it is possible to effectively suppress the corrosion of the pipe on the outside of the reaction vessel at the partition wall penetrating portion.

(2)幾つかの実施形態では、上記(1)に記載の構成において、
前記第1シール部材は、前記配管の径方向に沿って延在する第1シール面を有する第1フランジ部を含む。
上記(2)の構成によれば、第1フランジ部が配管の径方向に沿って延在することにより、この第1フランジ部を介して第1シール部材と伸縮部材の一端との気密性を確保した接続を容易に行うことができる。これにより、反応容器の外側における配管と伸縮部材との隙間へのガスの流入を効果的に防止することができるから、隔壁貫通部における反応容器の外側において、配管の腐食をより一層効果的に防止することができる。
(2) In some embodiments, in the configuration described in (1) above,
The first sealing member includes a first flange portion having a first sealing surface extending along the radial direction of the pipe.
According to the configuration of (2) above, the first flange portion extends along the radial direction of the pipe, so that the airtightness between the first seal member and one end of the expansion / contraction member is maintained through the first flange portion. The secured connection can be easily made. As a result, it is possible to effectively prevent the inflow of gas into the gap between the pipe and the expansion / contraction member on the outside of the reaction vessel, so that the corrosion of the pipe on the outside of the reaction vessel at the partition wall penetrating portion is more effectively prevented. Can be prevented.

(3)幾つかの実施形態では、上記(2)に記載の構成において、
前記第1シール部材は、
前記配管の前記外周面に気密に接続される環状のリング部を含み、
前記第1フランジ部は、前記リング部の外周面に溶接される。
上記(3)の構成によれば、第1シール部材は、配管の外周面に気密に接続される環状のリング部の外周面に第1フランジ部が溶接されることで配管の周方向の全周に亘って該配管の外周面に気密に接続される。従って、例えば、第1フランジ部を現場において溶接(現場溶接)して取り付けるような場合は、第1フランジ部を配管の外周面に直接溶接する場合に比べて、溶接及び運転の際に配管の外周面に損傷を与える可能性を効果的に低減することができる。
(3) In some embodiments, in the configuration described in (2) above,
The first seal member is
Including an annular ring portion airtightly connected to the outer peripheral surface of the pipe.
The first flange portion is welded to the outer peripheral surface of the ring portion.
According to the configuration of (3) above, in the first seal member, the first flange portion is welded to the outer peripheral surface of the annular ring portion airtightly connected to the outer peripheral surface of the pipe, so that the first flange portion is welded to the entire circumferential direction of the pipe. It is airtightly connected to the outer peripheral surface of the pipe over the circumference. Therefore, for example, when the first flange portion is welded (on-site welding) at the site and attached, the pipe is connected during welding and operation as compared with the case where the first flange portion is directly welded to the outer peripheral surface of the pipe. The possibility of damaging the outer peripheral surface can be effectively reduced.

(4)幾つかの実施形態では、上記(1)~(3)の何れか一つに記載の構成において、
前記第2シール部材は、
一端が前記隔壁の外面又は前記外面形成部材に気密に接続される、前記配管の前記管軸方向に沿って延在する管軸延在部と、
前記管軸延在部の他端から前記配管の径方向に沿って前記配管に向かって延在する第2フランジ部と、を含む。
上記(4)の構成によれば、第2シール部材は、管軸延在部の一端において隔壁の外面又は外面形成部材に気密に接続され、管軸延在部の他端の第2フランジ部において伸縮部材と気密に接続される。その際、第2フランジ部が管軸延在部の他端から配管の径方向に沿って配管に向けて延在することにより、該第2フランジ部と伸縮部材との気密性を確保した接続を容易に行うことができる。これにより、例えば、反応容器内のガスが配管と隔壁との隙間から管軸延在部内に流入した場合であっても、当該ガスが伸縮部材と配管との隙間に流入したり管軸延在部の外側に流出したりすることを防止して、適切にシール機能を発揮することができる。
(4) In some embodiments, in the configuration described in any one of (1) to (3) above,
The second seal member is
A pipe shaft extending portion extending along the pipe axis direction of the pipe, one end of which is airtightly connected to the outer surface of the partition wall or the outer surface forming member.
A second flange portion extending from the other end of the pipe shaft extending portion toward the pipe along the radial direction of the pipe is included.
According to the configuration of (4) above, the second seal member is airtightly connected to the outer surface or the outer surface forming member of the partition wall at one end of the pipe shaft extending portion, and the second flange portion at the other end of the pipe shaft extending portion. Is airtightly connected to the telescopic member. At that time, the second flange portion extends from the other end of the pipe shaft extending portion toward the pipe along the radial direction of the pipe, so that the connection between the second flange portion and the expansion / contraction member is ensured. Can be easily performed. As a result, for example, even when the gas in the reaction vessel flows into the pipe shaft extending portion from the gap between the pipe and the partition wall, the gas may flow into the gap between the expansion / contraction member and the pipe or the pipe shaft extends. It is possible to prevent the outflow to the outside of the portion and appropriately exert the sealing function.

(5)幾つかの実施形態では、上記(1)~(4)の何れか一つに記載の構成において、
前記伸縮部材は、
ベローズ状に形成された伸縮部と、
前記伸縮部の一端側に設けられた一端側フランジ部と、
前記伸縮部の他端側に設けられた他端側フランジ部と、を含む。
上記(5)の構成によれば、伸縮部の一端と他端とが共にフランジ部であることにより、第1シール部材及び第2シール部材の各々と当該伸縮部材との気密性を確保した接続を容易かつ確実に行うことができる。また、伸縮部がベローズ状に形成されていることにより、管軸方向への伸縮を伴う変形を容易に行い得る伸縮部材を得ることができる。
(5) In some embodiments, in the configuration described in any one of (1) to (4) above,
The telescopic member
A bellows-shaped elastic part and
The flange portion on one end side provided on one end side of the telescopic portion and the flange portion on one end side.
The other end side flange portion provided on the other end side of the expansion / contraction portion is included.
According to the configuration of (5) above, since both one end and the other end of the expansion / contraction portion are flange portions, the connection between each of the first seal member and the second seal member and the expansion / contraction member is ensured. Can be easily and reliably performed. Further, since the elastic portion is formed in a bellows shape, it is possible to obtain an elastic member that can be easily deformed with expansion and contraction in the pipe axis direction.

(6)幾つかの実施形態では、上記(1)~(5)の何れか一つに記載の構成において、
前記反応容器はボイラであり、
前記隔壁は前記ボイラの炉壁であり、
前記配管は、前記ボイラに用いられるボイラ管である。
上記(6)の構成によれば、ボイラの火炉の炉壁を配管が貫通する炉壁貫通部において、火炉の外側に延在する配管の腐食を適切に防止することができる。
(6) In some embodiments, in the configuration according to any one of (1) to (5) above,
The reaction vessel is a boiler,
The partition wall is the furnace wall of the boiler.
The pipe is a boiler pipe used for the boiler.
According to the configuration of (6) above, it is possible to appropriately prevent the corrosion of the pipe extending to the outside of the furnace at the furnace wall penetrating portion where the pipe penetrates the furnace wall of the boiler furnace.

本発明の幾つかの実施形態によれば、隔壁貫通部における配管の腐食を抑制することができる。 According to some embodiments of the present invention, corrosion of pipes at the partition wall penetrating portion can be suppressed.

一実施形態に係る反応容器の隔壁部貫通構造を適用したボイラを備えた火力発電プラントの構成例を示す概略図である。It is a schematic diagram which shows the structural example of the thermal power plant provided with the boiler which applied the partition wall penetration structure of the reaction vessel which concerns on one Embodiment. 一実施形態に係る反応容器の隔壁部貫通構造を簡易的に示す概略図である。It is a schematic diagram which shows simply the partition wall penetration structure of the reaction vessel which concerns on one Embodiment. 一実施形態に係る反応容器の隔壁部貫通構造の構成例を示す概略図であり、(a)は平面図、(b)は縦断面図である。It is a schematic diagram which shows the structural example of the partition wall penetration structure of the reaction vessel which concerns on one Embodiment, (a) is a plan view, (b) is a vertical sectional view. 一実施形態における反応容器の隔壁部貫通構造を示す側断面図であり、図3(b)におけるN-N方向断面を示す図である。It is a side cross-sectional view which shows the partition wall penetration structure of the reaction vessel in one Embodiment, and is the figure which shows the NN direction cross section in FIG. 3 (b). 反応容器の隔壁部貫通構造の比較例を示す正面図である。It is a front view which shows the comparative example of the partition wall penetration structure of a reaction vessel. 反応容器の隔壁部貫通構造の比較例を示す側断面図であり、図5におけるD-D断面を示す図である。It is a side cross-sectional view which shows the comparative example of the partition wall penetration structure of the reaction vessel, and is the figure which shows the DD cross section in FIG. 他の実施形態に係る反応容器の隔壁部貫通構造を示す図である。It is a figure which shows the partition wall penetration structure of the reaction vessel which concerns on other embodiment.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely explanatory examples. do not have.
For example, expressions that represent relative or absolute arrangements such as "in one direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a tolerance or a state of relative displacement at an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or a chamfer within the range where the same effect can be obtained. It shall also represent the shape including the part and the like.
On the other hand, the expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions excluding the existence of other components.

図1は、一実施形態に係る反応容器の隔壁部貫通構造を適用し得るボイラを備えた火力発電プラントの構成例を示す概略図である。
図1に非限定的に例示するように、火力発電プラント1は、ボイラ2と、ボイラ2で発生した熱により加熱されて生成された蒸気によって駆動される蒸気タービン3と、蒸気タービン3により駆動されて発電する発電機4と、発電に寄与し仕事を終えた蒸気を液相に戻す復水器5と、復水器5で液化された水を循環させるポンプ6と、ボイラ2からの排気を排出する煙突9と、を備えている。なお、火力発電プラント1は、上記構成以外にも必要に応じて種々の構成を備え得る。
FIG. 1 is a schematic view showing a configuration example of a thermal power plant provided with a boiler to which the partition wall penetrating structure of the reaction vessel according to the embodiment can be applied.
As illustrated in FIG. 1 without limitation, the thermal power generation plant 1 is driven by a boiler 2, a steam turbine 3 driven by steam generated by being heated by the heat generated by the boiler 2, and a steam turbine 3. A generator 4 that generates power by being generated, a condenser 5 that returns steam that has contributed to power generation and finished work to the liquid phase, a pump 6 that circulates the water liquefied by the condenser 5, and an exhaust from the boiler 2. It is equipped with a chimney 9 that discharges. The thermal power plant 1 may be provided with various configurations other than the above configurations, if necessary.

蒸気タービン3は、ボイラ2からの高温ガスにより火炉伝熱管、節炭器及び過熱器等の熱交換器7を介して熱媒体としての水が加熱され、これにより得られた高圧蒸気(高圧ST)を利用して回転される高圧タービン3Aと、高圧タービン3Aを回転させた後の低圧蒸気(低圧ST)により回転されて駆動される低圧タービン3Bと、を含み得る。 In the steam turbine 3, water as a heat medium is heated by the high-temperature gas from the boiler 2 through a heat exchanger 7 such as a furnace heat transfer tube, a coal saver, and a superheater, and the high-pressure steam (high-pressure ST) obtained thereby is heated. ), And a low-pressure turbine 3B that is rotated and driven by low-pressure steam (low-pressure ST) after rotating the high-pressure turbine 3A.

図1に非限定的に例示するように、ボイラ2は、火炉10Aと、該火炉10A内に燃料15と空気16とを混合して噴射するバーナー20と、を備えている。 As illustrated in FIG. 1 without limitation, the boiler 2 includes a furnace 10A and a burner 20 that mixes and injects fuel 15 and air 16 into the furnace 10A.

火炉10Aは、内部で燃料15と燃焼用の空気16とを反応させて燃焼させるための筒状の中空体であり、例えば、円筒状や四角柱状等、種々の形態をとり得る。幾つかの実施形態において、火炉10Aは、炉壁部12A及び炉底部14を含んでいてもよい。火炉10Aは、燃焼ガスの流れ方向Aの下流側、即ち、当該火炉10Aの上方側に煙道8を備えている。煙道8は、火炉10Aで生成された燃焼ガスを導くためのガス流路として構成され得る。 The furnace 10A is a cylindrical hollow body for internally reacting the fuel 15 with the combustion air 16 for combustion, and may take various forms such as a cylindrical shape and a square columnar shape. In some embodiments, the furnace 10A may include a furnace wall portion 12A and a furnace bottom portion 14. The flue 10A is provided with a flue 8 on the downstream side in the flow direction A of the combustion gas, that is, on the upper side of the flue 10A. The flue 8 can be configured as a gas flow path for guiding the combustion gas produced in the furnace 10A.

バーナー20は、火炉10A外から火炉10A内に、燃料15と空気16とを混合して供給可能に構成されている。
空気16は、燃料15を搬送するとともに該燃料15を微粒子化するための媒体である。
幾つかの実施形態において、バーナー20は、火炉10Aにおける燃焼ガスの流れ方向Aにおける上流側(例えば、上下方向に長尺な火炉10Aにあっては該火炉10Aの下部側)に配設される。幾つかの実施形態では、複数のバーナー20が設けられていてもよく、これら複数のバーナー20はそれぞれ、火炉10A内における燃焼ガスの流れ方向Aにおいて異なる位置に設置され得る。このように、バーナー20を備えることで、本開示の何れかの実施形態で述べる作用効果を奏するボイラ2を実現することができる。
The burner 20 is configured so that the fuel 15 and the air 16 can be mixed and supplied from outside the furnace 10A into the furnace 10A.
The air 16 is a medium for transporting the fuel 15 and for atomizing the fuel 15.
In some embodiments, the burner 20 is arranged on the upstream side in the flow direction A of the combustion gas in the furnace 10A (for example, in the case of the vertically elongated furnace 10A, the lower side of the furnace 10A). .. In some embodiments, a plurality of burners 20 may be provided, and each of the plurality of burners 20 may be installed at different positions in the combustion gas flow direction A in the furnace 10A. As described above, by providing the burner 20, it is possible to realize the boiler 2 that exhibits the effects described in any of the embodiments of the present disclosure.

ここで、本開示の少なくとも一実施形態に係る反応容器の隔壁部貫通構造について詳しく説明する。
図2は、一実施形態に係る反応容器の隔壁部貫通構造を簡易的に示す概略図である。図3は、一実施形態に係る反応容器の隔壁部貫通構造の構成例を示す概略図であり、(a)は平面図、(b)は縦断面図である。図4は、一実施形態における反応容器の隔壁部貫通構造を示す側断面図であり、図3(b)におけるN-N方向断面を示す。
図2~図4に非限定的に例示するように、本発明の少なくとも一実施形態に係る反応容器の隔壁部貫通構造は、反応容器10の内部と外部とを区画する隔壁12と、隔壁12を貫通して反応容器10の内部と外部とを連通する少なくとも1本の配管50と、反応容器10の外側において隔壁12と配管50との隙間から流出する反応容器10内のガスを気密に封止するシール装置30と、を備えている。
Here, the partition wall penetrating structure of the reaction vessel according to at least one embodiment of the present disclosure will be described in detail.
FIG. 2 is a schematic view simply showing a partition wall penetrating structure of the reaction vessel according to the embodiment. 3A and 3B are schematic views showing a configuration example of a partition wall penetrating structure of a reaction vessel according to an embodiment, where FIG. 3A is a plan view and FIG. 3B is a vertical sectional view. FIG. 4 is a side sectional view showing a partition wall penetrating structure of the reaction vessel in one embodiment, and shows a sectional view in the NN direction in FIG. 3 (b).
As illustrated in FIGS. 2 to 4 without limitation, the partition wall penetrating structure of the reaction vessel according to at least one embodiment of the present invention includes a partition wall 12 for partitioning the inside and the outside of the reaction vessel 10 and a partition wall 12. At least one pipe 50 that penetrates the inside and the outside of the reaction vessel 10 and airtightly seals the gas in the reaction vessel 10 that flows out from the gap between the partition wall 12 and the pipe 50 on the outside of the reaction vessel 10. It is provided with a sealing device 30 for stopping.

反応容器10には種々の容器が適用され得る。例えば、内部で主に燃焼その他の発熱反応が行われる容器であってもよい。また、内部で行われる反応の前又は後に腐食性ガスや有害ガス等が含まれるような容器であってもよい。具体的には、各種化学プラントや上述した火力発電プラント1、及び焼却施設等に用いられる反応器や燃焼容器(炉)なども反応容器10として適用し得る。上記のような容器に、本開示の幾つかの実施形態に示す反応容器の隔壁部貫通構造を好適に適用し得る。
反応容器10の隔壁12は、当該隔壁12の内部と外部との気密性を確保し得るように構成されていてもよい。幾つかの実施形態では、反応容器10の外側に外面形成部材13が設けられ、この外面形成部材13と配管50との関係において本開示の反応容器の隔壁部貫通構造が適用され得る(例えば図2及び図4参照)。外面形成部材13は、例えば火炉10Aに用いられ得るECOホッパプレート13A(図2参照)やシールボックス30A(図7参照)であってもよい。なお、他の実施形態では、隔壁12の外面12Bと配管50との関係において本開示の反応容器の隔壁部貫通構造を適用し得る。
配管50は、反応容器10の任意の部分を貫通するように配置され得る。例えば、反応容器10の側面(例えば炉壁部12A)、底面(例えば炉底部14)又は上面を貫通するように配置されていてもよい(図1参照)。
Various vessels can be applied to the reaction vessel 10. For example, it may be a container in which combustion or other exothermic reactions are mainly performed. Further, the container may contain a corrosive gas, a harmful gas, or the like before or after the reaction performed inside. Specifically, various chemical plants, the above-mentioned thermal power generation plant 1, and reactors and combustion vessels (reactors) used in incineration facilities and the like can also be applied as the reaction vessel 10. The partition wall penetrating structure of the reaction vessel shown in some embodiments of the present disclosure can be suitably applied to the above-mentioned vessel.
The partition wall 12 of the reaction vessel 10 may be configured to ensure airtightness between the inside and the outside of the partition wall 12. In some embodiments, an outer surface forming member 13 is provided on the outside of the reaction vessel 10, and the partition wall penetrating structure of the reaction vessel of the present disclosure may be applied in relation to the outer surface forming member 13 and the pipe 50 (for example, FIG. 2 and FIG. 4). The outer surface forming member 13 may be, for example, an ECO hopper plate 13A (see FIG. 2) or a seal box 30A (see FIG. 7) that can be used in the furnace 10A. In another embodiment, the partition wall penetrating structure of the reaction vessel of the present disclosure may be applied in relation to the outer surface 12B of the partition wall 12 and the pipe 50.
The pipe 50 may be arranged so as to penetrate any portion of the reaction vessel 10. For example, it may be arranged so as to penetrate the side surface (for example, the furnace wall portion 12A), the bottom surface (for example, the furnace bottom portion 14), or the upper surface of the reaction vessel 10 (see FIG. 1).

シール装置30は、反応容器10の外側であって、貫通部Pにおける隔壁12の外面12B又は隔壁12の外面12Bに設けられる外面形成部材13と配管50の外周面52とを気密に囲繞するように配置され得る。
このシール装置30は、配管50の周方向の全周に亘って該配管50の外周面52に気密に接続(例えば溶接部W1)される第1シール部材31と、配管50の外周面52よりも外側において、配管50の周方向の全周に亘って隔壁12の外面12B又は外面形成部材13に気密に接続(例えば溶接部W2)される第2シール部材35と、一端40(例えば後述する一端側フランジ部40A)が第1シール部材31に気密に接続(例えば溶接部W3)されるとともに、該一端40よりも隔壁12とは反対側に配置される他端41(例えば後述する他端側フランジ部41A)が第2シール部材35に気密に接続(例えば溶接部W4)される伸縮部材38と、を含む。
The sealing device 30 is on the outside of the reaction vessel 10 so as to airtightly surround the outer surface forming member 13 provided on the outer surface 12B of the partition wall 12 or the outer surface 12B of the partition wall 12 at the penetration portion P and the outer peripheral surface 52 of the pipe 50. Can be placed in.
The sealing device 30 is formed from the first sealing member 31 that is airtightly connected to the outer peripheral surface 52 of the pipe 50 (for example, the welded portion W1) over the entire circumference of the pipe 50 in the circumferential direction, and the outer peripheral surface 52 of the pipe 50. On the outside, a second seal member 35 that is airtightly connected to the outer surface 12B of the partition wall 12 or the outer surface forming member 13 (for example, the welded portion W2) over the entire circumference of the pipe 50 in the circumferential direction, and one end 40 (for example, described later). The one end side flange portion 40A) is airtightly connected to the first seal member 31 (for example, the welded portion W3), and the other end 41 (for example, the other end described later) is arranged on the opposite side of the one end 40 to the partition wall 12. The side flange portion 41A) includes a telescopic member 38 to which the second seal member 35 is airtightly connected (for example, the welded portion W4).

第1シール部材31は、配管50の管軸方向Xと交差する方向(直交方向を含む)に向けて環状に延在していてもよい。幾つかの実施形態において、第1シール部材31は、配管50の外周面52に連続して当該外周面52に立設された板部材であってもよい。この第1シール部材31は、伸縮部材38における反応容器10側の端部(つまり反応容器10から見て伸縮部材38の近位端)に接続される。すなわち、第1シール部材31は、伸縮部材38と反応容器10との間に配置される。幾つかの実施形態において、第1シール部材31は、反応容器10の隔壁12の外面12B又は外面形成部材13に可能な限り近接するように、管軸方向Xにおいて外面12B又は外面形成部材13との隙間が少なくなるようにして配置されてもよい。
第2シール部材35は、上記第1シール部材31と同軸に該第1シール部材31の外周を囲繞するようにして筒状に形成され得る。幾つかの実施形態では、管軸方向Xと同軸に半円筒状に形成された半割れ部材を接合することで第2シール部材35を形成してもよい(例えば図3(a)及び図3(b)参照)。第2シール部材35と第1シール部材31との間には所定の間隔が設けられていてもよい。
伸縮部材38は、配管50の全周に亘って第1シール部材31の周縁部と気密に接続されている。幾つかの実施形態では、伸縮部材38の一端40と第1シール部材31の周縁部とが溶接部W3により気密に溶接されていてもよい。伸縮部材38の他端41は、溶接部W4により第2シール部材35と気密に接続されている。幾つかの実施形態では、伸縮部材38の一端40と第1シール部材31の周縁部とが気密に溶接されていてもよい。
この伸縮部材38は、所謂エキスパンションとも称され、熱伸縮による配管50の管軸方向X、管軸垂直方向Yの収縮を吸収するように、管軸方向X、管軸垂直方向Yに沿って伸縮可能に形成されている。本開示に非限定的に示す例では、外面12B又は外面形成部材13に第2シール部材35が固定され、反応容器10から見て第2シール部材35の遠位端(図2及び図4における左端)に伸縮部材38の他端41が固定され、該伸縮部材38の一端が第1シール部材31を介して配管50に固定される。このため、例えば、配管50が熱伸びして管軸方向Xに伸びた場合、伸縮部39に圧縮力が作用するように構成され得る。
そして、幾つかの実施形態では、第1シール部材31、第2シール部材35及び伸縮部材38と隔壁12及び配管50とで形成される空間70に、隔壁12と配管50との隙間を介して反応容器10内から流出したガスが流入されるようになっていてもよい。
The first seal member 31 may extend in an annular shape in a direction (including an orthogonal direction) intersecting the pipe axial direction X of the pipe 50. In some embodiments, the first seal member 31 may be a plate member erected on the outer peripheral surface 52 continuously on the outer peripheral surface 52 of the pipe 50. The first seal member 31 is connected to the end of the telescopic member 38 on the reaction vessel 10 side (that is, the proximal end of the telescopic member 38 when viewed from the reaction vessel 10). That is, the first seal member 31 is arranged between the expansion / contraction member 38 and the reaction vessel 10. In some embodiments, the first seal member 31 is with the outer surface 12B or the outer surface forming member 13 in the tube axial direction X so as to be as close as possible to the outer surface 12B or the outer surface forming member 13 of the partition wall 12 of the reaction vessel 10. It may be arranged so that the gap between the two is reduced.
The second seal member 35 may be formed in a cylindrical shape so as to surround the outer periphery of the first seal member 31 coaxially with the first seal member 31. In some embodiments, the second seal member 35 may be formed by joining a semi-cylindrical half-cracked member coaxially with the pipe axis direction X (for example, FIGS. 3A and 3). (B)). A predetermined distance may be provided between the second seal member 35 and the first seal member 31.
The telescopic member 38 is airtightly connected to the peripheral edge portion of the first seal member 31 over the entire circumference of the pipe 50. In some embodiments, one end 40 of the telescopic member 38 and the peripheral edge portion of the first seal member 31 may be airtightly welded by the welded portion W3. The other end 41 of the telescopic member 38 is airtightly connected to the second seal member 35 by the welded portion W4. In some embodiments, one end 40 of the telescopic member 38 and the peripheral edge portion of the first seal member 31 may be airtightly welded.
The expansion / contraction member 38 is also called expansion, and expands / contracts along the pipe axis direction X and the pipe axis vertical direction Y so as to absorb the contraction of the pipe 50 in the pipe axis direction X and the pipe axis vertical direction Y due to thermal expansion / contraction. It is formed as possible. In the example shown non-limitingly in the present disclosure, the second seal member 35 is fixed to the outer surface 12B or the outer surface forming member 13, and the distal end of the second seal member 35 as viewed from the reaction vessel 10 (in FIGS. 2 and 4). The other end 41 of the telescopic member 38 is fixed to the left end), and one end of the telescopic member 38 is fixed to the pipe 50 via the first seal member 31. Therefore, for example, when the pipe 50 is thermally stretched and stretched in the pipe axial direction X, a compressive force may be applied to the stretchable portion 39.
Then, in some embodiments, the space 70 formed by the first seal member 31, the second seal member 35, the telescopic member 38, the partition wall 12, and the pipe 50 is filled with a gap between the partition wall 12 and the pipe 50. The gas flowing out from the reaction vessel 10 may be inflowed.

ここで、比較例として示す隔壁部貫通構造(図5及び図6参照)によれば、反応容器10の隔壁12を配管50が貫通する貫通部P(例えば図1参照)において、熱収縮による配管50の寸法差を吸収するとともに、配管50と隔壁12との隙間を通って反応容器10から流出するガスを封止するための伸縮部材38が配管50の外周を覆うように設けられる(図5及び図6参照)。伸縮部材38と配管50との隙間にはガスが滞留し易く、また、反応容器10の外側では隔壁12から離れるほど低温になる。このため、反応容器10内における反応の前後に含まれ得る腐食性ガスが、隔壁12と配管50との隙間から反応容器10の外側に延在する配管50と伸縮部材38との隙間に流入する構造(図5及び図6参照)の場合、該隙間に滞留した腐食性ガスの温度が酸露点温度以下に低下して腐食が発生する原因となり得る。
この点、本開示の上記構成によれば、第1シール部材31が配管50の全周に亘って該配管50の外周面52に気密に接続され、配管50の外周面52より外側において該配管50の全周に亘って第2シール部材35が隔壁12の外面12B又は外面形成部材13に気密に接続され、さらに、伸縮部材38の一端が第1シール部材31に気密に接続されるとともに該一端より隔壁12とは反対に配置される他端が第2シール部材35に気密に接続される。従って、反応容器10の外側では配管50と伸縮部材38との間に腐食性ガスが流入せず、配管50に腐食性ガスが接することがない。よって、隔壁12の貫通部Pにおける反応容器10の外側において、配管50の腐食を効果的に抑制することができる。
なお、反応容器10と配管50との隙間を通って流出した排ガスが存在し得るシール装置30内の空間70において、反応容器10に近い位置では反応容器10内の温度に近く比較的高温である。従って、流出した腐食性ガスのうち反応容器10に近い位置に滞留するガスは酸露点温度以下に低下する可能性が元来低く、仮にこのような位置で腐食性ガスが配管50に接したとしても腐食の発生が抑制され得る。
Here, according to the partition wall penetrating structure (see FIGS. 5 and 6) shown as a comparative example, the piping due to heat shrinkage in the penetrating portion P through which the pipe 50 penetrates the partition wall 12 of the reaction vessel 10 (see, for example, FIG. 1). An expansion / contraction member 38 for absorbing the dimensional difference of the pipe 50 and sealing the gas flowing out of the reaction vessel 10 through the gap between the pipe 50 and the partition wall 12 is provided so as to cover the outer periphery of the pipe 50 (FIG. 5). And FIG. 6). Gas tends to stay in the gap between the telescopic member 38 and the pipe 50, and the temperature on the outside of the reaction vessel 10 becomes lower as the distance from the partition wall 12 increases. Therefore, corrosive gas that may be contained before and after the reaction in the reaction vessel 10 flows into the gap between the pipe 50 and the expansion / contraction member 38 extending from the gap between the partition wall 12 and the pipe 50 to the outside of the reaction vessel 10. In the case of the structure (see FIGS. 5 and 6), the temperature of the corrosive gas staying in the gap may drop below the acid dew point temperature, which may cause corrosion.
In this regard, according to the above configuration of the present disclosure, the first seal member 31 is airtightly connected to the outer peripheral surface 52 of the pipe 50 over the entire circumference of the pipe 50, and the pipe is located outside the outer peripheral surface 52 of the pipe 50. The second seal member 35 is airtightly connected to the outer surface 12B or the outer surface forming member 13 of the partition wall 12 over the entire circumference of the 50, and one end of the telescopic member 38 is airtightly connected to the first seal member 31. The other end, which is arranged opposite to the partition wall 12 from one end, is airtightly connected to the second seal member 35. Therefore, on the outside of the reaction vessel 10, the corrosive gas does not flow between the pipe 50 and the expansion / contraction member 38, and the corrosive gas does not come into contact with the pipe 50. Therefore, corrosion of the pipe 50 can be effectively suppressed outside the reaction vessel 10 at the penetration portion P of the partition wall 12.
In the space 70 in the sealing device 30 where the exhaust gas flowing out through the gap between the reaction vessel 10 and the pipe 50 may exist, the temperature near the reaction vessel 10 is close to the temperature inside the reaction vessel 10 and is relatively high. .. Therefore, among the corrosive gas that has flowed out, the gas that stays near the reaction vessel 10 is originally unlikely to drop below the acid dew point temperature, and it is assumed that the corrosive gas comes into contact with the pipe 50 at such a position. Also, the occurrence of corrosion can be suppressed.

図2及び図4に非限定的に例示するように、幾つかの実施形態では、上記構成において、第1シール部材31は、配管50の径方向に沿って延在する第1シール面33を有する第1フランジ部32を含んでいてもよい。
第1フランジ部32は、配管50の全周に亘って環状に形成され得る。
このように、第1フランジ部32が配管50の径方向に沿って延在することにより、この第1フランジ部32を介して第1シール部材31と伸縮部材38の一端40との気密性を確保した接続を容易に行うことができる。これにより、反応容器10の外側における配管50と伸縮部材38との隙間へのガスの流入を効果的に防止することができる。よって、隔壁12の貫通部Pにおける反応容器10の外側において、配管50の腐食をより一層効果的に防止することができる。
なお、第1フランジ部32と伸縮部材38との接続は、第1フランジ部32の周縁部に伸縮部材38の一端40を溶接することで実現されてもよい。また、第1フランジ部32と配管50との接続は、例えば、工場において、溶接(工場溶接)や、締り嵌めを含む嵌合等によって実現されてもよい。
As illustrated in FIGS. 2 and 4, in some embodiments, in the above configuration, the first seal member 31 has a first seal surface 33 extending along the radial direction of the pipe 50. The first flange portion 32 to be included may be included.
The first flange portion 32 may be formed in an annular shape over the entire circumference of the pipe 50.
In this way, the first flange portion 32 extends along the radial direction of the pipe 50, so that the airtightness between the first seal member 31 and one end 40 of the expansion / contraction member 38 is maintained via the first flange portion 32. The secured connection can be easily made. As a result, it is possible to effectively prevent the inflow of gas into the gap between the pipe 50 and the expansion / contraction member 38 on the outside of the reaction vessel 10. Therefore, it is possible to more effectively prevent the corrosion of the pipe 50 on the outside of the reaction vessel 10 at the penetration portion P of the partition wall 12.
The connection between the first flange portion 32 and the expansion / contraction member 38 may be realized by welding one end 40 of the expansion / contraction member 38 to the peripheral edge portion of the first flange portion 32. Further, the connection between the first flange portion 32 and the pipe 50 may be realized, for example, by welding (factory welding), fitting including tightening, or the like in a factory.

図2及び図4に非限定的に例示するように、幾つかの実施形態において、第1シール部材31は、配管50の外周面52に気密に接続される環状のリング部34を含み、第1フランジ部32は、リング部34の外周面52に溶接されるように構成されてもよい。
リング部34は、例えば、工場において、溶接(工場溶接)や、締り嵌めを含む嵌合等によって配管50の外周面52に設けられてもよい。
このように構成すれば、第1シール部材31は、配管50の外周面52に気密に接続される環状のリング部34の外周面34Aに第1フランジ部32が溶接されることで配管50の周方向の全周に亘って該配管50の外周面52に気密に接続される。従って、例えば、第1フランジ部32を現場において溶接(現場溶接)して取り付けるような場合、第1フランジ部32を配管50の外周面52に直接溶接する場合に比べて、溶接及び運転の際に配管50の外周面52に損傷を与える可能性を効果的に低減することができる。
As illustrated in FIGS. 2 and 4, in some embodiments, the first seal member 31 includes an annular ring portion 34 that is airtightly connected to the outer peripheral surface 52 of the pipe 50. 1 The flange portion 32 may be configured to be welded to the outer peripheral surface 52 of the ring portion 34.
The ring portion 34 may be provided on the outer peripheral surface 52 of the pipe 50 by, for example, welding (factory welding), fitting including tightening, or the like in a factory.
With this configuration, the first seal member 31 is formed by welding the first flange portion 32 to the outer peripheral surface 34A of the annular ring portion 34 airtightly connected to the outer peripheral surface 52 of the pipe 50. It is airtightly connected to the outer peripheral surface 52 of the pipe 50 over the entire circumference in the circumferential direction. Therefore, for example, when the first flange portion 32 is welded (on-site welded) and attached at the site, compared with the case where the first flange portion 32 is directly welded to the outer peripheral surface 52 of the pipe 50, during welding and operation. The possibility of damaging the outer peripheral surface 52 of the pipe 50 can be effectively reduced.

幾つかの実施形態では、上記何れかに記載の構成において、第2シール部材35は、一端が隔壁12の外面12B又は外面形成部材13に気密に接続される、配管50の管軸方向Xに沿って延在する管軸延在部36と、この管軸延在部36の他端から配管50の径方向に沿って配管50に向かって延在する第2フランジ部37と、を含んでもよい。
幾つかの実施形態では、上記第2シール部材35の一端を反応容器10に近い側の端部(つまり反応容器10から見て近位端)、他端を反応容器10から遠い側の端部(つまり反応容器10から見て遠位端)に設定してもよい。
このように構成すれば、第2シール部材35は、管軸延在部36の一端において隔壁12の外面12B又は外面形成部材13に気密に接続され、管軸延在部36の他端から配管50の径方向に沿って配管に向けて延在する第2フランジ部37によって伸縮部材38と気密に接続される。その際、第2フランジ部37が管軸延在部36の他端から配管50の径方向に沿って配管50に向けて延在することにより、該第2フランジ部37と伸縮部材38との気密性を確保した接続を容易に行うことができる。これにより、例えば、反応容器10内のガスが配管50と隔壁12との隙間から管軸延在部36内に流入した場合であっても、当該ガスが伸縮部材38と配管50との隙間に流入したり管軸延在部36の外側に流出したりすることを防止して、適切にシール機能を発揮することができる。
In some embodiments, in any of the above configurations, the second seal member 35 is in the pipe axial direction X of the pipe 50, one end of which is airtightly connected to the outer surface 12B of the partition wall 12 or the outer surface forming member 13. Even if the pipe shaft extending portion 36 extending along the pipe shaft extending portion 36 and the second flange portion 37 extending from the other end of the pipe shaft extending portion 36 toward the pipe 50 along the radial direction of the pipe 50 are included. good.
In some embodiments, one end of the second sealing member 35 is the end closer to the reaction vessel 10 (that is, the proximal end when viewed from the reaction vessel 10), and the other end is the end farther from the reaction vessel 10. It may be set (that is, the distal end when viewed from the reaction vessel 10).
With this configuration, the second seal member 35 is airtightly connected to the outer surface 12B of the partition wall 12 or the outer surface forming member 13 at one end of the pipe shaft extending portion 36, and is piped from the other end of the pipe shaft extending portion 36. It is airtightly connected to the telescopic member 38 by the second flange portion 37 extending toward the pipe along the radial direction of 50. At that time, the second flange portion 37 extends from the other end of the pipe shaft extending portion 36 toward the pipe 50 along the radial direction of the pipe 50, so that the second flange portion 37 and the expansion / contraction member 38 are formed. It is possible to easily make a connection that ensures airtightness. As a result, for example, even when the gas in the reaction vessel 10 flows into the pipe shaft extending portion 36 from the gap between the pipe 50 and the partition wall 12, the gas enters the gap between the expansion / contraction member 38 and the pipe 50. It is possible to prevent the inflow and the outflow to the outside of the pipe shaft extending portion 36, and appropriately exert the sealing function.

幾つかの実施形態では、上記何れかに記載の構成において、伸縮部材38は、ベローズ状に形成された伸縮部39と、該伸縮部39の一端側に設けられた一端側フランジ部40Aと、伸縮部39の他端側に設けられた他端側フランジ部41Aと、を含んでもよい。
伸縮部39は、例えば金属エキスパンションであってもよい。
上記一端側フランジ部40A及び他端側フランジ部41Aは、それぞれ伸縮部39の端部に連続して各端部から径方向の外側に向けて延在するように形成された外フランジであってもよい。なお、一端側フランジ部40Aは、伸縮部39の端部から径方向の内側(配管50側)に向けて延在する内フランジであってもよい。
このように伸縮部39の両端にフランジ部を設けた構成によれば、伸縮部39の一端と他端とが共にフランジ部であることにより、第1シール部材31及び第2シール部材35の各々と当該伸縮部材38との気密性を確保した接続を容易かつ確実に行うことができる。また、伸縮部39がベローズ状に形成されていることにより、管軸方向Xへの伸縮を伴う変形を容易に行い得る伸縮部材38を得ることができる。
In some embodiments, in any of the above configurations, the telescopic member 38 comprises a bellows-shaped stretchable portion 39 and one end side flange 40A provided on one end side of the stretchable portion 39. The other end side flange portion 41A provided on the other end side of the expansion / contraction portion 39 may be included.
The stretchable portion 39 may be, for example, a metal expansion.
The one end side flange portion 40A and the other end side flange portion 41A are outer flanges formed so as to be continuous with the end portions of the expansion / contraction portions 39 and extend outward from each end portion in the radial direction. May be good. The flange portion 40A on one end side may be an inner flange extending radially inward (toward the pipe 50 side) from the end portion of the expansion / contraction portion 39.
According to the configuration in which the flange portions are provided at both ends of the telescopic portion 39, since both one end and the other end of the telescopic portion 39 are flange portions, each of the first seal member 31 and the second seal member 35 is provided. And the expansion / contraction member 38 can be easily and surely connected to each other while ensuring airtightness. Further, since the expansion / contraction portion 39 is formed in a bellows shape, it is possible to obtain an expansion / contraction member 38 that can be easily deformed with expansion / contraction in the pipe axis direction X.

幾つかの実施形態では、上記何れかに記載の構成において、反応容器10はボイラ2であってもよく、隔壁12はボイラ2における火炉10Aの炉壁部12A、火炉10Aに連通する煙道8の炉壁、又はこれらの壁を構成するための板金であってもよく、配管50はボイラ2に用いられるボイラ管であってもよい。
ここで、ボイラ管は、例えば、ボイラ2の熱交換器7に用いられる伝熱管や、輸送又は貯留のための給水管、連絡管又は供給管等の何れの管であってもよい。
このような構成によれば、ボイラ2の火炉10Aの炉壁部12Aを配管50が貫通する貫通部Pにおいて、火炉10Aの外側に延在する配管50の腐食を適切に防止することができる。
In some embodiments, in any of the configurations described above, the reaction vessel 10 may be boiler 2, and the partition wall 12 is a flue 8 communicating with the furnace wall portion 12A of the furnace 10A in the boiler 2 and the furnace 10A. The furnace wall of the above, or a sheet metal for forming these walls may be used, and the pipe 50 may be a boiler pipe used for the boiler 2.
Here, the boiler pipe may be, for example, any pipe such as a heat transfer pipe used for the heat exchanger 7 of the boiler 2, a water supply pipe for transportation or storage, a connecting pipe, or a supply pipe.
According to such a configuration, it is possible to appropriately prevent the corrosion of the pipe 50 extending to the outside of the furnace 10A at the penetration portion P through which the pipe 50 penetrates the furnace wall portion 12A of the furnace 10A of the boiler 2.

幾つかの実施形態では、シール装置30の外周と配管50の外周面52とを覆う保温部材60(断熱部材)をさらに備えていてもよい(例えば図3(b)、図4及び図7参照)。このような構成によれば、伸縮部材38と第2シール部材35との間に流入したガスの温度低下を抑制することができるから、腐食性を有し得る排ガスが酸露点温度以下に低下することを効果的に抑制することができる。 In some embodiments, a heat insulating member 60 (insulation member) that covers the outer periphery of the sealing device 30 and the outer peripheral surface 52 of the pipe 50 may be further provided (see, for example, FIG. 3B, FIGS. 4 and 7). ). According to such a configuration, the temperature drop of the gas flowing between the expansion / contraction member 38 and the second seal member 35 can be suppressed, so that the exhaust gas having corrosiveness is lowered to the acid dew point temperature or lower. Can be effectively suppressed.

以上述べたように、本開示の幾つかの実施形態によれば、隔壁貫通部における配管50の腐食を抑制することができる。 As described above, according to some embodiments of the present disclosure, corrosion of the pipe 50 in the partition wall penetrating portion can be suppressed.

本発明は上述した実施形態に限定されることはなく、上述した実施形態に変更を加えた形態や、これらの形態を組み合わせた形態も含む。 The present invention is not limited to the above-described embodiment, and includes a modified form of the above-mentioned embodiment and a combination of these embodiments.

1 火力発電プラント
2 ボイラ
3 蒸気タービン
3A 高圧タービン(蒸気タービン)
3B 低圧タービン(蒸気タービン)
4 発電機
5 復水器
6 ポンプ
7 熱交換器
8 煙道
9 煙突
10 反応容器
10A 火炉
12 隔壁
12A 炉壁部
12B 外面
13 外面形成部材
13A ECOホッパプレート
14 炉底部
15 燃料
16 空気
20 バーナー
30 シール装置
30A シールボックス
31 第1シール部材
32 第1フランジ部
33 第1シール面
34 リング部
34A 外周面
35 第2シール部材
36 管軸延在部
37 第2フランジ部
38 伸縮部材(金属エキスパンション)
39 伸縮部(ベローズ)
40 一端
40A 一端側フランジ部
41 他端
41A 他端側フランジ部
50 配管(ボイラ管)
52 外周面
60 保温部材(断熱部材)
70 空間
P 貫通部
W1~W4 溶接部
X 管軸方向
Y 管軸垂直方向
1 Thermal power plant 2 Boiler 3 Steam turbine 3A High pressure turbine (steam turbine)
3B low pressure turbine (steam turbine)
4 Generator 5 Condenser 6 Pump 7 Heat exchanger 8 Chimney 9 Chimney 10 Reaction vessel 10A Fireplace 12 Barrier 12A Furnace wall 12B Outer surface 13 Outer surface forming member 13A ECO hopper plate 14 Furnace bottom 15 Fuel 16 Air 20 Burner 30 Seal Device 30A Seal box 31 1st seal member 32 1st flange part 33 1st seal surface 34 Ring part 34A Outer peripheral surface 35 2nd seal member 36 Pipe shaft extension part 37 2nd flange part 38 Telescopic member (metal expansion)
39 Telescopic part (bellows)
40 One end 40A One end side flange 41 The other end 41A The other end flange 50 Piping (boiler pipe)
52 Outer peripheral surface 60 Insulation member (insulation member)
70 Space P Penetration part W1 to W4 Welded part X Pipe axis direction Y Pipe axis vertical direction

Claims (4)

反応容器の隔壁部貫通構造であって、
前記反応容器の内部と外部とを区画する隔壁と、
前記隔壁を貫通して前記反応容器の前記内部と前記外部とを連通する少なくとも1本の配管と、
前記反応容器の前記外部に設けられるシール装置であって、
前記配管の周方向の全周に亘って前記配管の外周面に気密に接続される第1シール部材、
前記配管の前記外周面よりも外側において、前記配管の周方向の全周に亘って前記隔壁の外面又は前記隔壁の前記外面に設けられる外面形成部材に気密に接続される第2シール部材、及び
一端が前記第1シール部材に気密に接続されるとともに、前記一端よりも前記隔壁とは反対側に配置される他端が前記第2シール部材に気密に接続される伸縮部材であって、前記配管の管軸方向の収縮を吸収するように形成された伸縮部材、を含むシール装置と、
を備え
前記第2シール部材は、
一端が前記隔壁の外面又は前記外面形成部材に気密に接続される、前記配管の前記管軸方向に沿って延在する管軸延在部と、
前記管軸延在部の他端から前記配管の径方向に沿って前記配管に向かって延在する第2フランジ部と、を含み、
前記伸縮部材は、
ベローズ状に形成された伸縮部と、
前記伸縮部の一端側に設けられた一端側フランジ部と、
前記伸縮部の他端側に設けられた他端側フランジ部であって、前記伸縮部の他端から径方向の外側に向けて延在するように構成された他端側フランジ部と、を含み、
前記第2フランジ部の外面と前記他端側フランジ部の先端部とが溶接部によって接続されることで、前記伸縮部材の前記他端が前記第2シール部材に気密に接続される
反応容器の隔壁部貫通構造。
It is a structure that penetrates the partition wall of the reaction vessel.
A partition wall that separates the inside and the outside of the reaction vessel,
At least one pipe that penetrates the partition wall and communicates between the inside and the outside of the reaction vessel.
A sealing device provided on the outside of the reaction vessel.
The first seal member, which is airtightly connected to the outer peripheral surface of the pipe over the entire circumference in the circumferential direction of the pipe.
A second seal member airtightly connected to an outer surface of the partition wall or an outer surface forming member provided on the outer surface of the partition wall over the entire circumference in the circumferential direction of the pipe, outside the outer peripheral surface of the pipe. One end is an elastic member that is airtightly connected to the first seal member, and the other end that is arranged on the opposite side of the one end to the partition wall is airtightly connected to the second seal member. A sealing device that includes a telescopic member, which is formed to absorb the contraction of the pipe in the pipe axis direction.
Equipped with
The second seal member is
A pipe shaft extending portion extending along the pipe axis direction of the pipe, one end of which is airtightly connected to the outer surface of the partition wall or the outer surface forming member.
Includes a second flange portion extending from the other end of the pipe shaft extending portion toward the pipe along the radial direction of the pipe.
The telescopic member
A bellows-shaped elastic part and
The flange portion on one end side provided on one end side of the telescopic portion and the flange portion on one end side.
The other end side flange portion provided on the other end side of the expansion / contraction portion, and the other end side flange portion configured to extend radially outward from the other end of the expansion / contraction portion. Including,
By connecting the outer surface of the second flange portion and the tip end portion of the other end side flange portion by a welded portion, the other end of the expansion / contraction member is airtightly connected to the second seal member.
A structure that penetrates the partition wall of the reaction vessel.
前記第1シール部材は、前記配管の径方向に沿って延在する第1シール面を有する第1フランジ部を含む
請求項1に記載の反応容器の隔壁部貫通構造。
The partition wall penetrating structure of a reaction vessel according to claim 1, wherein the first seal member includes a first flange portion having a first seal surface extending along the radial direction of the pipe.
前記第1シール部材は、
前記配管の前記外周面に気密に接続される環状のリング部を含み、
前記第1フランジ部は、前記リング部の外周面に溶接される
請求項2に記載の反応容器の隔壁部貫通構造。
The first seal member is
Including an annular ring portion airtightly connected to the outer peripheral surface of the pipe.
The partition wall penetrating structure of the reaction vessel according to claim 2, wherein the first flange portion is welded to the outer peripheral surface of the ring portion.
前記反応容器はボイラであり、
前記隔壁は前記ボイラの炉壁であり、
前記配管は、前記ボイラに用いられるボイラ管である
請求項1~の何れか一項に記載の反応容器の隔壁部貫通構造。
The reaction vessel is a boiler,
The partition wall is the furnace wall of the boiler.
The pipe is a boiler pipe used for the boiler. The partition wall penetrating structure of the reaction vessel according to any one of claims 1 to 3 .
JP2017252961A 2017-12-28 2017-12-28 A partition wall penetrating structure of the reaction vessel and a boiler having this structure Active JP6996973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017252961A JP6996973B2 (en) 2017-12-28 2017-12-28 A partition wall penetrating structure of the reaction vessel and a boiler having this structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017252961A JP6996973B2 (en) 2017-12-28 2017-12-28 A partition wall penetrating structure of the reaction vessel and a boiler having this structure

Publications (2)

Publication Number Publication Date
JP2019120411A JP2019120411A (en) 2019-07-22
JP6996973B2 true JP6996973B2 (en) 2022-01-17

Family

ID=67307156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017252961A Active JP6996973B2 (en) 2017-12-28 2017-12-28 A partition wall penetrating structure of the reaction vessel and a boiler having this structure

Country Status (1)

Country Link
JP (1) JP6996973B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112066372B (en) * 2020-09-08 2023-02-03 广东韶钢松山股份有限公司 Spray gun and double-chamber kiln

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256815A (en) 2001-03-06 2002-09-11 Hitachi Ltd Steam turbine generator facility

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56115082U (en) * 1980-02-05 1981-09-03
JPS56173801U (en) * 1980-05-27 1981-12-22
JPS61205704A (en) * 1985-03-07 1986-09-11 三菱重工業株式会社 Expansion bellows for skin casing of boiler, etc.
JPH0571604U (en) * 1992-02-07 1993-09-28 石川島播磨重工業株式会社 Boiler side wall structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256815A (en) 2001-03-06 2002-09-11 Hitachi Ltd Steam turbine generator facility

Also Published As

Publication number Publication date
JP2019120411A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
AU2009308159B2 (en) Shop-assembled solar receiver heat exchanger
KR20140001776A (en) Diffuser for the exhaust section of a gas turbine and gas turbine with such a diffuser
US9688927B2 (en) System for accommodating differential thermal expansion in syngas cooler
JP6996973B2 (en) A partition wall penetrating structure of the reaction vessel and a boiler having this structure
EP1867909B1 (en) Pipe penetration system
US9874346B2 (en) Advanced ultra supercritical steam generator
WO2012133751A1 (en) Burner, reaction furnace such as gasification furnace equipped with burner, and electric generating power plant equipped with reaction furnace
US8681922B2 (en) Pressurizer with a mechanically attached surge nozzle thermal sleeve
US3989100A (en) Industrial technique
US4562887A (en) Water-cooled condenser tube-plate attachment
JP7288459B2 (en) Waste heat recovery boiler
JP6879796B2 (en) Burners, reactors, power plants
US10527278B2 (en) Radiant to convection transition for fired equipment
EP3055613B1 (en) Thermal device, its use, and method for heating a heat transfer medium
JP2020153588A (en) Tube type heat exchanger and boiler
CN208221879U (en) Tetrafluoro corrugated expansion joint
KR101261441B1 (en) Metal bellows
CN111351066A (en) Sealing structure for boiler, and method for operating boiler
CA2507821C (en) Method for producing a continuous steam generator and a continuous steamgenerator
CN108591663A (en) High life tetrafluoro compensator
US3656546A (en) Heat exchanger structure for steam generators
JPH11264501A (en) Waste heat recovery boiler
KR790001198B1 (en) Consolidated nuclear steam generator
JPH0464794A (en) Leak preventing structure for weld joint part of tube
US20170198901A1 (en) Method and device for producing superheated steam by means of the heat produced in the boiler of an incineration plant

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20201111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211216

R150 Certificate of patent or registration of utility model

Ref document number: 6996973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150