JP6995990B2 - タンパク質相互作用解析装置及び解析方法 - Google Patents

タンパク質相互作用解析装置及び解析方法 Download PDF

Info

Publication number
JP6995990B2
JP6995990B2 JP2020523173A JP2020523173A JP6995990B2 JP 6995990 B2 JP6995990 B2 JP 6995990B2 JP 2020523173 A JP2020523173 A JP 2020523173A JP 2020523173 A JP2020523173 A JP 2020523173A JP 6995990 B2 JP6995990 B2 JP 6995990B2
Authority
JP
Japan
Prior art keywords
data
protein
ligand
binding site
ligand binding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020523173A
Other languages
English (en)
Other versions
JPWO2019235567A1 (ja
Inventor
洋一 西田
真知子 朝家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2019235567A1 publication Critical patent/JPWO2019235567A1/ja
Application granted granted Critical
Publication of JP6995990B2 publication Critical patent/JP6995990B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • G16B15/30Drug targeting using structural data; Docking or binding prediction

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Food Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Sustainable Development (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、リガンドとタンパク質との相互作用を解析する際に使用されるタンパク質相互作用解析装置及び解析方法に関する。
酵素は、特定の構造を有する基質を認識する、いわゆる基質特異性を有している。また、受容体は、特定の構造を有する生理活性物質と特異的に結合し、その作用を発現する(例えば、シグナル伝達活性や転写促進活性)。このように、酵素や受容体等のタンパク質は、基質や生理活性物質といったいわゆるリガンドとの特異的な結合を介して機能する。
タンパク質に関する研究の成果として、それをコードする遺伝子に関する塩基配列情報、アミノ酸配列情報や立体構造情報が日々蓄積されている。これらのうち配列情報に関しては、例えば、NCBI(National Center of Biotechnology Information )のGenbank、日本DNAデータバンク(DDBJ)及びEMBLが構築されている。また、タンパク質の立体構造に関する情報は、日本蛋白質構造データバンク(PDBj: Protein Data Bank Japan)を含むProtein Data Bankが構築されている。さらに、代謝やシグナル伝達などの分子間ネットワークに関する情報を統合したデータベースとしてKEGGが構築されている。
このような各種データを用いた様々な取り組みのなかで、自然界の微生物が持っていない代謝経路や遺伝子配列を計算科学によって予測し人工的に設計する「合成バイオ技術」が注目されている。「合成バイオ技術」では、例えば、生産目的の物質を合成するため、出発物質から最終的な目的物質を生合成するための代謝経路を、上述した各種データを用いて構築し、ゲノム編集等の手法により宿主生物を作製する。ここで代謝経路は、基質と酵素からなる酵素反応を複数組み合わせることで設計することができる。
また、上述した各種データを用いることで、創薬の分野において標的タンパク質に対するリード化合物をハイスループットにスクリーニングする方法が提案されている。この方法では、例えば、標的タンパク質におけるリガンド結合部位の立体構造データに基づいて、リガンド結合部位に相互作用しうるリード化合物の基本構造を設計する。
以上のように、タンパク質をリガンドとの特異的な相互作用(基質と酵素との相互作用、標的タンパク質とリード化合物との相互作用)に関する知見は、合成バイオ技術や創薬の分野において非常に有用で価値の高いデータとなることがわかる。
なお、特許文献1には、タンパク質間相互作用を考慮して機能未知タンパク質の機能を識別する方法が開示されている。特許文献1に開示された方法では、機能既知の複数のレセプタの立体構造と複数のリガンドの立体構造とから教師データが求められる。特許文献1に開示された教師データには、各々のレセプタについて、各レセプタが複数のリガンドとそれぞれドッキングするときの複数の形状相補性評価値と、各レセプタの全体の全電荷と表面の全電荷の差分を含む電荷情報とが含まれている。そして、特許文献1に開示された方法では、機能未知タンパク質が複数のリガンドとそれぞれドッキングするときの複数の形状相補性評価値と、機能未知タンパク質の電荷情報と入力し、上記教師データを学習して機能未知タンパク質の機能を識別する。
一方、非特許文献1には、DNAリガーゼにおけるアデニル化ドメイン(AdD)とオリゴヌクレオチド結合ドメイン(OBD)の静電ポテンシャル分布に基づいて、これらドメイン間に形成されるコンフォメーションを解析し、酵素反応との関連性を検証している。また、特許文献2には、部位特異的突然変異方法によって当該ドメインに突然変異を導入し、ライゲーション反応に深く関与するアミノ酸残基を特定したことが開示されている。これら特許文献1及び2より、タンパク質における表面の静電ポテンシャル分布に基づいたコンフォメーション解析によって、タンパク質の機能解析が可能となることが理解できる。
特許5170630号公報
Tanabe M., Ishino S., Yohda M., Morikawa K., Ishino Y., Nishida H. (2012) Structure-based mutational study of an archaeal DNA ligase towards improvement of ligation activity. ChemBioChem 13, 2575-2582. Tanabe M., Ishino Y., Nishida H. (2015) From structure-function analyses to protein engineering for practical applications of DNA ligase. Archaea ID 267570.
発明の解決しようとする課題
以上のように、日々蓄積される新規タンパク質関連情報に基づいて、タンパク質とリガンドとの特異的相互作用に関する知見を導いたとしても、現状では合成バイオ技術において所望の物質生産が達成されないといった問題や、創薬の分野において高い結合活性を有するリード化合物を設計できないといった問題があった。
そこで、本発明は、上述した実情に鑑み、タンパク質とリガンドとの特異的相互作用を正確に解析することができるタンパク質相互作用関連データを出力するタンパク質相互作用解析装置及び解析方法を提供することを目的とする。
上述した目的を達成するため、本発明者らが鋭意検討した結果、タンパク質関連情報に基づいて少なくともリガンド結合部位に関する立体構造データと、当該リガンド結合部位における静電ポテンシャル分布とを含むリガンド結合部位関連データを用いることで、リガンドとタンパク質との特異的相互作用を正確に解析できることを見いだし、本発明を完成するに至った。
本発明は以下を包含する。
(1) 解析対象に関する情報を入力するデータ入力部と、
外部記憶部に格納されたタンパク質のアミノ酸配列データ及び立体構造データと当該タンパク質に対して特異的に相互作用するリガントの立体構造データとに基づいて生成した、所定のタンパク質に関するリガンド結合部位の表面形状データと当該リガンド結合部位の静電ポテンシャル分布データと当該リガンド結合部位に対して相互作用するリガンドに関する立体構造データとを関連づけて記憶するデータ記憶部と、
上記データ記憶部に記憶された、所定のリガンド結合部位の表面形状データと当該リガンド結合部位の静電ポテンシャル分布データと当該リガンド結合部位に対して相互作用するリガンドに関する立体構造データとを教師データとした機械学習により、上記データ入力部で入力された解析対象に関連する、タンパク質相互作用に関するデータを生成する計算処理部とを備える、タンパク質相互作用解析装置。
(2) 上記解析対象に関する情報はリガンドの構造に関する情報であり、
上記計算処理部は、当該リガンドに相互作用するタンパク質又はリガンド結合部位に関するデータを生成することを特徴とする(1)記載のタンパク質相互作用解析装置。
(3) 上記解析対象に関する情報はタンパク質又はリガンド結合部位の構造に関する情報であり、
上記計算処理部は、当該タンパク質又はリガンド結合部位に相互作用する化合物又はリガンドに関するデータを生成することを特徴とする(1)記載のタンパク質相互作用解析装置。
(4) 上記計算処理部は、機械学習により生成したタンパク質相互作用に関するデータについて、上記データ入力部で入力した解析対象と、生成したデータに含まれる解析対象との類似性を示す評価値を算出する評価値算出部を備えることを特徴とする(1)記載のタンパク質相互作用解析装置。
(5) 上記計算処理部は、機械学習により生成したタンパク質相互作用に関するデータについて、上記データ入力部で入力した解析対象が相互作用したときの結合安定性を定量的に示す適合性スコアを算出するタンパク質-リガンド適合性スコア算出部を備えることを特徴とする(1)記載のタンパク質相互作用解析装置。
(6)上記データ記憶部は、リガンド結合部位を構成する原子の原子座標に基づいてリガンド結合部位の中心座標を算出し、当該中心座標から所定の距離内にある原子を含む三次元グリッド空間を設定し、当該三次元グリッド空間に基づいて生成された表面形状データを記憶することを特徴とする(1)記載のタンパク質相互作用解析装置。
(7)上記三次元グリッド空間は、所定の間隔で設定されたグリッドにより複数数の格子点を有し、上記中心座標から所定の距離内にある各原子について最も近接する格子点に特定の文字を与え、当該特定の文字が与えられなかった格子点に他の文字を与えられたデータであることを特徴とする(6)記載のタンパク質相互作用解析装置。
(8)上記中心座標から所定の距離内にある各原子は、複数の非水素原子種であることを特徴とする(6)記載のタンパク質相互作用解析装置。
(9)上記データ記憶部は、上記三次元グリッド空間の格子点について算出された静電ポテンシャル分布データを記憶することを特徴とする(6)記載のタンパク質相互作用解析装置。
(10)上記データ記憶部は、上記三次元グリッド空間の格子点について算出された正の値からなる正の静電ポテンシャル分布データと、上記三次元グリッド空間の格子点について算出された負の値からなる負の静電ポテンシャル分布データとを記憶することを特徴とする(6)記載のタンパク質相互作用解析装置。
(11) 入力装置により解析対象に関する情報を入力する工程と、
演算装置が、外部記憶部に格納されたタンパク質のアミノ酸配列データ及び立体構造データと当該タンパク質に対して特異的に相互作用するリガントの立体構造データとに基づいて、所定のタンパク質に関するリガンド結合部位の表面形状データと当該リガンド結合部位の静電ポテンシャル分布データと当該リガンド結合部位に対して相互作用するリガンドに関する立体構造データとを生成し、これら表面形状データと静電ポテンシャル分布データとリガンドに関する立体構造データとを関連づけて記憶装置に記憶する工程と、
演算装置が、上記記憶装置に記憶された、所定のリガンド結合部位の表面形状データと当該リガンド結合部位の静電ポテンシャル分布データと当該リガンド結合部位に対して相互作用するリガンドに関する立体構造データとを教師データとした機械学習により、上記入力装置が入力した解析対象に関連する、タンパク質相互作用に関するデータを生成する工程とを有する、タンパク質相互作用解析方法。
(12) 上記解析対象に関する情報はリガンドの構造に関する情報であり、
上記演算装置は、当該リガンドに相互作用するタンパク質又はリガンド結合部位に関するデータを生成することを特徴とする(11)記載のタンパク質相互作用解析方法。
(13) 上記解析対象に関する情報はタンパク質又はリガンド結合部位の構造に関する情報であり、
上記演算装置は、当該タンパク質又はリガンド結合部位に相互作用する化合物又はリガンドに関するデータを生成することを特徴とする(11)記載のタンパク質相互作用解析方法。
(14) 上記演算装置が、機械学習により生成したタンパク質相互作用に関するデータについて、上記入力装置が入力した解析対象と、生成したデータに含まれる解析対象との類似性を示す評価値を算出する工程を有することを特徴とする(11)記載のタンパク質相互作用解析方法。
(15) 上記演算装置が、機械学習により生成したタンパク質相互作用に関するデータについて、上記入力装置が入力した解析対象が相互作用したときの結合安定性を定量的に示す適合性スコアを算出する工程を有することを特徴とする(11)記載のタンパク質相互作用解析方法。
(16)上記演算装置は、リガンド結合部位を構成する原子の原子座標に基づいてリガンド結合部位の中心座標を算出し、当該中心座標から所定の距離内にある原子を含む三次元グリッド空間を設定し、当該三次元グリッド空間に基づいて生成された表面形状データを上記データ記憶部に記憶することを特徴とする(11)記載のタンパク質相互作用解析方法。
(17)上記三次元グリッド空間は、所定の間隔で設定されたグリッドにより複数数の格子点を有し、上記中心座標から所定の距離内にある各原子について最も近接する格子点に特定の文字を与え、当該特定の文字が与えられなかった格子点に他の文字を与えられたデータであることを特徴とする(11)記載のタンパク質相互作用解析方法。
(18)上記中心座標から所定の距離内にある各原子は、複数の非水素原子種であることを特徴とする(11)記載のタンパク質相互作用解析方法。
(19)上記演算装置は、上記三次元グリッド空間の格子点について算出された静電ポテンシャル分布データを上記データ記憶部に記憶することを特徴とする(11)記載のタンパク質相互作用解析方法。
(20)上記演算装置は、上記三次元グリッド空間の格子点について算出された正の値からなる正の静電ポテンシャル分布データと、上記三次元グリッド空間の格子点について算出された負の値からなる負の静電ポテンシャル分布データとを上記データ記憶部に記憶することを特徴とする(11)記載のタンパク質相互作用解析方法。
本明細書は本願の優先権の基礎となる日本国特許出願番号2018-108362号の開示内容を包含する。
本発明に係るタンパク質相互作用解析装置及び解析方法によれば、タンパク質とリガンドとの特異的相互作用を正確に解析することができる。例えば、本発明に係るタンパク質相互作用解析装置及び解析方法によれば、ユーザが指定したリガンド又はタンパク質に対して特異的に相互作用する可能性の高いタンパク質又はリガンドを機械学習により高精度に解析することができる。
本発明を適用したタンパク質相互作用解析装置の一例を示すブロック図である。 本発明を適用したタンパク質相互作用解析装置における計算処理部の一例を示すブロック図である。 本発明を適用したタンパク質相互作用解析装置におけるリガンド結合部分の抽出方法と学習用データとなるVoxelの生成法についての概念図である。 本発明を適用したタンパク質相互作用解析装置におけるタンパク質の各原子の座標と静電ポテンシャル値をVoxel内の近接格子点に配置させる概念図である。 本発明を適用したタンパク質相互作用解析装置における計算処理部の他の例を示すブロック図である。
以下、図面を参照して、本発明を詳細に説明する。
本発明を適用したタンパク質相互作用解析装置は、タンパク質におけるアミノ酸配列データ及び立体構造データ等に基づき、解析対象のタンパク質におけるリガントと相互作用する部位(リガンド結合部位)について、立体構造解析に使用できる特徴的なデータ(以下、リガンド結合部位表面性状データ)を生成し、当該データを用いた機械学習を通じてリガンドとタンパク質の相互作用に関する解析を行うものである。リガンド結合部位表面性状データは、リガンド結合部位の表面形状データと当該リガンド結合部位の静電ポテンシャル分布データとを併せたデータである。
一例として、図1に示したタンパク質相互作用解析装置1は、タンパク質に関するアミノ酸配列並びに立体構造データ及び当該タンパク質に対するリガンドに関するデータを格納した外部記憶部2と接続され、所定のタンパク質におけるリガンド結合部位の表面形状データを生成する表面形状データ生成部3と、当該リガンド結合部位の静電ポテンシャル分布を生成する静電ポテンシャル分布データ生成部4と、当該タンパク質に対するリガンドに関する立体構造データを生成するリガンド立体構造データ生成部5とを備える。また、タンパク質相互作用解析装置1は、表面形状データ生成部3及び静電ポテンシャル分布データ生成部4で生成した所定のリガンド結合部位に関する表面形状データ及び静電ポテンシャル分布データ(リガンド結合部位表面性状データ)と、当該リガンド結合部位に相互作用するリガンドに関する立体構造データを教師データとして格納するデータ記憶部6を備える。さらに、タンパク質相互作用解析装置1は、ユーザが解析対象とするデータを入力するデータ入力部7を備える。
さらにまた、タンパク質相互作用解析装置1は、データ記憶部6に格納された教師データを用い、データ入力部7で入力された解析対象に関して機械学習によりタンパク質相互作用に関するデータを生成する計算処理部8と、計算処理部8で計算した結果を出力する出力部9とを備えている。
計算処理部8は、詳細を後述するが、ユーザの指定に応じて、リガンドとタンパク質の相互作用に関して解析を行う。一例として、計算処理部8は、図2に示すように、データ記憶部6に格納された教師データを用いた機械学習を行う機械学習部10と、データ入力部7で入力された解析対象に対して、教師データに含まれるタンパク質又はリガンドに対する類似性を示す評価値を算出する評価値算出部11と、機械学習部10で行った機械学習の結果と評価値算出部11で算出した評価値とを合わせたリストを生成するリスト生成部12とを備える。
ここで、図1に示したタンパク質相互作用解析装置1では、上述したデータを格納した1つの外部記憶部2に接続する構成としている。しかし、図示しないが、タンパク質相互作用解析装置1は、上述したデータを分散して格納した複数の外部記憶部に接続するものであっても良い。例えば、タンパク質相互作用解析装置1は、タンパク質に関するアミノ酸配列及び立体構造データを格納した外部記憶部と、タンパク質に対するリガンドに関するデータを格納した外部記憶部とに対してそれぞれ接続できるものであっても良い。
外部記憶部2に格納されたデータは、所定のタンパク質に関して、そのアミノ酸配列、立体構造データ及びリガンドに関するデータである。ここで、リガンドとは、酵素に対する基質、受容体タンパク質に相互作用する低分子化合物、補酵素や調節因子のようにタンパク質に特異的に相互作用する物質を広く意味している。なお、リガンドには、細胞膜上に存在する受容体や細胞内受容体と結合する物質に限定して解釈される場合もある。しかし、「リガンド」という用語は、広義の意味として使用し、酵素に対する基質、補酵素、調節因子、受容体に結合する物質等を含む、タンパク質に対して特異的に相互作用する物質を含む意味で用いる。したがって、リガンドとしては、低分子化合物及び高分子化合物の何れであっても良いし、化合物の部分的な領域を意味しても良い。すなわち、リガンドの分子構造及び原子座標とは、タンパク質と相互作用する化合物全体の分子構造及び原子座標でも良いし、化合物における少なくともタンパク質と相互作用する部分領域の分子構造及び原子座標でも良い。
タンパク質とは、アミノ酸配列を一次構造として有する高分子化合物を意味し、単量体、ホモ多量体及びヘテロ多量体の何れであっても良い。また、タンパク質は、翻訳後の化学修飾、例えば糖鎖付加、官能基付加、リン酸化といった修飾を有するものでも良い。したがって、リガンド結合部位における原子座標に基づく立体構造データとは、上述した翻訳後の化学修飾を有しないタンパク質で得られた原子座標に基づく立体構造データでも良いし、上述した翻訳後の化学修飾を有するタンパク質で得られた原子座標に基づく立体構造データであっても良い。なお、リガンド結合部位における原子座標に基づく立体構造データとは、上述した翻訳後の化学修飾を有しないタンパク質で得られた原子座標を、所定の化学修飾を有するタンパク質の原子座標となるように改変した(補正した)原子座標に基づく立体構造データであっても良い。
原子座標とは、タンパク質を構成する原子の座標を示すデータを意味する。原子座標は、主としてタンパク質単結晶を利用するX線結晶構造解析法と、タンパク質溶液を対象とする核磁気共鳴法のいずれか一方又は両方の方法により様々なタンパク質について得ることができる。また、原子座標は、立体整列同位体標識法 (stereo-array isotope labeling)と呼称される安定同位体を利用した核磁気共鳴技術により得ることもできる。
タンパク質における原子座標は、特にフォーマットに限定されないが、タンパク質を構成する各原子をx座標、y座標及びz座標を組み合わせとして示す形式とすることができる。なお、各座標の単位は例えば[Å]とすることができる。
上述したデータを格納した外部記憶部2の一例としては、日本蛋白質構造データバンク(PDBj: Protein Data Bank Japan)を含むProtein Data Bank(以下、PDB)を挙げることができる。すなわち、タンパク質相互作用解析装置1は、外部記憶部2としてPDBに接続できる構成とすることができる。PDBにおいて原子座標は、例えば、所定のレコード名(標準アミノ酸はATOM)のもと原子番号毎に一行のデータとして表示する。一例として、所定の原子番号について、原子名(主鎖アミド窒素:N、α炭素:CA、β炭素:CB)、残基名(アミノ酸3文字表記)、Chain ID、残基番号、それぞれ原子のx座標[Å]、y座標[Å]、z座標[Å]、occupancy(解析対象サンプル、例えば結晶中でその原子がその場所に存在する割合、占有率、通常は1.00)及び温度因子B [Å2](X線結晶解析で決定されている場合)を含むデータとすることができる。
また、PDBに格納されたデータは、上述した原子座標に関するデータ以外にも、タンパク質分子の種類や登録名及びアクセッション番号に関するデータ(HEADERの行)、PDBで公開される際のタイトル名(TITLEの行)、タンパク質分子に関する情報(COMPNDの行)、タンパク質の宿主に関する情報(SOURCEの行)、立体解析の際の実験に関する情報(REMARKの行)、アミノ酸配列情報(SEQRESの行)、αヘリックスを構成するアミノ酸に関する情報(HELIXの行)及び分子内のジスルフィド結合に関する位置情報(SSBOND)を含んでいる。
特に、PDBに格納されたデータは、上述したリガンド結合部位に相互作用するリガンドの分子構造及び原子座標に関するデータを含んでいる。具体的には、PDBは、リガンドの分子構造に関する情報(HETATMの行)及びリガンドの結合に関する情報(CONECTの行)を含んでいる。なお、PDBに格納されたデータの中でHETATMの行には、リガンドを構成する原子を特定する情報及び当該原子の座標が含まれている。また、当該HETATMの行には、リガンドがコンフォマーを有する場合にはコンフォマーの種類を示す情報が含まれている。
タンパク質相互作用解析装置1は、外部記憶部2に格納されたデータを用いて表面形状データ生成部3にて、リガンド結合部位を含む所定のタンパク質に関する表面形状データを生成する。表面形状データ生成部3では、タンパク質の全体の表面形状データを生成しても良いし、タンパク質におけるリガンド結合部位を含む部分領域について表面形状データを生成しても良い。特に、表面形状データ生成部3は、タンパク質におけるリガンド結合部位の全体を含む部分領域について表面形状データを生成することが好ましい。表面形状データは、リガンドが結合するタンパク質の表面をxy平面とし、当該xy平面における凹凸をz軸方向の値で示したデータとすることができる。
ここで、表面形状データにおけるxy平面としては、リガンドがタンパク質に特異的に相互作用した状態において、当該リガンドが最大面積を占める平面とすることができる。すなわち、リガンドがタンパク質に特異的に相互作用した状態において、リガンドが最も大きく投影できる平面を表面形状データにおけるxy平面とすることが好ましい。或いは、表面形状データにおけるxy平面は、タンパク質におけるリガンド結合部位が最大面積を占める平面とすることができる。すなわち、タンパク質の立体構造において、リガンド結合部位が最も大きくなる平面を表面形状データにおけるxy平面とすることが好ましい。
表面形状データを構成するxy平面におけるz軸方向の値は、外部記憶部2に格納されたデータを用いて、xy平面全域に亘って示す関数(z=f(x,y))として求めることができる。また、xy平面におけるz軸方向の値は、当該xy平面をメッシュデータとし、メッシュポイント(交点)における離散的な値として求めることもできる。例えば、xy平面をメッシュデータとする場合、例えば、0.05~1.0Åの間隔のメッシュデータ、好ましくは0.1~0.5Å間隔のメッシュデータ、より好ましくは0.2Å間隔のメッシュデータとすることができ、メッシュポイント(交点)における離散的な値としてxy平面におけるz軸方向の値を求めることもできる。さらに、xy平面におけるz軸方向の値は、当該xy平面を上述のようにメッシュデータとし、個々のメッシュ内の領域について算出したxy平面におけるz軸方向の値の平均値として求めることもできる。
また、表面形状データ生成部3では、一つのリガンド結合部位に対して複数の表面形状データを生成しても良い。表面形状データ生成部3は、複数の表面形状データとして、いわゆるステレオグラムとなる一対の表面形状データを生成してもよい。表面形状データ生成部3は、リガンドがタンパク質に特異的に相互作用した状態において、当該リガンドが最大面積を占めるxy平面を、x軸又はy軸を中心に所定の角度、例えば±0.5~10度の範囲、好ましくは±1~5度の範囲に傾けた複数の平面を設定し、これら複数の平面についてそれぞれ表面形状データを生成しても良い。より具体的に、表面形状データ生成部3は、リガンドがタンパク質に特異的に相互作用した状態において、当該リガンドが最大面積を占めるxy平面と、当該xy平面におけるy軸を中心に±5度傾けた2つの平面とについてそれぞれ表面形状データ(合計、3つの表面形状データ)を生成することができる。或いは、表面形状データ生成部3は、タンパク質におけるリガンド結合部位が最大面積を占めるxy平面と、当該xy平面におけるy軸を中心に±5度傾けた2つの平面とについてそれぞれ表面形状データ(合計、3つの表面形状データ)を生成することができる。
さらに、表面形状データ生成部3は、リガンドがタンパク質に特異的に相互作用した状態において、当該リガンドが最大面積を占めるxy平面であって、且つ、一辺が例えば30~100Åの範囲、好ましくは40~80Åの範囲、より好ましくは45~60Åの範囲のxy平面を生成することができる。或いは、表面形状データ生成部3は、タンパク質におけるリガンド結合部位が最大面積を占めるxy平面であって、且つ、一辺が例えば30~100Åの範囲、好ましくは40~80Åの範囲、より好ましくは45~60Åの範囲のxy平面を生成することができる。
一方、タンパク質相互作用解析装置1は、外部記憶部2に格納されたデータを用いて静電ポテンシャル分布データ生成部4にて、所定のタンパク質におけるリガンド結合部位の静電ポテンシャル分布データを生成する。静電ポテンシャル分布データ生成部4は、タンパク質の表面電荷を計算する既知の方法を適用して、リガンド結合部位の静電ポテンシャル分布を計算することができる。
静電ポテンシャル分布データ生成部4は、タンパク質の静電ポテンシャル(表面電荷)を計算するための従来公知の方法を適宜使用することができる。ここで静電ポテンシャル(表面電荷)は、単位電気量を持つ正の電荷が、ある任意の点上で受けるクーロンエネルギーとして定義することができる。
タンパク質の静電ポテンシャル(表面電荷)を計算するには、具体的に先ず、PDB等の外部記憶部2に格納されたタンパク質のアミノ酸配列及び原子座標データから、炭素(C)、酸素(O)、窒素(N)、硫黄(S)等の非水素原子種の情報とその座標を読み取る。次に、読み取った各非水素原子種に結合する水素原子とその座標を算出する。次に、これら座標を合わせて用いることで分子内における表面に配位する全原子の情報、すなわち全電子の情報を得ることができる。そして、これらの情報を用い、一定の誘電率を仮定することで当該タンパク質分子内外の任意の位置における静電荷を算出することができる。特に、当該タンパク質の表面内において計算した正電荷をタンパク質の静電ポテンシャル(表面電荷)とすることができる。なお、算出したタンパク質の静電ポテンシャル(表面電荷)を、例えば+5~-5に規格化することで、静電ポテンシャル分布を求めることも可能である。また、この静電ポテンシャル分布は一定の誘電率を仮定した全空間に亘って空間座標の関数(静電ポテンシャル値をcとしc=f(x, y, z))として算出することができる。
そして、この空間連続的な値から表面形状データ生成部3で得られた曲面上の値を抽出し、表面形状データの(x, y, z)値と静電ポテンシャル(表面電荷)値c組み合わせて4次元データとして格納する((x, y, z, c)として)ことが望ましい。
タンパク質の静電ポテンシャル(表面電荷)を計算するための従来公知の方法としては、例えばRocchia et al. Vol. 23, No. 1 Journal of Computational Chemistry, 128-137, 2002を挙げることができる。また、静電ポテンシャル(表面電荷)を計算するための利用可能なソフトウエアとしては、GRASP,Chimera、APBS及びQUANTA等を挙げることができる。
静電ポテンシャル分布データ生成部4は、表面形状データ生成部3にて作製したxy平面の全領域について静電ポテンシャル分布を生成しても良いし、当該xy平面の部分領域について静電ポテンシャル分布を生成しても良い。表面形状データ生成部3にて作製したxy平面の部分領域としては、当該xy平面に含まれるリガンド結合部位を含む領域、例えばリガンド結合部位から10Å以内、好ましくは5Å以内の空間領域について表面電荷から静電ポテンシャル分布を生成しても良い。
また、静電ポテンシャル分布データ生成部4は、表面形状データ生成部3にて1つのリガンド結合部位に対して複数のxy平面を作製した場合、全てのxy平面について静電ポテンシャル分布を生成しても良いし、一部のxy平面について静電ポテンシャル分布を生成しても良い。
xy平面における静電ポテンシャルの値は、当該xy平面をメッシュデータとし、メッシュポイント(交点)における離散的な値として求めることもできる。例えば、xy平面を例えば、0.05~1.0Åの間隔のメッシュデータ、好ましくは0.1~0.5Å間隔のメッシュデータ、より好ましくは0.2Å間隔のメッシュデータとすることができ、メッシュポイント(交点)における離散的な値として表面電荷の値を求めることもできる。さらに、xy平面における表面電荷の値は、当該xy平面を上述のようにメッシュデータとし、個々のメッシュ内の領域について算出した静電ポテンシャルの平均値として求めることもできる。
ところで、上述したように、表面形状データ生成部3がタンパク質の表面或いはリガンド結合部位の表面をxy平面とし、当該xy平面における凹凸をz軸方向の値で示したデータを生成し、静電ポテンシャル分布データ生成部4が表面形状データ生成部3にて作製したxy平面の全領域又は部分領域について静電ポテンシャル分布を生成したが、タンパク質相互作用解析装置1はこの形態に限定されるものではない。すなわち、タンパク質相互作用解析装置1において表面形状データ生成部3は、例えば、タンパク質を構成する原子の原子座標に基づいて生成した三次元グリッド空間を定義して、タンパク質の全体の表面形状データを生成しても良いし、タンパク質におけるリガンド結合部位を含む部分領域について表面形状データを生成しても良い。そして、静電ポテンシャル分布データ生成部4は、この表面形状データについて静電ポテンシャル分布を生成するものであっても良い。
より具体的には、上記PDBに格納されたデータセットより、原子番号毎に関連づけられたデータのうち、残基名(アミノ酸3文字表記)以外の原子座標に関するデータを抽出する。すなわち、上記PDBに格納されたデータセットより、タンパク質の全体或いはタンパク質におけるリガンド結合部位に関する原子座標に関するデータを抽出する。
次に、タンパク質全体或いはリガンド結合部位の中心座標を算出する。中心座標を算出する方法としては、特に限定されないが、例えば、上述のように抽出したタンパク質全体を構成する原子に関する原子座標或いはリガンド結合部位を構成する原子に関する原子座標から、x座標[Å]、y座標[Å]及びz座標[Å]の算術平均をそれぞれ算出し、求められた平均値を中心座標とすることができる。なお、リガンド結合部位の中心座標を算出する際には、タンパク質全体について原子座標を抽出した後、リガンド結合部位を構成する原子に関する原子座標のみを更に抽出して上述のように算術平均を算出しても良い。
次に、算出したタンパク質全体の中心座標或いはリガンド結合部位の中心座標から所定の距離内にある原子を抽出する。言い換えると、算出した中心座標から所定の半径を有する球面を与え、球面の内側に位置する全ての原子を抽出する。このとき、中心座標からの距離、すなわち球面の半径は任意に設定することができ、例えば15~50Åの範囲、好ましくは20~40Åの範囲、より好ましくは23~30Åの範囲とすることができる。
次に、中心座標から所定の半径を有する球面に対して内接又は外接する立方体を与え、当該立方体の各辺について所定の間隔で区切ることで三次元グリッド空間を与える。所定の間隔としては、特に限定されないが、例えば、0.25Åまたは0.5Åとすることができる。そして、三次元グリッド空間における各区切りの格子点の座標は、中心座標を算出したタンパク質全体を構成する原子の原子座標或いはリガンド結合部位を構成する原子の原子座標と共通の座標系として定義することができる。
以上のようにして、表面形状データ生成部3は、タンパク質を構成する原子の原子座標に基づいて生成した三次元グリッドを定義して、タンパク質の全体の表面形状データを生成することができる。
より具体的には、図3に示すように、三次元グリッド空間を定義することができる。図3に示す例では、中心座標から所定の半径(例えば、10~20Å)を有する球面14を与えることができ、球面14に内接する立方体に対して第1の区切り15(図3中、実線、0.5Å)を設定することができる。また、より分解能を細かくするため、第1の区切り15を更に2分割する第2の区切り16(図3中、破線)を設定することもできる。これにより、球面14に内接する立方体に対して所定のグリッド数(grid positions counts)17を各辺に定義することができる。このように所定のグリッド数で区画された、球面14に内接する立方体からなる三次元グリッド空間をVoxel(ボクセル)と称す。
なお、図3においては、球面14に内接する立方体を三次元グリッド空間、Voxelとしたが、このうち立方体の8箇所の角付近は、原子座標が存在しない空間となっている。図示しないが、球面14に外接する立方体を三次元グリッド空間とした場合には、Voxel内の全てに原子座標が含まれることとなる。
次に、以上のように生成された三次元グリッド空間として表された表面形状データに対して、外部記憶部2に格納されたデータを用いて静電ポテンシャル分布データ生成部4にて、静電ポテンシャル分布データを生成する。静電ポテンシャル分布データ生成部4は、炭素(C)、酸素(O)、窒素(N)、硫黄(S)等の非水素原子種の情報とその座標を読み取り、各非水素原子種に対して三次元グリッド空間であるVoxelを設定する。そして、所定の非水素原子種について、Voxel内の格子点のうち当該非水素原子種が最も近接する格子点に、例えば「1」といった特定の文字を与え、「1」が与えられなかった格子点には「0」といった他の文字を与える。一例として、炭素(C)について、中心座標から所定の半径を有する球面(図3における球面14)の内側に位置する各炭素原子について、その座標データに基づいてVoxel内で最も近接する格子点に対して「1」を与え、近接する炭素原子がなかった格子点に対して「0」を与える。この処理により、炭素原子に関するVoxel「C」データを生成することができる。当該処理を全ての酸素(O)、窒素(N)、硫黄(S)等の全ての非水素原子種に対して行うことで、酸素原子に関するVoxel「O」データ、窒素原子に関するVoxel「N」データ、硫黄原子に関するVoxel「S」データといった非水素原子種毎にVoxelデータを生成することができる。このようにして得られたデータセットを三次元畳み込みデータ(3D Convolution data)とする。図5Aに、一例として、炭素(C)、酸素(O)、窒素(N)及び硫黄(S)について、原子座標データに基づいて各原子を最も近接する格子点に割り振る(格子点の値を1とする)ことを模式的に示している。
次に、静電ポテンシャル分布データ生成部4は、例えばRocchia et al. Vol. 23, No. 1. Journal of Computational Chemistry, 128-137, 2002に開示された方法や、GRASP,Chimera、APBS及びQUANTA等の市販のソフトウエアを用いて静電ポテンシャル分布を生成することができる。
次に、静電ポテンシャル分布データ生成部4は、計算した静電ポテンシャル値のうち正の値を有するものと、負の値を有するものとを異なる別のデータとして格納することができる。すなわち、静電ポテンシャル分布データ生成部4は、計算した静電ポテンシャル値に基づいて、Voxel「正」データとVoxel「負」データとを生成することができる。図5Bに、静電ポテンシャル値が「正」であるか「負」であるかに基づいて異なるデータとして格納することを模式的に示している。なお、図5Bにおいて、「正」及び「負」の値の絶対値に応じて円の内部を濃淡で表現している。そして、これらVoxel「正」データとVoxel「負」データとは、上述した、酸素原子に関するVoxel「O」データ、窒素原子に関するVoxel「N」データ、硫黄原子に関するVoxel「S」データ等とともに三次元畳み込みデータ(3D Convolution data)とすることができる。
一方、タンパク質相互作用解析装置1は、外部記憶部2に格納されたデータを用いてリガンド構造データ生成部5にて、リガンドに関する立体構造データを生成する。リガンド構造データ生成部5は、従来公知の方法を適宜使用してリガンドの立体構造データを求めることができる。
リガンド構造データ生成部5は、リガンドの立体構造データを求めるに際し、外部記憶部2に格納されたリガンドに関するデータ、すなわち、分子式や構造式、化合物名、タンパク質と相互作用する原子に関する情報を用いてリガンドの立体構造を抽出し、これらに基づいてリガンドの立体構造データを生成する。例えばPDBを利用する場合、上述した表面形状データを生成する際に使用した原子座標データを抽出した同一ファイルより、_nonpolymerフラッグを指標として残基名を探索し、その残基名がアミノ酸ではないこと及び/又はその残基名がタンパク質以外の有機化合物をさす名称であること等からリガンド分子と判断することができる。PDBにおいては、化合物名を三文字コードとして_nonpolymerフラッグに関連づけている。よって、リガンド分子として判断した化合物については、三文字コードを手がかりとしてファイル後部の座標データ記載部よりリガンドを構成する全てまたは一部の原子の立体座標(x, y, z)を抽出することができる。このとき、リガンド構造データ生成部5が生成するリガンドの立体構造データは、タンパク質と相互作用する化合物全体の立体構造データでも良いし、化合物におけるタンパク質と相互作用する部分領域に関する立体構造データであっても良い。
なお、リガンド構造データ生成部5は、リガンドの立体構造データを求めるに際し、分子化合物構造記述方法を用いた二次元グラフ構造データとしても良い。この分子化合物構造記述方法としては、例えば、SMILES(simplified molecular input line entry system)記述方法、SMARTS(Smiles Arbitrary Target Specification)記述法、InChI(International Chemical Identifier)記述方法等を挙げることができる。特に、SMILES記述方法によってリガンドの立体構造データを生成することが好ましい。リガンド構造データ生成部5は、SMILES記述方法といった分子化合物構造記述方法を用いた二次元グラフ構造データを機械学習させるためのグラフ畳み込みデータ(Graph Convolution data)とすることができる。
また、リガンド構造データ生成部5は、リガンドの立体構造データに加えて、当該リガンドについて静電ポテンシャル分布を生成することが好ましい。リガンドに関する静電ポテンシャル分布は、例えば、Rocchia et al. Journal of Computational Chemistry, Vol. 23, No. 1, pages 128-137に記載された方法に従って求めることができる。リガンドに関する静電ポテンシャル分布は、タンパク質と相互作用する化合物全体の静電ポテンシャル分布でも良いし、化合物におけるタンパク質と相互作用する部分領域に関する静電ポテンシャル分布であっても良い。
そして、タンパク質相互作用解析装置1は、所定のタンパク質におけるリガンド結合部位とリガンドとの組み合わせに関して、表面形状データ生成部3で生成した上記リガンド結合部位の表面形状データ、静電ポテンシャル分布データ生成部4で生成した上記リガンド結合部位の静電ポテンシャル分布データ及びリガンド構造データ生成部5で生成した上記リガンドに関する立体構造データを関連付けてデータ記憶部6に格納する。すなわち、データ記憶部6は、所定のタンパク質におけるリガンド結合部位とリガンドとの複数の組み合わせに関して「表面形状データ」、「静電ポテンシャル分布データ」及び「リガンドに関する立体構造データ」を含むリガンド結合部位表面性状データを記憶している。なお、データ記憶部6には、これらのデータの他、リガンドに関する静電ポテンシャル分布データを関連づけて記憶しても良いし、リガンドの持つ複数の立体構造異性体(ロータマー)の立体構造情報を並置して記憶しても良い。
タンパク質相互作用解析装置1は、データ記憶部6に記憶している複数のリガンド結合部位表面性状データを教師データとして利用した機械学習により、ユーザが求めるタンパク質相互作用に関するデータを生成する。タンパク質相互作用解析装置1におけるデータ入力部7には、ユーザが解析対象に関する情報を入力する。解析対象に関する情報とは、所定の化合物に対して相互作用するタンパク質やそのリガンド結合部位について解析する場合には当該化合物に関する情報であり、所定のタンパク質又はそのリガンド結合部位に対して相互作用する化合物やリガンドについて解析する場合には当該タンパク質又はそのリガンド結合部位に関する情報である。
データ入力部7に入力される化合物に関する情報としては、化合物の立体構造式若しくは分子式及び立体構造に関する情報、化合物の部分領域の立体構造式若しくは分子式及び立体構造に関する情報等が挙げられる。なお、これら化合物に関する情報に基づいて、詳細を後述する処理によって当該化合物に対して相互作用する候補タンパク質又は候補リガンド結合部位を解析することができる。
例えば、タンパク質相互作用解析装置1を利用して、所定の化合物(基質)から目的とする化合物(生成物)を合成する酵素反応に関与する候補タンパク質(候補となる酵素)を解析する際、基質となる化合物に関する情報として、基質化合物の立体構造式若しくは分子式及び立体構造に関する情報、基質化合物における酵素が作用する領域の立体構造式若しくは分子式及び立体構造に関する情報がデータ入力部7に入力される。この例においてデータ入力部7には、基質から生成物への酵素反応の種類や、当該酵素反応に関与する酵素の名称を入力してもよい。
また、データ入力部7に入力されるタンパク質或いはリガンド結合部位に関する情報としては、タンパク質又はリガンド結合部位のアミノ酸配列、原子座標、立体構造等が挙げられる。これらタンパク質或いはリガンド結合部位に関する情報に基づいて、詳細を後述する処理によって、当該タンパク質或いはリガンド結合部位に対して相互作用する候補化合物(候補リガンド)を解析することができる。
例えば、タンパク質相互作用解析装置1を利用して、所定のタンパク質(例えば受容体タンパク質)に対して相互作用する化合物(リガンド化合物)を選択する際、タンパク質に関する情報として、当該タンパク質のアミノ酸配列、立体構造データ、リガンド結合部位のアミノ酸配列若しくはリガンド結合部位の立体構造データがデータ入力部7に入力される。
タンパク質相互作用解析装置1における計算処理部8では、データ入力部7で入力した解析対象に関する情報に基づいて、データ記憶部6に記憶しているリガンド結合部位表面性状データと当該リガンド結合部位に相互作用するリガンドに関する立体構造データとの複数のセットを教師データとした機械学習による解析結果を含む、上記解析対象に関するタンパク質相互作用に関するデータを生成する。
例えば、データ入力部7で入力した解析対象に関する情報が化合物に関する情報である場合、計算処理部8は、当該化合物に対して相互作用する可能性のある候補タンパク質又は候補リガンド結合部位を生成する。より具体的に、データ入力部7で入力した解析対象に関する情報が所定の酵素反応における基質となる化合物に関する情報である場合、計算処理部8は、当該化合物を基質とする可能性のある候補酵素を生成する。このとき、計算処理部8は、上記化合物に対して相互作用する可能性の最も高い1つの候補タンパク質又は候補リガンド結合部位若しくは候補酵素を生成しても良いし、上記化合物に対して相互作用する可能性の高い一群の候補タンパク質又は候補リガンド結合部位若しくは候補酵素を生成しても良い。
また、データ入力部7で入力した解析対象に関する情報がタンパク質又はリガンド結合部位に関する情報である場合、計算処理部8は、当該タンパク質又はリガンド結合部位に対して相互作用する可能性のある候補化合物又は候補リガンドを生成する。このとき、計算処理部8は、上記タンパク質又はリガンド結合部位に対して相互作用する可能性の最も高い1つの候補化合物又は候補リガンドを生成しても良いし、上記タンパク質又はリガンド結合部位に対して相互作用する可能性の高い一群の候補化合物又は候補リガンドを生成しても良い。
図2に示す例では、計算処理部8における機械学習部10で、上述したリガンド結合部位表面性状データと当該リガンド結合部位に相互作用するリガンドに関する立体構造データとの複数のデータセットを教師データとした機械学習による解析を行う。また、図2に示す例では、計算処理部8における評価値算出部11において、データ入力部7で入力された解析対象に対して、教師データに含まれるタンパク質又はリガンドに対する類似性を示す評価値を算出する。図2に示す例では、計算処理部8におけるリスト生成部12にて、機械学習部10で行った機械学習の結果と評価値算出部11で算出した評価値とを合わせたリストを生成する。
また、計算処理部8では、機械学習部10において処理する機械学習用教師データとしては、特に限定されないが、例えば、タンパク質又はリガンド結合部位とリガンド分子との相互作用を評価する評価値を含むことが好ましい。当該評価値の一例としては、「リガンド結合部位表面性状データ」と「リガンドに関する立体構造データ」より、タンパク質におけるリガンド結合部位とリガンド分子との相対する部位の距離の短さに対してより高いスコアを与える立体形状凹凸相同性評価値を使用することができる。立体形状凹凸相同性評価値としては、「リガンド結合部位表面性状データ」と「リガンドに関する立体構造データ」とからなる各データセットに共通のn数を持つn次元ベクトルとすることができる。
ここで、n次元ベクトルとは、リガンド分子におけるn個の所定の部位における立体形状凹凸相同性評価値を示す。これらn個の所定の部位は、リガンド分子毎に任意に規定することができる。一例として、n次元ベクトルにおける次数及び配列順としては、IUPAC(国際純正・応用化学連合)命名法に則った炭素原子の順位付けに倣い、リガンド分子を構成する各非水素(炭素、窒素、酸素、硫黄、セレン等)について一次元順位付けを行う方法が挙げられる。これにより、所定のリガンド分子に対して、立体配置上の各部位における立体形状凹凸相同性評価値を決定することができる。なお、立体形状凹凸相同性評価値におけるn数は、「リガンド結合部位表面性状データ」と「リガンドに関する立体構造データ」とからなる各データセットに共通する値でも良いが、データセット毎に異なる値でも良い。
さらに、機械学習部10において処理する機械学習用教師データとしては、特に限定されないが、例えば、タンパク質又はリガンド結合部位とリガンド分子との静電的結合に関する結合エネルギーを評価する評価値を含むことが好ましい。当該評価値の一例としては、「静電ポテンシャル分布データ」と「リガンドに関する立体構造データ」より、タンパク質とリガンド分子との静電的結合に関して、リガンド分子における各部位の結合エネルギー(エンタルピー変化)の大きさに応じてより高いスコアを与える結合エネルギー評価値を使用することができる。結合エネルギー評価値としては、「静電ポテンシャル分布データ」と「リガンドに関する立体構造データ」とからなる各データセットに共通のm数を持つm次元ベクトルとすることができる。
ここで、m次元ベクトルとは、リガンド分子におけるm個の所定の部位における結合エネルギー評価値を示す。これらm個の所定の部位は、上述したn次元ベクトルと同様にリガンド分子毎に任意に規定することができる。結合エネルギー評価値におけるm数は、タンパク質又はリガンド結合部位とリガンド分子からなる各セット毎に異なる値でも良いし、共通する値でも良い。なお、立体形状凹凸相同性評価値におけるn数は、「静電ポテンシャル分布データ」と「リガンドに関する立体構造データ」とからなる各データセットに共通する値でも良いが、データセット毎に異なる値でも良い。
これらn数及びm数の値としては、それぞれ任意とすることがきる。例えば、n数及びm数の値としては、上述したデータセットの一部を用いて機械学習を行わせたうえで、機械学習に使用しなかった他のデータセットに対する回答の適正さが高くなるように設定することができる。
一方、評価値算出部11は、データ入力部7で解析対象として所定の化合物又はリガンドが入力された場合、機械学習部10における機械学習の結果として抽出された、当該化合物又はリガンドに対して相互作用する可能性のある候補タンパク質又は候補リガンド結合部位について評価値を算出する。この評価値は、データ入力部7で入力された化合物やリガンドと、抽出された候補タンパク質又は候補リガンド結合部位が関連づけられている化合物やリガンドとの類似性を示す値である。
具体的に評価値算出部11では、データ入力部7で入力された化合物やリガンドと、抽出された候補タンパク質又は候補リガンド結合部位が関連づけられている化合物やリガンドとをmaximum matchingして、適合度(matchingの度合い)の高い分子に高い評価値を与えることができる。この評価値は、例えば、入力した化合物又はリガンドに含まれる原子のうち照合先の「リガンド構造データ」内の対応する原子と所定の距離(例えば1Å)以内に位置する原子の割合が高い場合に高い数値となるように規定することができる。さらに、この評価値は、入力した化合物又はリガンドと「リガンド構造データ」とを照合する際に、局所的に静電的偏りが生じる可能性の高い、酸素原子や窒素原子の種類と位置のmatchingが高い場合にはより高い数値となるように規定することができる。以上のように評価値を規定することによって、入力した化合物又はリガンドと、候補タンパク質又は候補リガンド結合部位が関連づけられている化合物やリガンドとの構造上の類似性をより正確に評価することができる。
また、評価値算出部11は、データ入力部7で解析対象として入力された所定の化合物又はリガンドと、機械学習部10で抽出された候補タンパク質又は候補リガンド結合部に関連づけられた化合物やリガンドの構造のうちリガンド結合部位と十分に近接した領域の構造との類似性について評価値を算出することが好ましい。ここで、十分に近接した領域としては、例えば、化合物又はリガンドがリガンド結合部位に相互作用した状態においてリガンド結合部位から5Å以内の領域を挙げることができる。この処理により、評価値は、データ入力部7で解析対象として入力された所定の化合物又はリガンドと、機械学習部10で抽出された候補タンパク質又は候補リガンド結合部に関連づけられた化合物やリガンドにおける相互作用に関与する領域との類似性を評価することができる。
さらに、データ入力部7において、解析対象として所定の化合物又はリガンドに加えて、基質から生成物への酵素反応の種類や、当該酵素反応に関与する酵素の名称を入力した場合、評価値算出部11では、抽出された候補タンパク質又は候補リガンド結合部位について、入力した酵素反応や酵素名と一致度又は類似度を示す評価値を与えることができる。
或いは、評価値算出部11は、データ入力部7で解析対象として所定のタンパク質やリガンド結合部位が入力された場合、機械学習部10における機械学習の結果として抽出された、当該タンパク質やリガンド結合部位に対して相互作用する可能性のある候補化合物又は候補リガンドについて評価値を算出する。この評価値は、データ入力部7で入力されたタンパク質やリガンド結合部位と、抽出された候補化合物又は候補リガンドが関連づけられているタンパク質やリガンド結合部位との類似性を示す値である。
具体的に評価値算出部11では、データ入力部7で入力されたタンパク質やリガンド結合部位と、抽出された候補化合物又は候補リガンドが関連づけられているタンパク質やリガンド結合部位とのアミノ酸配列の一致度を計算し、当該一致度が高いタンパク質やリガンド結合部位に関連づけられた候補化合物又は候補リガンドに高い評価値を与えることができる。また、評価値算出部11では、データ入力部7で入力されたタンパク質やリガンド結合部位と、抽出された候補化合物又は候補リガンドが関連づけられているタンパク質やリガンド結合部位との立体構造上の類似度を計算し、当該類似度が高いタンパク質やリガンド結合部位に関連づけられた候補化合物又は候補リガンドに高い評価値を与えることができる。さらに、評価値算出部11では、データ入力部7で入力されたタンパク質やリガンド結合部位と、抽出された候補化合物又は候補リガンドが関連づけられているタンパク質やリガンド結合部位との静電ポテンシャル分布の類似度を計算し、当該類似度が高いタンパク質やリガンド結合部位に関連づけられた候補化合物又は候補リガンドに高い評価値を与えることができる。以上のように評価値を規定することによって、入力したタンパク質やリガンド結合部位と、候補化合物又は候補リガンドが関連づけられているタンパク質やリガンド結合部位との構造上の類似性、静電ポテンシャル分布の類似性をより正確に評価することができる。
リスト生成部12は、上述のように、機械学習部10で生成したタンパク質相互作用に関するデータ及び評価値算出部11で算出した評価値を統合したリストを生成する。データ入力部7で解析対象として所定の化合物が入力された場合、当該化合物に対して相互作用する可能性のある候補タンパク質又は候補リガンド結合部位とこれらについて算出した評価値を関連づけたリストを生成する。或いは、データ入力部7で解析対象として所定のタンパク質やリガンド結合部位が入力された場合、当該タンパク質やリガンド結合部位に対して相互作用する可能性のある候補化合物又は候補リガンドとこれらについて算出した評価値を関連づけたリストを生成する。
なお、計算処理部8は、図2に示した例では機械学習部10と、評価値算出部11と、リスト生成部12とを備える構成としたが、図3に示すように、更にタンパク質-リガンド適合性スコア算出部13を備えるものでもよい。タンパク質-リガンド適合性スコア算出部13は、データ入力部7で入力された解析対象が所定の化合物又はリガンドである場合、機械学習部10で抽出された、当該化合物又はリガンドに対して相互作用する可能性のある候補タンパク質又は候補リガンド結合部位と解析対象の化合物又はリガンドとの結合安定性に関する適合性スコアを算出する。或いはタンパク質-リガンド適合性スコア算出部13は、データ入力部7で入力された解析対象が所定のタンパク質又はリガンド結合部位である場合、機械学習部10で抽出された、当該タンパク質又はリガンド結合部位に対して相互作用する可能性のある候補化合物又は候補リガンドと解析対象のタンパク質又はリガンド結合部位との結合安定性に関する適合性スコアを算出する。
ここで、適合性スコアとしては、リガンドとリガンド結合部位との結合エンタルピーに基づいて算出した値とすることができる。リガンド単独では水分子が配位している状態であり、水分子との結合エンタルピーからリガンド単独でのポテンシャルエネルギー1を計算する。次に、リガンド結合部位とリガンドとが結合(イオン結合、疎水結合等々)した状態におけるエンタルピー量を計算してポテンシャルエネルギー2を計算する。ポテンシャルエネルギー2とポテンシャルエネルギー1との差がプラスである場合、リガンドはリガンド結合部位とが結合しやすくなることを意味する。したがって、ポテンシャルエネルギー2とポテンシャルエネルギー1との差分を考慮した適合性スコアを算出することで、上述した結合安定性を定量的に評価することができる。
図3に示した例では、リスト生成部12は、上述のように、機械学習部10で生成したタンパク質相互作用に関するデータ、評価値算出部11で算出した評価値及びタンパク質-リガンド適合性スコア算出部13で算出した適合性スコアを統合したリストを生成する。データ入力部7で解析対象として所定の化合物又はリガンドが入力された場合、当該化合物又はリガンドに対して相互作用する可能性のある候補タンパク質又は候補リガンド結合部位とこれらについて算出した評価値と適合性スコアとを関連づけたリストを生成する。或いは、データ入力部7で解析対象として所定のタンパク質やリガンド結合部位が入力された場合、当該タンパク質やリガンド結合部位に対して相互作用する可能性のある候補化合物又は候補リガンドとこれらについて算出した評価値と適合性スコアとを関連づけたリストを生成する。
以上のように、図2又は3に示したリスト生成部12は、機械学習部10において抽出した候補タンパク質若しくは候補リガンド結合部位、又は候補化合物若しくは候補リガンドのリストを生成する。このとき、リスト生成部12は、機械学習部10において抽出したリストに含まれる候補タンパク質若しくは候補リガンド結合部位、又は候補化合物若しくは候補リガンドを、上述した評価値及び/又は適合性スコアに基づいて更に限定してもよい。すなわち、リスト生成部12は、機械学習部10において抽出したリストに含まれる候補タンパク質若しくは候補リガンド結合部位、又は候補化合物若しくは候補リガンドのうち、評価値及び/又は適合性スコアが所定の値以下のものをリストから除いても良い。
具体的に、データ入力部7で入力した解析対象に関する情報が所定の酵素反応における基質となる化合物に関する情報である場合、機械学習部10は、当該化合物を基質とする可能性のある候補酵素を抽出する。この場合、リスト生成部12は、機械学習部10において抽出した候補酵素のうち、評価値及び/又は適合性スコアが所定の値以下のものをリストから除いても良い。また、この場合、リスト生成部12は、機械学習部10において抽出した候補酵素のうち、ユーザが入力した酵素反応に関連しないものをリストから除いても良い。
そして、タンパク質相互作用解析装置1の出力部9は、リスト生成部12にて生成されたリストを出力する。ここで、出力部9で出力されるリストは、リスト生成部12にて生成したリストをそのままでも良いし、リスト生成部12にて生成したリストに対して更に情報を付加したものでもよい。
例えば、データ入力部7で解析対象として所定の化合物が入力された場合、当該化合物に対して相互作用する可能性のある候補タンパク質又は候補リガンド結合部位を含むリストがリスト生成部12にて生成されるが、このリストに含まれる候補タンパク質、候補リガンド結合部位を含むタンパク質に関する機能情報等を付加したリストを出力することができる。
また、図1乃至3には図示していないが、出力部9にてリストを出力する前に、上述した評価値に基づいたエンジニアリング情報を解析する処理を行っても良い。例えば、データ入力部7で解析対象として所定の化合物が入力された場合、評価値に基づいて、候補タンパク質又は候補リガンド結合部位と、入力された化合物との相互作用が阻害される原因を特定し、上記化合物が相互作用しやすくなるエンジニアリング情報を解析する。
具体的には、先ず、入力された化合物と、候補タンパク質又は候補リガンド結合部位に関連づけられた化合物との構造比較から、入力された化合物において評価値の低下に寄与する領域を特定する。次に、候補タンパク質又は候補リガンド結合部位において、上記化合物における評価値の低下に寄与する領域が相互作用する位置を特定する。次に、特定された位置の立体構造や静電ポテンシャル分布に基づいて、上記入力された化合物が相互作用しやすい立体構造や静電ポテンシャル分布となるよう、候補タンパク質又は候補リガンド結合部位に導入する変異や修飾を特定する。このように特定した変異や修飾を、候補タンパク質又は候補リガンド結合部位に対するエンジニアリング情報として生成することができる。
一方、データ入力部7で解析対象として所定のタンパク質が入力された場合、評価値に基づいて、候補化合物又は候補リガンドと、入力されたタンパク質との相互作用が阻害される原因を特定し、上記タンパク質が相互作用しやすくなるエンジニアリング情報を解析することもできる。
具体的には、先ず、入力されたタンパク質と、候補化合物又は候補リガンドに関連づけられたタンパク質との構造比較から、入力されたタンパク質において評価値の低下に寄与する領域を特定する。次に、候補化合物又は候補リガンドにおいて、上記タンパク質における評価値の低下に寄与する領域が相互作用する位置を特定する。次に、特定された位置の立体構造や静電ポテンシャル分布に基づいて、上記入力されたタンパク質が相互作用しやすい立体構造や静電ポテンシャル分布となるよう、候補化合物又は候補リガンドに対する構造改変(官能基の除去、変更及び追加等)を特定する。このように特定した構造改変を候補化合物又は候補リガンドに対するエンジニアリング情報として生成することができる。
なお、上述したタンパク質相互作用解析装置1は、一般的なコンピュータ装置によって実現することもできる。すなわち、タンパク質相互作用解析装置1は、CPU等の演算装置と、ハードディスク、RAM及びROM等の記憶装置と、キーボード及びポインティングデバイス等の入力装置と、ディスプレイ及びプリンタ等の出力装置とを備えている。タンパク質相互作用解析装置1は、例えば、インターネット等のネットワークを介して外部記憶部2等の外部記憶装置を接続するための通信装置を備えていてもよい。タンパク質相互作用解析装置1においてこの通信装置は、各種データの入力装置及び外部への出力装置として機能する。タンパク質相互作用解析装置1において、ハードディスク、RAM及びROM等の記憶装置には、上述した各種処理をコンピュータ装置に行わせるプログラムが記憶されている。すなわち、記憶装置に記憶された当該プログラムを上述したハードウェアで実行することで、タンパク質相互作用解析装置1を実現できる。なお、タンパク質相互作用解析装置1は、一つのコンピュータ装置で構成されてもよく、物理的に異なるが互いに通信可能な複数のコンピュータ装置で構成されてもよい。
本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (16)

  1. 解析対象に関する情報としてリガンドの構造に関する情報若しくはタンパク質又はリガンド結合部位の構造に関する情報を入力するデータ入力部と、
    外部記憶部に格納されたタンパク質のアミノ酸配列データ及び立体構造データと当該タンパク質に対して特異的に相互作用するリガンドの立体構造データとに基づいて生成した、所定のタンパク質に関するリガンド結合部位の表面形状データと当該リガンド結合部位の静電ポテンシャル分布データと当該リガンド結合部位に対して相互作用するリガンドに関する立体構造データとを関連づけて記憶するデータ記憶部と、
    上記データ記憶部に記憶された、所定のリガンド結合部位の表面形状データと当該リガンド結合部位の静電ポテンシャル分布データと当該リガンド結合部位に対して相互作用するリガンドに関する立体構造データとを教師データとした機械学習により、上記データ入力部で解析対象に関する情報としてリガンドの構造に関する情報が入力された場合には当該リガンドに相互作用するタンパク質又はリガンド結合部位に関するデータを生成し、上記データ入力部で解析対象に関する情報としてタンパク質又はリガンド結合部位の構造に関する情報が入力された場合には当該タンパク質又はリガンド結合部位に相互作用する化合物又はリガンドに関するデータを生成する計算処理部とを備える、タンパク質相互作用解析装置。
  2. 上記計算処理部は、機械学習により生成したタンパク質相互作用に関するデータについて、上記データ入力部で入力した解析対象と、生成したデータに含まれる解析対象との類似性を示す評価値を算出する評価値算出部を備えることを特徴とする請求項1記載のタンパク質相互作用解析装置。
  3. 上記計算処理部は、機械学習により生成したタンパク質相互作用に関するデータについて、上記データ入力部で入力した解析対象が相互作用したときの結合安定性を定量的に示す適合性スコアを算出するタンパク質-リガンド適合性スコア算出部を備えることを特徴とする請求項1記載のタンパク質相互作用解析装置。
  4. 上記データ記憶部は、リガンド結合部位を構成する原子の原子座標に基づいてリガンド結合部位の中心座標を算出し、当該中心座標から所定の距離内にある原子を含む三次元グリッド空間を設定し、当該三次元グリッド空間に基づいて生成された表面形状データを記憶することを特徴とする請求項1記載のタンパク質相互作用解析装置。
  5. 上記三次元グリッド空間は、所定の間隔で設定されたグリッドにより複数格子点を有し、上記中心座標から所定の距離内にある各原子について最も近接する格子点に特定の文字を与え、当該特定の文字が与えられなかった格子点に他の文字を与えられたデータであることを特徴とする請求項記載のタンパク質相互作用解析装置。
  6. 上記中心座標から所定の距離内にある各原子は、複数の非水素原子種であることを特徴とする請求項記載のタンパク質相互作用解析装置。
  7. 上記データ記憶部は、上記三次元グリッド空間の格子点について算出された静電ポテンシャル分布データを記憶することを特徴とする請求項記載のタンパク質相互作用解析装置。
  8. 上記データ記憶部は、上記三次元グリッド空間の格子点について算出された正の値からなる正の静電ポテンシャル分布データと、上記三次元グリッド空間の格子点について算出された負の値からなる負の静電ポテンシャル分布データとを記憶することを特徴とする請求項記載のタンパク質相互作用解析装置。
  9. 入力装置により解析対象に関する情報としてリガンドの構造に関する情報若しくはタンパク質又はリガンド結合部位の構造に関する情報を入力する工程と、
    演算装置が、外部記憶部に格納されたタンパク質のアミノ酸配列データ及び立体構造データと当該タンパク質に対して特異的に相互作用するリガンドの立体構造データとに基づいて、所定のタンパク質に関するリガンド結合部位の表面形状データと当該リガンド結合部位の静電ポテンシャル分布データと当該リガンド結合部位に対して相互作用するリガンドに関する立体構造データとを生成し、これら表面形状データと静電ポテンシャル分布データとリガンドに関する立体構造データとを関連づけて記憶装置に記憶する工程と、
    演算装置が、上記記憶装置に記憶された、所定のリガンド結合部位の表面形状データと当該リガンド結合部位の静電ポテンシャル分布データと当該リガンド結合部位に対して相互作用するリガンドに関する立体構造データとを教師データとした機械学習により、上記入力装置が解析対象に関する情報としてリガンドの構造に関する情報を入力した場合には当該リガンドに相互作用するタンパク質又はリガンド結合部位に関するデータを生成し、上記入力装置が解析対象に関する情報としてタンパク質又はリガンド結合部位の構造に関する情報を入力した場合には当該タンパク質又はリガンド結合部位に相互作用する化合物又はリガンドに関するデータを生成する工程とを有する、タンパク質相互作用解析方法。
  10. 上記演算装置が、機械学習により生成したタンパク質相互作用に関するデータについて、上記入力装置が入力した解析対象と、生成したデータに含まれる解析対象との類似性を示す評価値を算出する工程を有することを特徴とする請求項記載のタンパク質相互作用解析方法。
  11. 上記演算装置が、機械学習により生成したタンパク質相互作用に関するデータについて、上記入力装置が入力した解析対象が相互作用したときの結合安定性を定量的に示す適合性スコアを算出する工程を有することを特徴とする請求項記載のタンパク質相互作用解析方法。
  12. 上記演算装置は、リガンド結合部位を構成する原子の原子座標に基づいてリガンド結合部位の中心座標を算出し、当該中心座標から所定の距離内にある原子を含む三次元グリッド空間を設定し、当該三次元グリッド空間に基づいて生成された表面形状データを上記データ記憶部に記憶することを特徴とする請求項記載のタンパク質相互作用解析方法。
  13. 上記三次元グリッド空間は、所定の間隔で設定されたグリッドにより複数格子点を有し、上記中心座標から所定の距離内にある各原子について最も近接する格子点に特定の文字を与え、当該特定の文字が与えられなかった格子点に他の文字を与えられたデータであることを特徴とする請求項12記載のタンパク質相互作用解析方法。
  14. 上記中心座標から所定の距離内にある各原子は、複数の非水素原子種であることを特徴とする請求項12記載のタンパク質相互作用解析方法。
  15. 上記演算装置は、上記三次元グリッド空間の格子点について算出された静電ポテンシャル分布データを上記データ記憶部に記憶することを特徴とする請求項12記載のタンパク質相互作用解析方法。
  16. 上記演算装置は、上記三次元グリッド空間の格子点について算出された正の値からなる正の静電ポテンシャル分布データと、上記三次元グリッド空間の格子点について算出された負の値からなる負の静電ポテンシャル分布データとを上記データ記憶部に記憶することを特徴とする請求項12記載のタンパク質相互作用解析方法。
JP2020523173A 2018-06-06 2019-06-06 タンパク質相互作用解析装置及び解析方法 Active JP6995990B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018108362 2018-06-06
JP2018108362 2018-06-06
PCT/JP2019/022528 WO2019235567A1 (ja) 2018-06-06 2019-06-06 タンパク質相互作用解析装置及び解析方法

Publications (2)

Publication Number Publication Date
JPWO2019235567A1 JPWO2019235567A1 (ja) 2021-07-01
JP6995990B2 true JP6995990B2 (ja) 2022-02-04

Family

ID=68770412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020523173A Active JP6995990B2 (ja) 2018-06-06 2019-06-06 タンパク質相互作用解析装置及び解析方法

Country Status (2)

Country Link
JP (1) JP6995990B2 (ja)
WO (1) WO2019235567A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102576033B1 (ko) * 2020-07-17 2023-09-11 주식회사 아론티어 3d-컨벌루션 뉴럴 네트워크의 앙상블을 이용한 단백질-리간드 결합 친화도 예측 방법 및 이를 위한 시스템
JP2022188603A (ja) 2021-06-09 2022-12-21 富士通株式会社 安定構造探索システム、安定構造探索方法及び安定構造探索プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057954A1 (fr) 2001-01-19 2002-07-25 Mitsubishi Chemical Corporation Procede pour realiser une structure tridimensionnelle de proteine avec ajustement induit et son utilisation
US20040148265A1 (en) 1998-06-19 2004-07-29 Schwartz Steven D. Neural network methods to predict enzyme inhibitor or receptor ligand potency
JP2009151406A (ja) 2007-12-19 2009-07-09 National Institute Of Advanced Industrial & Technology タンパク質機能識別装置
US20110066384A1 (en) 2002-08-06 2011-03-17 Zauhar Randy J Computer Aided Ligand-Based and Receptor-Based Drug Design Utilizing Molecular Shape and Electrostatic Complementarity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040148265A1 (en) 1998-06-19 2004-07-29 Schwartz Steven D. Neural network methods to predict enzyme inhibitor or receptor ligand potency
WO2002057954A1 (fr) 2001-01-19 2002-07-25 Mitsubishi Chemical Corporation Procede pour realiser une structure tridimensionnelle de proteine avec ajustement induit et son utilisation
US20110066384A1 (en) 2002-08-06 2011-03-17 Zauhar Randy J Computer Aided Ligand-Based and Receptor-Based Drug Design Utilizing Molecular Shape and Electrostatic Complementarity
JP2009151406A (ja) 2007-12-19 2009-07-09 National Institute Of Advanced Industrial & Technology タンパク質機能識別装置

Also Published As

Publication number Publication date
WO2019235567A1 (ja) 2019-12-12
JPWO2019235567A1 (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
Li et al. Predicting changes in protein thermodynamic stability upon point mutation with deep 3D convolutional neural networks
Derevyanko et al. Deep convolutional networks for quality assessment of protein folds
Zhong et al. Improved K-means clustering algorithm for exploring local protein sequence motifs representing common structural property
Janin et al. Protein–protein interaction and quaternary structure
Kahraman et al. Cross-link guided molecular modeling with ROSETTA
Pietal et al. GDFuzz3D: a method for protein 3D structure reconstruction from contact maps, based on a non-Euclidean distance function
Dodd et al. Simulation-based methods for model building and refinement in cryoelectron microscopy
JP6995990B2 (ja) タンパク質相互作用解析装置及び解析方法
Pan et al. Introduction to protein structure prediction: methods and algorithms
Zhu et al. SCL: a lattice-based approach to infer 3D chromosome structures from single-cell Hi-C data
Li Conformational sampling in template-free protein loop structure modeling: An overview
Singh et al. Bioinformatics: methods and applications
Dorn et al. A hybrid genetic algorithm for the 3-d protein structure prediction problem using a path-relinking strategy
Chowdhury et al. A bi-objective function optimization approach for multiple sequence alignment using genetic algorithm
Rudnev et al. Current approaches in supersecondary structures investigation
Rocha et al. Inserting co-evolution information from contact maps into a multiobjective genetic algorithm for protein structure prediction
Leelananda et al. Statistical contact potentials in protein coarse-grained modeling: from pair to multi-body potentials
Poluri et al. Prediction, analysis, visualization, and storage of protein–protein interactions using computational approaches
Furnham et al. Comparative modelling by restraint-based conformational sampling
Launay et al. Modeling protein complexes and molecular assemblies using computational methods
Gajda et al. Protein structure prediction: From recognition of matches with known structures to recombination of fragments
Altun et al. A feature selection algorithm based on graph theory and random forests for protein secondary structure prediction
Gress Integration of protein three-dimensional structure into the workflow of interpretation of genetic variants
Wang Searching for the origin of protein conformational changes: Protein responses to specific forces in simulations
Hong et al. Protein Structure Prediction Using A New Optimization-Based Evolutionary and Explainable Artificial Intelligence Approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R150 Certificate of patent or registration of utility model

Ref document number: 6995990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150