JP6994821B2 - Reduction of ethanol production in continuous culture of Saccharomyces cerevisiae - Google Patents

Reduction of ethanol production in continuous culture of Saccharomyces cerevisiae Download PDF

Info

Publication number
JP6994821B2
JP6994821B2 JP2016151827A JP2016151827A JP6994821B2 JP 6994821 B2 JP6994821 B2 JP 6994821B2 JP 2016151827 A JP2016151827 A JP 2016151827A JP 2016151827 A JP2016151827 A JP 2016151827A JP 6994821 B2 JP6994821 B2 JP 6994821B2
Authority
JP
Japan
Prior art keywords
ethanol
metabolites
culture
medium
continuous culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016151827A
Other languages
Japanese (ja)
Other versions
JP2018019620A (en
Inventor
英一郎 福▲崎▼
健史 馬場
誠 井村
亮 岩切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Mitsubishi Corp Life Sciences Ltd
Original Assignee
Osaka University NUC
Mitsubishi Corp Life Sciences Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Mitsubishi Corp Life Sciences Ltd filed Critical Osaka University NUC
Priority to JP2016151827A priority Critical patent/JP6994821B2/en
Publication of JP2018019620A publication Critical patent/JP2018019620A/en
Application granted granted Critical
Publication of JP6994821B2 publication Critical patent/JP6994821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主に連続培養においてサッカロミセス・セレビシエ(Saccharomyces cerevisiae)の菌体を生産する方法に関するものである。 The present invention mainly relates to a method for producing Saccharomyces cerevisiae cells in continuous culture.

出芽酵母であるSaccharomyces cerevisiaeはビールやワインなどの醸造工業や酵母エキスなどの食品工業において必要不可欠な微生物である。しかしながら、S. cerevisiaeは十分に酸素を供給しているにもかかわらず、グルコースを添加すると酸素呼吸が抑制される (De Deken, R. H.) 。この現象はクラブツリー効果と呼ばれ、S. cerevisiaeの連続培養においては希釈率を高くすると、バイオマスの形成からエタノール発酵を行うことが知られている (Postma E et al.) 。 Saccharomyces cerevisiae, a budding yeast, is an indispensable microorganism in the brewing industry such as beer and wine and the food industry such as yeast extract. However, although S. cerevisiae supplies sufficient oxygen, the addition of glucose suppresses oxygen respiration (De Deken, R. H.). This phenomenon is called the club tree effect, and it is known that in continuous culture of S. cerevisiae, when the dilution ratio is increased, ethanol fermentation is performed from the formation of biomass (Postma E et al.).

しかし、このクラブツリー効果の機構の詳細については未だ明らかになっていない。
そのため、エタノールを生産させずに目的物質を製造するためには、流加培養においては糖の流入を制限し、または連続培養においては低希釈率で培養しなければならず、生産効率が悪かった。
However, the details of the mechanism of this club tree effect have not yet been clarified.
Therefore, in order to produce the target substance without producing ethanol, it was necessary to limit the inflow of sugar in fed-batch culture or to culture at a low dilution rate in continuous culture, resulting in poor production efficiency. ..

クラブツリー効果はその他の微生物でも見られているが (Serra et al.) 、S. cerevisiaeはモデル生物として好気状態でのクラブツリー効果に着目した研究が盛んに行われている。例えば、glycerol 3-phosphate dehydrogenaseのisozymeをコードするGPD1やGPD2を過剰発現することによってグリセロールを増加させ、エタノールを低減させた報告がある (Cambon B et al..) 。また、グルコースの流入量が多い時、NADH/NAD+のレドックスバランスが崩れることによって副生成物であるエタノールやグリセロールを生産するといったことから、水を形成するNADH oxidaseを発現させ、エタノールを低減させた報告もある (Heux S et al..、Vemuri GN et al.) 。しかしながら、これらの手法は遺伝子組換え技術を用いているため、醸造工業や食品工業への応用は困難である。 Although the club tree effect has been observed in other microorganisms (Serra et al.), S. cerevisiae has been actively studied as a model organism focusing on the club tree effect in an aerobic state. For example, there is a report that overexpression of GPD1 and GPD2, which encode the isozyme of glycerol 3-phosphate dehydrogenase, increased glycerol and decreased ethanol (Cambon B et al ..). In addition, when the inflow of glucose is large, the redox balance of NADH / NAD + is disturbed to produce ethanol and glycerol, which are by-products. Therefore, NADH oxidase, which forms water, was expressed and ethanol was reduced. There are also reports (Heux S et al .., Vemuri GN et al.). However, since these methods use genetic recombination technology, they are difficult to apply to the brewing industry and the food industry.

遺伝子組換え技術を用いたアプローチに対して、連続培養系を用いた研究において定常状態でサンプリングできるメリットを活かしてフラックス解析を用いたクラブツリー効果の解明に取り組んでいる (Frick O et al.、Kajihata S et al.)。連続培養における、希釈率(D)は、1時間当たりの液体培地の供給量/培養液体積となる。S. cerevisiaeは十分な好気状態において希釈率(D)が0.3より小さいとグルコースを完全に消費し、エタノールを生産しない。しかしD≧0.3になるとエタノールを生産することが報告されている (Van Hoek P et al.) 。希釈率を変更することよって好気呼吸からエタノール発酵に切り替わることを利用して定常状態でのフラックス解析が進められてきたが、この解析結果を利用してエタノールを低減させることは実現できていない。 In contrast to the approach using gene recombination technology, we are working to elucidate the club tree effect using flux analysis by taking advantage of the advantage of being able to sample in a steady state in research using a continuous culture system (Frick O et al., Kajihata S et al.). In the continuous culture, the dilution ratio (D) is the supply amount of the liquid medium / the volume of the culture solution per hour. S. cerevisiae consumes glucose completely and does not produce ethanol when the dilution ratio (D) is less than 0.3 under sufficient aerobic conditions. However, it has been reported that ethanol is produced when D ≥ 0.3 (Van Hoek P et al.). Flux analysis in a steady state has been advanced by utilizing the switching from aerobic respiration to ethanol fermentation by changing the dilution rate, but it has not been possible to reduce ethanol by using this analysis result. ..

メタボロミクスはゲノム情報の結果である代謝物を網羅的に測定する手法であり、近接しているマクロ表現型と密接に関係している。故に,微生物による有用物質生産において生産収率や,生産速度等を定量的表現型と考え,メタボローム解析を実施することにより,菌株性能向上に資する有益な情報を得ることが可能である。 (Putri SP et al.) Metabolomics is a method for comprehensively measuring metabolites that are the result of genomic information and is closely related to the macrophenotype in close proximity. Therefore, it is possible to obtain useful information that contributes to the improvement of strain performance by considering the production yield, production rate, etc. as quantitative phenotypes in the production of useful substances by microorganisms and performing metabolome analysis. (Putri SP et al.)

De Deken RH.: The Crabtree effect: a regulatory system in yeast. : J Gen Microbiol. 1966 Aug;44(2):149-56.De Deken RH .: The Crabtree effect: a regulatory system in yeast.: J Gen Microbiol. 1966 Aug; 44 (2): 149-56. Postma E1, Verduyn C, Scheffers WA, Van Dijken JP. : Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. : Appl Environ Microbiol. 1989 Feb;55(2):468-77.Postma E1, Verduyn C, Scheffers WA, Van Dijken JP.: Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae.: Appl Environ Microbiol. 1989 Feb; 55 (2): 468-77. Serra A, Strehaiano P, Taillandier P. : Characterization of the metabolic shift of Saccharomyces bayanus var. uvarum by continuous aerobic culture. Appl Microbiol Biotechnol. 2003 Oct;62(5-6):564-8.Serra A, Strehaiano P, Taillandier P .: characterization of the metabolic shift of Saccharomyces bayanus var. Uvarum by continuous aerobic culture. Appl Microbiol Biotechnol. 2003 Oct; 62 (5-6): 564-8. Cambon B1, Monteil V, Remize F, Camarasa C, Dequin S.: Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol. 2006 Jul;72(7):4688-94.Cambon B1, Monteil V, Remize F, Camarasa C, Dequin S .: Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol. 2006 Jul; 72 (7): 4688-94. Heux S1, Cachon R, Dequin S.: Cofactor engineering in Saccharomyces cerevisiae: Expression of a H2O-forming NADH oxidase and impact on redox metabolism. :Metab Eng. 2006 Jul;8(4):303-14.Heux S1, Cachon R, Dequin S .: Cofactor engineering in Saccharomyces cerevisiae: Expression of a H2O-forming NADH oxidase and impact on redox metabolism.: Metab Eng. 2006 Jul; 8 (4): 303-14. Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J. : Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. : Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2402-7.Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J.: Increasing NADH redox reduces overflow metabolism in Saccharomyces cerevisiae .: Proc Natl Acad Sci U S A. 2007 Feb 13; 104 (7): 2402-7. Frick O1, Wittmann C.: Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis.: Microb Cell Fact. 2005 Nov 3;4:30.Frick O1, Wittmann C .: characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis .: Microb Cell Fact. 2005 Nov 3; 4:30. Kajihata S, Matsuda F, Yoshimi M, Hayakawa K, Furusawa C, Kanda A, Shimizu H.:13C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect.: J Biosci Bioeng. 2015 Aug;120(2):140-4.Kajihata S, Matsuda F, Yoshimi M, Hayakawa K, Furusawa C, Kanda A, Shimizu H .: 13 C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect .: J Biosci Bioeng. 2015 Aug; 120 (2): 140-4. Van Hoek P1, Van Dijken JP, Pronk JT.: Effect of specific growth rate on fermentative capacity of baker's yeast. :Appl Environ Microbiol. 1998 Nov;64(11):4226-33.Van Hoek P1, Van Dijken JP, Pronk JT .: Effect of specific growth rate on fermentative capacity of baker's yeast.: Appl Environ Microbiol. 1998 Nov; 64 (11): 4226-33. Putri SP1, Nakayama Y, Matsuda F, Uchikata T, Kobayashi S, Matsubara A, Fukusaki E.: Current metabolomics: practical applications.: J Biosci Bioeng. 2013 Jun;115(6):579-89.Putri SP1, Nakayama Y, Matsuda F, Uchikata T, Kobayashi S, Matsubara A, Fukusaki E .: Current metabolomics: practical applications .: J Biosci Bioeng. 2013 Jun; 115 (6): 579-89. Yoshida R, Tamura T, Takaoka C, Harada K, Kobayashi A, Mukai Y, Fukusaki E. : Metabolomics-based systematic prediction of yeast lifespan and its application for semi-rational screening of ageing-related mutants. : Aging Cell. 2010 Aug;9(4):616-25.Yoshida R, Tamura T, Takaoka C, Harada K, Kobayashi A, Mukai Y, Fukusaki E .: Metabolomics-based systematic prediction of yeast lifespan and its application for semi-rational screening of ageing-related mutants.: Aging Cell. 2010 Aug 9 (4): 616-25. Teoh ST1, Putri S1, Mukai Y2, Bamba T1, Fukusaki E1 : A metabolomics-based strategy for identification of gene targets for phenotype improvement and its application to 1-butanol tolerance in Saccharomyces cerevisiae. : Biotechnol Biofuels. 2015 Sep 15;8:144.Teoh ST1, Putri S1, Mukai Y2, Bamba T1, Fukusaki E1: A metabolomics-based strategy for identification of gene targets for phenotype improvement and its application to 1-butanol tolerance in Saccharomyces cerevisiae.: Biotechnol Biofuels. 2015 Sep 15; 8: 144. 144. Ohta E1, Nakayama Y1, Mukai Y2, Bamba T1, Fukusaki E3. : Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae. : J Biosci Bioeng. 2015 Sep 3. pii: S1389-1723(15)00303-5.Ohta E1, Nakayama Y1, Mukai Y2, Bamba T1, Fukusaki E3 .: Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.: J Biosci Bioeng. 2015 Sep 3. pii: S1389-1723 (15) 00303-5. Mitsunaga H, Meissner L, Palmen T, Bamba T, Buechs J, Fukusaki E.: Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945.: J Biosci Bioeng. 2015 Sep 23. pii: S1389-1723(15)00327-8.Mitsunaga H, Meissner L, Palmen T, Bamba T, Buechs J, Fukusaki E .: Metabolome analysis reveals the effect of carbon catabolite control on the poly (γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945 .: J Biosci Bioeng. 2015 Sep 23. pii: S1389-1723 (15) 00327-8. Noguchi S, Putri SP, Lan EI, Lavina WA, Dempo Y, Bamba T, Liao JC, Fukusaki E. : Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production. : Metabolomics. 2016;12:26.Noguchi S, Putri SP, Lan EI, Lavina WA, Dempo Y, Bamba T, Liao JC, Fukusaki E .: Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production.: Metabolomics . 2016; 12:26.

本願発明者らは、これまでにメタボロミクスによって異なる条件から取得したサンプルを解析することで、酵母の寿命延長 (Yoshida R et al.) や1-ブタノールやエタノールに対する耐性の向上 (Teoh ST et al. 、Ohta E et al. ) 、poly (γ-glutamic acid) や1-ブタノールの生産性向上(Mitsunaga H et al.、Noguchi S et al.) に取り組んできた。この知見を利用して、メタボロミクスによってS. cerevisiaeのクラブツリー効果に起因する連続培養におけるエタノールの生産を低減できる方法を見出し、S. cerevisiaeにおいて希釈率の高い連続培養でエタノール産生を低減させることを課題とする。また、それにより、効率的に菌体や目的物を生産することも課題とする。 By analyzing samples obtained from different conditions by metabolomics so far, the inventors of the present application have extended the life span of yeast (Yoshida R et al.) And improved resistance to 1-butanol and ethanol (Teoh ST et al.). , Ohta E et al.), Poly (γ-glutamic acid) and 1-butanol productivity improvement (Mitsunaga H et al., Noguchi S et al.). Using this finding, we found a way to reduce ethanol production in continuous cultures due to the club tree effect of S. cerevisiae by metabolomics, and found that reducing ethanol production in continuous cultures with high dilution in S. cerevisiae. Make it an issue. In addition, it is also an issue to efficiently produce bacterial cells and target substances.

S. cerevisiaeの様々な希釈率の連続培養からサンプルを取得し、メタボロミクスを実施した。すなわち、代謝物を網羅的に解析するメタボロミクスによって連続培養において好気呼吸からエタノール発酵に希釈率を変化させた際に、変化の大きい代謝物を同定した。 Samples were taken from continuous cultures of S. cerevisiae at various dilutions and metabolomics were performed. That is, metabolites with large changes were identified when the dilution rate was changed from aerobic respiration to ethanol fermentation in continuous culture by metabolomics for comprehensive analysis of metabolites.

その結果、当該代謝物のうち、フマル酸やリンゴ酸を連続培養時の培地に添加すると、希釈率の高い連続培養においてエタノールを低減し、菌体生産量を増加させることができた。本発明により、S. cerevisiaeの希釈率の高い連続培養においてメタボロミクスを用いて同定した代謝物を添加することによってエタノールの生産を低減すること、及び菌体生産量を増加させることに初めて成功したものである。 As a result, when fumaric acid or malic acid among the metabolites was added to the medium during continuous culture, ethanol could be reduced and cell production could be increased in continuous culture with a high dilution rate. The present invention has succeeded for the first time in reducing ethanol production and increasing cell production by adding metabolites identified using metabolomics in continuous culture with a high dilution rate of S. cerevisiae. Is.

すなわち本発明は、
(1)Saccharomyces cerevisiae酵母の培養において、好気呼吸からエタノール発酵に変化させた際に変化の大きい代謝物を培地に添加する、菌体生産量を増加させる方法、
(2)Saccharomyces cerevisiae酵母の連続培養または流加培養において、培地にフマル酸またはリンゴ酸を添加する、前記酵母の培養方法
を提供するものである。
That is, the present invention
(1) In culturing Saccharomyces cerevisiae yeast, a method for increasing cell production by adding a metabolite having a large change when changing from aerobic respiration to ethanol fermentation to the medium.
(2) In the continuous culture or fed-batch culture of Saccharomyces cerevisiae yeast, the above-mentioned yeast culture method in which fumaric acid or malic acid is added to a medium is provided.

本発明によると、S. cerevisiaeの連続培養において、培地中にリンゴ酸 またはフマル酸を添加することで、培養液中のエタノール濃度を低減することができ、また菌体濃度も増加させることができる。 According to the present invention, in the continuous culture of S. cerevisiae, by adding malic acid or fumaric acid to the medium, the ethanol concentration in the culture solution can be reduced and the cell concentration can also be increased. ..

S. cerevisiae連続培養での異なる希釈率における培養結果S. cerevisiae culture results at different dilutions in continuous culture 異なる希釈率での連続培養より取得したメタボロームデータに基づく主成分分析の結果 Score plot(寄与率:PC1=62.6%、PC2=16.2%)Results of principal component analysis based on metabolome data obtained from continuous cultures at different dilution rates Score plot (contribution rate: PC1 = 62.6%, PC2 = 16.2%) 異なる希釈率での連続培養より取得したメタボロームデータに基づく主成分分析の結果 PC1に対するloading dataResults of principal component analysis based on metabolome data obtained from continuous cultures at different dilutions Loading data for PC1 解析で同定できた代謝物マップ (1. D=0.05、2. D=0.1、3. D=0.2、4. D=0.3)Metabolite map identified by analysis (1. D = 0.05, 2. D = 0.1, 3. D = 0.2, 4. D = 0.3) 代謝物を添加した際のD=0.3の連続培養におけるエタノール濃度Ethanol concentration in continuous culture with D = 0.3 when metabolites were added 代謝物を添加した際のD=0.3の連続培養における菌体濃度Cell concentration in continuous culture with D = 0.3 when metabolites were added 代謝物添加における連続培養でのOrnithineの菌体内濃度Intracellular concentration of Ornithine in continuous culture with metabolite addition 代謝物添加における連続培養でのTrehaloseの菌体内濃度Intracellular concentration of Trehalose in continuous culture with metabolite addition

以下、本発明を具体的に説明する。
本発明に用いる菌株は、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)であれば何でもよい。
Hereinafter, the present invention will be specifically described.
The strain used in the present invention may be any Saccharomyces cerevisiae.

本発明に使用する基本の培地は、本発明の酵母が増殖できる限り特に制限されず、例えば酵母の培養に用いられる通常の培地を用いることができる。
具体的には、例えば、YDP培地、SD培地、SG培地が挙げられるが、これらに限定されない。培地としては、例えば、炭素源、窒素源、リン酸源、硫黄源、その他の各種有機成分や無機成分から選択される成分を必要に応じて含有する培地を用いることができる。培地成分の種類や濃度は、使用する菌株により適宜設定してよい。
The basic medium used in the present invention is not particularly limited as long as the yeast of the present invention can grow, and for example, a normal medium used for culturing yeast can be used.
Specific examples thereof include, but are not limited to, YDP medium, SD medium, and SG medium. As the medium, for example, a medium containing a carbon source, a nitrogen source, a phosphoric acid source, a sulfur source, and other components selected from various organic components and inorganic components can be used, if necessary. The type and concentration of the medium component may be appropriately set depending on the strain to be used.

本発明においては、実施例に示すようなメタボロミクス解析を行い、好気呼吸からエタノール発酵に変化させた際に変化の大きい代謝物を同定し、それらを培地に添加することで、エタノール産生を低減できる化合物をスクリーニングすることができる。
具体的には、上記のような基本の培地に、リンゴ酸及び/又はフマル酸を培地中に合わせて50~300mg/Lになるように添加して、流加培養または連続培養を行う。
In the present invention, metabolomics analysis as shown in Examples is performed to identify metabolites that change significantly when changing from aerobic respiration to ethanol fermentation, and by adding them to the medium, ethanol production is reduced. The compounds that can be screened can be.
Specifically, malic acid and / or fumaric acid is added to the basic medium as described above so as to be 50 to 300 mg / L in the medium, and fed-batch culture or continuous culture is performed.

連続培養の場合、培地の希釈率Dは、目的とする物質が最も効率的に取得できるように適宜選択すればよい。たとえば、Dの値としては、0.1~0.5が望ましく、より望ましくは0.25~0.40、さらに望ましくは0.30~0.35である。希釈率(D)は、1時間当たりの液体培地の供給量/培養液体積となる。 In the case of continuous culture, the dilution ratio D of the medium may be appropriately selected so that the target substance can be obtained most efficiently. For example, the value of D is preferably 0.1 to 0.5, more preferably 0.25 to 0.40, and even more preferably 0.30 to 0.35. The dilution ratio (D) is the supply amount of the liquid medium / the volume of the culture solution per hour.

培養温度は、目的とする物質が最も効率的に取得できる温度を選択すればよく、たとえば25~35℃、好ましくは28~32℃である。培養時間は、連続培養であれば特に制限は無い。 The culture temperature may be selected from a temperature at which the target substance can be obtained most efficiently, and is, for example, 25 to 35 ° C, preferably 28 to 32 ° C. The culture time is not particularly limited as long as it is a continuous culture.

以下に実施例を用いて、本発明を具体的に説明する。
本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be specifically described with reference to Examples.
The present invention is not limited to these.

S. cerevisiae NBRC101557は、Biological Resource Center, NITE (NBRC) より取得した。前培養は100 mLのYPD培地 [10g Dried yeast extract (Wako Pure Chemical Industries, Ltd. , Osaka, Japan) ,20 g HIPOLYPEPTON (Wako Pure Chemical Industries, Ltd. , Osaka, Japan) , 20g D-Glucose (Wako Pure Chemical Industries, Ltd. , Osaka, Japan) ] で30℃にて18時間行った。本培養は2 LのJar-fermenter (Mitsuwa Frontech) に張り込んだ1 Lの培養液に初期OD600が0.1になるように植菌し、回分培養を開始した。培養液の培地組成は10 g/L glucose、1.5 g KH2PO4、0.5 g/L MgSO4・7H2O、0.06 g/L CaCl2、5 g/L (NH4)2SO4、0.4 g/L K2SO4、0.1 mg/L Biotin、1.5 g/L D-pantothenic acid hemicalcium salt、60 mg/L myo-inositol、3 mg/L Pyridoxine Hydrochloride、14 mg/L Thiamine Hydrochloride、0.2 mg/L CuSO4・5H2O、4 mg/L ZnSO4・7H2O、10 mg/L FeSO4・7H2O (4 MのNaOHにてpH5.0に調整した) である。なお、後述する代謝物の添加試験では上記に加え培地中にTrehalose Dihydrate、L-Ornithine Monohydrochloride、Fumaric acid、Malic acidを100 mg/Lになるように添加した。これら全てはWako Pure Chemical Industries, Ltd. (Osaka, Japan) 、Sigma (St. Louis, USA ) にて購入した。培養温度は30℃で、撹拌数を700 rpm、通気を1 L/minで行い、4 MのNaOHにてpHを5.0に制御した。回分培養の対数増殖期後期にてそれぞれの希釈率で連続培養を開始し、定常状態になったことを確認した後、サンプルを取得した。 S. cerevisiae NBRC101557 was obtained from the Biological Resource Center, NITE (NBRC). Preculture is 100 mL YPD medium [10 g Dried yeast extract (Wako Pure Chemical Industries, Ltd., Osaka, Japan), 20 g HIPOLYPEPTON (Wako Pure Chemical Industries, Ltd., Osaka, Japan), 20 g D-Glucose (Wako) Pure Chemical Industries, Ltd., Osaka, Japan)] at 30 ° C for 18 hours. In this culture, 1 L of the culture medium was inoculated into 2 L of Jar-fermenter (Mitsuwa Frontech) so that the initial OD 600 was 0.1, and batch culture was started. The medium composition of the culture solution is 10 g / L glucose, 1.5 g KH 2 PO 4 , 0.5 g / L DDL 4.7H 2 O, 0.06 g / L CaCl 2 , 5 g / L (NH 4 ) 2 SO 4 , 0.4 . g / LK 2 SO 4 , 0.1 mg / L Biotin, 1.5 g / L D-pantothenic acid hemicalcium salt, 60 mg / L myo-inositol, 3 mg / L Pyridoxine Hydrochloride, 14 mg / L Thiamine Hydrochloride, 0.2 mg / L CuSO 4.5H 2 O, 4 mg / L ZnSO 4.7H 2 O, 10 mg / L FeSO 4.7H 2 O (adjusted to pH 5.0 with 4 M NaOH). In the addition test of metabolites described later, Trehalose Dihydrate, L-Ornithine Monohydrochloride, Fumaric acid, and Malic acid were added to the medium at 100 mg / L in addition to the above. All of these were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan) and Sigma (St. Louis, USA). The culture temperature was 30 ° C., the stirring rate was 700 rpm, the aeration was performed at 1 L / min, and the pH was controlled to 5.0 with 4 M NaOH. Continuous culture was started at each dilution rate in the latter half of the logarithmic growth phase of batch culture, and after confirming that the steady state was reached, a sample was obtained.

・バイオマスおよびエタノールの測定
乾燥菌体重量 (CDM)は2回洗浄、遠心分離 (6000 g、5 min、4℃) を行い、105℃にて一晩静置した後、測定した。培地中のエタノール濃度は培養液を遠心分離した上清をBF-7 (Oji Scientific Instruments, Hyogo, Japan) にて測定した。
-Measurement of biomass and ethanol The dry mycelium weight (CDM) was measured after washing twice, centrifuging (6000 g, 5 min, 4 ° C) and allowing to stand overnight at 105 ° C. The ethanol concentration in the medium was measured by BF-7 (Oji Scientific Instruments, Hyogo, Japan) using the supernatant obtained by centrifuging the culture medium.

・GC/MSに向けたサンプル調製
サンプル回収および代謝物抽出はHashim※らの手法に則って行った。連続培養において定常状態に達したサンプルをsampling volume×OD600=80になるように設定し、直径47 mmの0.45μmのポアサイズのメンブレンフィルター (Millipoire, Massachusetts, USA) を用いて吸引濾過を行い、蒸留水にて洗浄した。そのサンプルを凍結乾燥させた後に5.0 mgを測定し、ジルコニアボールを1個入れふたをし、液体窒素に浸して凍結した。これをボールミル(MM400, Verder-scientific, Germany) でサンプルを破砕した (20 Hz, 5 min) 。1.0 mLのmix solvent (methanol/H2O/Chroloform:2.5/1/1 (v/v/v)) を加え、更に内部標準として60μlの0.2 mg/ml Ribitol (Wako Pure Chemical Industries, Ltd. , Osaka, Japan) を加えた。ボルテックス (VORTEX-2 GENIE, Scientific industries, inc,, New York, USA) で20 sec混合した後、これらをミキサーミルにて代謝物を抽出した (20 Hz, 5 min) 。遠心分離 (4℃, 5 min, 10000 rpm) した後、上清の900 μlを新しいチューブに移し、400μlの超純水を加え、10 secボルテックスした。遠心分離 (10,000 rpm, 5 min, 4℃) した後、上層500μlを新しいチューブに移した。サンプルを2 h遠心濃縮後、一晩凍結乾燥を行った。凍結乾燥したサンプルに予めpyridine (Wako Pure Chemical Industries, Ltd. , Osaka, Japan) に20 mg/mlに溶解したmethoxyamine hydrochloride (Sigma, St. Louis, USA) を100μl加え、Thermal mixer (Thermomixer Comfort, Eppendorf Co., Ltd., Hamburg, Germany) にて1200 rpm、30℃、90 minインキュベートした。その後、50μlのN-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) (GL Sciences, Kyoto, Japna) を加えThermal mixerにて1200 rpm、37℃、30 minインキュベートした。
※Hashim Z1, Teoh ST1, Bamba T1, Fukusaki E2.: Construction of a metabolome library for transcription factor-related single gene mutants of Saccharomyces cerevisiae. : J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Sep 1;966:83-92.
-Sample preparation for GC / MS Sample collection and metabolite extraction were performed according to the method of Hashim * et al. Samples that reached a steady state in continuous culture were set to sampling volume × OD 600 = 80, and suction filtration was performed using a 0.45 μm pore-sized membrane filter (Millipoire, Massachusetts, USA) with a diameter of 47 mm. Washed with distilled water. After the sample was lyophilized, 5.0 mg was measured, a zirconia ball was added, a lid was placed, and the sample was immersed in liquid nitrogen and frozen. The sample was crushed with a ball mill (MM400, Verder-scientific, Germany) (20 Hz, 5 min). Add 1.0 mL of mix solvent (methanol / H 2 O / Chroloform: 2.5 / 1/1 (v / v / v)), and add 60 μl of 0.2 mg / ml Ribitol (Wako Pure Chemical Industries, Ltd., Ltd.) as an internal standard. Osaka, Japan) was added. After mixing with vortex (VORTEX-2 GENIE, Scientific industries, inc ,, New York, USA) for 20 sec, the metabolites were extracted with a mixer mill (20 Hz, 5 min). After centrifugation (4 ° C, 5 min, 10000 rpm), 900 μl of the supernatant was transferred to a new tube, 400 μl of ultrapure water was added, and the mixture was vortexed for 10 sec. After centrifugation (10,000 rpm, 5 min, 4 ° C), 500 μl of the upper layer was transferred to a new tube. The sample was centrifuged for 2 h and then lyophilized overnight. Add 100 μl of methoxyamine hydrochloride (Sigma, St. Louis, USA) dissolved in 20 mg / ml to pyridine (Wako Pure Chemical Industries, Ltd., Osaka, Japan) in advance to the lyophilized sample, and add Thermal mixer (Thermomixer Comfort, Eppendorf). Incubated at 1200 rpm, 30 ° C., 90 min in Co., Ltd., Hamburg, Germany). Then, 50 μl of N-methyl-N- (trimethylsilyl) trifluoroacetamide (MSTFA) (GL Sciences, Kyoto, Japna) was added and incubated at 1200 rpm for 30 min with a Thermal mixer.
* Hashim Z1, Teoh ST1, Bamba T1, Fukusaki E2 .: Construction of a metabolome library for transcription factor-related single gene mutants of Saccharomyces cerevisiae .: J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Sep 1; 966: 83-92 ..

・GC/MS analysis
GC/MS analysisはTsugawa※らの報告に基づいて行った。AOC-20s autosampler (Shimadzu) とAOC-20i auto injector (Shimadzu) を組み合わせGCとMSとしてGCMS-QP2010 Ultra (Shimadzu Corporation, Kyoto, Japan) を使用した。ソフトウェアにはGCMS solution ver. 4.20β (Shimadzu) を用い、データを取得した。
カラムには30 m×0.25 mm i. d. DF :0.25μm InertCap 5MS/NP (GL science, Kyoto, Japan) を用いた。気化室温度は230℃であり、高純度ヘリウムをキャリアーガスとして使用い、流量は1.12 mL/minである。カラムの温度は80℃で2 minの保持した後、320℃まで15 ℃/minで昇温させ、その温度で6 min保持した。インターフェイス温度は250℃で、イオン源温度は200℃、EIは70V、スキャン速度は20 scan/secである。測定マス範囲は85-500 m/zである。
※Tsugawa H1, Bamba T, Shinohara M, Nishiumi S, Yoshida M, Fukusaki E.: Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis.: J Biosci Bioeng. 2011 Sep;112(3):292-8.
・ GC / MS analysis
GC / MS analysis was performed based on the report by Tsugawa * et al. AOC-20s autosampler (Shimadzu) and AOC-20i auto injector (Shimadzu) were combined, and GCMS-QP2010 Ultra (Shimadzu Corporation, Kyoto, Japan) was used as GC and MS. Data was acquired using GCMS solution ver. 4.20β (Shimadzu) as the software.
A 30 m × 0.25 mm id DF: 0.25 μm InertCap 5MS / NP (GL science, Kyoto, Japan) was used for the column. The vaporization chamber temperature is 230 ° C., high-purity helium is used as the carrier gas, and the flow rate is 1.12 mL / min. The column temperature was maintained at 80 ° C for 2 min, then raised to 320 ° C at 15 ° C / min, and maintained at that temperature for 6 min. The interface temperature is 250 ° C, the ion source temperature is 200 ° C, the EI is 70V, and the scanning speed is 20 scan / sec. The measurement mass range is 85-500 m / z.
* Tsugawa H1, Bamba T, Shinohara M, Nishiumi S, Yoshida M, Fukusaki E .: Practical non-targeted gas chromatography / mass spectrometry-based metabolomics platform for metabolic phenotype analysis .: J Biosci Bioeng. 2011 Sep; 112 (3) : 292-8.

・Data processing
GC/MSの分析データはnetCDFでエクスポートし、ピーク同定とアライメントはMet al.ign (Ver. 041012) にて行い (Lommen.※) 、化合物同定および主成分分析はAIoutput (ver. 1. 29) にて行った (Tsugawa et al.※) 。前処理にはPareto scaling methodを用い、変換は1/4 rootにて行った。自動で同定したピークは手動にてAutomated Mass Spectral Deconvolution and Identification System (AMDIS) にて確認した。
※Lommen A1.: Met al.ign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing.: Anal Chem. 2009 Apr 15;81(8):3079-86.
※Tsugawa H1, Tsujimoto Y, Arita M, Bamba T, Fukusaki E.: GC/MS based metabolomics: development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA).: BMC Bioinformatics. 2011 May 4;12:131.
・ Data processing
GC / MS analysis data is exported by netCDF, peak identification and alignment are performed by Met al.ign (Ver. 041012) (Lommen. *), Compound identification and principal component analysis are performed by AI output (ver. 1.29). I went there (Tsugawa et al. *). The Pareto scaling method was used for preprocessing, and the conversion was performed by 1/4 root. The automatically identified peaks were manually confirmed by the Automated Mass Spectral Deconvolution and Identification System (AMDIS).
* Lommen A1 .: Met al.ign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing .: Anal Chem. 2009 Apr 15; 81 (8): 3079-86.
* Tsugawa H1, Tsujimoto Y, Arita M, Bamba T, Fukusaki E .: GC / MS based metabolomics: development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA) .: BMC Bioinformatics. 2011 May 4; 12: 131.

<結果>
・増殖および培養結果
クラブツリー効果に関連する代謝物を探索するため、十分な好気状態の連続培養において希釈率を0.05 h-1から0.30 h-1に変化させて実施した。それぞれの培養結果の平均値を図1にて示した。S. cerevisae NBRC101557ではD=0.20 h-1以下ではクラブツリー効果が抑制されており、エタノールを生産していない。一方、D=0.30 h-1ではクラブツリー効果が誘導され、エタノールを生産していた。この希釈率では消費したグルコースから25%以上がエタノールに直接変換させていることを意味する。これらの結果はこれまでにS. cerevisaeの連続培養で報告されている通りであった (Frick et al.、Van Hoek P et al.) 。クラブツリー効果が抑えられる間は希釈率の上昇に伴い、乾燥菌体濃度が上昇し、酸素消費が増加し、DOが低下した。一方、D=0.3 h-1では酸素消費が抑制され、DOが上昇し、乾燥菌体濃度が低下した。
<Result>
-Proliferation and culture results In order to search for metabolites related to the club tree effect, the dilution ratio was changed from 0.05 h -1 to 0.30 h -1 in a continuous culture in a sufficiently aerobic state. The average value of each culture result is shown in FIG. In S. cerevisae NBRC101557, the club tree effect is suppressed below D = 0.20 h -1 , and ethanol is not produced. On the other hand, at D = 0.30 h -1 , the club tree effect was induced and ethanol was produced. This dilution means that more than 25% of the consumed glucose is directly converted to ethanol. These results were previously reported in continuous cultures of S. cerevisae (Frick et al., Van Hoek P et al.). While the club tree effect was suppressed, as the dilution ratio increased, the concentration of dried cells increased, oxygen consumption increased, and DO decreased. On the other hand, at D = 0.3 h -1 , oxygen consumption was suppressed, DO increased, and the concentration of dried cells decreased.

・GC/MSを用いたメタボローム解析
今回の分析ではアミノ酸、有機酸、糖を含む49個の代謝物がGC/MSによって同定された。クラブツリー効果によって菌体内含量に変化が生じる代謝物を調べるために、異なる希釈率のサンプルから取得したメタボロームデータに対して主成分分析 (PCA) を行った。PCAによればサンプルはPC1に沿って希釈率ごとに分離が認められた (図2) 。それゆえ、PC1の分離に貢献した代謝物を図3に示した。その結果、Trehalose、Valine、4-aminobenzoic acid、Fructose 6-Phosphateなどの代謝物が希釈率の低いサンプルに蓄積が確認された。一方でGlycerol、N-a-Acetyl-L-Ornithine、Ornithineが希釈率の高いサンプルに蓄積が確認された。
-Metabolome analysis using GC / MS In this analysis, 49 metabolites including amino acids, organic acids, and sugars were identified by GC / MS. Principal component analysis (PCA) was performed on metabolome data obtained from samples with different dilutions to investigate metabolites whose intracellular content changes due to the club tree effect. According to PCA, the samples were separated along PC1 by dilution rate (Fig. 2). Therefore, the metabolites that contributed to the separation of PC1 are shown in FIG. As a result, metabolites such as Trehalose, Valine, 4-aminobenzoic acid, and Fructose 6-Phosphate were confirmed to accumulate in low dilution samples. On the other hand, Glycerol, Na-Acetyl-L-Ornithine, and Ornithine were confirmed to accumulate in the sample with high dilution rate.

メタボローム解析の結果を図4に示す。D=0.30においてGlycerolが蓄積していることが確認できる。Glycerolはエタノールの副生成物として知られているので、過去の報告と一致する (Oura※) 。D≦0.20の好気条件においてMalic acid、Fumaric acid、Succinic acidの菌体内濃度が希釈率に応じて上昇していた。これはグルコースの供給量に応じてTCAサイクルを担う酵素が活性化していることが言える。そのため、D≦0.20では酸素消費が希釈率の上昇に応じて増加している。一方で、D=0.30においてMalic acid、Fumaric acid、Succinic acidの菌体内濃度は低下していた。これはTCAサイクルの活動が抑制されていることを意味し、酸素消費は低下していた。その結果として、過剰のグルコースはエタノールに変換されたと言える。一方で、希釈率が上昇するにつれて、Trehaloseの菌体内濃度が低下していた。Trehaloseはエタノールや栄養飢餓など様々なストレスに呼応して蓄積する代謝物として知られている (Muhmud et al.※ 、Lillie SH et al.※ ) 。連続培養においてD=0.30ではエタノールにさらされているため、ストレスを受けると考えられるが、S. cerevisiaeにとってD≦0.20のグルコース制限による栄養飢餓の方がストレスをより感じているのかもしれない。
※Mahmud SA1, Hirasawa T, Shimizu H.: Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental .: J Biosci Bioeng. 2010 Mar;109(3):262-6.
※Lillie SH, Pringle JR: Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation.: J Bacteriol. 1980 Sep;143(3):1384-94.
※Oura E:Reaction-products of yeast fermentations. :Process biochem. 1977 12 (3):19-21
The results of the metabolome analysis are shown in FIG. It can be confirmed that Glycerol is accumulated at D = 0.30. Glycerol is known as a by-product of ethanol and is consistent with previous reports (Oura *). Under aerobic conditions of D ≤ 0.20, the intracellular concentrations of Malic acid, Fumaric acid, and Succinic acid increased according to the dilution rate. It can be said that the enzyme responsible for the TCA cycle is activated according to the amount of glucose supplied. Therefore, when D ≤ 0.20, oxygen consumption increases as the dilution rate increases. On the other hand, the intracellular concentrations of Malic acid, Fumaric acid, and Succinic acid decreased at D = 0.30. This meant that the activity of the TCA cycle was suppressed, and oxygen consumption was reduced. As a result, it can be said that excess glucose was converted to ethanol. On the other hand, as the dilution rate increased, the intracellular concentration of Trehalose decreased. Trehalose is known as a metabolite that accumulates in response to various stresses such as ethanol and nutrient starvation (Muhmud et al. *, Lillie SH et al. *). In continuous culture, D = 0.30 is considered to be stressed due to exposure to ethanol, but nutritional starvation due to glucose restriction of D ≤ 0.20 may be more stressful for S. cerevisiae.
* Mahmud SA1, Hirasawa T, Shimizu H .: Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental .: J Biosci Bioeng. 2010 Mar; 109 (3): 262-6.
* Lillie SH, Pringle JR: Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation .: J Bacteriol. 1980 Sep; 143 (3): 1384-94.
* Oura E: Reaction-products of yeast fermentations.: Process biochem. 1977 12 (3): 19-21

・代謝物添加の候補の選択
エタノール発酵を行うD=0.30において培地中のエタノール濃度を低減するために、メタボローム解析の結果に基づき、添加する代謝物の候補の選択を行った。希釈率が増加するにつれて細胞内濃度が増加する代謝物や減少する代謝物がエタノールの生産性に関与していることに期待ができるので、それらを添加する代謝物の候補にすることが望ましい。これより、図3のローディングプロットに示されている代謝物のうち両脇に位置する代謝物がその候補となる。これらの条件を満たしている代謝物にはTrehaloseやGlycerol、Ornithineが候補として挙げられる。なおGlycerolはエタノールの副生成物として既に知られているため(Oura)、ここでは除外し、TrehaloseおよびOrnithineを添加する代謝物の候補とした。また、D≦0.2とD=0.3ではクラブツリー効果の影響によって表現型が大きく異なるので、代謝物のバランスも大きく変化することが予想される。そこで、エタノールを作らない希釈率 (D≦0.2) では希釈率が高くなるにつれて、菌体内濃度が増加するが、エタノールを作る希釈率 (D=0.3) になると菌体内濃度が減少する代謝物もエタノールを低減する代謝物の候補として期待できる。図4より、この傾向が見られる代謝物としてMalic acid、Fumaric acid、Succinic acidが挙げられる。そのうちのMalic acidやFumaric acidはD=0.2に比べてD=0.3において代謝物の減少が大きいため、TrehaloseやOrnithineに加えて、今回の添加する代謝物の候補とした。最終的に、上記より選定された4つの代謝物 (Trehalose、Ornithine、Malic acid、Fumaric acid) をそれぞれ培地中に加え、代謝物を加えない場合と比較して培地中のエタノール濃度が減少するか検討した。
-Selection of candidates for metabolite addition In order to reduce the ethanol concentration in the medium at D = 0.30 during ethanol fermentation, candidates for metabolites to be added were selected based on the results of metabolome analysis. Since it can be expected that the metabolites whose intracellular concentration increases and decreases as the dilution rate increases are involved in the productivity of ethanol, it is desirable to make them candidates for the metabolites to which they are added. From this, among the metabolites shown in the loading plot of FIG. 3, the metabolites located on both sides are candidates. Trehalose, Glycerol, and Ornithine are candidates for metabolites that meet these conditions. Since Glycerol is already known as a by-product of ethanol (Oura), it was excluded here and was selected as a candidate for metabolites to which Trehalose and Ornithine are added. In addition, since the phenotypes of D≤0.2 and D = 0.3 differ greatly due to the influence of the club tree effect, it is expected that the balance of metabolites will also change significantly. Therefore, at a dilution rate that does not produce ethanol (D ≤ 0.2), the intracellular concentration increases as the dilution rate increases, but at a dilution rate that produces ethanol (D = 0.3), the intracellular concentration decreases for some metabolites. It can be expected as a candidate for metabolites that reduce ethanol. From FIG. 4, the metabolites in which this tendency is observed include Malic acid, Fumaric acid, and Succinic acid. Of these, Malic acid and Fumaric acid have a larger decrease in metabolites at D = 0.3 than D = 0.2, so they were selected as candidates for the metabolites to be added this time in addition to Trehalose and Ornithine. Finally, add each of the four metabolites (Trehalose, Ornithine, Malic acid, Fumaric acid) selected from the above to the medium, and whether the ethanol concentration in the medium decreases compared to the case where no metabolite is added. investigated.

・代謝物の添加
上記の結果によって候補に挙げた4つの代謝物 (Trehalose、Ornithine、Fumaric acid、Malic acid) を培地中に最終濃度が100 mg/Lになるように加えて、D=0.3にて連続培養を行い、定常状態に達した時の培地中のエタノール濃度を調べた (図5) 。無添加 (2.91 g/L) に比べてリンゴ酸 (2.81 g/L) 、フマル酸 (2.74 g/L) でエタノール濃度を低減することができた。加えて、乾燥菌体濃度は無添加では1.71 g/Lであったのに対して、リンゴ酸、フマル酸ではそれぞれ1.81 g/L、1.77 g/Lと高くなった。今回の結果よりS. cerevisiaeの連続培養において、フマル酸を培地中に100 mg/ml添加することによって、培地中のエタノール濃度を5.9%低減させることに成功した。
-Addition of metabolites The four metabolites (Trehalose, Ornithine, Fumaric acid, Malic acid) listed as candidates based on the above results were added to the medium so that the final concentration was 100 mg / L, and D = 0.3. And continuous culture was carried out, and the concentration of ethanol in the medium when the steady state was reached was examined (Fig. 5). Malic acid (2.81 g / L) and fumaric acid (2.74 g / L) were able to reduce the ethanol concentration compared to no additives (2.91 g / L). In addition, the dry cell concentration was 1.71 g / L without addition, whereas it was 1.81 g / L and 1.77 g / L for malic acid and fumaric acid, respectively. From this result, in the continuous culture of S. cerevisiae, we succeeded in reducing the ethanol concentration in the medium by 5.9% by adding 100 mg / ml of fumaric acid to the medium.

また、連続培養における定常状態の菌体濃度を測定したところ、Trehalose、Fumaric acid、Malic acidにおいて、controlより高い値となった。(図6) Moreover, when the cell concentration in the steady state in the continuous culture was measured, it was higher than the control in Trehalose, Fumaric acid, and Malic acid. (Fig. 6)

<考察>
S. cerevisiaeにおいて連続培養で希釈率を上げていくと、菌体増殖型の好気呼吸からエタノール発酵となり、菌体濃度が低下し、エタノールを生産する (図1) 。好気呼吸では希釈率を上げた際に菌体内濃度が上昇する (D≦0.2) が、エタノール発酵 (D=0.3) になると減少する代謝物としてリンゴ酸やフマル酸が確認できた (図4) 。一方で、Citrate and isocitrateやpyruvate and OAAは低下が見られなかった。フラックス解析の報告ではエタノール発酵にてTCAサイクルのフラックスは一様に低下する。 一方で、S. cerevisiaeにおいてpyruvateはpyruvate dehydrogenaseやCitrate synthaseとPyruvate carboxyraseによってTCAサイクル中のCitrateやOAAに変換されるが (Nakayama. et al.※) 、これらの酵素活性は大きく低下しない (Frick et al.※) 。よってD=0.30 h-1の時にグルコースからのTCAサイクルの入り口であるCitrate and isocitrateやPyruvate and OAAのみが菌体内代謝物含量は低下しなかったものと考察できる。今回、D=0.30 h-1にて減少するリンゴ酸やフマル酸を培地中に100 mg/l添加し、連続培養を行った結果、リンゴ酸では約3.4%、フマル酸では約5.9%の培地中のエタノール濃度の低減が見られた (図5) 。これらの代謝物を添加することで、フラックスが低下しているTCAサイクルによってエネルギー合成を行うことができるので、菌体濃度の増加につながったと示唆された。また、Frickらによれば、希釈率の増加に伴いmalic enzymeのフラックスの増加が示されている。malic enzymeやalcohol dehydrogenaseはNADH依存型の酵素であるが、D=0.30ではリンゴ酸の菌体濃度が低下しているため、添加しない場合ではalcohol dehydrogenaseによってエタノールを生産するが、本研究のようにリンゴ酸や、フマル酸を添加すると、malic enzymeによってNADHを消費するため、NADH/NAD+のインバランスが解消され、エタノールの生産が低減したものとも考えられる。
Varela CらはTCAサイクルに関連している遺伝子を過剰発現させた場合、malate dehydrogenase (MDH2)やfumarate reductase (FRD1) 過剰発現株にて2%程度エタノール生産が低下するとの報告がある。また、彼らはTCAサイクルの複数の遺伝子を過剰発現させることによって、更にエタノールの生産を低減させることができるのではないかと考察していた (Varela C et al.※) 。確かに一つの遺伝子の過剰発現株では局所的に流量が増加しているために、細胞内の代謝バランスが崩れ、十分な効果が得られない可能性がある。一方で我々のように代謝物を添加すれば、代謝物のバランスが崩れることなく、ボトルネックとなっている代謝物を補うことができるので、十分な効果が期待できる。
※Nakayama Y, Putri SP1, Bamba T1, Fukusaki E. : Metabolic distance estimation based on principle component analysis of metabolic turnover. : J Biosci Bioeng. 2014 Sep;118(3):350-5.
※Frick O, Wittmann C. : Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis. : Microb Cell Fact. 2005 Nov 3;4:30.
※Varela C1, Kutyna DR, Solomon MR, Black CA, Borneman A, Henschke PA, Pretorius IS, Chambers PJ. : Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts. : Appl Environ Microbiol. 2012 Sep;78(17):6068-77.
<Discussion>
When the dilution rate is increased by continuous culture in S. cerevisiae, ethanol fermentation occurs from aerobic respiration of bacterial cell growth type, the bacterial cell concentration decreases, and ethanol is produced (Fig. 1). In aerobic respiration, malic acid and fumaric acid were confirmed as metabolites in which the intracellular concentration increased when the dilution rate was increased (D ≤ 0.2), but decreased in ethanol fermentation (D = 0.3) (Fig. 4). ). On the other hand, Citrate and isocitrate and pyruvate and OAA did not decrease. According to the report of flux analysis, the flux of the TCA cycle decreases uniformly in ethanol fermentation. On the other hand, in S. cerevisiae, pyruvate is converted to Citrate and OAA during the TCA cycle by pyruvate dehydrogenase, Citrate synthase and Pyruvate carboxyrase (Nakayama. Et al. *), But these enzymatic activities are not significantly reduced (Frick et al.). al. *). Therefore, it can be considered that only Citric acid and isocitrate and Pyruvate and OAA, which are the entrances of the TCA cycle from glucose, did not decrease the intracellular metabolite content when D = 0.30 h -1 . This time, 100 mg / l of malic acid and fumaric acid, which decrease at D = 0.30 h -1 , was added to the medium and continuous culture was performed. As a result, the medium was about 3.4% for malic acid and about 5.9% for fumaric acid. A decrease in the concentration of ethanol in the medium was observed (Fig. 5). It was suggested that the addition of these metabolites led to an increase in cell concentration because energy synthesis could be performed by the TCA cycle with reduced flux. In addition, Frick et al. Show that the flux of malic enzyme increases with increasing dilution. Although malic enzyme and alcohol dehydrogenase are NADH-dependent enzymes, malic acid cell concentration decreases at D = 0.30, so when not added, alcohol is produced by alcohol dehydrogenase, as in this study. When malic acid or fumaric acid is added, NADH is consumed by the malic enzyme, so it is considered that the imbalance of NADH / NAD + is eliminated and the production of ethanol is reduced.
Varela C et al. Reported that overexpression of genes related to the TCA cycle reduced ethanol production by about 2% in malate dehydrogenase (MDH2) and fumarate reductase (FRD1) overexpressing strains. They also wondered if overexpression of multiple genes in the TCA cycle could further reduce ethanol production (Varela C et al. *). Certainly, in the overexpressing strain of one gene, the flow rate is locally increased, so that the intracellular metabolic balance is disturbed and a sufficient effect may not be obtained. On the other hand, if a metabolite is added like ours, the bottlenecked metabolite can be supplemented without disturbing the balance of the metabolite, so a sufficient effect can be expected.
* Nakayama Y, Putri SP1, Bamba T1, Fukusaki E .: Metabolic distance estimation based on principle component analysis of metabolic turnover.: J Biosci Bioeng. 2014 Sep; 118 (3): 350-5.
* Frick O, Wittmann C .: characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis.: Microb Cell Fact. 2005 Nov 3; 4:30.
* Varela C1, Kutyna DR, Solomon MR, Black CA, Borneman A, Henschke PA, Pretorius IS, Chambers PJ .: Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts.: Appl Environ Microbiol. 2012 Sep; 78 (17): 6068-77.

一方、添加した4つの代謝物のうち、OrnithineやTrehaloseについては培地中のエタノール濃度の減少は見られなかった。しかし、Ornithineは下流のPolyamineがエタノール耐性に効果があるとの報告 (Walters et al..※) があり、Treahaloseはエタノール耐性に効果があるとの報告 (Mahmud et al..) がある。そこで、OrnithineとTrehaloseに関してそれぞれの代謝物の添加の有無での菌体濃度を調べた (図7) 。図7より、Ornithineの菌体内濃度はOrnithineを培地に加えた場合のみ上昇していた。しかし、エタノールの減少は見られなかったので、Ornithineがエタノール生産に影響しないことが考えられる。一方で、図8ではTrehaloseは添加していないコントロールに比べて、それぞれの代謝物を添加するとTrehaloseの菌体内濃度が優位に上昇していることが明らかになった。また、Muhmudらの実験では全て6%以上のエタノールを添加して耐性について検討している (Muhmud et al.) 。我々の実験ではエタノール濃度は2~3 g/Lであった。そのため、嫌気培養の様によりエタノールを多く生産する培養条件ではエタノール耐性として知られているTrehaloseの添加の効果が顕著に表れたのかもしれない。
※Walters D1, Cowley T.: Polyamine metabolism in Saccharomyces cerevisiae exposed to ethanol.: Microbiol Res. 1998 Aug;153(2):179-84.
On the other hand, among the four metabolites added, no decrease in ethanol concentration in the medium was observed for Ornithine and Trehalose. However, Ornithine has a report that downstream polyamines have an effect on ethanol resistance (Walters et al .. *), and Treahalose has a report that it has an effect on ethanol resistance (Mahmud et al ..). Therefore, we investigated the cell concentrations of Ornithine and Trehalose with and without the addition of their respective metabolites (Fig. 7). From FIG. 7, the intracellular concentration of ornithine increased only when ornithine was added to the medium. However, no decrease in ethanol was observed, suggesting that Ornithine does not affect ethanol production. On the other hand, in FIG. 8, it was clarified that the intracellular concentration of Trehalose was significantly increased when each metabolite was added, as compared with the control in which Trehalose was not added. In all experiments by Muhmud et al., Tolerance was investigated by adding 6% or more of ethanol (Muhmud et al.). In our experiment, the ethanol concentration was 2-3 g / L. Therefore, the effect of adding Trehalose, which is known as ethanol resistance, may have been remarkable under the culture conditions that produce a large amount of ethanol such as anaerobic culture.
* Walters D1, Cowley T .: Polyamine metabolism in Saccharomyces cerevisiae exposed to ethanol .: Microbiol Res. 1998 Aug; 153 (2): 179-84.

今回の研究はS. cerevisiaeの連続培養においてメタボロミクスを用いて同定した代謝物を添加することによって、エタノールを低減させることを見出した。今回の結果により、異なる表現型に対してメタボロミクスを用いることで、目的物質を増減させる代謝物を絞り込むことができる可能性を示した。また、メタボロミクスは今回のように遺伝子組換え技術が発達しているS. cerevisiaeに限らず、ゲノム情報が必須ではないため、遺伝子組換え系が整備されていないNon conventional yeastにも適応可能であるので、そういった酵母をターゲットに物質生産を試みる場合にはこの手法は非常に効果的である。 The present study found that ethanol was reduced by adding metabolites identified using metabolomics in continuous cultures of S. cerevisiae. The results show that by using metabolomics for different phenotypes, it is possible to narrow down the metabolites that increase or decrease the target substance. In addition, metabolomics is not limited to S. cerevisiae, which has advanced gene recombination technology as in this case, but since genomic information is not essential, it can be applied to Non conventional yeasts that do not have a gene recombination system. Therefore, this method is very effective when attempting to produce substances targeting such yeasts.

Claims (1)

Saccharomyces cerevisiaeの連続培養または流加培養において、培地にフマル酸またはリンゴ酸を50~300mg/L添加する、エタノール産生を低減させ、且つ菌体生産量を増加させる酵母の培養方法。 A method for culturing yeast that reduces ethanol production and increases cell production by adding 50 to 300 mg / L of fumarate or malic acid to a medium in continuous culture or fed-batch culture of Saccharomyces cerevisiae.
JP2016151827A 2016-08-02 2016-08-02 Reduction of ethanol production in continuous culture of Saccharomyces cerevisiae Active JP6994821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016151827A JP6994821B2 (en) 2016-08-02 2016-08-02 Reduction of ethanol production in continuous culture of Saccharomyces cerevisiae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016151827A JP6994821B2 (en) 2016-08-02 2016-08-02 Reduction of ethanol production in continuous culture of Saccharomyces cerevisiae

Publications (2)

Publication Number Publication Date
JP2018019620A JP2018019620A (en) 2018-02-08
JP6994821B2 true JP6994821B2 (en) 2022-01-14

Family

ID=61163873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016151827A Active JP6994821B2 (en) 2016-08-02 2016-08-02 Reduction of ethanol production in continuous culture of Saccharomyces cerevisiae

Country Status (1)

Country Link
JP (1) JP6994821B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000508175A (en) 1996-04-10 2000-07-04 メルク エンド カンパニー インコーポレーテッド Method for improving a medium for a recombinant yeast
JP2003500062A (en) 1999-05-21 2003-01-07 カーギル ダウ エルエルシー Synthetic method and synthetic material for organic products
JP2003169666A (en) 2001-12-04 2003-06-17 Takara Holdings Inc New yeast and utilization thereof
JP2007111054A (en) 2000-11-22 2007-05-10 Cargill Dow Llc Methods and materials for production of organic products
US20100047387A1 (en) 2005-06-17 2010-02-25 Stephanie Heux Transformed saccharomyces yeast strains having reduced ethanol production by fermentation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716400B2 (en) * 1983-11-11 1995-03-01 健太郎 田中 Method for producing novel blood supplement composition containing organic ferrous iron compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000508175A (en) 1996-04-10 2000-07-04 メルク エンド カンパニー インコーポレーテッド Method for improving a medium for a recombinant yeast
JP2003500062A (en) 1999-05-21 2003-01-07 カーギル ダウ エルエルシー Synthetic method and synthetic material for organic products
JP2007111054A (en) 2000-11-22 2007-05-10 Cargill Dow Llc Methods and materials for production of organic products
JP2003169666A (en) 2001-12-04 2003-06-17 Takara Holdings Inc New yeast and utilization thereof
US20100047387A1 (en) 2005-06-17 2010-02-25 Stephanie Heux Transformed saccharomyces yeast strains having reduced ethanol production by fermentation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yeast,2016年,Vol.33,p.145-161

Also Published As

Publication number Publication date
JP2018019620A (en) 2018-02-08

Similar Documents

Publication Publication Date Title
Van Hoek et al. Effect of specific growth rate on fermentative capacity of baker’s yeast
Slininger et al. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers
Wisselink et al. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
Scalcinati et al. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption
Zhang et al. Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP: citrate lyase from Mus musculus
Yuzbashev et al. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica
Deesuth et al. High ethanol production under optimal aeration conditions and yeast composition in a very high gravity fermentation from sweet sorghum juice by Saccharomyces cerevisiae
Blomqvist et al. Physiological requirements for growth and competitiveness of Dekkera bruxellensis under oxygen‐limited or anaerobic conditions
US20160153009A1 (en) Method of Modifying a Yeast Cell for the Production of Ethanol
Li et al. High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain
Imura et al. Metabolomics approach to reduce the Crabtree effect in continuous culture of Saccharomyces cerevisiae
Li et al. Construction of efficient xylose utilizing Pichia pastoris for industrial enzyme production
US20200362371A1 (en) Genetically modified yeasts and fermentation processes using genetically modified yeasts
Pitkänen et al. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain
Ding et al. Enhancing L-malate production of Aspergillus oryzae FMME218-37 by improving inorganic nitrogen utilization
Díaz-Nava et al. Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice
Morgunov et al. Physiologo-biochemical characteristics of citrate-producing yeast Yarrowia lipolytica grown on glycerol-containing waste of biodiesel industry
Donzella et al. Engineering cytoplasmic acetyl-CoA synthesis decouples lipid production from nitrogen starvation in the oleaginous yeast Rhodosporidium azoricum
Wang et al. Intracellular metabolic changes of Clostridium acetobutylicum and promotion to butanol tolerance during biobutanol fermentation
Huang et al. Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol
Schifferdecker et al. Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast
US9273328B2 (en) Yeast mutant of kluyveromyces and method for ethanol production using the same
Liu et al. The Weimberg pathway: an alternative for Myceliophthora thermophila to utilize D-xylose
Englezos et al. Influence of single nitrogen compounds on growth and fermentation performance of Starmerella bacillaris and Saccharomyces cerevisiae during alcoholic fermentation
Lertwattanasakul et al. Essentiality of respiratory activity for pentose utilization in thermotolerant yeast Kluyveromyces marxianus DMKU 3-1042

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210908

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211214

R150 Certificate of patent or registration of utility model

Ref document number: 6994821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150