JP6994755B2 - Fluorescent X-ray analyzer and fluorescent X-ray analysis method - Google Patents

Fluorescent X-ray analyzer and fluorescent X-ray analysis method Download PDF

Info

Publication number
JP6994755B2
JP6994755B2 JP2017170813A JP2017170813A JP6994755B2 JP 6994755 B2 JP6994755 B2 JP 6994755B2 JP 2017170813 A JP2017170813 A JP 2017170813A JP 2017170813 A JP2017170813 A JP 2017170813A JP 6994755 B2 JP6994755 B2 JP 6994755B2
Authority
JP
Japan
Prior art keywords
sample
ray
irradiation
primary
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017170813A
Other languages
Japanese (ja)
Other versions
JP2019045402A (en
Inventor
隆行 深井
吉毅 的場
真毅 大柿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
Hitachi High Tech Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp filed Critical Hitachi High Tech Science Corp
Priority to JP2017170813A priority Critical patent/JP6994755B2/en
Priority to KR1020180096739A priority patent/KR102517494B1/en
Priority to CN201811024591.0A priority patent/CN109459458B/en
Publication of JP2019045402A publication Critical patent/JP2019045402A/en
Application granted granted Critical
Publication of JP6994755B2 publication Critical patent/JP6994755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、食品や医療品等の試料中に含まれる金属元素等の検出が可能な蛍光X線分析装置及び蛍光X線分析方法に関する。 The present invention relates to a fluorescent X-ray analyzer and a fluorescent X-ray analysis method capable of detecting metal elements and the like contained in a sample of food, medical products, and the like.

蛍光X線分析は、X線源から出射されたX線を試料に照射し、試料から放出される元素固有のエネルギーを持つ蛍光X線をX線検出器で検出することで、そのエネルギーからスペクトルを取得し、試料の定性分析若しくは定量分析を行うものである。この蛍光X線分析は、試料を非破壊で迅速に分析可能なため、工程・品質管理などで広く用いられている。近年では、食品中のカドミウム(Cd)等の検出や定量などにも蛍光X線分析を用いることが検討されている。 In fluorescent X-ray analysis, a sample is irradiated with X-rays emitted from an X-ray source, and fluorescent X-rays having element-specific energy emitted from the sample are detected by an X-ray detector, and a spectrum is obtained from that energy. Is obtained, and qualitative analysis or quantitative analysis of the sample is performed. This fluorescent X-ray analysis is widely used in processes, quality control, etc. because it can analyze a sample non-destructively and quickly. In recent years, it has been studied to use fluorescent X-ray analysis for detection and quantification of cadmium (Cd) and the like in foods.

米粒や米粉等の軽元素を主成分とする試料では、微量に含有されるカドミウム等の重金属を検出する場合、従来、ICP(誘導プラズマ発光分析)等が行われていたが、試料を溶液化する前処理が必要であり、測定するまでに手間と時間とがかかる上に、分析者によって分析結果にばらつきが生じてしまう問題があった。しかしながら、蛍光X線分析は、前処理せずとも測定が可能であり、分析結果もICPに比べて分析者によるばらつきが小さいという利点がある。このような蛍光X線分析でも、食品中のカドミウム含有量が規制値(例えば、米の場合は0.4mg/kg以下)に対して、蛍光X線分析の検出限界は1mg/kg程度であり、十分な検出限界が得られていない。 For samples containing light elements such as rice grains and rice flour as the main component, ICP (inductively coupled plasma emission spectrometry) or the like has conventionally been performed to detect heavy metals such as cadmium contained in trace amounts, but the sample is liquefied. Pretreatment is required, and it takes time and effort to measure, and there is a problem that the analysis result varies depending on the analyst. However, the fluorescent X-ray analysis has an advantage that the measurement can be performed without pretreatment, and the analysis result has less variation depending on the analyst than the ICP. Even in such fluorescent X-ray analysis, the detection limit of fluorescent X-ray analysis is about 1 mg / kg, while the cadmium content in food is a regulated value (for example, 0.4 mg / kg or less in the case of rice). , Sufficient detection limit has not been obtained.

そこで、従来、食品等の軽元素を主成分とする試料の測定で、特にカドミウム等の比較的高エネルギーの蛍光X線を発生させる元素の規制値となる0.1mg/kgオーダーの検出限界を実現するために、試料容器に対してX線源及びX線検出器を対向するように配置させた蛍光X線分析装置が開発されている(特許文献1参照)。
この蛍光X線分析装置は、X線源及びX線検出器を試料容器により近づけることで取得するX線の感度を増加させ、さらに試料自体がX線を吸収しづらい軽元素を主成分としているため、試料容器の中でも最も感度良く測定できるX線検出器前面の領域にも十分な励起X線を照射すると共に試料容器全体も照射することで、比較的分析深さが深いカドミウム等の高エネルギーの蛍光X線を試料容器の奥側にある試料からも検出し、感度及び検出限界の向上を実現している。ここで、分析深さとは試料中の着目元素の蛍光X線が検出される深さであり、着目元素(定量しようとする元素)の蛍光X線エネルギーと試料中の主成分となるマトリックス(共存元素)とに密接に関係しており、一般的に、着目元素の蛍光X線エネルギーが高いほど、また試料中のマトリックスの平均原子番号が低いほど、分析深さが深くなる。例えば、米粒や米粉が主成分としたときの分析深さは、カドミウムで数10 mm、ヒ素で1mm程度となる。
Therefore, in the conventional measurement of samples containing light elements such as foods as the main component, the detection limit on the order of 0.1 mg / kg, which is the regulation value for elements that generate relatively high-energy fluorescent X-rays such as cadmium, has been set. In order to realize this, a fluorescent X-ray analyzer in which an X-ray source and an X-ray detector are arranged so as to face each other with respect to the sample container has been developed (see Patent Document 1).
This fluorescent X-ray analyzer increases the sensitivity of the X-rays obtained by bringing the X-ray source and the X-ray detector closer to the sample container, and further, the sample itself contains a light element that is difficult to absorb X-rays as a main component. Therefore, by irradiating the area in front of the X-ray detector, which can measure with the highest sensitivity in the sample container, with sufficient excited X-rays and also irradiating the entire sample container, high energy such as cadmium, which has a relatively deep analysis depth. X-ray fluorescence is also detected from the sample at the back of the sample container, and the sensitivity and detection limit are improved. Here, the analysis depth is the depth at which the fluorescent X-ray of the element of interest in the sample is detected, and the fluorescent X-ray energy of the element of interest (the element to be quantified) and the matrix (coexistence) which is the main component in the sample. It is closely related to the element), and in general, the higher the fluorescent X-ray energy of the element of interest and the lower the average atomic number of the matrix in the sample, the deeper the analysis depth. For example, when rice grains or rice flour are the main components, the analysis depth is about several tens of mm for cadmium and about 1 mm for arsenic.

また、カドミウム等よりも比較的低エネルギーの蛍光X線を発生させるヒ素(As)等の元素を測定する場合、試料容器の奥側の試料で発生した蛍光X線は試料容器内で吸収されて感度向上に寄与しない上、その蛍光X線より高エネルギーの散乱X線は吸収されずにX線検出器に入射してバックグラウンド強度を増加させてしまうノイズとなることから、試料容器及び配置を変更することで、カドミウム等よりも比較的低エネルギーの蛍光X線を発生させる元素を感度良く測定する蛍光X線分析装置が開発されている(特許文献2参照)。 In addition, when measuring elements such as arsenic (As) that generate fluorescent X-rays with relatively lower energy than cadmium, the fluorescent X-rays generated in the sample at the back of the sample container are absorbed in the sample container. In addition to not contributing to the improvement of sensitivity, scattered X-rays with higher energy than the fluorescent X-rays are not absorbed and become noise that enters the X-ray detector and increases the background intensity. By changing this, a fluorescent X-ray analyzer has been developed that measures an element that generates fluorescent X-rays having a relatively lower energy than that of cadmium or the like with high sensitivity (see Patent Document 2).

特許第4874118号公報Japanese Patent No. 4874118 特許第4854005号公報Japanese Patent No. 4854005

上記従来の技術には、以下の課題が残されている。
すなわち、上記従来の蛍光X線分析装置では、例えば分析深さの異なる元素(例えば、カドミウムとヒ素)をどちらも感度良く測定しようとすると、互いに形状の異なるカドミウム用の試料容器とヒ素用の試料容器とを別々用意して、これら異なる試料容器に試料を充填して別々に測定する必要があった。そのため、必要となる試料量が多くなると共に、試料作製や測定試料の交換等の準備時間もかかってしまうという不都合があった。
The following problems remain in the above-mentioned conventional technology.
That is, in the above-mentioned conventional fluorescent X-ray analyzer, for example, when trying to measure elements having different analysis depths (for example, cadmium and arsenic) with high sensitivity, a sample container for cadmium and a sample for arsenic having different shapes are used. It was necessary to prepare a container separately, fill these different sample containers with samples, and measure them separately. Therefore, there is an inconvenience that the required amount of sample is increased and the preparation time for sample preparation and replacement of the measured sample is also required.

本発明は、前述の課題に鑑みてなされたもので、同一の試料容器で配置の変更無く分析深さの異なる元素を測定可能な蛍光X線分析装置及び蛍光X線分析方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and provides a fluorescent X-ray analyzer and a fluorescent X-ray analysis method capable of measuring elements having different analysis depths in the same sample container without changing the arrangement. The purpose.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係る蛍光X線分析装置は、試料を収納可能な試料容器と、前記試料に対して一次X線を照射するX線源と、前記一次X線を照射された前記試料から発生する蛍光X線を検出する検出器と、前記試料容器内の前記試料に対して前記一次X線を照射する範囲を変更可能な照射範囲変更機構とを備え、前記照射範囲変更機構が、少なくとも前記検出器に対向する前記試料容器の壁面寄りの前記試料に前記一次X線を照射する部分照射と、前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射する広範囲照射とに変更可能であることを特徴とする。 The present invention has adopted the following configuration in order to solve the above problems. That is, the fluorescent X-ray analyzer according to the first invention includes a sample container that can store a sample, an X-ray source that irradiates the sample with primary X-rays, and the sample that is irradiated with the primary X-rays. The irradiation range changing mechanism comprises a detector for detecting fluorescent X-rays generated from the sample container and an irradiation range changing mechanism capable of changing the range of irradiating the sample with the primary X-rays in the sample container. Partial irradiation of the sample near the wall surface of the sample container facing the detector at least, and irradiation of the sample in the sample container with the primary X-ray in a wider area than the partial irradiation. It is characterized by being able to be changed to a wide range irradiation.

この蛍光X線分析装置では、照射範囲変更機構が、少なくとも検出器に対向する試料容器の壁面寄りの試料に一次X線を照射する部分照射と、部分照射よりも広い領域で試料容器内の試料に一次X線を照射する広範囲照射とに変更可能であるので、着目元素の分析深さに応じて照射領域を広範囲照射と部分照射とに調整可能である。すなわち、蛍光X線エネルギーが高い着目元素を測定するときは、その分析深さに合わせた広範囲照射で行い、高エネルギーの蛍光X線を試料容器の奥側にある試料からも検出し、蛍光X線エネルギーが低い着目元素を測定するときは、分析深さが浅くなるので、それに合わせて試料容器の検出器寄りの試料に部分照射を行うことで、低エネルギーの蛍光X線を検出器に近い試料から検出し、試料容器の奥側にある試料からのノイズ成分となる散乱X線を抑制し、着目元素の蛍光X線を効率よく検出することができる。 In this fluorescent X-ray analyzer, the irradiation range changing mechanism is a partial irradiation that irradiates a sample near the wall surface of the sample container facing the detector with primary X-rays, and a sample in the sample container in a wider area than the partial irradiation. Since it is possible to change to wide-range irradiation that irradiates primary X-rays, the irradiation area can be adjusted to wide-range irradiation or partial irradiation according to the analysis depth of the element of interest. That is, when measuring an element of interest having a high fluorescent X-ray energy, it is performed by irradiating a wide range according to the analysis depth, and high-energy fluorescent X-rays are also detected from the sample on the back side of the sample container, and the fluorescent X is detected. When measuring an element of interest with low line energy, the analysis depth becomes shallow, so by partially irradiating the sample near the detector in the sample container, low-energy fluorescent X-rays can be obtained closer to the detector. It is possible to detect from the sample, suppress scattered X-rays that are noise components from the sample at the back of the sample container, and efficiently detect the fluorescent X-rays of the element of interest.

第2の発明に係る蛍光X線分析装置は、第1の発明において、前記照射範囲変更機構が、前記X線源と前記試料容器との間に配され前記一次X線を透過可能な複数の透過窓を有するコリメータと、複数の前記透過窓のうち任意の一つに前記一次X線を透過可能に前記コリメータを前記X線源に対して相対的に移動可能なコリメータ移動機構とを備え、前記コリメータが、前記透過窓として、前記部分照射の際に前記検出器に近い領域に前記一次X線を照射可能な部分用透過窓と、前記広範囲照射の際に前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射可能な広範囲用透過窓とを有していることを特徴とする。
すなわち、この蛍光X線分析装置では、コリメータが、部分照射の際に検出器に近い領域に一次X線を照射可能な部分用透過窓と、広範囲照射の際に部分照射よりも広い領域で試料容器内の試料に一次X線を照射可能な広範囲用透過窓とを有しているので、コリメータ移動機構でコリメータを移動させ、一次X線を通す透過窓として広範囲用透過窓又は部分用透過窓を選択することで、広範囲照射と部分照射とを容易に切り替えることができる。
The fluorescent X-ray analyzer according to the second invention has a plurality of irradiation range changing mechanisms arranged between the X-ray source and the sample container and capable of transmitting the primary X-rays in the first invention. A collimeter having a transmission window and a collimeter moving mechanism capable of transmitting the primary X-ray to any one of the plurality of transmission windows and moving the collimeter relative to the X-ray source are provided. As the transmission window, the collimator is a transmission window for a portion capable of irradiating a region close to the detector with the primary X-ray during the partial irradiation, and a region wider than the partial irradiation during the wide range irradiation. The sample in the sample container is characterized by having a transmission window for a wide range capable of irradiating the primary X-ray.
That is, in this fluorescent X-ray analyzer, the collimator has a partial transmission window capable of irradiating a region close to the detector with primary X-rays during partial irradiation, and a sample in a region wider than the partial irradiation during wide-range irradiation. Since the sample in the container has a wide-range transmission window that can irradiate the sample with primary X-rays, the collimator is moved by the collimeter moving mechanism, and the wide-range transmission window or partial transmission window is used as a transmission window through which the primary X-rays pass. By selecting, it is possible to easily switch between wide-range irradiation and partial irradiation.

第3の発明に係る蛍光X線分析装置は、第1の発明において、前記照射範囲変更機構が、前記X線源と前記試料容器との間に配され前記一次X線を透過可能な透過窓を有するコリメータと、前記一次X線を透過可能に前記コリメータを前記X線源に対して相対的に移動可能なコリメータ移動機構とを備え、前記コリメータ移動機構が、前記広範囲照射の際に前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射可能な位置に前記透過窓を移動可能であると共に、前記部分照射の際に前記検出器に近い前記試料容器内の前記試料に前記広範囲照射よりも狭い範囲で前記一次X線を照射可能な位置に前記透過窓を移動可能であることを特徴とする。
すなわち、この蛍光X線分析装置では、コリメータ移動機構が、広範囲照射の際に部分照射よりも広い領域で一次X線を照射可能な位置に透過窓を移動可能であると共に、部分照射の際に検出器に近く広範囲照射よりも狭い範囲で一次X線を照射可能な位置に透過窓を移動可能であるので、透過窓の位置を調整するだけで、広範囲照射と部分照射とを容易に行うことが容易にできる。
In the fluorescent X-ray analyzer according to the third invention, in the first invention, the irradiation range changing mechanism is arranged between the X-ray source and the sample container, and the transmission window capable of transmitting the primary X-ray. A collimator having a The transmission window can be moved to a position where the primary X-ray can be irradiated to the sample in the sample container in a region wider than the irradiation, and in the sample container close to the detector at the time of partial irradiation. It is characterized in that the transmission window can be moved to a position where the primary X-ray can be irradiated to the sample in a narrower range than the wide range irradiation.
That is, in this fluorescent X-ray analyzer, the collimator moving mechanism can move the transmission window to a position where primary X-rays can be irradiated in a wider area than partial irradiation during wide-range irradiation, and at the time of partial irradiation. Since the transmission window can be moved to a position close to the detector and capable of irradiating primary X-rays in a narrower range than the wide range irradiation, wide range irradiation and partial irradiation can be easily performed simply by adjusting the position of the transmission window. Can be easily done.

第4の発明に係る蛍光X線分析装置は、第1から第3の発明のいずれかにおいて、前記照射範囲変更機構が、前記蛍光X線のうち着目する元素の分析深さに応じて前記広範囲照射と前記部分照射との前記一次X線の照射領域を調整可能であることを特徴とする。
すなわち、この蛍光X線分析装置では、照射範囲変更機構が、蛍光X線のうち着目する元素の分析深さに応じて広範囲照射と部分照射との一次X線の照射領域を調整可能であるので、着目元素に適した照射範囲により、広範囲照射と部分照射とで高精度な分析が可能になる。
In any one of the first to third inventions, the fluorescent X-ray analyzer according to the fourth invention has the wide range according to the analysis depth of the element of interest among the fluorescent X-rays by the irradiation range changing mechanism. It is characterized in that the irradiation region of the primary X-ray between the irradiation and the partial irradiation can be adjusted.
That is, in this fluorescent X-ray analyzer, the irradiation range changing mechanism can adjust the irradiation region of the primary X-ray between wide-range irradiation and partial irradiation according to the analysis depth of the element of interest among the fluorescent X-rays. Depending on the irradiation range suitable for the element of interest, high-precision analysis is possible with wide-range irradiation and partial irradiation.

第5の発明に係る蛍光X線分析装置は、第1から第4の発明のいずれかにおいて、前記試料容器が、前記一次X線が透過可能な第1の壁面と前記蛍光X線が透過可能な第2の壁面とを有し、前記X線源が、前記第1の壁面に隣接配置されていると共に、前記検出器が、前記第2の壁面に隣接配置され、前記照射範囲変更機構が、前記部分照射の際に、前記第2の壁面の内面近傍に前記一次X線を照射することを特徴とする。
すなわち、この蛍光X線分析装置では、検出器が、第2の壁面に隣接配置され、照射範囲変更機構が、部分照射の際に、第2の壁面の内面近傍に一次X線を照射するので、試料容器の奥側の試料から散乱X線を発生させずに、第2の壁面の内面近傍にある試料から放射状に発生する蛍光X線のみを検出器が効率的に測定することができる。
In any one of the first to fourth inventions, the fluorescent X-ray analyzer according to the fifth invention allows the sample container to transmit the primary wall surface through which the primary X-rays can pass and the fluorescent X-rays. The X-ray source is arranged adjacent to the first wall surface, the detector is arranged adjacent to the second wall surface, and the irradiation range changing mechanism is provided. It is characterized in that the primary X-ray is irradiated to the vicinity of the inner surface of the second wall surface at the time of the partial irradiation.
That is, in this fluorescent X-ray analyzer, the detector is arranged adjacent to the second wall surface, and the irradiation range changing mechanism irradiates the vicinity of the inner surface of the second wall surface with primary X-rays at the time of partial irradiation. The detector can efficiently measure only fluorescent X-rays generated radially from the sample near the inner surface of the second wall surface without generating scattered X-rays from the sample on the back side of the sample container.

第6の発明に係る蛍光X線分析装置は、第1から第5の発明のいずれかにおいて、前記試料が、軽元素を主成分とし、前記照射範囲変更機構が、前記試料中の元素のうちCd,Sn,Sb,Baの少なくとも一つを検出する際に前記広範囲照射に切り替え、前記試料中の元素のうちAs,Pb,Hg,Brの少なくとも一つを検出する際に前記部分照射に切り替え可能であることを特徴とする。
すなわち、この蛍光X線分析装置では、照射範囲変更機構が、試料中の元素のうち比較的高エネルギーのCd,Sn,Sb,Baの少なくとも一つを検出する際に広範囲照射に切り替え、試料中の元素のうち前記Cd,Sn,Sb,Baよりも低エネルギーであるAs,Pb,Hg,Brの少なくとも一つを検出する際に部分照射に切り替え可能であるので、Cd,Sn,Sb,Baの少なくとも一つと、As,Pb,Hg,Brの少なくとも一つとを同一の試料容器で配置を変更することなく、感度良く測定することができる。
In any one of the first to fifth inventions, the fluorescent X-ray analyzer according to the sixth invention has the sample as a main component of a light element, and the irradiation range changing mechanism is among the elements in the sample. Switch to the wide range irradiation when detecting at least one of Cd, Sn, Sb, Ba, and switch to the partial irradiation when detecting at least one of As, Pb, Hg, Br among the elements in the sample. It is characterized by being possible.
That is, in this fluorescent X-ray analyzer, the irradiation range changing mechanism switches to wide-range irradiation when detecting at least one of relatively high-energy Cd, Sn, Sb, and Ba among the elements in the sample, and is in the sample. Since it is possible to switch to partial irradiation when detecting at least one of As, Pb, Hg, Br, which has a lower energy than the above-mentioned Cd, Sn, Sb, Ba among the elements of Cd, Sn, Sb, Ba. At least one of As, Pb, Hg, and Br can be measured with high sensitivity in the same sample container without changing the arrangement.

第7の発明に係る蛍光X線分析装置は、第1から第6の発明のいずれかにおいて、前記試料が、米粒,米粉,又は流動性の固体若しくは液体であることを特徴とする。
すなわち、この蛍光X線分析装置では、試料が、米粒,米粉,又は流動性の固体若しくは液体(例えば、お粥)である場合、米粒,米粉,又は流動性の固体若しくは液体に含まれる重金属のうち分析深さの異なる複数の元素を試料容器及び配置を変更することなく、感度良く測定することができる。
The fluorescent X-ray analyzer according to the seventh aspect of the invention is characterized in that, in any one of the first to sixth aspects, the sample is rice grain, rice flour, or a fluid solid or liquid.
That is, in this fluorescent X-ray analyzer, when the sample is rice grains, rice flour, or a fluid solid or liquid (for example, porridge), rice grains, rice flour, or heavy metals contained in the fluid solid or liquid. Of these, a plurality of elements having different analysis depths can be measured with high sensitivity without changing the sample container and arrangement.

第8の発明に係る蛍光X線分析方法は、試料容器内の試料に対してX線源から一次X線を照射し前記試料から発生する蛍光X線を検出器で検出する蛍光X線分析方法であって、少なくとも前記検出器に対向する前記試料容器の壁面寄りの前記試料に前記一次X線を照射する部分照射工程と、前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射する広範囲照射工程とを有していることを特徴とする。
すなわち、この蛍光X線分析方法では、少なくとも検出器に対向する試料容器の壁面寄りの試料に一次X線を照射する部分照射工程と、部分照射よりも広い領域で試料容器内の試料に一次X線を照射する広範囲照射工程とを有しているので、同一の試料容器のまま、広範囲照射工程で分析深さの深い元素を感度良く測定することができると共に、部分照射工程で分析深さの浅い元素を感度良く測定することができる。
The fluorescent X-ray analysis method according to the eighth invention is a fluorescent X-ray analysis method in which a sample in a sample container is irradiated with primary X-rays from an X-ray source and fluorescent X-rays generated from the sample are detected by a detector. The partial irradiation step of irradiating the sample near the wall surface of the sample container facing the detector at least with the primary X-ray, and the sample in the sample container in a region wider than the partial irradiation. It is characterized by having a wide range irradiation step of irradiating primary X-rays.
That is, in this fluorescent X-ray analysis method, at least the partial irradiation step of irradiating the sample near the wall surface of the sample container facing the detector with the primary X-ray, and the primary X to the sample in the sample container in a wider area than the partial irradiation. Since it has a wide-range irradiation step of irradiating lines, it is possible to measure elements with a deep analysis depth in the wide-range irradiation step with high sensitivity while keeping the same sample container, and in the partial irradiation step, the analysis depth can be measured. Shallow elements can be measured with high sensitivity.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る蛍光X線分析装置及び蛍光X線分析方法によれば、少なくとも検出器に対向する試料容器の壁面寄りの試料に一次X線を照射する部分照射と、部分照射よりも広い領域で試料容器内の試料に一次X線を照射する広範囲照射とに変更可能であるので、分析深さの深い元素を測定するときは広範囲照射を行うことで、高エネルギーの蛍光X線を試料容器の奥側にある試料からも検出し、分析深さの浅い元素を測定するときは部分照射を行うことで、低エネルギーの蛍光X線を検出器に最も近い試料から検出し、試料容器の奥側からの高エネルギーの散乱X線の発生によるノイズを抑制して効率的に低エネルギーの蛍光X線を検出することができる。
したがって、本発明の蛍光X線分析装置及び蛍光X線分析方法では、試料容器及び配置の変更なく、分析深さの異なる複数の元素の測定が良好な感度で可能になり、必要となる試料量や測定の準備時間等を約半分に低減することができる。
According to the present invention, the following effects are obtained.
That is, according to the fluorescent X-ray analyzer and the fluorescent X-ray analysis method according to the present invention, at least partial irradiation for irradiating a sample near the wall surface of the sample container facing the detector with primary X-rays is wider than partial irradiation. Since it is possible to change to wide-range irradiation in which the sample in the sample container is irradiated with primary X-rays in the region, high-energy fluorescent X-rays can be sampled by performing wide-range irradiation when measuring elements with a deep analysis depth. It is also detected from the sample on the back side of the container, and when measuring elements with a shallow analysis depth, partial irradiation is performed to detect low-energy fluorescent X-rays from the sample closest to the detector, and the sample container It is possible to efficiently detect low-energy fluorescent X-rays by suppressing noise caused by the generation of high-energy scattered X-rays from the back side.
Therefore, in the fluorescent X-ray analyzer and the fluorescent X-ray analysis method of the present invention, it is possible to measure a plurality of elements having different analysis depths with good sensitivity without changing the sample container and arrangement, and the required sample amount. And the preparation time for measurement can be reduced to about half.

本発明に係る蛍光X線分析装置及び蛍光X線分析方法の第1実施形態において、広範囲照射工程(a)及び部分照射工程(b)を示すX線光学系の模式図である。FIG. 3 is a schematic diagram of an X-ray optical system showing a wide range irradiation step (a) and a partial irradiation step (b) in the first embodiment of the fluorescent X-ray analyzer and the fluorescent X-ray analysis method according to the present invention. 第1実施形態において、コリメータを示す斜視図である。In the first embodiment, it is a perspective view which shows the collimator. 本発明に係る蛍光X線分析装置及び蛍光X線分析方法の第2実施形態において、広範囲照射工程(a)及び部分照射工程(b)を示すX線光学系の模式図である。FIG. 3 is a schematic diagram of an X-ray optical system showing a wide range irradiation step (a) and a partial irradiation step (b) in the second embodiment of the fluorescent X-ray analyzer and the fluorescent X-ray analysis method according to the present invention.

以下、本発明に係る蛍光X線分析装置及び蛍光X線分析方法の第1実施形態を、図1及び図2を参照しながら説明する。 Hereinafter, the first embodiment of the fluorescent X-ray analyzer and the fluorescent X-ray analysis method according to the present invention will be described with reference to FIGS. 1 and 2.

本実施形態の蛍光X線分析装置1は、図1に示すように、粒体状又は粉体状の試料Sを収納可能な試料容器4と、試料Sに対して一次X線X1を照射するX線源2と、一次X線X1を照射された試料Sから発生する蛍光X線X2を検出する検出器3と、試料容器4内の試料Sに対して一次X線X1を照射する範囲を変更可能な照射範囲変更機構5とを備えている。 As shown in FIG. 1, the fluorescent X-ray analyzer 1 of the present embodiment irradiates the sample container 4 capable of storing the sample S in the form of granules or powder and the primary X-ray X1 with respect to the sample S. The range of irradiating the X-ray source 2, the detector 3 for detecting the fluorescent X-ray X2 generated from the sample S irradiated with the primary X-ray X1, and the sample S in the sample container 4 with the primary X-ray X1. It is equipped with a changeable irradiation range changing mechanism 5.

上記照射範囲変更機構5は、図1の(b)に示すように、少なくとも検出器3に対向する試料容器4の第2の壁面4b寄りの試料Sに一次X線X1を照射する部分照射と、図1の(a)に示すように、部分照射よりも広い領域A1で試料容器4内の試料Sに一次X線X1を照射する広範囲照射とに変更可能である。
なお、上記部分照射の際は、試料容器4内の試料Sのうち検出器3に近い領域A2に一次X線X1を照射する。
As shown in FIG. 1B, the irradiation range changing mechanism 5 is a partial irradiation that irradiates the sample S near the second wall surface 4b of the sample container 4 facing the detector 3 with the primary X-ray X1. As shown in FIG. 1A, it is possible to change to wide-range irradiation in which the sample S in the sample container 4 is irradiated with the primary X-ray X1 in a region A1 wider than the partial irradiation.
At the time of the partial irradiation, the primary X-ray X1 is irradiated to the region A2 of the sample S in the sample container 4 near the detector 3.

すなわち、照射範囲変更機構5は、図1及び図2に示すように、X線源2と試料容器4との間に配され一次X線X1を透過可能な複数の透過窓6a~6cを有するコリメータ6と、複数の透過窓6a~6cのうち任意の一つに一次X線X1を透過可能にコリメータ6をX線源2に対して相対的に移動可能なコリメータ移動機構7とを備えている。 That is, as shown in FIGS. 1 and 2, the irradiation range changing mechanism 5 has a plurality of transmission windows 6a to 6c arranged between the X-ray source 2 and the sample container 4 and capable of transmitting the primary X-ray X1. A collimator 6 and a collimator moving mechanism 7 that can move the collimator 6 relative to the X-ray source 2 so that the primary X-ray X1 can pass through any one of the plurality of transmission windows 6a to 6c are provided. There is.

上記コリメータ6は、一次X線X1が透過しないような元素や厚さの金属板で形成され、透過窓として、部分照射の際に検出器3に近い領域A2に一次X線X1を照射可能な部分用透過窓6bと、広範囲照射の際に部分照射よりも広い領域A1で試料容器4内の試料Sに一次X線X1を照射可能な広範囲用透過窓6aとを有している。なお、本実施形態では、部分照射よりも広い領域A1が試料容器2内の試料S全体に設定されている。 The collimator 6 is made of an element or a metal plate having a thickness that does not allow the primary X-ray X1 to pass through, and can irradiate the region A2 close to the detector 3 with the primary X-ray X1 as a transmission window during partial irradiation. It has a partial transmission window 6b and a wide-range transmission window 6a capable of irradiating the sample S in the sample container 4 with the primary X-ray X1 in a region A1 wider than the partial irradiation during wide-range irradiation. In the present embodiment, the region A1 wider than the partial irradiation is set for the entire sample S in the sample container 2.

上記広範囲用透過窓6aは、X線源2からの一次X線X1が大きな立体角で試料容器4内の試料S全体に照射されるように開口径が設定され、上記部分用透過窓6bは、試料容器4内の試料Sに小さな立体角で部分的に一次X線X1が照射されるように広範囲用透過窓6aに比べて開口径が小さく設定されている。
広範囲用透過窓6aは、コリメータ6の軸線Cに中心軸が一致しているが、部分用透過窓6bは、中心軸を軸線Cからずらして形成されている。なお、コリメータ6の軸線Cは、一次X線X1の光軸と一致するように設定されている。また、コリメータ6の軸線Cは、図1の紙面上に対して垂直方向に広範囲用透過窓6aが奥側になるように設定されている。
The wide-range transmission window 6a has an opening diameter set so that the primary X-ray X1 from the X-ray source 2 irradiates the entire sample S in the sample container 4 at a large solid angle. The opening diameter is set smaller than that of the wide-range transmission window 6a so that the sample S in the sample container 4 is partially irradiated with the primary X-ray X1 at a small solid angle.
The central axis of the wide-range transmission window 6a coincides with the axis C of the collimator 6, but the partial transmission window 6b is formed so that the central axis is offset from the axis C. The axis C of the collimator 6 is set to coincide with the optical axis of the primary X-ray X1. Further, the axis C of the collimator 6 is set so that the wide-range transmission window 6a is on the back side in the direction perpendicular to the paper surface of FIG.

また、コリメータ6は、広範囲用透過窓6a及び部分用透過窓6bの他に、軸線Cからずれた位置に開口した透過窓6cが形成されている。
上記透過窓6a~6cは、いずれも一次X線X1の照射領域や照射方向に対応して開口形状及び開口径や配置を設定した貫通孔である。
なお、これら透過窓6a~6cに、バックグランド強度を低下させるためにバックグランドとなるエネルギー帯域の一次X線を吸収するMoやZr等の一次フィルタを設置しても構わない。
Further, in the collimator 6, in addition to the wide-range transmission window 6a and the partial transmission window 6b, a transmission window 6c opened at a position deviated from the axis C is formed.
The transmission windows 6a to 6c are through holes in which the opening shape, opening diameter, and arrangement are set according to the irradiation region and irradiation direction of the primary X-ray X1.
In addition, in these transmission windows 6a to 6c, a primary filter such as Mo or Zr that absorbs primary X-rays in the energy band serving as a background may be installed in order to reduce the background strength.

上記コリメータ6は、試料容器4とX線源2との間で移動可能に設置されている。
上記コリメータ移動機構7は、モータ等で構成され、コリメータ6を軸線C方向に移動可能であると共に、コリメータ6とX線源2との距離を調整可能である。すなわち、コリメータ移動機構7は、コリメータ6を移動させて透過窓6a~6cのいずれかをX線源2に対向配置することができる。
The collimator 6 is movably installed between the sample container 4 and the X-ray source 2.
The collimator moving mechanism 7 is composed of a motor or the like, and the collimator 6 can be moved in the axis C direction, and the distance between the collimator 6 and the X-ray source 2 can be adjusted. That is, the collimator moving mechanism 7 can move the collimator 6 to arrange any of the transmission windows 6a to 6c facing the X-ray source 2.

上記試料容器4は、一次X線X1が透過可能な第1の壁面4aと蛍光X線X2が透過可能な第2の壁面4bとを有している。これら第1の壁面4aと第2の壁面4bとは、試料容器4のV字状の底面を構成している。
試料容器4は、比較的X線が透過し易いプラスチック等の有機材料やアルミニウム,シリコン,マグネシウム等の材質で形成されている。
なお、試料容器4は、図示しない試料台によって支持されている。例えば、試料台に開けられた設置孔に、試料容器4を上から挿入し、試料容器4の上部が設置孔に当接することで、第1の壁面4a及び第2の壁面4bが下方に露出した状態で試料容器4が設置される。
The sample container 4 has a first wall surface 4a through which primary X-rays X1 can pass and a second wall surface 4b through which fluorescent X-rays X2 can pass. The first wall surface 4a and the second wall surface 4b form a V-shaped bottom surface of the sample container 4.
The sample container 4 is made of an organic material such as plastic, which is relatively easy to transmit X-rays, or a material such as aluminum, silicon, or magnesium.
The sample container 4 is supported by a sample table (not shown). For example, the sample container 4 is inserted into the installation hole made in the sample table from above, and the upper part of the sample container 4 abuts on the installation hole, so that the first wall surface 4a and the second wall surface 4b are exposed downward. The sample container 4 is installed in this state.

上記X線源2は、第1の壁面4aに対向で隣接配置されていると共に、検出器3が、第2の壁面4bに隣接配置されている。すなわち、X線源2は、第1の壁面4aの外面に近接して対向配置されていると共に、検出器3は、第2の壁面4bの外面に近接して対向配置され、それぞれ試料容器4の下方に配置されている。
このように第2の壁面4bに対向で検出器3が隣接配置されているので、照射範囲変更機構5は、部分照射の際に、第2の壁面4bの内面近傍に一次X線X1を照射するように設定されている。特に、第1の壁面4aと第2の壁面4bとがV字状底面を構成しているので、X線源2と検出器3とが干渉しないので、試料容器4の各壁面に近接して配置することができる。さらに、部分照射の際に、第1の壁面4a側から第2の壁面4bの内面近傍に向けて一次X線X1を部分的に照射し易い。
The X-ray source 2 is arranged adjacent to the first wall surface 4a so as to face the first wall surface 4a, and the detector 3 is arranged adjacent to the second wall surface 4b. That is, the X-ray source 2 is arranged close to the outer surface of the first wall surface 4a and the detector 3 is arranged to face each other close to the outer surface of the second wall surface 4b, respectively. It is located below.
Since the detector 3 is arranged adjacent to the second wall surface 4b in this way, the irradiation range changing mechanism 5 irradiates the vicinity of the inner surface of the second wall surface 4b with the primary X-ray X1 at the time of partial irradiation. It is set to do. In particular, since the first wall surface 4a and the second wall surface 4b form a V-shaped bottom surface, the X-ray source 2 and the detector 3 do not interfere with each other, so that they are close to each wall surface of the sample container 4. Can be placed. Further, at the time of partial irradiation, it is easy to partially irradiate the primary X-ray X1 from the side of the first wall surface 4a toward the vicinity of the inner surface of the second wall surface 4b.

本実施形態では、試料Sが、C,O,H,N等の軽元素を主成分としたものであり、例えば米粒又は米粉,小麦粉等の穀物や豆類等の食品,医療品,化学工業製品等である。
なお、軽元素は、一次X線X1が透過しやすい元素であり、原子番号が小さい元素ほどX線の透過率が高く、C,O,H,N又はAl,Mg等の元素や、有機材料も含むものである。
In the present embodiment, the sample S is mainly composed of light elements such as C, O, H, and N, and is, for example, rice grains or grains such as rice flour and wheat flour, foods such as beans, medical products, and chemical industrial products. And so on.
The light element is an element through which the primary X-ray X1 is easily transmitted, and the element having a smaller atomic number has a higher transmittance of X-rays, and is an element such as C, O, H, N or Al, Mg, or an organic material. Also includes.

上記照射範囲変更機構5は、特に、試料S中の元素のうち蛍光X線のエネルギーが比較的高い、例えば、20~30 KeVあたりのエネルギーを発生させるCd,Sn,Sb,Ba等の元素の微量重金属を検出する際に広範囲に照射し、試料S中の元素のうち前記Cd等より低エネルギーである、例えば、10 KeVあたりのエネルギーを発生させるAs,Pb,Hg,Br等の元素の微量重金属を検出する際に検出器3寄りに狭めて部分照射することが可能である。
これらの検出対象である着目元素は、少なくとも主成分とする元素よりも大きなエネルギーの蛍光X線を発生する元素である。
The irradiation range changing mechanism 5 is particularly composed of elements such as Cd, Sn, Sb, and Ba that generate energy per 20 to 30 KeV, which has a relatively high energy of fluorescent X-rays among the elements in the sample S. A trace amount of elements such as As, Pb, Hg, Br that generate energy per 10 KeV, which is lower energy than Cd etc. among the elements in sample S by irradiating a wide range when detecting trace heavy metals. When detecting heavy metals, it is possible to narrow the area closer to the detector 3 and partially irradiate the metal.
These elements of interest to be detected are elements that generate fluorescent X-rays having at least a higher energy than the element containing the main component.

上記X線源2は、一次X線X1を照射可能なX線管球2aを備え、管球2a内のフィラメント(陰極)から発生した熱電子がフィラメント(陰極)とターゲット(陽極)との間に印加された電圧により加速されターゲットのW(タングステン)、Mo(モリブデン)、Cr(クロム)などに衝突して発生したX線を一次X線X1としてベリリウム箔などの出射窓(図示略)から出射するものである。 The X-ray source 2 includes an X-ray tube 2a capable of irradiating primary X-ray X1, and thermions generated from the filament (cathode) in the tube 2a are between the filament (cathode) and the target (anode). X-rays that are accelerated by the voltage applied to the target and collide with the target W (tungsten), Mo (molybdenum), Cr (chromium), etc. are used as primary X-rays X1 from an emission window (not shown) such as beryllium foil. It emits.

上記検出器3は、X線入射窓(図示略)を介して半導体検出素子(例えば、pin構造ダイオードであるSi(シリコン)素子)(図示略)を備え、蛍光X線X2が半導体検出素子にX線光子1個が入射すると、このX線光子1個に対応する電流パルスが発生するものである。この電流パルスの瞬間的な電流値が、入射した特性X線のエネルギーに比例している。また、検出器3は、半導体検出素子で発生した電流パルスを電圧パルスに変換、増幅し、信号として出力するように設定されている。
なお、試料容器4と検出器3との間には、X線源2からの一次X線X1が直接検出器3に入射しないようにシールド板8を備えている。
The detector 3 includes a semiconductor detection element (for example, a Si (silicon) element which is a pin structure diode) (not shown) via an X-ray incident window (not shown), and the fluorescent X-ray X2 is used as a semiconductor detection element. When one X-ray photon is incident, a current pulse corresponding to this one X-ray photon is generated. The instantaneous current value of this current pulse is proportional to the energy of the incident characteristic X-ray. Further, the detector 3 is set to convert a current pulse generated by the semiconductor detection element into a voltage pulse, amplify it, and output it as a signal.
A shield plate 8 is provided between the sample container 4 and the detector 3 so that the primary X-ray X1 from the X-ray source 2 does not directly enter the detector 3.

また、本実施形態の蛍光X線分析装置1は、他に分析器(図示略)と制御部(図示略)とをさらに備えている。
上記分析器は、上記信号から電圧パルスの波高を得てエネルギースペクトルを生成する波高分析器(マルチチャンネルアナライザー)である。
上記制御部は、CPU等で構成されたコンピュータであり、ディスプレイ等にも接続され、分析結果をディスプレイに表示する機能を有している。
In addition, the fluorescent X-ray analyzer 1 of the present embodiment further includes an analyzer (not shown) and a control unit (not shown).
The analyzer is a wave height analyzer (multi-channel analyzer) that obtains the wave height of a voltage pulse from the signal and generates an energy spectrum.
The control unit is a computer composed of a CPU or the like, is connected to a display or the like, and has a function of displaying an analysis result on the display.

次に、本実施形態の蛍光X線分析装置1を用いた蛍光X線分析方法について、以下に説明する。 Next, the fluorescent X-ray analysis method using the fluorescent X-ray analyzer 1 of the present embodiment will be described below.

まず、上記試料容器4内に粒体状又は粉体状の試料S(例えば、米粒又は米粉)を適量充填し、試料Sが充填された試料容器4を試料台にセットする。
本実施形態の蛍光X線分析方法では、試料容器4内の試料Sのうち検出器3に最も近い領域A2に一次X線X1を照射する部分照射工程と、部分照射よりも広い領域A1で試料容器4内の試料Sに一次X線X1を照射する広範囲照射工程とを有し、部分照射工程と広範囲照射工程とを切り替えて分析を行う。
First, an appropriate amount of a granular or powdery sample S (for example, rice grain or rice flour) is filled in the sample container 4, and the sample container 4 filled with the sample S is set on the sample table.
In the fluorescent X-ray analysis method of the present embodiment, the partial irradiation step of irradiating the region A2 closest to the detector 3 of the sample S in the sample container 4 with the primary X-ray X1 and the sample in the region A1 wider than the partial irradiation. It has a wide-range irradiation step of irradiating the sample S in the container 4 with the primary X-ray X1, and the analysis is performed by switching between the partial irradiation step and the wide-range irradiation step.

試料S中の元素のうち分析深さの深い元素、例えば、Cd,Sn,Sb,Ba等を着目元素として検出する際には、図1の(a)に示すように、広範囲照射工程により測定を行う。
すなわち、広範囲照射工程では、照射範囲変更機構5によりX線源2に広範囲用透過窓6aが対向し、出射窓を通して出射される一次X線X1の光軸XCが広範囲用透過窓6aの中心軸と同軸になるようにコリメータ6を移動させる。なお、検出器3の中心軸は、一次X線X1の光軸XCと直角に交差するように設定されている。
When detecting an element having a deep analysis depth, for example, Cd, Sn, Sb, Ba, etc. as an element of interest among the elements in the sample S, it is measured by a wide range irradiation step as shown in FIG. 1 (a). I do.
That is, in the wide-range irradiation step, the wide-range transmission window 6a faces the X-ray source 2 by the irradiation range changing mechanism 5, and the optical axis XC of the primary X-ray X1 emitted through the emission window is the central axis of the wide-range transmission window 6a. The collimator 6 is moved so as to be coaxial with. The central axis of the detector 3 is set so as to intersect the optical axis XC of the primary X-ray X1 at a right angle.

この状態で、X線源2から一次X線X1が出射されると、一次X線X1が広範囲用透過窓6aを通して第1の壁面4a全体に広い立体角を持って放射され、試料容器4内の試料S全体に照射される。特に、米粒などの軽元素を主成分とする試料Sでは、一次X線X1が内部深くまで透過され試料Sの内部全体に着目元素を含めて励起させて、蛍光X線X2を発生させる。そのため、試料容器4内の試料S全体から発生した蛍光X線X2が第2の壁面4bに隣接した検出器3に入射可能である。このとき、検出器3は、高エネルギーの蛍光X線X2を試料容器4の奥側にある試料Sからも検出することができる。 In this state, when the primary X-ray X1 is emitted from the X-ray source 2, the primary X-ray X1 is radiated through the wide-range transmission window 6a over the entire first wall surface 4a with a wide solid angle and inside the sample container 4. The entire sample S of the above is irradiated. In particular, in the sample S containing a light element such as a rice grain as a main component, the primary X-ray X1 is transmitted deep inside and the entire inside of the sample S is excited including the element of interest to generate fluorescent X-ray X2. Therefore, the fluorescent X-ray X2 generated from the entire sample S in the sample container 4 can be incident on the detector 3 adjacent to the second wall surface 4b. At this time, the detector 3 can also detect the high-energy fluorescent X-ray X2 from the sample S located at the back side of the sample container 4.

次に、試料S中の元素のうち分析深さの浅い元素、特にAs,Pb,Hg,Brの少なくとも一つを着目元素として検出する際には、図1の(b)に示すように、部分照射工程により測定を行う。
すなわち、部分照射工程では、照射範囲変更機構5によりX線源2に部分用透過窓6bが対向し、一次X線X1の光軸XCに対して部分用透過窓6bの中心軸がずれるようにコリメータ6を移動させる。このとき、コリメータ6とX線源2との位置関係は、広範囲照射工程と同じであるが、試料容器4に対して一次X線X1の照射方向と照射の立体角とが変わり、一次X線X1の照射方向は、部分用透過窓6bによって第2の壁面4bの内面近傍に向けられると共に、照射径は広範囲照射工程よりも絞られる。
Next, when detecting an element having a shallow analysis depth, particularly at least one of As, Pb, Hg, and Br as the element of interest among the elements in the sample S, as shown in FIG. 1 (b), Measurement is performed by a partial irradiation process.
That is, in the partial irradiation step, the partial transmission window 6b faces the X-ray source 2 by the irradiation range changing mechanism 5, and the central axis of the partial transmission window 6b is displaced with respect to the optical axis XC of the primary X-ray X1. Move the collimator 6. At this time, the positional relationship between the collimator 6 and the X-ray source 2 is the same as in the wide-range irradiation step, but the irradiation direction of the primary X-ray X1 and the irradiation stereoscopic angle of the sample container 4 are different, and the primary X-ray is emitted. The irradiation direction of X1 is directed to the vicinity of the inner surface of the second wall surface 4b by the partial transmission window 6b, and the irradiation diameter is narrowed compared to the wide range irradiation step.

この状態で、X線源2から一次X線X1が出射窓を通して出射されると、一次X線X1が部分用透過窓6bを通して第1の壁面4aの第2の壁面4b寄りに狭い立体角を持って出射され、試料容器4内の第2の壁面4bから着目元素の分析深さに応じた領域A2にある試料Sに照射される。そのため、第2の壁面4bの内面近傍(領域A2)にある試料Sから発生した蛍光X線X2が、第2の壁面4bに隣接した検出器3に入射される。このとき、検出器3は、低エネルギーの蛍光X線X2を検出器3に近い試料Sから検出することができる。また、第2の壁面4bから離れた試料容器4の奥側には一次X線X1が照射されないので、その領域からの蛍光X線が発生せず、ノイズとなる高エネルギーの散乱X線を抑制することができる。 In this state, when the primary X-ray X1 is emitted from the X-ray source 2 through the emission window, the primary X-ray X1 passes through the partial transmission window 6b and forms a narrow solid angle toward the second wall surface 4b of the first wall surface 4a. It is emitted from the sample container 4 and is irradiated from the second wall surface 4b in the sample container 4 to the sample S in the region A2 according to the analysis depth of the element of interest. Therefore, the fluorescent X-ray X2 generated from the sample S near the inner surface (region A2) of the second wall surface 4b is incident on the detector 3 adjacent to the second wall surface 4b. At this time, the detector 3 can detect the low-energy fluorescent X-ray X2 from the sample S close to the detector 3. Further, since the primary X-ray X1 is not irradiated to the inner side of the sample container 4 away from the second wall surface 4b, fluorescent X-rays are not generated from that region, and high-energy scattered X-rays that become noise are suppressed. can do.

このように本実施形態の蛍光X線分析装置1では、照射範囲変更機構5が、少なくとも検出器3に対向する試料容器4の第2の壁面4b寄りの試料Sに一次X線X1を照射する部分照射と、部分照射よりも広い領域A1で試料容器4内の試料Sに一次X線X1を照射する広範囲照射とに変更可能であるので、着目元素の分析深さに応じて照射領域を広範囲照射と部分照射とに調整可能である。 As described above, in the fluorescent X-ray analyzer 1 of the present embodiment, the irradiation range changing mechanism 5 irradiates the sample S near the second wall surface 4b of the sample container 4 facing the detector 3 with the primary X-ray X1. Since it is possible to change between partial irradiation and wide-range irradiation in which the sample S in the sample container 4 is irradiated with the primary X-ray X1 in a region A1 wider than the partial irradiation, the irradiation region is wide-range according to the analysis depth of the element of interest. It can be adjusted to irradiation and partial irradiation.

すなわち、蛍光X線エネルギーが高い着目元素を測定するときは、その分析深さに合わせた広範囲照射で行い、高エネルギーの蛍光X線を試料容器4の奥側にある試料Sからも検出し、蛍光X線エネルギーが低い着目元素を測定するときは、分析深さが浅くなるので、それに合わせて試料容器4の検出器3寄りの試料Sに部分照射を行うことで、低エネルギーの蛍光X線X2を検出器3に近い試料Sから検出し、試料容器4の奥側にある試料Sからのノイズ成分となる散乱X線を抑制し、着目元素の蛍光X線X2を効率よく検出することができる。
このように、測定する元素の分析深さに合わせて照射領域を切り替えて一次X線X1のビームを照射することで、効率よく着目元素の蛍光X線X2を検出器3で効率的に検出することができる。
That is, when measuring an element of interest having a high fluorescent X-ray energy, it is performed by irradiating a wide range according to the analysis depth, and high-energy fluorescent X-rays are also detected from the sample S on the back side of the sample container 4. When measuring an element of interest with low fluorescent X-ray energy, the analysis depth becomes shallow. Therefore, by partially irradiating the sample S near the detector 3 of the sample container 4, low-energy fluorescent X-rays are emitted. It is possible to detect X2 from the sample S near the detector 3, suppress scattered X-rays that are noise components from the sample S at the back of the sample container 4, and efficiently detect the fluorescent X-ray X2 of the element of interest. can.
In this way, by switching the irradiation region according to the analysis depth of the element to be measured and irradiating the beam of the primary X-ray X1, the fluorescent X-ray X2 of the element of interest is efficiently detected by the detector 3. be able to.

特に、照射範囲変更機構5が、試料S中の元素のうちCd,Sn,Sb,Ba等を検出する際に広範囲照射に切り替え、試料S中の元素のうちAs,Pb,Hg,Br等を検出する際に部分照射に切り替え可能であるので、Cd,Sn,Sb,Ba等と、As,Pb,Hg,Br等を同一の試料容器4で配置を変更することなく、感度良く測定することができる。 In particular, the irradiation range changing mechanism 5 switches to wide-range irradiation when detecting Cd, Sn, Sb, Ba, etc. among the elements in the sample S, and As, Pb, Hg, Br, etc. among the elements in the sample S. Since it is possible to switch to partial irradiation at the time of detection, Cd, Sn, Sb, Ba, etc. and As, Pb, Hg, Br, etc. should be measured with high sensitivity without changing the arrangement in the same sample container 4. Can be done.

このように照射範囲変更機構5が、蛍光X線X2のうち着目する元素の分析深さに応じて広範囲照射と部分照射との一次X線X1の照射領域を調整可能であるので、着目元素に適した照射範囲により、広範囲照射と部分照射とで高精度な分析が可能になる。
また、試料Sが、米粒,米粉,又は流動性の固体若しくは液体(例えば、お粥)である場合、米粒,米粉,又は流動性の固体若しくは液体に含まれる重金属のうち分析深さの異なる上記複数の元素を試料容器4及び配置を変更することなく、感度良く測定することができる。
In this way, the irradiation range changing mechanism 5 can adjust the irradiation region of the primary X-ray X1 between wide-range irradiation and partial irradiation according to the analysis depth of the element of interest in the fluorescent X-ray X2. A suitable irradiation range enables highly accurate analysis with wide-range irradiation and partial irradiation.
When the sample S is a rice grain, rice flour, or a fluid solid or liquid (for example, porridge), the above-mentioned heavy metals contained in the rice grain, rice flour, or the fluid solid or liquid have different analytical depths. A plurality of elements can be measured with high sensitivity without changing the sample container 4 and the arrangement.

また、コリメータ6が、部分照射の際に検出器3に最も近い領域A2に一次X線X1を照射可能な部分用透過窓6bと、広範囲照射の際に部分照射よりも広い領域で試料容器4内の試料Sに一次X線X1を照射可能な広範囲用透過窓6aとを有しているので、コリメータ移動機構7でコリメータ6を移動させ、一次X線X1を通す透過窓として広範囲用透過窓6a又は部分用透過窓6bを選択することで、広範囲照射と部分照射とを容易に切り替えることができる。 Further, the collimator 6 has a transmission window 6b for a portion capable of irradiating the region A2 closest to the detector 3 with the primary X-ray X1 at the time of partial irradiation, and a sample container 4 in a region wider than the partial irradiation at the time of wide-range irradiation. Since the sample S in the sample S has a wide-range transmission window 6a capable of irradiating the primary X-ray X1, the collimeter 6 is moved by the collimeter moving mechanism 7, and the wide-range transmission window is used as a transmission window through which the primary X-ray X1 passes. By selecting 6a or the partial transmission window 6b, it is possible to easily switch between wide-range irradiation and partial irradiation.

また、検出器3が、第2の壁面4bに隣接配置され、照射範囲変更機構5が、部分照射の際に、第2の壁面4bの内面近傍に一次X線X1を照射するので、第2の壁面4bの内面近傍にある試料Sから放射状に発生する蛍光X線X2を検出器3が効率的に測定することができる。
このように本実施形態の蛍光X線分析方法では、試料容器4内の試料Sのうち検出器3に最も近い領域A2に一次X線X1を照射する部分照射工程と、部分照射よりも広い領域で試料容器4内の試料Sに一次X線X1を照射する広範囲照射工程とを有し、部分照射工程と広範囲照射工程とを切り替えて分析を行うので、同一の試料容器4のまま、広範囲照射工程で分析深さの深い元素を感度良く測定することができると共に、部分照射工程で分析深さの浅い元素を感度良く測定することができる。
Further, the detector 3 is arranged adjacent to the second wall surface 4b, and the irradiation range changing mechanism 5 irradiates the vicinity of the inner surface of the second wall surface 4b with the primary X-ray X1 at the time of partial irradiation. The detector 3 can efficiently measure the fluorescent X-rays X2 generated radially from the sample S near the inner surface of the wall surface 4b.
As described above, in the fluorescent X-ray analysis method of the present embodiment, the partial irradiation step of irradiating the region A2 closest to the detector 3 in the sample S in the sample container 4 with the primary X-ray X1 and the region wider than the partial irradiation. Since the sample S in the sample container 4 has a wide-range irradiation step of irradiating the primary X-ray X1 and the analysis is performed by switching between the partial irradiation step and the wide-range irradiation step, wide-range irradiation is performed with the same sample container 4 as it is. Elements with a deep analysis depth can be measured with high sensitivity in the process, and elements with a shallow analysis depth can be measured with high sensitivity in the partial irradiation step.

次に、本発明に係る蛍光X線分析装置及び蛍光X線分析方法の第2実施形態について、図3を参照して以下に説明する。なお、以下の実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。 Next, a second embodiment of the fluorescent X-ray analyzer and the fluorescent X-ray analysis method according to the present invention will be described below with reference to FIG. In the following description of the embodiment, the same components described in the above embodiment are designated by the same reference numerals, and the description thereof will be omitted.

第2実施形態と第1実施形態との異なる点は、第1実施形態では、着目元素の分析深さに合わせた複数の透過窓6a~6cを切り替える構成であるのに対し、第2実施形態の蛍光X線分析装置21では、図3に示すように、コリメータ26が透過窓として一つの広範囲用透過窓6aだけを有し、コリメータ移動機構25が、広範囲用透過窓6aの位置を変更して広範囲照射と部分照射との変更を行っている点である。 The difference between the second embodiment and the first embodiment is that in the first embodiment, a plurality of transmission windows 6a to 6c are switched according to the analysis depth of the element of interest, whereas in the second embodiment. In the fluorescent X-ray analyzer 21, as shown in FIG. 3, the collimator 26 has only one wide-range transmission window 6a as a transmission window, and the collimator moving mechanism 25 changes the position of the wide-range transmission window 6a. The point is that the wide range irradiation and the partial irradiation are changed.

すなわち、第2実施形態では、コリメータ移動機構25が、広範囲照射の際に部分照射よりも広い領域で試料容器4内の試料Sに一次X線X1を照射可能な位置に透過窓6aを移動可能であると共に、部分照射の際に検出器3に近い試料容器4内の試料Sに広範囲照射よりも狭い範囲で一次X線X1を照射可能な位置に透過窓6aを移動可能である。 That is, in the second embodiment, the collimator moving mechanism 25 can move the transmission window 6a to a position where the primary X-ray X1 can be irradiated to the sample S in the sample container 4 in a region wider than the partial irradiation during a wide range irradiation. In addition, the transmission window 6a can be moved to a position where the primary X-ray X1 can be irradiated to the sample S in the sample container 4 near the detector 3 in a narrower range than the wide range irradiation at the time of partial irradiation.

分析深さの深い元素を着目元素として広範囲照射を行う場合は、コリメータ移動機構25が、図3の(a)に示すように、広範囲用透過窓6aの中心軸がX線源2の光軸XCに一致するようにコリメータ26を移動させる。また、分析深さの浅い元素を着目元素として部分照射を行う場合は、コリメータ移動機構25が、図3の(b)に示すように、広範囲用透過窓6aの中心軸がX線源2の光軸XCからずれるように、図中の矢印Y方向にコリメータ26を移動させる。このとき、位置がずれた広範囲用透過窓6aによって一次X線X1の一部が遮断され、第2の壁面4bから離れた試料容器4の奥側にある試料Sには一次X線X1が照射されない。 When a wide range irradiation is performed with an element having a deep analysis depth as the element of interest, the collimator moving mechanism 25 has the optical axis of the X-ray source 2 as the central axis of the wide range transmission window 6a as shown in FIG. 3A. Move the collimator 26 so that it matches the XC. Further, when partial irradiation is performed with an element having a shallow analysis depth as the element of interest, the collimator moving mechanism 25 has an X-ray source 2 as the central axis of the wide-range transmission window 6a as shown in FIG. 3 (b). The collimator 26 is moved in the Y direction of the arrow in the figure so as to deviate from the optical axis XC. At this time, a part of the primary X-ray X1 is blocked by the wide-range transmission window 6a that is displaced, and the sample S on the back side of the sample container 4 away from the second wall surface 4b is irradiated with the primary X-ray X1. Not done.

なお、この際、X線源2からの一次X線X1が試料容器4を通過しないで直接検出器3に入射しないように、X線源2と検出器3の間に障害板(図示略)を設けてもよい。
また、第2実施形態では、透過窓として一つの広範囲用透過窓6aだけを有したコリメータ26を用いているが、第1実施形態のように、複数の透過窓を有したコリメータを用い、複数の透過窓のうち広範囲用透過窓6aの位置を変更して広範囲照射だけでなく部分照射も行えるように設定しても構わない。
At this time, an obstacle plate (not shown) is provided between the X-ray source 2 and the detector 3 so that the primary X-ray X1 from the X-ray source 2 does not directly enter the detector 3 without passing through the sample container 4. May be provided.
Further, in the second embodiment, the collimeter 26 having only one wide-range transmission window 6a is used as the transmission window, but as in the first embodiment, a plurality of collimeters having a plurality of transmission windows are used. The position of the wide-range transmission window 6a may be changed so that not only wide-range irradiation but also partial irradiation can be performed.

このように第2実施形態の蛍光X線分析装置21では、コリメータ移動機構25が、広範囲照射の際に部分照射よりも広い領域で一次X線X1を照射可能な位置に透過窓(広範囲用透過窓6a)を移動可能であると共に、部分照射の際に検出器3に近く広範囲照射よりも狭い範囲で一次X線X1を照射可能な位置に透過窓(広範囲用透過窓6a)を移動可能であるので、透過窓の位置を調整するだけで、広範囲照射と部分照射とを容易に行うことが容易にできる。 As described above, in the fluorescent X-ray analyzer 21 of the second embodiment, the collimator moving mechanism 25 has a transmission window (transmission for a wide range) at a position where the primary X-ray X1 can be irradiated in a wider area than the partial irradiation during a wide range irradiation. The window 6a) can be moved, and the transmission window (transmission window 6a for a wide range) can be moved to a position where the primary X-ray X1 can be irradiated in a narrower range than the wide range irradiation, which is close to the detector 3 during partial irradiation. Therefore, it is possible to easily perform wide-range irradiation and partial irradiation only by adjusting the position of the transmission window.

なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to each of the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記各実施形態では、照射範囲変更機構として透過窓を有するコリメータを用いたが、照射範囲の異なるキャピラリを用いて照射範囲を変更可能にした照射範囲変更機構を採用しても構わない。例えば、着目元素が分析深さの深い元素の場合は、出射側で一次X線が平行になるような平行型ポリキャピラリを用い、分析深さの浅い元素の場合は、出射側で一次X線が試料容器の検出器に対向する壁面に向けて集束する集束型ポリキャピラリを用いてもよい。 For example, in each of the above embodiments, a collimator having a transmission window is used as the irradiation range changing mechanism, but an irradiation range changing mechanism capable of changing the irradiation range by using capillaries having different irradiation ranges may be adopted. For example, if the element of interest is an element with a deep analysis depth, a parallel polycapillary is used so that the primary X-rays are parallel on the emission side, and if the element has a shallow analysis depth, the primary X-ray is on the emission side. You may use a focusing type polycapillary that focuses toward the wall surface facing the detector of the sample container.

また、上記実施形態では、波高分析器でX線のエネルギーと強度とを測定するエネルギー分散方式の蛍光X線分析装置に適用したが、蛍光X線を分光結晶により分光し、X線の波長と強度を測定する波長分散方式の蛍光X線分析装置に適用しても構わない。 Further, in the above embodiment, the X-ray fluorescence analyzer is applied to an energy dispersion type fluorescent X-ray analyzer that measures the energy and intensity of X-rays with a wave height analyzer. It may be applied to a wavelength dispersion type fluorescent X-ray analyzer for measuring intensity.

1,21…蛍光X線分析装置、2…X線源、3…検出器、4…試料容器、4a…第1の壁面、4b…第2の壁面、5,25…照射範囲変更機構、6,26…コリメータ、6a…広範囲用透過窓、6b…部分用透過窓、7…コリメータ移動機構、S…試料、X1…一次X線、X2…蛍光X線 1,21 ... Fluorescent X-ray analyzer, 2 ... X-ray source, 3 ... detector, 4 ... sample container, 4a ... first wall surface, 4b ... second wall surface, 5,25 ... irradiation range changing mechanism, 6 , 26 ... Collimator, 6a ... Wide range transmission window, 6b ... Partial transmission window, 7 ... Collimator moving mechanism, S ... Sample, X1 ... Primary X-ray, X2 ... Fluorescent X-ray

Claims (8)

試料を収納可能な試料容器と、
前記試料に対して一次X線を照射するX線源と、
前記一次X線を照射された前記試料から発生する蛍光X線を検出する検出器と、
前記試料容器内の前記試料に対して前記一次X線を照射する範囲を変更可能な照射範囲変更機構とを備え、
前記照射範囲変更機構が、少なくとも前記検出器に対向する前記試料容器の壁面寄りの前記試料に前記一次X線を照射する部分照射と、
前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射する広範囲照射とに変更可能であり、
前記試料容器が、前記一次X線が透過可能な第1の壁面と前記蛍光X線が透過可能な第2の壁面とを有し、
前記X線源が、前記第1の壁面に隣接配置されていると共に、前記検出器が、前記第2の壁面に隣接配置され、
前記照射範囲変更機構が、前記部分照射の際に、前記第2の壁面の内面近傍に前記一次X線を照射することを特徴とする蛍光X線分析装置。
A sample container that can store samples and
An X-ray source that irradiates the sample with primary X-rays,
A detector that detects fluorescent X-rays generated from the sample irradiated with the primary X-rays, and
It is provided with an irradiation range changing mechanism capable of changing the range of irradiating the sample with the primary X-ray in the sample container.
Partial irradiation in which the irradiation range changing mechanism irradiates the sample at least near the wall surface of the sample container facing the detector with the primary X-rays.
It is possible to change to wide-range irradiation in which the primary X-ray is irradiated to the sample in the sample container in a wider area than the partial irradiation.
The sample container has a first wall surface through which the primary X-rays can be transmitted and a second wall surface through which the fluorescent X-rays can be transmitted.
The X-ray source is arranged adjacent to the first wall surface, and the detector is arranged adjacent to the second wall surface.
A fluorescent X-ray analyzer , wherein the irradiation range changing mechanism irradiates the vicinity of the inner surface of the second wall surface with the primary X-rays at the time of the partial irradiation .
試料を収納可能な試料容器と、
前記試料に対して一次X線を照射するX線源と、
前記一次X線を照射された前記試料から発生する蛍光X線を検出する検出器と、
前記試料容器内の前記試料に対して前記一次X線を照射する範囲を変更可能な照射範囲変更機構とを備え、
前記照射範囲変更機構が、少なくとも前記検出器に対向する前記試料容器の壁面寄りの前記試料に前記一次X線を照射する部分照射と、
前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射する広範囲照射とに変更可能であり、
前記試料が、軽元素を主成分とし、
前記照射範囲変更機構が、前記試料中の元素のうちCd,Sn,Sb,Baの少なくとも一つを検出する際に前記広範囲照射に切り替え、前記試料中の元素のうちAs,Pb,Hg,Brの少なくとも一つを検出する際に前記部分照射に切り替え可能であることを特徴とする蛍光X線分析装置。
A sample container that can store samples and
An X-ray source that irradiates the sample with primary X-rays,
A detector that detects fluorescent X-rays generated from the sample irradiated with the primary X-rays, and
It is provided with an irradiation range changing mechanism capable of changing the range of irradiating the sample with the primary X-ray in the sample container.
Partial irradiation in which the irradiation range changing mechanism irradiates the sample at least near the wall surface of the sample container facing the detector with the primary X-rays.
It is possible to change to wide-range irradiation in which the primary X-ray is irradiated to the sample in the sample container in a wider area than the partial irradiation.
The sample contains light elements as the main component.
When the irradiation range changing mechanism detects at least one of Cd, Sn, Sb, and Ba among the elements in the sample, it switches to the wide range irradiation, and As, Pb, Hg, Br among the elements in the sample. A fluorescent X-ray analyzer characterized in that it is possible to switch to the partial irradiation when detecting at least one of the above .
請求項1又は2に記載の蛍光X線分析装置において、
前記照射範囲変更機構が、前記X線源と前記試料容器との間に配され前記一次X線を透過可能な複数の透過窓を有するコリメータと、
複数の前記透過窓のうち任意の一つに前記一次X線を透過可能に前記コリメータを前記X線源に対して相対的に移動可能なコリメータ移動機構とを備え、
前記コリメータが、前記透過窓として、前記部分照射の際に前記検出器に近い領域に前記一次X線を照射可能な部分用透過窓と、
前記広範囲照射の際に前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射可能な広範囲用透過窓とを有していることを特徴とする蛍光X線分析装置。
In the fluorescent X-ray analyzer according to claim 1 or 2 .
A collimator in which the irradiation range changing mechanism is arranged between the X-ray source and the sample container and has a plurality of transmission windows capable of transmitting the primary X-rays.
Any one of the plurality of transmission windows is provided with a collimator moving mechanism capable of transmitting the primary X-ray and moving the collimator relative to the X-ray source.
As the transmission window, the collimator is a transmission window for a portion capable of irradiating a region close to the detector with the primary X-ray at the time of the partial irradiation.
A fluorescent X-ray analyzer characterized by having a wide-range transmission window capable of irradiating the sample in the sample container with the primary X-ray in a region wider than the partial irradiation at the time of the wide-range irradiation. ..
請求項1又は2に記載の蛍光X線分析装置において、
前記照射範囲変更機構が、前記X線源と前記試料容器との間に配され前記一次X線を透過可能な透過窓を有するコリメータと、
前記一次X線を透過可能に前記コリメータを前記X線源に対して相対的に移動可能なコリメータ移動機構とを備え、
前記コリメータ移動機構が、前記広範囲照射の際に前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射可能な位置に前記透過窓を移動可能であると共に、
前記部分照射の際に前記検出器に近い前記試料容器内の前記試料に前記広範囲照射よりも狭い範囲で前記一次X線を照射可能な位置に前記透過窓を移動可能であることを特徴とする蛍光X線分析装置。
In the fluorescent X-ray analyzer according to claim 1 or 2 .
A collimator in which the irradiation range changing mechanism is arranged between the X-ray source and the sample container and has a transmission window capable of transmitting the primary X-rays.
A collimator moving mechanism capable of transmitting the primary X-ray and moving the collimator relative to the X-ray source is provided.
The collimator moving mechanism can move the transmission window to a position where the primary X-ray can be irradiated to the sample in the sample container in a region wider than the partial irradiation during the wide range irradiation.
It is characterized in that the transmission window can be moved to a position where the primary X-ray can be irradiated to the sample in the sample container close to the detector in a narrower range than the wide range irradiation at the time of the partial irradiation. Fluorescent X-ray analyzer.
請求項1からのいずれか一項に記載の蛍光X線分析装置において、
前記照射範囲変更機構が、前記蛍光X線のうち着目する元素の分析深さに応じて前記広範囲照射と前記部分照射との前記一次X線の照射領域を調整可能であることを特徴とする蛍光X線分析装置。
The fluorescent X-ray analyzer according to any one of claims 1 to 4 .
The fluorescence range changing mechanism is capable of adjusting the irradiation region of the primary X-ray between the wide range irradiation and the partial irradiation according to the analysis depth of the element of interest among the fluorescent X-rays. X-ray analyzer.
請求項1からのいずれか一項に記載の蛍光X線分析装置において、
前記試料が、米粒,米粉,又は流動性の固体若しくは液体であることを特徴とする蛍光X線分析装置。
The fluorescent X-ray analyzer according to any one of claims 1 to 5 .
A fluorescent X-ray analyzer, characterized in that the sample is rice grains, rice flour, or a fluid solid or liquid.
試料容器内の試料に対してX線源から一次X線を照射し前記試料から発生する蛍光X線を検出器で検出する蛍光X線分析方法であって、
少なくとも前記検出器に対向する前記試料容器の壁面寄りの前記試料に前記一次X線を照射する部分照射工程と、
前記部分照射工程よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射する広範囲照射工程とを有し
前記試料容器が、前記一次X線が透過可能な第1の壁面と前記蛍光X線が透過可能な第2の壁面とを有し、
前記X線源を、前記第1の壁面に隣接配置すると共に、前記検出器を、前記第2の壁面に隣接配置し、
前記部分照射工程で、前記第2の壁面の内面近傍に前記一次X線を照射することを特徴とする蛍光X線分析方法。
A fluorescent X-ray analysis method in which a sample in a sample container is irradiated with primary X-rays from an X-ray source and fluorescent X-rays generated from the sample are detected by a detector.
A partial irradiation step of irradiating the sample near the wall surface of the sample container facing the detector at least with the primary X-rays.
It has a wide range irradiation step of irradiating the sample in the sample container with the primary X-ray in a wider area than the partial irradiation step .
The sample container has a first wall surface through which the primary X-rays can be transmitted and a second wall surface through which the fluorescent X-rays can be transmitted.
The X-ray source is arranged adjacent to the first wall surface, and the detector is arranged adjacent to the second wall surface.
A fluorescent X-ray analysis method comprising irradiating the vicinity of the inner surface of the second wall surface with the primary X-ray in the partial irradiation step .
試料容器内の試料に対してX線源から一次X線を照射し前記試料から発生する蛍光X線を検出器で検出する蛍光X線分析方法であって、
少なくとも前記検出器に対向する前記試料容器の壁面寄りの前記試料に前記一次X線を照射する部分照射工程と、
前記部分照射工程よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射する広範囲照射工程とを有し
前記試料が、軽元素を主成分とし、
前記試料中の元素のうちCd,Sn,Sb,Baの少なくとも一つを検出する際に前記広範囲照射工程に切り替え、
前記試料中の元素のうちAs,Pb,Hg,Brの少なくとも一つを検出する際に前記部分照射工程に切り替えることを特徴とする蛍光X線分析方法。
A fluorescent X-ray analysis method in which a sample in a sample container is irradiated with primary X-rays from an X-ray source and fluorescent X-rays generated from the sample are detected by a detector.
A partial irradiation step of irradiating the sample near the wall surface of the sample container facing the detector at least with the primary X-rays.
It has a wide range irradiation step of irradiating the sample in the sample container with the primary X-ray in a wider area than the partial irradiation step .
The sample contains light elements as the main component.
When detecting at least one of Cd, Sn, Sb, and Ba among the elements in the sample, the process was switched to the wide range irradiation step.
A fluorescent X-ray analysis method comprising switching to the partial irradiation step when detecting at least one of As, Pb, Hg, and Br among the elements in the sample .
JP2017170813A 2017-09-06 2017-09-06 Fluorescent X-ray analyzer and fluorescent X-ray analysis method Active JP6994755B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017170813A JP6994755B2 (en) 2017-09-06 2017-09-06 Fluorescent X-ray analyzer and fluorescent X-ray analysis method
KR1020180096739A KR102517494B1 (en) 2017-09-06 2018-08-20 Fluorescent x-ray analyzer and fluorescent x-ray analysis method
CN201811024591.0A CN109459458B (en) 2017-09-06 2018-09-04 Fluorescent X-ray analysis device and fluorescent X-ray analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017170813A JP6994755B2 (en) 2017-09-06 2017-09-06 Fluorescent X-ray analyzer and fluorescent X-ray analysis method

Publications (2)

Publication Number Publication Date
JP2019045402A JP2019045402A (en) 2019-03-22
JP6994755B2 true JP6994755B2 (en) 2022-01-14

Family

ID=65606497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017170813A Active JP6994755B2 (en) 2017-09-06 2017-09-06 Fluorescent X-ray analyzer and fluorescent X-ray analysis method

Country Status (3)

Country Link
JP (1) JP6994755B2 (en)
KR (1) KR102517494B1 (en)
CN (1) CN109459458B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111992514B (en) * 2020-08-06 2022-03-25 北京霍里思特科技有限公司 Double-light-source signal acquisition unit and signal acquisition method of wide intelligent sorting equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049051A1 (en) 2004-11-08 2006-05-11 Sii Nanotechnology Inc. Fluorescent x-ray analy sis device
JP2007225469A (en) 2006-02-24 2007-09-06 Sii Nanotechnology Inc Fluorescent x-ray analyzer
JP2007292728A (en) 2006-03-30 2007-11-08 Sii Nanotechnology Inc Fluorescent x-ray analyzer
JP2007315927A (en) 2006-05-26 2007-12-06 Sii Nanotechnology Inc X-ray fluorescence analyzer
US20100278303A1 (en) 2009-04-30 2010-11-04 Lee Grodzins Localization of an Element of Interest by XRF Analysis of Different Inspection Volumes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078310A (en) * 1983-10-05 1985-05-04 Seiko Instr & Electronics Ltd Fluorescent x-ray film thickness gage
JP2006003109A (en) * 2004-06-15 2006-01-05 Koichi Tsuji Fluorescent x-ray analyzer
JP4937670B2 (en) * 2006-03-30 2012-05-23 能美防災株式会社 Equal differential pressure control pilot valve and foam mixing apparatus having the same
JP2008203245A (en) * 2007-01-23 2008-09-04 Sii Nanotechnology Inc X-ray analysis apparatus and x-ray analysis method
JP2009002795A (en) * 2007-06-21 2009-01-08 Shimadzu Corp Fluorescent x-ray analyzer
JP5269521B2 (en) * 2008-08-22 2013-08-21 株式会社日立ハイテクサイエンス X-ray analyzer and X-ray analysis method
JP2014196925A (en) * 2013-03-29 2014-10-16 株式会社島津製作所 Fluorescent x-ray analyzer, and depth direction analysis method used for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049051A1 (en) 2004-11-08 2006-05-11 Sii Nanotechnology Inc. Fluorescent x-ray analy sis device
JP2007225469A (en) 2006-02-24 2007-09-06 Sii Nanotechnology Inc Fluorescent x-ray analyzer
JP2007292728A (en) 2006-03-30 2007-11-08 Sii Nanotechnology Inc Fluorescent x-ray analyzer
JP2007315927A (en) 2006-05-26 2007-12-06 Sii Nanotechnology Inc X-ray fluorescence analyzer
US20100278303A1 (en) 2009-04-30 2010-11-04 Lee Grodzins Localization of an Element of Interest by XRF Analysis of Different Inspection Volumes

Also Published As

Publication number Publication date
CN109459458A (en) 2019-03-12
KR102517494B1 (en) 2023-04-03
JP2019045402A (en) 2019-03-22
KR20190027316A (en) 2019-03-14
CN109459458B (en) 2023-07-04

Similar Documents

Publication Publication Date Title
US10634628B2 (en) X-ray fluorescence apparatus for contamination monitoring
US10514346B2 (en) X-ray fluorescence spectrometer
JP6305327B2 (en) X-ray fluorescence analyzer
US8433034B2 (en) Localization of an element of interest by XRF analysis of different inspection volumes
US7634053B2 (en) Fluorescent X-ray analysis apparatus
US20080084966A1 (en) X-ray source and fluorescent X-ray analyzing apparatus
Yao et al. Element Analysis Based on Energy‐Dispersive X‐Ray Fluorescence
JP2008203245A (en) X-ray analysis apparatus and x-ray analysis method
Ménesguen et al. Mass attenuation coefficients in the range 3.8⩽ E⩽ 11keV, K fluorescence yield and Kβ/Kα relative X-ray emission rate for Ti, V, Fe, Co, Ni, Cu and Zn measured with a tunable monochromatic X-ray source
US20110317813A1 (en) Wavelength-classifying type x-ray diffraction device
US20150355116A1 (en) Wavelength dispersive crystal spectrometer, a xray fluorescence device and a method therein
AU2009211833A1 (en) Apparatus and method for X-ray fluorescence analysis of a mineral sample
JP6851107B2 (en) X-ray analyzer
Szwedowski-Rammert et al. Laboratory based GIXRF and GEXRF spectrometers for multilayer structure investigations
KR20060088272A (en) X-ray photoelectron spectroscopy
US20230236143A1 (en) X-ray analysis system and method with multi-source design
JP6994755B2 (en) Fluorescent X-ray analyzer and fluorescent X-ray analysis method
Mihalić et al. Study of ion beam induced chemical effects in silicon with a downsized high resolution X-ray spectrometer for use with focused ion beams
KR100862332B1 (en) A X-ray Fluorescence Spectrometer
US20240044821A1 (en) Combined xrf analysis device
JP5682918B2 (en) Elemental quantitative analysis method and elemental quantitative analyzer by X-ray absorption edge method
Szilágyi et al. Development of an X-ray fluorescence spectrometric method for the analysis of atmospheric aerosol samples
WO2018100873A1 (en) X-ray fluorescence analyzer
US7209542B2 (en) Simultaneous measurement of the reflectivity of X-ray with different orders of reflections and apparatus for measurement thereof
JP6081260B2 (en) X-ray fluorescence analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 6994755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150