JP6993216B2 - Silicon-containing amorphous carbon material, lithium-ion secondary battery - Google Patents

Silicon-containing amorphous carbon material, lithium-ion secondary battery Download PDF

Info

Publication number
JP6993216B2
JP6993216B2 JP2017247161A JP2017247161A JP6993216B2 JP 6993216 B2 JP6993216 B2 JP 6993216B2 JP 2017247161 A JP2017247161 A JP 2017247161A JP 2017247161 A JP2017247161 A JP 2017247161A JP 6993216 B2 JP6993216 B2 JP 6993216B2
Authority
JP
Japan
Prior art keywords
silicon
amorphous carbon
carbon material
particles
containing amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017247161A
Other languages
Japanese (ja)
Other versions
JP2018081923A (en
Inventor
洋平 八木下
裕一 梶浦
浩平 山口
美和 片山
亙 小田
健太 濱井
知広 本田
精二 岡崎
明男 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2017247161A priority Critical patent/JP6993216B2/en
Publication of JP2018081923A publication Critical patent/JP2018081923A/en
Application granted granted Critical
Publication of JP6993216B2 publication Critical patent/JP6993216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本明細書に開示された技術は、リチウムイオン二次電池の負極等に使用されるケイ素含有非晶質炭素材料に関する。 The technique disclosed herein relates to a silicon-containing amorphous carbon material used in a negative electrode or the like of a lithium ion secondary battery.

リチウムイオン二次電池は、従来の二次電池であるニッケルカドミウム電池、ニッケル水素電池、鉛電池に比較し、軽量で高容量を有することから、ポータブル電子機器、例えば、携帯電話、ノート型パソコンなどの駆動用電源として実用化されている。また、電気自動車やハイブリッド自動車用の電源としても利用されている。 Lithium-ion secondary batteries are lighter and have higher capacity than conventional secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries, and lead batteries. Therefore, portable electronic devices such as mobile phones and notebook computers can be used. It has been put into practical use as a power source for driving. It is also used as a power source for electric vehicles and hybrid vehicles.

負極用材料として、リチウムと合金化するケイ素、スズ、ゲルマニウムやこれらの酸化物等を用いることができるが、これらの材料は、リチウムイオンを吸蔵する充電時に体積が膨張し、リチウムイオンを放出する放電時には体積が収縮する。このため、充放電サイクルを繰り返す際の体積変化によって負極用材料が電極から脱落及び崩壊するおそれがある。 As the material for the negative electrode, silicon, tin, germanium, and oxides thereof that are alloyed with lithium can be used, but these materials expand in volume during charging to occlude lithium ions and release lithium ions. The volume shrinks during discharge. Therefore, the negative electrode material may fall off or disintegrate from the electrode due to the volume change when the charge / discharge cycle is repeated.

特許文献1には、酸化ケイ素と炭素材料とを含むリチウムイオン二次電池用活物質が記載されている。この活物質は、内部に空隙を有しているので、充放電時の体積変化が小さく抑えられている。 Patent Document 1 describes an active material for a lithium ion secondary battery containing silicon oxide and a carbon material. Since this active material has voids inside, the volume change during charging and discharging is suppressed to be small.

また、特許文献2には、炭素材料中にリチウム吸蔵材料粒子を埋設させるとともに、当該リチウム吸蔵材料粒子のサイズを小さくすること等によって充放電時の電極破壊を防ぐための技術が記載されている。 Further, Patent Document 2 describes a technique for embedding lithium storage material particles in a carbon material and reducing the size of the lithium storage material particles to prevent electrode destruction during charging / discharging. ..

特開2013-30428号公報Japanese Unexamined Patent Publication No. 2013-30428 特開2005-71938号公報Japanese Unexamined Patent Publication No. 2005-71938

しかしながら、特許文献1に記載されたリチウムイオン二次電池用活物質は、噴霧された樹脂水溶液をコロイダルシリカと共に炭化することで得られるので、真球に近く、また粒度分布がシャープなものである。そのため、電極を作製した際に粒子間接点が少なく、導電材を多く混合するなどの工夫が必要となる。また、特許文献1に記載された方法によれば、活物質の製造工程が多いので、実用的ではないと考えられる。 However, since the active material for a lithium ion secondary battery described in Patent Document 1 is obtained by carbonizing a sprayed resin aqueous solution together with colloidal silica, it is close to a true sphere and has a sharp particle size distribution. .. Therefore, when the electrode is manufactured, there are few indirect points of particles, and it is necessary to take measures such as mixing a large amount of conductive material. Further, according to the method described in Patent Document 1, it is considered that it is not practical because there are many steps for manufacturing an active material.

また、特許文献2に記載された技術では、リチウム吸蔵材料粒子においてリチウムの吸蔵及び放出が生じた場合の体積変化をある程度抑えることができるものの、十分に抑えることができないので、負極の破壊及びサイクル特性の改善を十分に達成することは困難である。 Further, in the technique described in Patent Document 2, although the volume change when lithium is stored and released in the lithium storage material particles can be suppressed to some extent, it cannot be sufficiently suppressed, so that the negative electrode is destroyed and the cycle. It is difficult to achieve sufficient improvement in properties.

本発明の目的は、上記課題に鑑み、充放電時の体積変化が小さく、サイクル特性の改善が実用的に可能なリチウムイオン二次電池等の負極用材料を提供することにある。 In view of the above problems, an object of the present invention is to provide a material for a negative electrode such as a lithium ion secondary battery, which has a small volume change during charging and discharging and can practically improve cycle characteristics.

本発明の一実施形態に係るケイ素含有非晶質炭素材料は、易黒鉛化非晶質炭素を備え、前記易黒鉛化非晶質炭素中に、SiO(0<x<2)で表される酸化ケイ素粒子が含まれている。 The silicon-containing amorphous carbon material according to the embodiment of the present invention comprises easily graphitized amorphous carbon, and is represented by SiO x (0 <x <2) in the easily graphitized amorphous carbon. Contains silicon oxide particles.

ここで、「酸化ケイ素粒子」には、原料として加えられたケイ素粒子の表面等が空気酸化されたものも含まれる。 Here, the "silicon oxide particles" include those in which the surface of the silicon particles added as a raw material is air-oxidized.

このケイ素含有非晶質炭素材料は、1重量%以上50重量%未満のケイ素を含有している。また、主に酸化ケイ素由来の酸素含有率として、このケイ素含有非晶質炭素材料は、0重量%を超え40重量%未満の酸素を含有してもよい。また、このケイ素含有非晶質炭素材料は、円形度が0.70以上1.0以下であり、BET比表面積が1.5~32.5m /gである。
This silicon-containing amorphous carbon material contains 1% by weight or more and less than 50% by weight of silicon. Further, as the oxygen content mainly derived from silicon oxide, the silicon-containing amorphous carbon material may contain oxygen in an amount of more than 0% by weight and less than 40% by weight. Further, this silicon-containing amorphous carbon material has a circularity of 0.70 or more and 1.0 or less, and a BET specific surface area of 1.5 to 32.5 m 2 / g.

また、本発明の一実施形態に係るケイ素含有非晶質炭素材料は、ケイ素含有率と酸素含有率のモル比(O/Si)が0.2以上2.0未満であってもよい。 Further, the silicon-containing amorphous carbon material according to the embodiment of the present invention may have a molar ratio (O / Si) of silicon content and oxygen content of 0.2 or more and less than 2.0.

本発明の別の実施形態に係るケイ素含有非晶質炭素材料の製造方法は、生コークスの粉末とケイ素含有粒子とを混合して乾式造粒する工程と、造粒された粒子を不活性ガス雰囲気下で炭化する工程とを備えている。乾式造粒工程では、前記生コークスと前記ケイ素粒子又は前記酸化ケイ素粒子との体積の和を100%とした場合の前記ケイ素粒子又は前記酸化ケイ素粒子の添加量を2体積%以上90体積%以下にすることが好ましい。 The method for producing a silicon-containing amorphous carbon material according to another embodiment of the present invention includes a step of mixing raw coke powder and silicon-containing particles for dry granulation, and a step of granulating the granulated particles with an inert gas. It is equipped with a process of carbonizing in an atmosphere. In the dry granulation step, the amount of the silicon particles or the silicon oxide particles added is 2% by volume or more and 90% by volume or less when the sum of the volumes of the raw coke and the silicon particles or the silicon oxide particles is 100%. Is preferable.

炭化工程における炭化温度は例えば、800℃以上1200℃以下とすることが好ましい。 The carbonization temperature in the carbonization step is preferably 800 ° C. or higher and 1200 ° C. or lower, for example.

本発明の一実施形態に係るケイ素含有非晶質炭素材料によれば、充放電時の酸化ケイ素粒子の体積変化による負極の破壊を抑えることができるので、サイクル特性の改善に寄与することができる。 According to the silicon-containing amorphous carbon material according to the embodiment of the present invention, it is possible to suppress the destruction of the negative electrode due to the volume change of the silicon oxide particles during charging and discharging, which can contribute to the improvement of the cycle characteristics. ..

図1は、実施例8に係る非晶質炭素材料の断面を撮影した顕微鏡写真を示す図である。FIG. 1 is a diagram showing a micrograph of a cross section of an amorphous carbon material according to Example 8. 図2は、本発明の実施形態に係るケイ素含有非晶質炭素材料を用いた負極を備えたリチウムイオン二次電池の一例を示す図である。FIG. 2 is a diagram showing an example of a lithium ion secondary battery provided with a negative electrode using a silicon-containing amorphous carbon material according to an embodiment of the present invention. 図3は、実施例10に係る非晶質炭素材料の断面を撮影した顕微鏡写真を示す図である。FIG. 3 is a diagram showing a micrograph of a cross section of the amorphous carbon material according to Example 10. 図4は、実施例12に係る非晶質炭素材料の断面を撮影した顕微鏡写真を示す図である。FIG. 4 is a diagram showing a micrograph of a cross section of the amorphous carbon material according to Example 12.

本発明の一実施形態に係る、リチウムイオン二次電池負極用のケイ素含有非晶質炭素材料、さらに当該材料を用いたリチウムイオン二次電池について以下に説明する。なお、以下で説明するのは実施形態の一例であって、構成材料、構成材料又は部材の形状、加工や熱処理の条件等は本発明の趣旨を逸脱しない範囲において適宜変更可能である。 A silicon-containing amorphous carbon material for a negative electrode of a lithium ion secondary battery and a lithium ion secondary battery using the material will be described below according to an embodiment of the present invention. It should be noted that the following is an example of the embodiment, and the constituent materials, the shapes of the constituent materials or members, the conditions for processing and heat treatment, and the like can be appropriately changed as long as the gist of the present invention is not deviated.

-語句の定義-
本明細書中で用いる「円形度」とは、粒子等の丸さの指標であって、次式(1)で求められる値である。
-Definition of words-
The "circularity" used in the present specification is an index of the roundness of particles and the like, and is a value obtained by the following equation (1).

(円形度)={4×π×(投影面積)}/{(周囲長)} ・・・(1)
また、粒子表面の凹凸を表す指標として、以下の式(2)で求められる値を「凹凸度合い」とした。
(Circularity) = {4 x π x (projected area)} / {(perimeter) 2 } ... (1)
Further, as an index showing the unevenness of the particle surface, the value obtained by the following equation (2) was defined as the “degree of unevenness”.

(凹凸度合い)=(投影面積円相当径×π)/周囲長 ・・・(2)
(実施形態)
-ケイ素含有非晶質炭素材料の説明-
図1は、本発明の一実施形態に係るケイ素含有非晶質炭素材料の断面を撮影した顕微鏡写真を示す図である。
(Degree of unevenness) = (Diameter equivalent to projected area circle x π) / Perimeter ... (2)
(Embodiment)
-Explanation of silicon-containing amorphous carbon material-
FIG. 1 is a diagram showing a micrograph of a cross section of a silicon-containing amorphous carbon material according to an embodiment of the present invention.

図1に示すように、本実施形態に係るケイ素含有非晶質炭素材料1は、非晶質炭素4を備え、非晶質炭素4中には、SiO(0<x<2)で表される酸化ケイ素粒子が含まれている。当該非晶質炭素4中の酸化ケイ素粒子は、例えば分散された状態で存在している。非晶質炭素4は、易黒鉛化炭素、いわゆるソフトカーボンである。個々のケイ素含有非晶質炭素材料1は、原料に由来する複数の炭素粒子で構成されている。 As shown in FIG. 1, the silicon-containing amorphous carbon material 1 according to the present embodiment includes amorphous carbon 4, and the amorphous carbon 4 is represented by SiO x (0 <x <2). Contains silicon oxide particles to be made. The silicon oxide particles in the amorphous carbon 4 exist in a dispersed state, for example. Amorphous carbon 4 is easily graphitized carbon, so-called soft carbon. Each silicon-containing amorphous carbon material 1 is composed of a plurality of carbon particles derived from the raw material.

この構成によれば、非晶質炭素4に酸化ケイ素粒子が含まれることで、リチウムイオン二次電池の負極材料として用いた場合に、初期放電容量を向上させつつ、十分に高いレベルのサイクル特性を維持することが可能となる。 According to this configuration, the amorphous carbon 4 contains silicon oxide particles, which improves the initial discharge capacity and has a sufficiently high level of cycle characteristics when used as a negative electrode material for a lithium ion secondary battery. Can be maintained.

また、本実施形態のケイ素含有非晶質炭素材料1において、ケイ素含有率と酸素含有率のモル比(O/Si)が0.2以上2.0未満であれば、初期放電容量を向上させつつ、一定レベル以上の初期効率及びサイクル特性をバランス良く備えることができるので、より好ましい。ケイ素含有率と酸素含有率のモル比(O/Si)が0.3以上1.7以下であれば、さらに好ましい。ケイ素含有非晶質炭素材料1は、0重量%を超え40重量%未満の酸素を含有してもいてもよい。 Further, in the silicon-containing amorphous carbon material 1 of the present embodiment, if the molar ratio (O / Si) of the silicon content and the oxygen content is 0.2 or more and less than 2.0, the initial discharge capacity is improved. On the other hand, it is more preferable because it can provide a certain level of initial efficiency and cycle characteristics in a well-balanced manner. It is more preferable that the molar ratio (O / Si) of the silicon content and the oxygen content is 0.3 or more and 1.7 or less. The silicon-containing amorphous carbon material 1 may contain oxygen in an amount of more than 0% by weight and less than 40% by weight.

当該ケイ素含有非晶質炭素材料1の平均粒径は例えば5μm以上40μm以下程度である。平均粒径が40μmを超えると炭素材料の強度が低下するおそれがあるとともに、負極を作製するにあたり、適切な膜厚の電極形成が困難になる場合がある。また、平均粒径が5μm未満の炭素材料では、非晶質炭素粒子中に酸化ケイ素粒子を分散することが困難である。 The average particle size of the silicon-containing amorphous carbon material 1 is, for example, about 5 μm or more and 40 μm or less. If the average particle size exceeds 40 μm, the strength of the carbon material may decrease, and it may be difficult to form an electrode having an appropriate film thickness when manufacturing the negative electrode. Further, with a carbon material having an average particle size of less than 5 μm, it is difficult to disperse the silicon oxide particles in the amorphous carbon particles.

ケイ素含有非晶質炭素材料1の平均粒径は、10μm以上30μm以下であればより好ましい。ケイ素含有非晶質炭素材料1の最大粒径は、45μm以下程度である。 The average particle size of the silicon-containing amorphous carbon material 1 is more preferably 10 μm or more and 30 μm or less. The maximum particle size of the silicon-containing amorphous carbon material 1 is about 45 μm or less.

ケイ素含有非晶質炭素材料1中のケイ素の含有率は1重量%以上50重量%以下である。50重量%以下であれば造粒しやすいからである。なお、容量を向上させる効果を十分に得るためには、ケイ素の含有率が5重量%以上であることが好ましい。 The content of silicon in the silicon-containing amorphous carbon material 1 is 1% by weight or more and 50% by weight or less. This is because if it is 50% by weight or less, it is easy to granulate. In addition, in order to sufficiently obtain the effect of improving the capacity, the silicon content is preferably 5% by weight or more.

本実施形態のケイ素含有非晶質炭素材料1において、酸化ケイ素粒子の周囲には空隙20が形成されている。これは、炭素原料に由来する炭素粒子同士の間隙にケイ素含有粒子が配置されやすいこと、また、生コークス等から揮発成分が抜ける際にケイ素含有粒子の周辺において空隙が形成されやすいことによるものと考えられる。酸化ケイ素の周囲に空隙20があることによって、充電時にリチウムイオンがケイ素含有非晶質炭素材料1中に挿入された場合でも空隙の存在により酸化ケイ素粒子の体積の膨張の影響が抑えられる。 In the silicon-containing amorphous carbon material 1 of the present embodiment, voids 20 are formed around the silicon oxide particles. This is because the silicon-containing particles are likely to be arranged in the gaps between the carbon particles derived from the carbon raw material, and voids are likely to be formed around the silicon-containing particles when the volatile component is removed from raw coke or the like. Conceivable. Due to the presence of the voids 20 around the silicon oxide, the influence of the expansion of the volume of the silicon oxide particles is suppressed due to the presence of the voids even when lithium ions are inserted into the silicon-containing amorphous carbon material 1 during charging.

ケイ素含有非晶質炭素材料1の密度(真密度)は、1.8g/cm以上2.2g/cm以下程度であることが好ましい。ケイ素含有非晶質炭素材料1の密度が適切な範囲にあることにより、リチウムイオン二次電池の負極に用いた場合に体積あたりのエネルギー密度を十分に確保することができる。 The density (true density) of the silicon-containing amorphous carbon material 1 is preferably about 1.8 g / cm 3 or more and 2.2 g / cm 3 or less. When the density of the silicon-containing amorphous carbon material 1 is in an appropriate range, it is possible to sufficiently secure the energy density per volume when used for the negative electrode of a lithium ion secondary battery.

また、本実施形態のケイ素含有非晶質炭素材料1の円形度は、0.70以上1.0以下程度であれば好ましく、0.80以上0.98以下であればより好ましい。この構成によれば、充填密度及び電極密度を上げることができる。円形度が0.7未満であると複合化の効果が十分に発揮できず、また、粒子同士の引っかかりが大きくなって充填密度及び電極密度が低くなる。円形度が1.0を超えることはなく、円形度が1.0の材料であっても本発明の効果を得ることができるが、充填密度の向上や、粒子同士の接点を多くするためには円形度が0.98以下であることがより好ましい。ただし、ケイ素含有非晶質炭素材料の円形度が上述の範囲を外れている場合でも、充放電時の体積変化が従来の炭素材料よりも小さく抑えられる効果は有しているので、リチウムイオン二次電池用の負極材料として使用することは可能である。 Further, the circularity of the silicon-containing amorphous carbon material 1 of the present embodiment is preferably about 0.70 or more and 1.0 or less, and more preferably 0.80 or more and 0.98 or less. According to this configuration, the packing density and the electrode density can be increased. If the circularity is less than 0.7, the effect of the compounding cannot be sufficiently exerted, and the particles are caught by each other and the packing density and the electrode density are lowered. The circularity does not exceed 1.0, and the effect of the present invention can be obtained even with a material having a circularity of 1.0, but in order to improve the packing density and increase the contact points between particles. More preferably, the circularity is 0.98 or less. However, even when the circularity of the silicon-containing amorphous carbon material is out of the above range, it has the effect of suppressing the volume change during charging and discharging to be smaller than that of the conventional carbon material. It can be used as a negative electrode material for a secondary battery.

また、本実施形態のケイ素含有非晶質炭素材料1について、投影面積円相当径に円周率(π)を掛けた等面積円周長を投影粒子の周囲長で除した値を凹凸の指標として用いた時、この凹凸度合いは、0.9以上1.0未満である。このことは、粒子の輪郭が滑らかな弧を描いているのではなく、凹凸が多い、いわゆる「ジャガイモ」状になっていることを示している。 Further, for the silicon-containing amorphous carbon material 1 of the present embodiment, the value obtained by dividing the equal area circumference length obtained by multiplying the projected area circle equivalent diameter by the circumference ratio (π) by the circumference length of the projected particles is an index of unevenness. When used as, the degree of unevenness is 0.9 or more and less than 1.0. This indicates that the contours of the particles do not form a smooth arc, but rather have a so-called "potato" shape with many irregularities.

生コークスを用いて製造されたケイ素含有非晶質炭素材料1に含まれる非晶質炭素4には、遷移金属が700ppm以上2500ppm以下程度含まれていることが好ましい。遷移金属としては、主としてニッケルやバナジウム等が含まれる。また、非晶質炭素4には、バナジウムが250ppm以上含まれていてもよい。 The amorphous carbon 4 contained in the silicon-containing amorphous carbon material 1 produced using raw coke preferably contains a transition metal of 700 ppm or more and 2500 ppm or less. The transition metal mainly includes nickel, vanadium and the like. Further, the amorphous carbon 4 may contain 250 ppm or more of vanadium.

このように、非晶質炭素4が遷移金属を含んでいることにより、リチウムの挿入又は脱離を促進する効果が得られると考えられ、また、遷移金属が酸化ケイ素にドープされることにより、酸化ケイ素粒子の膨張又は収縮を緩和することができる。 As described above, it is considered that the effect of promoting the insertion or desorption of lithium can be obtained by containing the transition metal in the amorphous carbon 4, and the transition metal is doped in silicon oxide. The expansion or contraction of silicon oxide particles can be alleviated.

以上で説明したケイ素含有非晶質炭素材料1によれば、非晶質炭素4中に高容量の酸化ケイ素粒子が分散されているので、初期充電容量及び初期放電容量を、非晶質炭素4のみで構成された場合に比べて大きくすることができる。 According to the silicon-containing amorphous carbon material 1 described above, since high-capacity silicon oxide particles are dispersed in the amorphous carbon 4, the initial charge capacity and the initial discharge capacity are set to the amorphous carbon 4. It can be made larger than when it is composed of only.

ここで、ケイ素含有非晶質炭素材料1のケイ素源としては後述のように酸化ケイ素粒子又はケイ素粒子が用いられるが、それぞれの場合で適切な配合比で材料を混合することで、上述のケイ素含有非晶質炭素材料1を得ることができる。 Here, silicon oxide particles or silicon particles are used as the silicon source of the silicon-containing amorphous carbon material 1 as described later. In each case, the above-mentioned silicon can be mixed by mixing the materials at an appropriate blending ratio. The contained amorphous carbon material 1 can be obtained.

また、ケイ素含有非晶質炭素材料1では、内部に空隙20(図1参照)が形成されていることにより、リチウムイオンが挿入された場合の酸化ケイ素粒子の体積膨張の影響を緩和することができる。このため、ケイ素含有非晶質炭素材料1の崩壊を抑制し、負極の破壊を生じにくくさせることができ、リチウムイオン二次電池のサイクル特性を向上させることができる。 Further, in the silicon-containing amorphous carbon material 1, the void 20 (see FIG. 1) is formed inside, so that the influence of the volume expansion of the silicon oxide particles when lithium ions are inserted can be mitigated. can. Therefore, it is possible to suppress the disintegration of the silicon-containing amorphous carbon material 1 and make it difficult for the negative electrode to be destroyed, and it is possible to improve the cycle characteristics of the lithium ion secondary battery.

さらに、1つの炭素材料粒子内に空隙が含まれていることにより、リチウムの拡散経路が十分に確保されるので、リチウムの挿入及び脱離を速やかに行うことが可能となる。また、充放電時の体積変化も緩和される。 Further, since the voids are contained in one carbon material particle, the diffusion path of lithium is sufficiently secured, so that lithium can be rapidly inserted and removed. In addition, the volume change during charging and discharging is also mitigated.

また、本実施形態のケイ素含有非晶質炭素材料1は、リチウムイオンの吸蔵及び放出が非晶質炭素部分では等方向に行われるので、黒鉛に比べて速やかに充放電することが可能である。また、酸化ケイ素を含有することにより、高い容量を備えている。このため、本実施形態のケイ素含有非晶質炭素材料1は、電気自動車用のリチウムイオン二次電池等に、特に好ましく用いられる。 Further, the silicon-containing amorphous carbon material 1 of the present embodiment can be charged and discharged more quickly than graphite because the lithium ions are occluded and released in the amorphous carbon portion in the same direction. .. Further, by containing silicon oxide, it has a high capacity. Therefore, the silicon-containing amorphous carbon material 1 of the present embodiment is particularly preferably used for a lithium ion secondary battery or the like for an electric vehicle.

また、リチウムイオンの吸蔵及び放出が等方向に行われることによって、一方向あたりの体積変化が小さくなるので、結晶性の高い黒鉛材料を用いる場合に比べて負極の破壊は生じにくくなっている。 Further, since the lithium ions are occluded and released in the same direction, the volume change in one direction becomes small, so that the negative electrode is less likely to be destroyed as compared with the case where a graphite material having high crystallinity is used.

なお、本実施形態のケイ素含有非晶質炭素材料1は、リチウムイオン二次電池だけでなく、リチウムイオンキャパシタ等の負極材料としても利用することが可能である。 The silicon-containing amorphous carbon material 1 of the present embodiment can be used not only as a lithium ion secondary battery but also as a negative electrode material such as a lithium ion capacitor.

-負極用材料の製造方法-
本実施形態のケイ素含有非晶質炭素材料1は、ニードル(針状)コークスやモザイク(非針状)コークス等の生コークスを材料として製造することができる。生コークスは、例えばディレードコーカー等のコークス化設備を用いて重質油を300℃~700℃程度に加熱して熱分解及び重縮合することにより得られる。
-Manufacturing method of negative electrode material-
The silicon-containing amorphous carbon material 1 of the present embodiment can be produced using raw coke such as needle (needle-shaped) coke and mosaic (non-needle-shaped) coke as a material. Raw coke is obtained by heating heavy oil to about 300 ° C. to 700 ° C. using a coking facility such as a delayed coke, and thermally decomposing and polycondensing the heavy oil.

例えば、偏光顕微鏡で観察した断面において、光学等方性組織が均等に分散した上で光学等方性組織率が75%以上、より好ましくは85%以上存在し、且つ遷移金属含有率の合計が700ppm以上2500ppm以下である石油系の生コークスを使用できる。この生コークスは 、遷移金属等を不純物として多く含有するために、リチウムイオン二次電池の負極材料として用いた場合、Li挿入脱離の効率が向上すると考えられる。 For example, in a cross section observed with a polarizing microscope, the optically isotropic structure is evenly dispersed, the optically isotropic structure ratio is 75% or more, more preferably 85% or more, and the total transition metal content is Petroleum-based raw coke having a value of 700 ppm or more and 2500 ppm or less can be used. Since this raw coke contains a large amount of transition metals and the like as impurities, it is considered that the efficiency of Li insertion / removal is improved when it is used as a negative electrode material for a lithium ion secondary battery.

石油系生コークスを機械式粉砕機、例えばスーパーローターミル(日清エンジニアリング社製)、ジェットミル(日本ニューマチック工業社製)等で粉砕する。 Petroleum-based raw coke is crushed with a mechanical crusher, for example, a super rotor mill (manufactured by Nisshin Engineering Co., Ltd.), a jet mill (manufactured by Nippon Pneumatic Mfg. Co., Ltd.), or the like.

粉砕後の平均粒径(D50)は、1μm以上15μm以下、より好ましくは3μm以上10μm以下とする。平均粒径は、レーザー回折式粒度分布計による測定に基づく。D50が1μm未満の場合は、必要な粉砕エネルギーが莫大なものになるので現実的ではなく、D50が3μm未満の場合は乾式造粒を行う際に、粒子に十分に力学的エネルギーを付与できない場合が出てくる。また、D50が15μmを超えると、造粒後にリチウムイオン二次電池の負極材料として適当な大きさの粒子が少なくなるので好ましくない。 The average particle size (D50) after pulverization is 1 μm or more and 15 μm or less, more preferably 3 μm or more and 10 μm or less. The average particle size is based on the measurement by a laser diffraction type particle size distribution meter. If D50 is less than 1 μm, the required grinding energy will be enormous, which is not realistic. If D50 is less than 3 μm, sufficient mechanical energy cannot be applied to the particles during dry granulation. Comes out. Further, if D50 exceeds 15 μm, the number of particles having an appropriate size as a negative electrode material for the lithium ion secondary battery is reduced after granulation, which is not preferable.

上記粉砕品をさらに分級することができる。分級装置としては、精密空気分級機、例えば、ターボクラシファイヤー(日清エンジニアリング社製)、エルボージェット(日鉄鉱業社製)、クラッシール(セイシン企業社製)等が挙げられる。 The crushed product can be further classified. Examples of the classifier include a precision air classifier (manufactured by Nisshin Engineering Co., Ltd.), an elbow jet (manufactured by Nittetsu Mining Co., Ltd.), a classifier (manufactured by Seishin Enterprise Co., Ltd.), and the like.

次に、ケイ素原料であるケイ素粒子及び又は酸化ケイ素粒子を準備する。ここで、ケイ素原料の平均粒径は特に限定されないが、1μm以下とすることで、ケイ素含有非晶質炭素材料の充放電時の酸化ケイ素粒子の膨張幅が小さくなるため、炭素層が体積変化を抑えることができる。 Next, silicon particles and / or silicon oxide particles, which are silicon raw materials, are prepared. Here, the average particle size of the silicon raw material is not particularly limited, but by setting it to 1 μm or less, the expansion width of the silicon oxide particles during charging and discharging of the silicon-containing amorphous carbon material becomes small, so that the volume of the carbon layer changes. Can be suppressed.

ここで、一例として平均粒径が20nm以上30nm以下程度の酸化ケイ素粒子を用いる。なお、ケイ素粒子を用いる場合については、酸化ケイ素粒子を用いる場合と配合比が異なるため、後述する。 Here, as an example, silicon oxide particles having an average particle size of 20 nm or more and 30 nm or less are used. The case of using silicon particles will be described later because the compounding ratio is different from the case of using silicon oxide particles.

続いて、生コークスの粒子と酸化ケイ素粒子とをよく混合して乾式造粒を行う。なお、生コークスは粘着性を有しているので、バインダー成分を加えて湿式造粒する必要がない。造粒の際の酸化ケイ素粒子の添加量は特に限定されないが、酸化ケイ素粒子の添加量を生コークスと酸化ケイ素粒子の体積の和を100%とした場合の酸化ケイ素粒子の添加量を2体積%以上90体積%以下にするのが好ましい。酸化ケイ素粒子の添加量は、10体積%以上85体積%以下であればより好ましく、20体積%以上80体積%以下であればさらに好ましい。 Subsequently, the raw coke particles and the silicon oxide particles are well mixed to perform dry granulation. Since raw coke has adhesiveness, it is not necessary to add a binder component for wet granulation. The amount of silicon oxide particles added during granulation is not particularly limited, but the amount of silicon oxide particles added is 2 volumes when the sum of the volumes of raw coke and silicon oxide particles is 100%. It is preferably% or more and 90% by volume or less. The amount of the silicon oxide particles added is more preferably 10% by volume or more and 85% by volume or less, and even more preferably 20% by volume or more and 80% by volume or less.

本処理には、剪断、圧縮、衝突などの応力を同時にかける球形化処理が可能な装置を用いることができるが、処理装置は、そのような構造及び原理を用いる装置に限定されるものではない。 For this treatment, a device capable of spheroidizing processing in which stresses such as shearing, compression, and collision are applied at the same time can be used, but the processing device is not limited to the device using such a structure and principle. ..

本処理に用いられる装置としては、例えば、回転式のボールミルなどのボール型混練機、エッジランナーなどのホイール型混練機、ハイブリダイゼーションシステム(奈良機械製作所製)、メカノフュージョン(ホソカワミクロン社製)、ノビルタ(ホソカワミクロン社製)、COMPOSI(日本コークス工業社製)などが挙げられる。特に、回転するブレードの羽根とハウジングとの間隙で、粉体に圧密応力又は圧縮応力が加わる構造の装置が好ましく用いられる。処理時に粉体に加わる温度が60℃~300℃になるよう制御すれば、生コークスに含まれる揮発分によって適度な粘着性が発生し、粒子同士が瞬時に付着する作用が働くため、粉体の成長が促進される。 The devices used in this process include, for example, a ball-type kneader such as a rotary ball mill, a wheel-type kneader such as an edge runner, a hybridization system (manufactured by Nara Machinery Co., Ltd.), Mechanofusion (manufactured by Hosokawa Micron), and Nobilta. (Manufactured by Hosokawa Micron Co., Ltd.), COMPOSI (manufactured by Nippon Coke Industries Co., Ltd.) and the like. In particular, a device having a structure in which compaction stress or compressive stress is applied to the powder in the gap between the blade of the rotating blade and the housing is preferably used. If the temperature applied to the powder during processing is controlled to be 60 ° C to 300 ° C, the volatile components contained in the raw coke will cause appropriate stickiness, and the particles will instantly adhere to each other. Growth is promoted.

原料に用いる生コークスの円形度が0.5~0.8程度であるため、圧縮剪断応力による形状加工後に得られる粉体の円形度は、0.70より大きく1.0以下になる。粉体の円形度は、望ましくは0.80以上0.98以下である。粉体の円形度が1.0であっても酸化ケイ素粒子の膨張収縮の影響を緩和する効果を得ることができるが、0.98を超える円形度まで処理した粒子では、真球に近いために粒子同士の接点が少なくなる。特に粒子の円形度の範囲が0.90以上0.96以下であることが好ましい。 Since the circularity of raw coke used as a raw material is about 0.5 to 0.8, the circularity of the powder obtained after shape processing by compressive shear stress is larger than 0.70 and 1.0 or less. The circularity of the powder is preferably 0.80 or more and 0.98 or less. Even if the circularity of the powder is 1.0, the effect of alleviating the influence of expansion and contraction of the silicon oxide particles can be obtained, but the particles treated to a circularity exceeding 0.98 are close to true spheres. The number of contacts between particles is reduced. In particular, the range of circularity of the particles is preferably 0.90 or more and 0.96 or less.

ここで、酸化ケイ素粒子の全量を生コークスと混合してもよいが、酸化ケイ素粒子の量が多いと造粒しにくくなるので、生コークスと一部の酸化ケイ素粒子とを混合して造粒を開始した後、複数回(例えば3回以上)に分けて酸化ケイ素粒子を添加してもよい。また、酸化ケイ素粒子等を造粒開始時に投入した後に酸化ケイ素粒子及び生コークスを添加してもよく、造粒の最後に生コークスのみを添加して酸化ケイ素粒子の表面を生コークスで被覆してもよい。また、本工程において、酸化ケイ素の一部が単体のケイ素に置き換わっていてもよい。 Here, the entire amount of the silicon oxide particles may be mixed with the raw coke, but if the amount of the silicon oxide particles is large, it becomes difficult to granulate, so the raw coke and some of the silicon oxide particles are mixed and granulated. After starting the above, the silicon oxide particles may be added in a plurality of times (for example, 3 times or more). Further, the silicon oxide particles and raw coke may be added after the silicon oxide particles and the like are added at the start of granulation, and only the raw coke is added at the end of the granulation to cover the surface of the silicon oxide particles with the raw coke. You may. Further, in this step, a part of silicon oxide may be replaced with elemental silicon.

さらに、造粒に用いる生コークスの一部をアセチレンブラックなどの炭素材料や遷移金属化合物を始めとする無機化合物、有機化合物などに置き換えることによって、異種材料と生コークスとを複合化することも可能である。造粒を妨げない程度であれば、造粒開始時もしくは造粒途中に投入する生コークスの一部を異種材料で置換してもよいし、異種材料のみを造粒途中に追加してもよい。異種材料の添加量は、造粒を妨げない範囲であれば、特に限定しない。異種材料の平均粒径は、造粒を妨げない範囲であれば特に限定しないが、添加する時点の造粒粒子径の1/2以下であることが好ましい。 Furthermore, by replacing part of the raw coke used for granulation with carbon materials such as acetylene black, inorganic compounds such as transition metal compounds, and organic compounds, it is possible to combine different materials with raw coke. Is. As long as it does not interfere with granulation, a part of the raw coke to be added at the start of granulation or during granulation may be replaced with a different material, or only different materials may be added during granulation. .. The amount of different materials added is not particularly limited as long as it does not interfere with granulation. The average particle size of the dissimilar materials is not particularly limited as long as it does not interfere with granulation, but is preferably 1/2 or less of the granulated particle size at the time of addition.

次に、造粒された粒子を炭化する。炭化の方法は特に限定されないが、例えば、窒素、アルゴンなどの不活性ガス雰囲気下で最高到達温度800℃以上1200℃以下、最高到達温度での保持時間は0時間より長く10時間以下にして熱処理する方法が挙げられる。 Next, the granulated particles are carbonized. The carbonization method is not particularly limited, but for example, the heat treatment is carried out in an atmosphere of an inert gas such as nitrogen or argon with a maximum ultimate temperature of 800 ° C. or higher and 1200 ° C. or lower, and a holding time at the maximum ultimate temperature of longer than 0 hours and 10 hours or less. There is a way to do it.

炭化温度が800℃以上であれば、コークス中に残る低分子炭化水素や官能基の量を低減できるので、これらの不純物による不可逆容量の増大を効果的に抑えることができる。炭化温度が1200℃以下であれば、絶縁性の炭化ケイ素が材料中で生成するのを抑えることができるので好ましい。炭化温度が900℃以上1100℃以下程度であれば特に好ましい。炭化温度を900℃以上とすることで、低分子炭化水素等の残留による不可逆容量の増大をより効果的に抑えることができる。 When the carbonization temperature is 800 ° C. or higher, the amount of small molecule hydrocarbons and functional groups remaining in the coke can be reduced, so that the increase in irreversible capacity due to these impurities can be effectively suppressed. When the carbonization temperature is 1200 ° C. or lower, it is preferable because it is possible to suppress the formation of insulating silicon carbide in the material. It is particularly preferable that the carbonization temperature is about 900 ° C. or higher and 1100 ° C. or lower. By setting the carbonization temperature to 900 ° C. or higher, it is possible to more effectively suppress the increase in irreversible capacity due to the residual of small molecule hydrocarbons and the like.

なお、炭化工程において、最高到達時間での保持時間を10時間より長くしてもよいが、炭化が完了した後に熱処理を続けることになるので経済的ではない。 In the carbonization step, the holding time at the maximum arrival time may be longer than 10 hours, but it is not economical because the heat treatment is continued after the carbonization is completed.

この炭化処理によって、生コークス中の揮発成分が酸化ケイ素の還元を促進していると考えられる。また、炭化の際に生じる揮発成分のガスが外部に抜ける際に粒子中にはガスの放出経路が形成されるが、当該放出経路は、リチウムイオン二次電池の負極材料として用いた場合に、リチウムが拡散する経路になり、また、酸化ケイ素粒子の膨張収縮を緩衝する効果も発揮する。 It is considered that the volatile components in the raw coke promote the reduction of silicon oxide by this carbonization treatment. Further, when the gas of the volatile component generated during carbonization escapes to the outside, a gas release path is formed in the particles, and the release path is used as a negative electrode material of a lithium ion secondary battery. It serves as a path for lithium to diffuse, and also has the effect of cushioning the expansion and contraction of silicon oxide particles.

以上の方法によれば、特許文献1に記載された方法に比べて容易にリチウムイオン二次電池の負極に用いられる材料を製造することができる。 According to the above method, a material used for a negative electrode of a lithium ion secondary battery can be easily manufactured as compared with the method described in Patent Document 1.

また、別の一例として、酸化ケイ素粒子に代えてケイ素粒子を用いる場合を説明する。 Further, as another example, a case where silicon particles are used instead of silicon oxide particles will be described.

なお、ケイ素粒子は空気中での取り扱いにより、粒子表面に酸化被膜が形成されやすく、また、ケイ素粒子の過度の酸化を防ぐために、予めケイ素粒子の表面に酸化被膜が形成されている場合もあるが、本発明においてはこれらのケイ素粒子も用いることができる。 When silicon particles are handled in air, an oxide film is likely to be formed on the surface of the particles, and in order to prevent excessive oxidation of the silicon particles, an oxide film may be formed on the surface of the silicon particles in advance. However, in the present invention, these silicon particles can also be used.

まず、生コークスの粒子とケイ素粒子とをよく混合して乾式造粒を行う。造粒の際には、ケイ素粒子の添加量を生コークスの量に対して例えば、2体積%以上90体積%以下とする。特に、酸化数の低いケイ素粒子は大きく膨張収縮をするため、ケイ素粒子の添加量は、5体積%以上50体積%以下とすることが好ましく、5体積%以上35体積%以下とすることがより好ましい。 First, dry coke granulation is performed by mixing raw coke particles and silicon particles well. At the time of granulation, the amount of silicon particles added is, for example, 2% by volume or more and 90% by volume or less with respect to the amount of raw coke. In particular, since silicon particles having a low oxidation number expand and contract significantly, the amount of silicon particles added is preferably 5% by volume or more and 50% by volume or less, and more preferably 5% by volume or more and 35% by volume or less. preferable.

本処理には、前述の方法と同様に、剪断、圧縮、衝突などの応力を同時にかけることが可能な装置を用いることができる。 Similar to the above method, an apparatus capable of simultaneously applying stress such as shearing, compression, and collision can be used for this treatment.

原料に用いる生コークスの円形度は0.5~0.8程度であるため、圧縮剪断応力による形状加工後に得られる粉体の円形度は、0.70より大きく1.0以下になる。粉体の円形度は、望ましくは0.80以上0.98以下である。粉体の円形度が1.0であってもケイ素粒子の膨張収縮の影響を緩和する効果を得ることができるが、0.98を超える円形度まで処理した粒子では、真球に近いために、粒子同士の接点が少なくなる。特に粒子の円形度の範囲が0.90以上0.96以下であることが好ましい。 Since the circularity of raw coke used as a raw material is about 0.5 to 0.8, the circularity of the powder obtained after shape processing by compressive shear stress is larger than 0.70 and 1.0 or less. The circularity of the powder is preferably 0.80 or more and 0.98 or less. Even if the circularity of the powder is 1.0, the effect of alleviating the influence of expansion and contraction of the silicon particles can be obtained, but the particles treated to a circularity exceeding 0.98 are close to a true sphere. , The number of contacts between particles is reduced. In particular, the range of circularity of the particles is preferably 0.90 or more and 0.96 or less.

ここで、ケイ素粒子の全量を生コークスと混合してもよいが、ケイ素粒子の量が多いと造粒しにくくなるので、生コークスと一部のケイ素粒子とを混合して造粒を開始した後、複数回(例えば3回以上)に分けてケイ素粒子を添加してもよい。また、ケイ素粒子等を造粒開始時に投入した後にケイ素粒子及び生コークスを添加してもよく、造粒の最後に生コークスのみを添加してケイ素粒子の表面を生コークスで被覆してもよい。また、本工程において、ケイ素の一部が酸化ケイ素に置き換わっていてもよい。 Here, the entire amount of the silicon particles may be mixed with the raw coke, but if the amount of the silicon particles is large, it becomes difficult to granulate, so the raw coke and some of the silicon particles are mixed and granulation is started. After that, the silicon particles may be added in a plurality of times (for example, 3 times or more). Further, the silicon particles and raw coke may be added after the silicon particles or the like are added at the start of granulation, or only the raw coke may be added at the end of the granulation to coat the surface of the silicon particles with the raw coke. .. Further, in this step, a part of silicon may be replaced with silicon oxide.

さらに、造粒に用いる生コークスの一部をアセチレンブラックなどの炭素材料や遷移金属化合物を始めとする無機化合物、有機化合物などに置き換えることによって、異種材料と生コークスとを複合化することも可能である。造粒を妨げない程度であれば、造粒開始時もしくは造粒途中に投入する生コークスの一部を異種材料で置換してもよいし、異種材料のみを造粒途中に追加してもよい。異種材料の添加量は、造粒を妨げない範囲であれば、特に限定しない。異種材料の平均粒径は、造粒を妨げない範囲であれば特に限定しないが、添加する時点の造粒粒子径の1/2以下であることが好ましい。 Furthermore, by replacing part of the raw coke used for granulation with carbon materials such as acetylene black, inorganic compounds such as transition metal compounds, and organic compounds, it is possible to combine different materials with raw coke. Is. As long as it does not interfere with granulation, a part of the raw coke to be added at the start of granulation or during granulation may be replaced with a different material, or only different materials may be added during granulation. .. The amount of different materials added is not particularly limited as long as it does not interfere with granulation. The average particle size of the dissimilar materials is not particularly limited as long as it does not interfere with granulation, but is preferably 1/2 or less of the granulated particle size at the time of addition.

次に、造粒された粒子を炭化する。炭化の方法は特に限定されないが、例えば、窒素、アルゴンなどの不活性ガス雰囲気下で最高到達温度800℃以上1200℃以下、最高到達温度での保持時間は0時間より長く10時間以下にして熱処理する方法が挙げられる。 Next, the granulated particles are carbonized. The carbonization method is not particularly limited, but for example, the heat treatment is carried out in an atmosphere of an inert gas such as nitrogen or argon with a maximum ultimate temperature of 800 ° C. or higher and 1200 ° C. or lower, and a holding time at the maximum ultimate temperature of longer than 0 hours and 10 hours or less. There is a way to do it.

炭化温度が800℃以上であれば、コークス中に残る低分子炭化水素や官能基の量を低減できるので、これらの不純物による不可逆容量の増大を効果的に抑えることができる。炭化温度が1200℃以下であれば、絶縁性の炭化ケイ素が材料中で生成するのを抑えることができるので好ましい。 When the carbonization temperature is 800 ° C. or higher, the amount of small molecule hydrocarbons and functional groups remaining in the coke can be reduced, so that the increase in irreversible capacity due to these impurities can be effectively suppressed. When the carbonization temperature is 1200 ° C. or lower, it is preferable because it is possible to suppress the formation of insulating silicon carbide in the material.

炭化温度が900℃以上1100℃以下程度であれば特に好ましい。炭化温度を900℃以上とすることで、低分子炭化水素等の残留による不可逆容量の増大を抑えることができる。 It is particularly preferable that the carbonization temperature is about 900 ° C. or higher and 1100 ° C. or lower. By setting the carbonization temperature to 900 ° C. or higher, it is possible to suppress an increase in irreversible capacity due to the residual of small molecule hydrocarbons and the like.

なお、炭化工程において、最高到達時間での保持時間を10時間より長くしてもよいが、炭化が完了した後に熱処理を続けることになるので経済的ではない。 In the carbonization step, the holding time at the maximum arrival time may be longer than 10 hours, but it is not economical because the heat treatment is continued after the carbonization is completed.

この炭化処理には、生コークス中の揮発成分がケイ素粒子の表面の酸化被膜を還元する作用があると考えられる。酸化数の小さいケイ素粒子を含む炭素材料は高容量を示すため、負極材料として好ましいが、一方で酸化数の小さいケイ素粒子ほど膨張収縮が大きいという問題がある。本発明によれば、炭化の際に生じる揮発成分のガスが外部に抜けて形成される空隙がケイ素粒子の膨張収縮を緩衝するため、高容量なケイ素含有非晶質炭素材料を提供できる。また、炭化の際に生じる揮発成分のガスが外部に抜ける際に粒子中にはガスの放出経路が形成されるが、当該放出経路は、リチウムイオン二次電池の負極材料として用いた場合に、リチウムが拡散する経路になる。 It is considered that this carbonization treatment has an action of reducing the oxide film on the surface of the silicon particles by the volatile components in the raw coke. A carbon material containing silicon particles having a small oxidation number is preferable as a negative electrode material because it exhibits a high capacity, but on the other hand, there is a problem that silicon particles having a small oxidation number have a larger expansion / contraction. According to the present invention, since the voids formed by the volatile component gas generated during carbonization escaping to the outside buffer the expansion and contraction of the silicon particles, it is possible to provide a high-capacity silicon-containing amorphous carbon material. Further, when the gas of the volatile component generated during carbonization escapes to the outside, a gas release path is formed in the particles, and the release path is used as a negative electrode material of a lithium ion secondary battery. It becomes a path for lithium to diffuse.

以上の方法によっても、容易にリチウムイオン二次電池の負極に用いられる材料を製造することができる。 Also by the above method, the material used for the negative electrode of the lithium ion secondary battery can be easily manufactured.

また、本実施形態の製造方法では、造粒された粒子の表面の凹凸の大きさを調節することができる。具体的には、造粒工程において、造粒時間を短くしたり、造粒時の圧力を低くする等、あるいは造粒途中で造粒当初に加えた生コークス粒子よりも粒径の大きい生コークス粒子を追加することによって、表面の凹凸を大きくすることができる。逆に、造粒途中で造粒当初に加えた生コークス粒子よりも粒径の小さい生コークス粒子を追加することによって、表面の凹凸を小さくすることもできる。 Further, in the manufacturing method of the present embodiment, the size of the unevenness on the surface of the granulated particles can be adjusted. Specifically, in the granulation process, the granulation time is shortened, the pressure at the time of granulation is lowered, or the raw coke having a larger particle size than the raw coke particles added at the beginning of granulation during the granulation process. By adding particles, the surface irregularities can be increased. On the contrary, by adding the raw coke particles having a particle size smaller than that of the raw coke particles added at the beginning of granulation in the middle of granulation, the unevenness of the surface can be reduced.

-リチウムイオン二次電池の構成-
図2は、本実施形態のケイ素含有非晶質炭素材料を用いた負極を備えたリチウムイオン二次電池の一例を示す図である。
-Structure of lithium-ion secondary battery-
FIG. 2 is a diagram showing an example of a lithium ion secondary battery provided with a negative electrode using the silicon-containing amorphous carbon material of the present embodiment.

同図に示すように、本実施形態に係るリチウムイオン二次電池10は、負極11と、負極集電体12と、正極13と、正極集電体14と、負極11と正極13との間に介在するセパレータ15と、アルミニウムラミネートフィルム等で構成された外装16とを備えている。 As shown in the figure, the lithium ion secondary battery 10 according to the present embodiment has a negative electrode 11, a negative electrode current collector 12, a positive electrode 13, a positive electrode current collector 14, and a negative electrode 11 and a positive electrode 13. It is provided with a separator 15 interposed therebetween and an exterior 16 made of an aluminum laminated film or the like.

負極11としては、例えば、金属箔の両面又は片面に上述の本実施形態の非晶質炭素含有材料1が塗布されたものが用いられる。この塗布されたケイ素含有非晶質炭素材料1の平均粒径及び円形度は、電池の製造工程の前後でほぼ変化せず、それぞれ5μm以上40μm以下、及び0.70以上1.0以下となっている。 As the negative electrode 11, for example, a metal foil coated with the amorphous carbon-containing material 1 of the present embodiment on both sides or one side is used. The average particle size and circularity of the coated silicon-containing amorphous carbon material 1 were almost unchanged before and after the battery manufacturing process, and were 5 μm or more and 40 μm or less, and 0.70 or more and 1.0 or less, respectively. ing.

なお、負極を作製する際には、造粒されたケイ素含有非晶質炭素材料の他に、アセチレンブラック(AB)等の導電助剤やポリフッ化ビニリデン(PVdF)等のバインダーを適量加え、Nメチルピロリドン(NMP)等の溶媒を用いて混練したペーストを集電用銅箔上に塗布する。
When producing the negative electrode, in addition to the granulated silicon-containing amorphous carbon material, an appropriate amount of a conductive auxiliary agent such as acetylene black (AB) or a binder such as polyvinylidene fluoride (PVdF) is added to N. A paste kneaded with a solvent such as -methyl - 2 - pyrrolidone (NMP) is applied onto the copper foil for current collection.

なお、負極集電体12、正極13、正極集電体14、セパレータ15及び外装16等、負極11以外の部材の形状や構成材料については一般的なものを適用することができる。 As for the shapes and constituent materials of the members other than the negative electrode 11, such as the negative electrode current collector 12, the positive electrode 13, the positive electrode current collector 14, the separator 15, and the exterior 16, general materials can be applied.

本実施形態に係るリチウムイオン二次電池は、上述のケイ素含有非晶質炭素材料が塗布された負極を有しているので、迅速な充放電が可能であるとともに、容量が大きく、充放電を繰り返しても負極が崩壊しにくくなっている。さらに、エネルギー密度が高く、不可逆容量が小さく抑えられ、且つサイクル特性を改善することも可能となっている。 Since the lithium ion secondary battery according to the present embodiment has a negative electrode coated with the above-mentioned silicon-containing amorphous carbon material, it can be charged and discharged quickly, and has a large capacity and can be charged and discharged. Even if it is repeated, the negative electrode is less likely to collapse. Further, the energy density is high, the irreversible capacitance is kept small, and the cycle characteristics can be improved.

なお、これはリチウムイオン二次電池の一例であって、各部材の形状や電極数、大きさ等は適宜変更してもよい。 This is an example of a lithium ion secondary battery, and the shape, the number of electrodes, the size, and the like of each member may be appropriately changed.

以下、実施例及び比較例に基づき本出願に係る発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the invention according to the present application will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

-測定方法の説明-
(a)原料の光学等方性組織率の測定
プラスチック製サンプル容器の底に少量の観察用試料を入れ、冷間埋込樹脂(商品名:冷間埋込樹脂#105、製造会社:ジャパンコンポジット(株))と硬化剤(商品名:硬化剤(M剤)、製造会社:日本油脂(株))との混合物をゆっくりと流し入れ、静置して凝固させる。次に、凝固したサンプルを取り出し、研磨板回転式の研磨機を用いて、測定する面を研磨する。研磨は、回転面に研磨面を押し付けるように行う。研磨板の回転は1000rpmとする。研磨板の番手は、#500、#1000、#2000の順に行い、最後はアルミナ(商品名:バイカロックス タイプ0.3CR,粒子径0.3μm、製造会社:バイコウスキー)を用いて鏡面研磨する。研磨したサンプルを500倍の倍率の偏光顕微鏡((株)ニコン製)を用いて、観察角度0度と45度において観測し、各画像をキーエンス製デジタルマイクロスコープVHX-2000に取り込んだ。
-Explanation of measurement method-
(A) Measurement of optical isotropic structure ratio of raw material Place a small amount of observation sample in the bottom of a plastic sample container and cold-embedded resin (trade name: cold-embedded resin # 105, manufacturer: Japan Composite). (Co., Ltd.) and a curing agent (trade name: curing agent (M agent), manufacturing company: Nippon Oil & Fats Co., Ltd.) are slowly poured in and allowed to stand to solidify. Next, the solidified sample is taken out, and the surface to be measured is polished using a polishing plate rotary polishing machine. Polishing is performed so that the polished surface is pressed against the rotating surface. The rotation of the polishing plate is 1000 rpm. The number of the polishing plate is # 500, # 1000, # 2000 in this order, and finally, mirror polishing using alumina (trade name: Baikalocks type 0.3CR, particle size 0.3 μm, manufacturer: Baikowski). do. The polished sample was observed using a polarizing microscope (manufactured by Nikon Corporation) having a magnification of 500 times at observation angles of 0 degrees and 45 degrees, and each image was taken into a Keyence digital microscope VHX-2000.

取り込んだ2枚の観測画像について、それぞれ同じ地点から正方形の領域(100μm四方)を切り抜き、その範囲内の全粒子に対して以下の解析を行い、平均値を求めた。 For each of the two captured images, a square area (100 μm square) was cut out from the same point, and the following analysis was performed on all the particles within that range to obtain the average value.

光学異方性ドメインは結晶子の向きにより色が変化する。一方、光学等方性ドメインは常に同じ色を示す。この性質を用いて、色が変化しない部分を二値化イメージにより抽出し、光学等方性部分の面積率を算出する。二値化する際には、しきい値が0~34の部分と239~255の部分をピュアマセンダと設定する。なお、黒色部分は空隙として扱った。
(b)原料中の遷移金属含有率の測定
日立レシオビーム分光光度計U-5100を用いて発光分光分析法に従って、原料となるコークスを定量分析した。
(c)平均粒子径の測定
レーザー回折散乱式粒度分布測定装置LMS-2000e(マルバーン社製)を用いて測定した。
(d)BET比表面積の測定
BET比表面積は、マルチソーブ(マルバーン社製)を使用して測定した。
(e)真密度の測定
気体置換法により測定される真密度は、ヘリウムガスを用いてマルチボリウム密度計1305型(島津製作所製)で測定した。
(f)タップ密度の測定
タップ密度はタップ回数を600回とした以外は、JIS K5101-12-2に記載の方法に従って測定した。
(g)非晶質炭素材料の酸素含有率の測定
不活性ガス融解-赤外線吸収法によって試料中の酸素含有率を定量分析した。
(h)非晶質炭素材料のケイ素含有率の測定
試料を1050℃で灰化処理し、その残量をケイ素含有量としてケイ素含有率を算出した。なお、O/Si比は、酸素含有率及びケイ素含有率からそれぞれ得られた試料中のモル濃度に基づいて求められる。
(i)円形度及び凹凸度合いの測定
粒子が積層しないように、且つ扁平な粒子は扁平面がシートに平行に配列するように分散固定したシートを走査型電子顕微鏡(S-4800 日立ハイテク社製)によってシートの真上から撮影し、画像をA像くん(旭化成エンジニアリング社製)で解析した。本実施例および比較例では、それぞれ粒子300個について投影面積と投影周囲長を測定し、円形度と凹凸度合いとを算出して円形度の平均値及び凹凸度合いの平均値を求めた。
(j)粒子の断面観察
粒子の断面写真は、樹脂に埋設した粒子をクロスセクションポリッシャー(CP)で処理し、走査型電子顕微鏡(S-4800 日立ハイテク社製)で撮影した。
(k)原料生コークス及び非晶質炭素材料の遷移金属含有率の測定
SPS-5000(セイコー電子工業製)を用い、ICP(誘導結合高周波プラズマ発光分析)法により試料に含まれるバナジウム等の遷移金属を定量分析した。
(l)ハーフセル評価用の電池作製と評価試験
単極の電池評価はCR2032コインセルを用いて行った。
The color of the optically anisotropic domain changes depending on the orientation of the crystallites. Optical isotropic domains, on the other hand, always show the same color. Using this property, the portion where the color does not change is extracted by a binarized image, and the area ratio of the optically isotropic portion is calculated. When binarizing, the part where the threshold value is 0 to 34 and the part where the threshold value is 239 to 255 are set as a pure macender. The black part was treated as a void.
(B) Measurement of Transition Metal Content in Raw Material The coke used as a raw material was quantitatively analyzed using a Hitachi ratio beam spectrophotometer U-5100 according to the emission spectrophotometric method.
(C) Measurement of average particle size Measurement was performed using a laser diffraction / scattering type particle size distribution measuring device LMS-2000e (manufactured by Malvern).
(D) Measurement of BET specific surface area The BET specific surface area was measured using a multi-sorb (manufactured by Malvern).
(E) Measurement of true density The true density measured by the gas substitution method was measured with a multi-volume density meter No. 1305 (manufactured by Shimadzu Corporation) using helium gas.
(F) Measurement of tap density The tap density was measured according to the method described in JIS K5101-12-2, except that the number of taps was 600.
(G) Measurement of oxygen content of amorphous carbon material The oxygen content in the sample was quantitatively analyzed by the Inert gas melting-infrared absorption method.
(H) Measurement of Silicon Content of Amorphous Carbon Material The sample was incinerated at 1050 ° C., and the remaining amount was used as the silicon content to calculate the silicon content. The O / Si ratio is determined based on the molar concentration in the sample obtained from the oxygen content and the silicon content, respectively.
(I) Measurement of circularity and degree of unevenness Scanning electron microscope (S-4800, manufactured by Hitachi High-Technologies Corporation) disperses and fixes the sheet so that the particles are not stacked and the flat particles are arranged so that the flat surfaces are arranged in parallel with the sheet. ) Was taken from directly above the sheet, and the image was analyzed by A-kun (manufactured by Asahi Kasei Engineering Co., Ltd.). In this example and the comparative example, the projected area and the projected peripheral length were measured for 300 particles, respectively, and the circularity and the degree of unevenness were calculated to obtain the average value of the circularity and the average value of the degree of unevenness.
(J) Cross-sectional observation of particles The cross-sectional photograph of the particles was taken by treating the particles embedded in the resin with a cross-section polisher (CP) and taking a picture with a scanning electron microscope (S-4800, manufactured by Hitachi High-Tech).
(K) Measurement of transition metal content of raw coke and amorphous carbon material Transition of vanadium and the like contained in a sample by ICP (inductively coupled high frequency plasma emission spectrometry) method using SPS-5000 (manufactured by Seiko Denshi Kogyo). The metal was quantitatively analyzed.
(L) Battery fabrication and evaluation test for half-cell evaluation Single-pole battery evaluation was performed using a CR2032 coin cell.

電極シート作製用ペースト調製:
試料1重量部にアセチレンブラック(AB)0.044重量部、呉羽化学製KFポリマー(ポリフッ化ビニリデン(PVdF))を0.066重量部を加え、N-メチルピロリドン(NMP)を溶剤として、プラネタリーミキサーにて混練した後、Cu金属箔に塗布し、乾燥させた。このシートを圧延して所定のサイズに打ち抜き、評価用の電極を作製した。対極には金属リチウムを用い、電解液は1mol/lのLiPFを溶解したエチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合溶液を(体積比で1:2)を用いた。なお、以下のコインセルの組み立ては、露点-80℃以下の乾燥アルゴン雰囲気下で実施した。
Preparation of paste for making electrode sheet:
0.044 parts by weight of acetylene black (AB) and 0.066 parts by weight of KF polymer (polyvinylidene fluoride (PVdF)) manufactured by Kureha Chemical Co., Ltd. are added to 1 part by weight of the sample, and N-methylpyrrolidone (NMP) is used as a solvent for the planeta. After kneading with a Lee mixer, it was applied to Cu metal foil and dried. This sheet was rolled and punched to a predetermined size to prepare an electrode for evaluation. Metallic lithium was used as the counter electrode, and a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) in which 1 mol / l LiPF 6 was dissolved (1: 2 in volume ratio) was used as the electrolytic solution. The following coin cells were assembled in a dry argon atmosphere with a dew point of −80 ° C. or lower.

単極充放電試験:
充電は0.25mAで10mVまで定電流充電(CC充電)を行い、0.025mAまで電流が減衰したところで充電完了とした。放電は0.25mAで定電流放電(CC放電)を行い、1.5Vでカットオフした。この充放電を10サイクル繰り返した。
Unipolar charge / discharge test:
For charging, constant current charging (CC charging) was performed at 0.25 mA up to 10 mV, and charging was completed when the current decreased to 0.025 mA. The discharge was constant current discharge (CC discharge) at 0.25 mA and cut off at 1.5 V. This charging / discharging was repeated for 10 cycles.

-実施例及び比較例に係るケイ素含有非晶質炭素材料の作製-
下記の実施例及び比較例において、原料コークスとして、石油系非針状コークスであるコークスA、又は石油系針状コークスであるコークスBを用いた。コークスA、Bの等方性組織率、遷移金属含有率、バナジウム含有率を表1に示す。コークスAは、コークスBに比べて遷移金属含有率、バナジウム含有率のいずれも非常に多かった。
-Preparation of silicon-containing amorphous carbon material according to Examples and Comparative Examples-
In the following examples and comparative examples, coke A, which is a petroleum-based non-needle-like coke, or coke B, which is a petroleum-based needle-like coke, was used as the raw material coke. Table 1 shows the isotropic texture of coke A and B, the transition metal content, and the vanadium content. Coke A had a much higher transition metal content and vanadium content than coke B.

Figure 0006993216000001
Figure 0006993216000001

次に、以下の実施例及び比較例における製造条件を、表2にまとめて示す。また、これらの実施例及び比較例において作製された炭素材料の各パラメータを測定した結果を表3に示す。 Next, the manufacturing conditions in the following Examples and Comparative Examples are summarized in Table 2. Table 3 shows the results of measuring each parameter of the carbon materials produced in these Examples and Comparative Examples.

Figure 0006993216000002
Figure 0006993216000002

Figure 0006993216000003
Figure 0006993216000003

<実施例1>
生コークスAを、D50が5.7μmとなるよう粉砕及び分級し、生コークス粒子と二酸化ケイ素粒子とを混合して上述の方法で乾式造粒を行った。二酸化ケイ素粒子の粒径は20~30nmであった。二酸化ケイ素粒子と生コークス粒子の体積の和を100%とした場合の二酸化ケイ素粒子の添加量を50体積%とした。
<Example 1>
Raw coke A was pulverized and classified so that D50 was 5.7 μm, and raw coke particles and silicon dioxide particles were mixed and dry granulation was performed by the above method. The particle size of the silicon dioxide particles was 20 to 30 nm. When the sum of the volumes of the silicon dioxide particles and the raw coke particles was 100%, the amount of the silicon dioxide particles added was 50% by volume.

生コークス粒子と二酸化ケイ素粒子の一部とをCOMPOSI CP15型(日本コークス工業社製)に投入して低速で球形化処理を開始し、数回に分けて二酸化ケイ素粒子を全量投入した。全量投入後は周速を80m/sとして120分間処理を行い、造粒された粒子を得た。 The raw coke particles and a part of the silicon dioxide particles were charged into COMPOSI CP15 type (manufactured by Nippon Coke Industry Co., Ltd.) to start the spheroidizing treatment at a low speed, and the entire amount of the silicon dioxide particles was charged in several times. After the total amount was charged, the treatment was carried out for 120 minutes at a peripheral speed of 80 m / s to obtain granulated particles.

次に、造粒された粒子を1000℃、最高到達温度での保持時間(炭化時間)を5時間として炭化処理した。 Next, the granulated particles were carbonized at 1000 ° C. with a holding time (carbonization time) at the maximum temperature of 5 hours.

このようにして得られた実施例1に係る非晶質炭素材料のD50は13.5μmであり、BETは1.5m/gであり、円形度は0.970であり、凹凸度合いの値は0.985であった。また、真密度は2.02g/cmであり、O/Si比(モル比)は1.03であった。得られた炭素材料中のSi含有率は15.0wt%であった。 The D50 of the amorphous carbon material according to Example 1 thus obtained is 13.5 μm, the BET is 1.5 m 2 / g, the circularity is 0.970, and the value of the degree of unevenness is high. Was 0.985. The true density was 2.02 g / cm 3 , and the O / Si ratio (molar ratio) was 1.03. The Si content in the obtained carbon material was 15.0 wt%.

<実施例2>
生コークスBを、D50が9.6μmとなるよう粉砕及び分級し、生コークス粒子と二酸化ケイ素粒子とを混合して上述の方法で乾式造粒及び炭化を行った。この際、二酸化ケイ素粒子の添加量を53体積%とした。二酸化ケイ素粒子は数回に分けて全量を投入した。全量投入後は周速を80m/sとし、処理時間を120分とした以外は実施例1と同じ条件で造粒及び炭化を行った。
<Example 2>
Raw coke B was pulverized and classified so that D50 was 9.6 μm, raw coke particles and silicon dioxide particles were mixed, and dry granulation and carbonization were performed by the above-mentioned method. At this time, the amount of silicon dioxide particles added was set to 53% by volume. The whole amount of silicon dioxide particles was added in several batches. After the total amount was charged, granulation and carbonization were performed under the same conditions as in Example 1 except that the peripheral speed was set to 80 m / s and the treatment time was set to 120 minutes.

このようにして得られた実施例2に係る非晶質炭素材料のD50は24.9μmであり、BETは8.1m/gであり、円形度は0.953であり、凹凸度合いの値は0.976であった。また、真密度は2.10g/cmであり、O/Si比(モル比)は1.21であった。得られた炭素材料中のSi含有率は14.5wt%であった。 The D50 of the amorphous carbon material according to Example 2 thus obtained is 24.9 μm, the BET is 8.1 m 2 / g, the circularity is 0.953, and the value of the degree of unevenness is high. Was 0.976. The true density was 2.10 g / cm 3 , and the O / Si ratio (molar ratio) was 1.21. The Si content in the obtained carbon material was 14.5 wt%.

<実施例3>
生コークスAを、D50が7.9μmとなるよう粉砕及び分級し、生コークス粒子と二酸化ケイ素粒子とを混合して上述の方法で乾式造粒及び炭化を行った。この際、二酸化ケイ素粒子の添加量を53体積%とした。二酸化ケイ素粒子は数回に分けて全量を投入した。全量投入後は周速を70m/sとし、処理時間を120分とした以外は実施例1と同じ条件で造粒及び炭化を行った。
<Example 3>
Raw coke A was pulverized and classified so that D50 was 7.9 μm, raw coke particles and silicon dioxide particles were mixed, and dry granulation and carbonization were performed by the above-mentioned method. At this time, the amount of silicon dioxide particles added was set to 53% by volume. The whole amount of silicon dioxide particles was added in several batches. After the total amount was charged, granulation and carbonization were performed under the same conditions as in Example 1 except that the peripheral speed was 70 m / s and the treatment time was 120 minutes.

このようにして得られた実施例3に係る非晶質炭素材料のD50は27.1μmであり、BETは10.7m/gであり、円形度は0.901であり、凹凸度合いの値は0.949であった。また、真密度は2.07g/cmであり、O/Si比(モル比)は1.29であった。得られた炭素材料中のSi含有率は14.4wt%であった。 The D50 of the amorphous carbon material according to Example 3 thus obtained is 27.1 μm, the BET is 10.7 m 2 / g, the circularity is 0.901, and the value of the degree of unevenness is high. Was 0.949. The true density was 2.07 g / cm 3 , and the O / Si ratio (molar ratio) was 1.29. The Si content in the obtained carbon material was 14.4 wt%.

<実施例4>
生コークスAを、D50が7.9μmとなるよう粉砕及び分級し、生コークス粒子と二酸化ケイ素粒子とを混合して上述の方法で乾式造粒及び炭化を行った。この際、二酸化ケイ素粒子の添加量を50体積%とした。二酸化ケイ素粒子は数回に分けて全量を投入した。全量投入後は周速を70m/sとし、処理時間を180分とした以外は実施例1と同じ条件で造粒を行った。
<Example 4>
Raw coke A was pulverized and classified so that D50 was 7.9 μm, raw coke particles and silicon dioxide particles were mixed, and dry granulation and carbonization were performed by the above-mentioned method. At this time, the amount of silicon dioxide particles added was set to 50% by volume. The whole amount of silicon dioxide particles was added in several batches. After the total amount was charged, granulation was carried out under the same conditions as in Example 1 except that the peripheral speed was 70 m / s and the processing time was 180 minutes.

このようにして得られた実施例4に係る非晶質炭素材料のD50は21.1μmであり、BETは1.6m/gであり、円形度は0.947であり、凹凸度合いの値は0.973であった。また、真密度は2.02g/cmであり、O/Si比(モル比)は1.31であった。得られた炭素材料中のSi含有率は15.0wt%であった。また、タップ密度は1.2g/cmであった。 The D50 of the amorphous carbon material according to Example 4 thus obtained is 21.1 μm, the BET is 1.6 m 2 / g, the circularity is 0.947, and the value of the degree of unevenness is high. Was 0.973. The true density was 2.02 g / cm 3 , and the O / Si ratio (molar ratio) was 1.31. The Si content in the obtained carbon material was 15.0 wt%. The tap density was 1.2 g / cm 3 .

<実施例5>
生コークスAを、D50が4.8μmとなるよう粉砕及び分級し、生コークス粒子と二酸化ケイ素粒子とを混合して上述の方法で乾式造粒及び炭化を行った。この際、二酸化ケイ素粒子の添加量を50体積%とした。二酸化ケイ素粒子は数回に分けて全量を投入した。全量投入後の周速を80m/sとし、処理時間を210分とした以外は実施例1と同じ条件で造粒及び炭化を行った。
<Example 5>
Raw coke A was pulverized and classified so that D50 was 4.8 μm, raw coke particles and silicon dioxide particles were mixed, and dry granulation and carbonization were performed by the above-mentioned method. At this time, the amount of silicon dioxide particles added was set to 50% by volume. The whole amount of silicon dioxide particles was added in several batches. Granulation and carbonization were carried out under the same conditions as in Example 1 except that the peripheral speed after charging the entire amount was 80 m / s and the treatment time was 210 minutes.

このようにして得られた実施例5に係る非晶質炭素材料のD50は9.6μmであり、BETは2.5m/gであり、円形度は0.963であり、凹凸度合いの値は0.981であった。また、真密度は2.04g/cmであり、O/Si比(モル比)は1.27であった。得られた炭素材料中のSi含有率は15.1wt%であった。また、タップ密度は1.17g/cmであった。 The D50 of the amorphous carbon material according to Example 5 thus obtained is 9.6 μm, the BET is 2.5 m 2 / g, the circularity is 0.963, and the value of the degree of unevenness is high. Was 0.981. The true density was 2.04 g / cm 3 , and the O / Si ratio (molar ratio) was 1.27. The Si content in the obtained carbon material was 15.1 wt%. The tap density was 1.17 g / cm 3 .

<実施例6>
実施例4に係る非晶質炭素材料と実施例5に係る非晶質炭素材料とを重量比7:3で混合した非晶質炭素材料を実施例6とした。得られた炭素材料のタップ密度は1.27g/cmであった。
<Example 6>
Example 6 was an amorphous carbon material obtained by mixing the amorphous carbon material according to Example 4 and the amorphous carbon material according to Example 5 at a weight ratio of 7: 3. The tap density of the obtained carbon material was 1.27 g / cm 3 .

<実施例7>
生コークスAを、D50が5.8μmとなるよう粉砕及び分級し、生コークス粒子と二酸化ケイ素粒子とを混合して上述の方法で乾式造粒及び炭化を行った。この際、二酸化ケイ素粒子の添加量を61体積%とし、二酸化ケイ素粒子は数回に分けて全量を投入した。全量投入後の周速を80m/sとし、処理時間を120分とした以外は実施例1と同じ条件で造粒及び炭化を行った。
<Example 7>
Raw coke A was pulverized and classified so that D50 was 5.8 μm, raw coke particles and silicon dioxide particles were mixed, and dry granulation and carbonization were performed by the above-mentioned method. At this time, the amount of the silicon dioxide particles added was 61% by volume, and the total amount of the silicon dioxide particles was added in several batches. Granulation and carbonization were carried out under the same conditions as in Example 1 except that the peripheral speed after charging the entire amount was 80 m / s and the treatment time was 120 minutes.

このようにして得られた実施例7に係る非晶質炭素材料のD50は12.1μmであり、BETは5.0m/gであり、円形度は0.967であり、凹凸度合いの値は0.983であった。また、真密度は2.09g/cmであり、O/Si比(モル比)は1.14であった。得られた炭素材料中のSi含有率は20.0wt%であった。 The D50 of the amorphous carbon material according to Example 7 thus obtained is 12.1 μm, the BET is 5.0 m 2 / g, the circularity is 0.967, and the value of the degree of unevenness is high. Was 0.983. The true density was 2.09 g / cm 3 , and the O / Si ratio (molar ratio) was 1.14. The Si content in the obtained carbon material was 20.0 wt%.

<実施例8>
生コークスAを、D50が5.7μmとなるよう粉砕及び分級し、生コークス粒子と二酸化ケイ素粒子とを混合して上述の方法で乾式造粒及び炭化を行った。この際、二酸化ケイ素粒子の添加量を80体積%とし、二酸化ケイ素粒子は数回に分けて全量を投入した。全量投入後の周速を80m/sとし、処理時間を60分とした以外は実施例1と同じ条件で造粒及び炭化を行った。
<Example 8>
Raw coke A was pulverized and classified so that D50 was 5.7 μm, raw coke particles and silicon dioxide particles were mixed, and dry granulation and carbonization were performed by the above-mentioned method. At this time, the amount of the silicon dioxide particles added was 80% by volume, and the total amount of the silicon dioxide particles was added in several batches. Granulation and carbonization were carried out under the same conditions as in Example 1 except that the peripheral speed after charging the entire amount was 80 m / s and the treatment time was 60 minutes.

このようにして得られた実施例8に係る非晶質炭素材料のD50は13.6μmであり、BETは27.2m/gであり、円形度は0.967であり、凹凸度合いの値は0.983であった。また、真密度は2.19g/cmであり、O/Si比(モル比)は1.26であった。得られた炭素材料中のSi含有率は35.0wt%であった。 The D50 of the amorphous carbon material according to Example 8 thus obtained is 13.6 μm, the BET is 27.2 m 2 / g, the circularity is 0.967, and the value of the degree of unevenness is high. Was 0.983. The true density was 2.19 g / cm 3 , and the O / Si ratio (molar ratio) was 1.26. The Si content in the obtained carbon material was 35.0 wt%.

なお、既に説明した図1は、本実施例に係る非晶質炭素材料の断面を上述の方法で撮影した顕微鏡写真を示す図である。同図から、本実施例に係る非晶質炭素材料は、円形度が高くなっているとともに、内部に空隙20が形成されていることが分かる。 Note that FIG. 1 already described is a diagram showing a micrograph of a cross section of the amorphous carbon material according to the present embodiment taken by the above method. From the figure, it can be seen that the amorphous carbon material according to the present embodiment has a high circularity and has voids 20 formed inside.

<実施例9、10>
コークスAを、D50が4.8μmとなるよう粉砕及び分級し、粒径が400nmになるように破砕したケイ素粒子と混合し、上述の方法で乾式造粒及び炭化を行った。この際、実施例9ではケイ素粒子の添加量を7体積%、実施例10ではケイ素粒子の添加量を28体積%とした。ケイ素粒子は数回に分けて全量を投入した。ケイ素粒子の全量を投入した後に、実施例9では周速を80m/s、処理時間を420分とし、実施例10では周速を80m/s、処理時間を390分とした以外は実施例1と同じ条件でそれぞれ造粒及び炭化を行った。
<Examples 9 and 10>
Coke A was pulverized and classified so that D50 was 4.8 μm, mixed with crushed silicon particles so that the particle size was 400 nm, and dry granulation and carbonization were performed by the above-mentioned method. At this time, in Example 9, the amount of silicon particles added was 7% by volume, and in Example 10, the amount of silicon particles added was 28% by volume. The entire amount of silicon particles was added in several batches. After charging the entire amount of silicon particles, in Example 9, the peripheral speed was set to 80 m / s and the processing time was set to 420 minutes, and in Example 10, the peripheral speed was set to 80 m / s and the processing time was set to 390 minutes. Granulation and carbonization were performed under the same conditions as above.

このようにして得られた実施例9に係る非晶質炭素材料のD50は8.8μmであり、BETは1.8m/gであり、円形度は0.966であり、凹凸度合いの値は0.981であった。また、真密度は1.80g/cmであり、O/Si比(モル比)は1.18であった。得られた炭素材料中のSi含有率は3.0wt%であった。 The D50 of the amorphous carbon material according to Example 9 thus obtained is 8.8 μm, the BET is 1.8 m 2 / g, the circularity is 0.966, and the value of the degree of unevenness is high. Was 0.981. The true density was 1.80 g / cm 3 , and the O / Si ratio (molar ratio) was 1.18. The Si content in the obtained carbon material was 3.0 wt%.

また、実施例10に係る非晶質炭素材料のD50は8.8μmであり、BETは9.5m/gであり、円形度は0.963であり、凹凸度合いの値は0.982であった。また、真密度は1.94g/cmであり、O/Si比(モル比)は1.17であった。得られた炭素材料中のSi含有率は11.7wt%であった。 Further, the D50 of the amorphous carbon material according to Example 10 is 8.8 μm, the BET is 9.5 m 2 / g, the circularity is 0.963, and the value of the degree of unevenness is 0.982. there were. The true density was 1.94 g / cm 3 , and the O / Si ratio (molar ratio) was 1.17. The Si content in the obtained carbon material was 11.7 wt%.

図3は、本実施例に係る非晶質炭素材料の断面を上述の方法で撮影した顕微鏡写真を示す図である。同図から、本実施例に係る非晶質炭素材料は、内部に空隙20が形成されているとともに、酸化ケイ素粒子5を含んでいることが分かる。 FIG. 3 is a diagram showing a micrograph of a cross section of the amorphous carbon material according to the present embodiment taken by the above method. From the figure, it can be seen that the amorphous carbon material according to the present embodiment has voids 20 formed therein and contains silicon oxide particles 5.

<実施例11>
生コークスBを、D50が9.6μmとなるよう粉砕及び分級し、生コークス粒子と二酸化ケイ素粒子とを混合して上述の方法で乾式造粒及び炭化を行った。この際、二酸化ケイ素粒子の添加量を53体積%とした。二酸化ケイ素粒子は数回に分けて全量を投入した。全量投入後は周速を80m/sとし、処理時間を105分とした以外は実施例1と同じ条件で造粒及び炭化を行った。
<Example 11>
Raw coke B was pulverized and classified so that D50 was 9.6 μm, raw coke particles and silicon dioxide particles were mixed, and dry granulation and carbonization were performed by the above-mentioned method. At this time, the amount of silicon dioxide particles added was set to 53% by volume. The whole amount of silicon dioxide particles was added in several batches. After the total amount was charged, granulation and carbonization were carried out under the same conditions as in Example 1 except that the peripheral speed was set to 80 m / s and the treatment time was set to 105 minutes.

このようにして得られた実施例11に係る非晶質炭素材料のD50は24.8μmであり、BETは8.8m/gであり、円形度は0.921であり、凹凸度合いの値は0.961であった。また、真密度は2.10g/cmであり、O/Si比(モル比)は1.22であった。得られた炭素材料中のSi含有率は10.0wt%であった。 The D50 of the amorphous carbon material according to Example 11 thus obtained is 24.8 μm, the BET is 8.8 m 2 / g, the circularity is 0.921, and the value of the degree of unevenness is high. Was 0.961. The true density was 2.10 g / cm 3 , and the O / Si ratio (molar ratio) was 1.22. The Si content in the obtained carbon material was 10.0 wt%.

<実施例12>
生コークスAを、D50が5.7μmとなるよう粉砕及び分級し、生コークス粒子と二酸化ケイ素粒子とを混合して上述の方法で乾式造粒及び炭化を行った。この際、二酸化ケイ素粒子の添加量を80体積%とした。二酸化ケイ素粒子は数回に分けて全量を投入した。全量投入後の周速を80m/sとし、処理時間を60分とし、炭化温度を1200℃とした以外は実施例1と同じ条件で造粒及び炭化を行った。
<Example 12>
Raw coke A was pulverized and classified so that D50 was 5.7 μm, raw coke particles and silicon dioxide particles were mixed, and dry granulation and carbonization were performed by the above-mentioned method. At this time, the amount of silicon dioxide particles added was 80% by volume. The whole amount of silicon dioxide particles was added in several batches. Granulation and carbonization were carried out under the same conditions as in Example 1 except that the peripheral speed after charging the entire amount was 80 m / s, the treatment time was 60 minutes, and the carbonization temperature was 1200 ° C.

このようにして得られた実施例12に係る非晶質炭素材料のD50は14.0μmであり、BETは32.5m/gであり、円形度は0.965であり、凹凸度合いの値は0.979であった。また、真密度は2.18g/cmであり、O/Si比(モル比)は1.59であった。得られた炭素材料中のSi含有率は35.2wt%であった。 The D50 of the amorphous carbon material according to Example 12 thus obtained is 14.0 μm, the BET is 32.5 m 2 / g, the circularity is 0.965, and the value of the degree of unevenness is high. Was 0.979. The true density was 2.18 g / cm 3 , and the O / Si ratio (molar ratio) was 1.59. The Si content in the obtained carbon material was 35.2 wt%.

また、図4は、実施例12に係る非晶質炭素材料の断面を上述の方法で撮影した顕微鏡写真を示す図である。同図から、本実施例に係る非晶質炭素材料は、円形度が高くなっているとともに、内部に空隙20が形成されていることが分かる。 Further, FIG. 4 is a diagram showing a micrograph of a cross section of the amorphous carbon material according to Example 12 taken by the above method. From the figure, it can be seen that the amorphous carbon material according to the present embodiment has a high circularity and has voids 20 formed inside.

<比較例1>
生コークスAを、D50が6.0μmとなるよう粉砕及び分級し、生コークス粒子のみで乾式造粒を行った。造粒では、周速を80m/sとし、処理時間を240分とした。次に、造粒された粒子を1000℃、最高到達温度での保持時間を5時間とする条件で炭化処理した。
<Comparative Example 1>
Raw coke A was pulverized and classified so that D50 was 6.0 μm, and dry granulation was performed using only raw coke particles. In the granulation, the peripheral speed was set to 80 m / s and the processing time was set to 240 minutes. Next, the granulated particles were carbonized under the conditions that the holding time at 1000 ° C. and the maximum temperature reached was 5 hours.

このようにして得られた比較例1に係る非晶質炭素材料のD50は14.6μmであり、BETは0.3m/gであり、円形度は0.963であり、凹凸度合いの値は0.981であった。であった。また、真密度は1.76g/cmであり、O/Si比(モル比)は1.44であった。 The D50 of the amorphous carbon material according to Comparative Example 1 thus obtained is 14.6 μm, the BET is 0.3 m 2 / g, the circularity is 0.963, and the value of the degree of unevenness is high. Was 0.981. Met. The true density was 1.76 g / cm 3 , and the O / Si ratio (molar ratio) was 1.44.

<比較例2>
D50が8.5μmである黒鉛を、二酸化ケイ素粒子と混合して上述の方法で乾式造粒及び炭化を行った。この際、二酸化ケイ素粒子の添加量を63体積%とした。二酸化ケイ素粒子は数回に分けて全量を投入した。全量投入後は周速を70m/sとし、処理時間を120分とした以外は実施例1と同じ条件で造粒及び炭化を行った。
<Comparative Example 2>
Graphite having a D50 of 8.5 μm was mixed with silicon dioxide particles to perform dry granulation and carbonization by the method described above. At this time, the amount of silicon dioxide particles added was set to 63% by volume. The whole amount of silicon dioxide particles was added in several batches. After the total amount was charged, granulation and carbonization were performed under the same conditions as in Example 1 except that the peripheral speed was 70 m / s and the treatment time was 120 minutes.

このようにして得られた比較例2に係る炭素材料は十分に複合化しておらず、二酸化ケイ素粒子の一部は黒鉛に付着していなかった。BETは33.2m/gであり、円形度は0.812であり、凹凸度合いの値は0.899であった。また、真密度は2.31g/cmであり、O/Si比(モル比)は1.96であった。得られた炭素材料中のSi含有率は14.8wt%であった。 The carbon material according to Comparative Example 2 thus obtained was not sufficiently composited, and some of the silicon dioxide particles did not adhere to graphite. The BET was 33.2 m 2 / g, the circularity was 0.812, and the value of the degree of unevenness was 0.899. The true density was 2.31 g / cm 3 , and the O / Si ratio (molar ratio) was 1.96. The Si content in the obtained carbon material was 14.8 wt%.

<比較例3>
コークスAを、D50が4.8μmとなるよう粉砕及び分級し、生コークス粒子と二酸化ケイ素粒子とを手混合した。コークス粒子に対するケイ素粒子の添加量は50体積%とした。造粒処理は行わず、1000℃、5時間の条件で炭化処理を行った。
<Comparative Example 3>
Coke A was pulverized and classified so that D50 was 4.8 μm, and raw coke particles and silicon dioxide particles were manually mixed. The amount of silicon particles added to the coke particles was 50% by volume. No granulation treatment was performed, and carbonization treatment was performed under the conditions of 1000 ° C. for 5 hours.

このようにして得られた比較例3に係る非晶質炭素材料のBETは39.1m/gであり、円形度は0.745であり、凹凸度合いの値は0.856であった。また、真密度は2.14g/cmであり、O/Si比(モル比)は1.88であった。 The BET of the amorphous carbon material according to Comparative Example 3 thus obtained was 39.1 m 2 / g, the circularity was 0.745, and the value of the degree of unevenness was 0.856. The true density was 2.14 g / cm 3 , and the O / Si ratio (molar ratio) was 1.88.

以上のようにして作製された実施例及び比較例に係る炭素材料について、初期充電容量及び初期放電容量を測定し、初期効率を算出した。また、初期放電容量に対する、10サイクル充放電後の放電容量の割合をサイクル維持率とした。 For the carbon materials according to the examples and comparative examples produced as described above, the initial charge capacity and the initial discharge capacity were measured, and the initial efficiency was calculated. Further, the ratio of the discharge capacity after 10 cycles of charge / discharge to the initial discharge capacity was defined as the cycle maintenance rate.

なお、比較例3については実施例1~12及び比較例1、2と同様の方法で電極の作製を試みたが、銅箔から活物質層が剥離したため、試料1重量部に対してアセチレンブラックを0.047重量部、PVdFを0.116重量部加えるよう組成を変更している。 Regarding Comparative Example 3, an attempt was made to prepare an electrode by the same method as in Examples 1 to 12 and Comparative Examples 1 and 2, but since the active material layer was peeled off from the copper foil, acetylene black was added to 1 part by weight of the sample. The composition is changed so as to add 0.047 parts by weight and 0.116 parts by weight of PVdF.

-測定結果-
実施例1~10、12及び比較例1~3に係る炭素材料についての試験結果を表4に示す。
-Measurement result-
Table 4 shows the test results for the carbon materials according to Examples 1 to 10 and 12 and Comparative Examples 1 to 3.

Figure 0006993216000004
Figure 0006993216000004

表4に示すように、実施例1~10、12に係る炭素材料では、いずれも初期放電容量が300mAhを十分に上回っており、また、サイクル維持率も80%以上と、酸化ケイ素を含む炭素材料としては、十分に高くすることができた。 As shown in Table 4, the carbon materials according to Examples 1 to 10 and 12 all have an initial discharge capacity sufficiently exceeding 300 mAh, a cycle maintenance rate of 80% or more, and carbon containing silicon oxide. As a material, it could be made sufficiently high.

また、例えば実施例1に係る炭素材料と比較例1に係る炭素材料とでは、いずれも生コークスを原料としているため、得られた炭素材料には易黒鉛化非晶質炭素が含まれている。しかしながら、実施例1に係る炭素材料では、比較例1に係る炭素材料に比べて、初期効率がやや低下しているものの、初期放電容量は大幅に増加しており、サイクル特性の低下も小さく抑えられていることが確認できた。 Further, for example, since both the carbon material according to Example 1 and the carbon material according to Comparative Example 1 use raw coke as a raw material, the obtained carbon material contains easily graphitized amorphous carbon. .. However, although the initial efficiency of the carbon material according to Example 1 is slightly lower than that of the carbon material according to Comparative Example 1, the initial discharge capacity is significantly increased and the deterioration of cycle characteristics is suppressed to a small extent. It was confirmed that it was done.

一方、黒鉛を炭素原料として用いた場合(比較例2)では、球形化処理を行っても炭素材料とケイ素材料との複合化ができず、また、初期放電容量の向上効果は見られなかった。これは、黒鉛に揮発成分が含まれていないことで、炭化工程において二酸化ケイ素粒子が還元されず、ケイ素の容量向上効果が十分に得られなかったためと考えられる。 On the other hand, when graphite was used as the carbon raw material (Comparative Example 2), the carbon material and the silicon material could not be combined even if the spheroidizing treatment was performed, and the effect of improving the initial discharge capacity was not observed. .. It is considered that this is because the silicon dioxide particles were not reduced in the carbonization step because the graphite did not contain a volatile component, and the effect of improving the capacity of silicon could not be sufficiently obtained.

また、造粒処理を行わなかった場合(比較例3)は、例えば実施例5と比べて二酸化ケイ素粒子の添加量が同程度であっても、ケイ素の容量向上効果が十分に得られないことが確認できた。これは、生コークス粒子と二酸化ケイ素粒子とが複合化されていないことで、炭化処理時に生コークスから発生した揮発分が二酸化ケイ素を効果的に還元できなかったことによると考えられる。 Further, when the granulation treatment is not performed (Comparative Example 3), for example, even if the amount of silicon dioxide particles added is the same as that of Example 5, the effect of improving the capacity of silicon cannot be sufficiently obtained. Was confirmed. It is considered that this is because the raw coke particles and the silicon dioxide particles were not composited, and the volatile matter generated from the raw coke during the carbonization treatment could not effectively reduce the silicon dioxide.

また、実施例2の結果から、石油系針状コークスを炭素原料として用いた場合でも、石油系非針状コークスを炭素原料として用いた場合と同様に、優れた効果を得ることができることが分かった。 Further, from the results of Example 2, it was found that even when petroleum-based needle-shaped coke is used as a carbon raw material, an excellent effect can be obtained as in the case of using petroleum-based non-needle-shaped coke as a carbon raw material. rice field.

実施例9、10の結果から、ケイ素原料として粉砕されたケイ素粒子を用いても、ケイ素原料を用いない場合(比較例1)に比べて初期放電容量を大きくすることができるとともに、初期効率は維持され、サイクル特性の低下も小さく抑えられることが確認できた。 From the results of Examples 9 and 10, even if crushed silicon particles are used as the silicon raw material, the initial discharge capacity can be increased as compared with the case where the silicon raw material is not used (Comparative Example 1), and the initial efficiency is high. It was confirmed that the cycle characteristics were maintained and the deterioration of the cycle characteristics was suppressed to a small extent.

なお、実施例1~12に係る非晶質炭素材料では、O/Si比がいずれも0.2以上2.0未満となっており、ケイ素の含有率は1重量%を超えて50重量%以下となっていた。真密度はいずれも1.8g/cm以上2.2g/cm以下となっており、ケイ素原料を用いない場合(比較例1)に比べて大きく、黒鉛を炭素原料とした場合(比較例2)に比べて小さくなっていた。 In the amorphous carbon materials according to Examples 1 to 12, the O / Si ratio is 0.2 or more and less than 2.0, and the silicon content exceeds 1% by weight and 50% by weight. It was as follows. The true densities are 1.8 g / cm 3 or more and 2.2 g / cm 3 or less, which are larger than the case where no silicon raw material is used (Comparative Example 1), and the case where graphite is used as a carbon raw material (Comparative Example). It was smaller than 2).

また、実施例4に係る炭素材料と実施例5に係る炭素材料とを重量比7:3で混合した実施例6では、造粒によって酸化ケイ素を易黒鉛化非晶質炭素中に複合化した粒径が異なる二種類の粒子を混合して用いることによって、本発明のサイクル特性改善の効果を損なうことなく、タップ密度を向上させることができ、電極密度を高くできる炭素材料を得ることができた。 Further, in Example 6 in which the carbon material according to Example 4 and the carbon material according to Example 5 were mixed at a weight ratio of 7: 3, silicon oxide was composited into graphitized amorphous carbon by granulation. By using a mixture of two types of particles having different particle sizes, it is possible to obtain a carbon material capable of increasing the tap density and increasing the electrode density without impairing the effect of improving the cycle characteristics of the present invention. rice field.

また、実施例1~12に係る非晶質炭素材料の遷移金属含有率は、いずれも700ppm以上2500ppm以下であったが、比較例1~3に係る炭素材料に含まれる遷移金属含有率との間に大きな差は見られなかった。 Further, the transition metal content of the amorphous carbon materials according to Examples 1 to 12 was 700 ppm or more and 2500 ppm or less in each case, but it was the same as the transition metal content contained in the carbon materials according to Comparative Examples 1 to 3. There was no significant difference between them.

本実施形態の一例に係るケイ素含有非晶質炭素材料は、例えば電気自動車や、太陽光発電、風力発電などの蓄電システム等に用いられるリチウムイオン二次電池、あるいはリチウムイオンキャパシタの負極材料として有用である。 The silicon-containing amorphous carbon material according to an example of the present embodiment is useful as a negative electrode material for a lithium ion secondary battery or a lithium ion capacitor used in, for example, an electric vehicle, a power storage system for solar power generation, wind power generation, and the like. Is.

1 ケイ素含有非晶質炭素材料
4 非晶質炭素
5 酸化ケイ素粒子
10 リチウムイオン二次電池
11 負極
12 負極集電体
13 正極
14 正極集電体
15 セパレータ
16 外装
20 空隙
1 Silicon-containing amorphous carbon material 4 Amorphous carbon 5 Silicon oxide particles 10 Lithium-ion secondary battery 11 Negative electrode 12 Negative electrode current collector 13 Positive electrode 14 Positive electrode current collector 15 Separator 16 Exterior 20 Void

Claims (7)

空隙を有する易黒鉛化非晶質炭素を備え、
前記易黒鉛化非晶質炭素中に、SiO(0<x<2)で表される酸化ケイ素粒子が含まれたケイ素含有非晶質炭素材料であって、
ケイ素の含有率が1重量%以上50重量%以下であり、
円形度が0.70以上1.0以下であり、BET比表面積が1.5~32.5m/gであることを特徴とするケイ素含有非晶質炭素材料。
Equipped with easily graphitized amorphous carbon with voids ,
A silicon-containing amorphous carbon material containing silicon oxide particles represented by SiO x (0 <x <2) in the graphitized amorphous carbon.
The silicon content is 1% by weight or more and 50% by weight or less.
A silicon-containing amorphous carbon material having a circularity of 0.70 or more and 1.0 or less and a BET specific surface area of 1.5 to 32.5 m 2 / g.
請求項1に記載のケイ素含有非晶質炭素材料において、
ケイ素含有率と酸素含有率のモル比(O/Si)が0.2以上2.0未満であることを特徴とするケイ素含有非晶質炭素材料。
In the silicon-containing amorphous carbon material according to claim 1,
A silicon-containing amorphous carbon material having a molar ratio (O / Si) of silicon content to oxygen content of 0.2 or more and less than 2.0.
請求項1または請求項2に記載のケイ素含有非晶質炭素材料において、
真密度が1.8g/cm以上2.2g/cm以下であることを特徴とするケイ素含有非晶質炭素材料。
In the silicon-containing amorphous carbon material according to claim 1 or 2.
A silicon-containing amorphous carbon material having a true density of 1.8 g / cm 3 or more and 2.2 g / cm 3 or less.
請求項1~3のうちいずれか1つに記載のケイ素含有非晶質炭素材料において、
遷移金属含有率の合計は、700ppm以上2500ppm以下であることを特徴とするケイ素含有非晶質炭素材料。
The silicon-containing amorphous carbon material according to any one of claims 1 to 3.
A silicon-containing amorphous carbon material having a total transition metal content of 700 ppm or more and 2500 ppm or less.
請求項1~4のうちいずれか1つに記載のケイ素含有非晶質炭素材料において、
平均粒径が5μm以上40μm以下であることを特徴とするケイ素含有非晶質炭素材料。
The silicon-containing amorphous carbon material according to any one of claims 1 to 4.
A silicon-containing amorphous carbon material having an average particle size of 5 μm or more and 40 μm or less.
請求項1~5のうちいずれか1つに記載のケイ素含有非晶質炭素材料において、前記SiOIn the silicon-containing amorphous carbon material according to any one of claims 1 to 5, the SiO x (0<x<2)で表される酸化ケイ素粒子が分散された状態で存在していることを特徴とするケイ素含有非晶質炭素材料。A silicon-containing amorphous carbon material, characterized in that silicon oxide particles represented by (0 <x <2) are present in a dispersed state. 請求項1~のうちいずれか1つに記載のケイ素含有非晶質炭素材料を有する負極を備えているリチウムイオン二次電池。 A lithium ion secondary battery comprising a negative electrode having the silicon-containing amorphous carbon material according to any one of claims 1 to 6 .
JP2017247161A 2017-12-25 2017-12-25 Silicon-containing amorphous carbon material, lithium-ion secondary battery Active JP6993216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017247161A JP6993216B2 (en) 2017-12-25 2017-12-25 Silicon-containing amorphous carbon material, lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017247161A JP6993216B2 (en) 2017-12-25 2017-12-25 Silicon-containing amorphous carbon material, lithium-ion secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013229259A Division JP6287078B2 (en) 2013-11-05 2013-11-05 Silicon-containing amorphous carbon material and method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2018081923A JP2018081923A (en) 2018-05-24
JP6993216B2 true JP6993216B2 (en) 2022-01-13

Family

ID=62197263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017247161A Active JP6993216B2 (en) 2017-12-25 2017-12-25 Silicon-containing amorphous carbon material, lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP6993216B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133614B (en) * 2019-12-30 2024-02-23 上海杉杉科技有限公司 Silicon-based negative electrode material, preparation method thereof and lithium ion battery
JP2022157506A (en) * 2021-03-31 2022-10-14 戸田工業株式会社 Silicon-containing amorphous carbon material and manufacturing method therefor, and lithium ion secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158725A (en) 2003-11-06 2005-06-16 Showa Denko Kk Graphite particle for negative pole material, manufacturing method for the same, and battery using the same
JP2008282819A (en) 2008-07-10 2008-11-20 Toshiba Corp Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte secondary battery provided thereby
JP2009231113A (en) 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
JP2012204195A (en) 2011-03-25 2012-10-22 Waseda Univ Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP5269231B1 (en) 2012-06-29 2013-08-21 エム・ティー・カーボン株式会社 Graphite material for negative electrode of lithium ion secondary battery, lithium ion secondary battery using the same, and method for producing graphite material for lithium ion secondary battery
JP2013197069A (en) 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology Negative electrode material for lithium secondary battery and manufacturing method thereof, negative electrode for lithium secondary battery and manufacturing method thereof, lithium secondary battery, and electric device with lithium secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945862B2 (en) * 2001-08-02 2012-06-06 住友ベークライト株式会社 Carbon material and carbon material using the same
KR100913177B1 (en) * 2007-09-17 2009-08-19 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, and method of preparing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158725A (en) 2003-11-06 2005-06-16 Showa Denko Kk Graphite particle for negative pole material, manufacturing method for the same, and battery using the same
JP2009231113A (en) 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
JP2008282819A (en) 2008-07-10 2008-11-20 Toshiba Corp Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte secondary battery provided thereby
JP2012204195A (en) 2011-03-25 2012-10-22 Waseda Univ Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP2013197069A (en) 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology Negative electrode material for lithium secondary battery and manufacturing method thereof, negative electrode for lithium secondary battery and manufacturing method thereof, lithium secondary battery, and electric device with lithium secondary battery
JP5269231B1 (en) 2012-06-29 2013-08-21 エム・ティー・カーボン株式会社 Graphite material for negative electrode of lithium ion secondary battery, lithium ion secondary battery using the same, and method for producing graphite material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2018081923A (en) 2018-05-24

Similar Documents

Publication Publication Date Title
US20200185721A1 (en) Carbon material and nonaqueous secondary battery using carbon material
US20230352686A1 (en) Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material
KR102324577B1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
WO2014129594A1 (en) Composite active material for lithium secondary battery and method for producing same
JP6508870B2 (en) Composite active material for lithium secondary battery and method of manufacturing the same
JP2010009951A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing it, anode, and nonaqueous secondary battery
JP6617403B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP6561790B2 (en) Non-aqueous secondary battery carbon material and non-aqueous secondary battery
WO2014156098A1 (en) Amorphous carbon material and graphite carbon material for negative electrodes of lithium ion secondary batteries, lithium ion secondary battery using same, and method for producing carbon material for negative electrodes of lithium ion secondary batteries
JP6634720B2 (en) Carbon materials and non-aqueous secondary batteries
JP6736845B2 (en) Carbon material for non-aqueous secondary battery and lithium ion secondary battery
JP6287078B2 (en) Silicon-containing amorphous carbon material and method for producing lithium ion secondary battery
JP2014067636A (en) Composite carbon material for nonaqueous secondary battery negative electrode, negative electrode, and nonaqueous secondary battery
JP6993216B2 (en) Silicon-containing amorphous carbon material, lithium-ion secondary battery
JP6739142B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP2013229343A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
JP2022057736A (en) Method for manufacturing silicon-containing amorphous carbon material and method for manufacturing lithium ion secondary battery
JP2013179101A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
WO2022210994A1 (en) Silicon-containing amorphous carbon particle, manufacturing method therefor, and lithium-ion secondary battery
WO2010084709A1 (en) Method for producing negative electrode material for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180123

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191015

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191023

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191115

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20191119

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200714

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201215

C19 Decision taken to dismiss amendment

Free format text: JAPANESE INTERMEDIATE CODE: C19

Effective date: 20210105

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210212

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210413

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210903

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211102

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211130

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211209

R150 Certificate of patent or registration of utility model

Ref document number: 6993216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150