JP6992690B2 - Secondary battery reaction distribution estimation method - Google Patents

Secondary battery reaction distribution estimation method Download PDF

Info

Publication number
JP6992690B2
JP6992690B2 JP2018128105A JP2018128105A JP6992690B2 JP 6992690 B2 JP6992690 B2 JP 6992690B2 JP 2018128105 A JP2018128105 A JP 2018128105A JP 2018128105 A JP2018128105 A JP 2018128105A JP 6992690 B2 JP6992690 B2 JP 6992690B2
Authority
JP
Japan
Prior art keywords
secondary battery
value
heat flux
current
relational expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018128105A
Other languages
Japanese (ja)
Other versions
JP2019175831A (en
Inventor
真徳 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JP2019175831A publication Critical patent/JP2019175831A/en
Application granted granted Critical
Publication of JP6992690B2 publication Critical patent/JP6992690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、二次電池の反応分布推定方法に関する。 The present invention relates to a method for estimating the reaction distribution of a secondary battery.

特許文献1には、二次電池の充放電における過充電及び過放電の抑制を目的として、二次電池の充電率を監視する技術が提案されている。特許文献1では、二次電池から外部へと向かう熱流束が検出され、この検出値に基づいて二次電池の発熱量が算出される。そして、充放電電流、端子間電圧、発熱量に基づいて開放端電圧が算出され、該開放端電圧から二次電池の充電率が推定される。 Patent Document 1 proposes a technique for monitoring the charge rate of a secondary battery for the purpose of suppressing overcharge and overdischarge in the charge / discharge of the secondary battery. In Patent Document 1, the heat flux from the secondary battery to the outside is detected, and the calorific value of the secondary battery is calculated based on this detected value. Then, the open end voltage is calculated based on the charge / discharge current, the voltage between terminals, and the calorific value, and the charge rate of the secondary battery is estimated from the open end voltage.

特許文献2には、二次電池の熱流束の変化が電池寿命と相関関係があることを利用し、熱流束の測定値に基づいて、電池寿命を予測する技術が提案されている。 Patent Document 2 proposes a technique for predicting the battery life based on the measured value of the heat flux by utilizing the fact that the change in the heat flux of the secondary battery correlates with the battery life.

特許文献3は、リチウムイオン二次電池において、過放電又は過充電に伴い生じるリチウムイオン濃度分布を推定する技術が開示されている。特許文献3では、リチウムイオン二次電池から外部へと向かう熱流束に基づいて二次電池の発熱分布を算出し、この発熱分布からリチウムイオン濃度分布を推定している。 Patent Document 3 discloses a technique for estimating a lithium ion concentration distribution caused by over-discharging or over-charging in a lithium ion secondary battery. In Patent Document 3, the heat generation distribution of the secondary battery is calculated based on the heat flow from the lithium ion secondary battery to the outside, and the lithium ion concentration distribution is estimated from this heat generation distribution.

特許文献4には、プローブを用いて集電体上の電極活物質層が形成された電極の抵抗分布を測定する方法が開示されている。電解液を介してプローブ中の対極と電極活物質層とを電気的に接続することで、電極の抵抗分布が測定される。 Patent Document 4 discloses a method of measuring the resistance distribution of an electrode on which an electrode active material layer is formed on a current collector using a probe. The resistance distribution of the electrode is measured by electrically connecting the counter electrode in the probe and the electrode active material layer via the electrolytic solution.

特開2016-133413号公報Japanese Unexamined Patent Publication No. 2016-133413 特開2014-92428号公報Japanese Unexamined Patent Publication No. 2014-92428 特開2016-149917号公報Japanese Unexamined Patent Publication No. 2016-149917 特開2014-25850号公報Japanese Unexamined Patent Publication No. 2014-25850

二次電池は、携帯電話やノートパソコンなどの携帯機器だけでなく、電気自動車やハイブリッド車の電源としても利用されている。二次電池内部における電気化学反応が均一でないと電流分布が不均一となり、電流が集中する一部の電極活物質の劣化が進み、過放電や過充電等、耐久性、安全性に問題が生じる恐れがある。そこで、二次電池内部での電気化学的反応を均一に保持することが求められている。しかし、二次電池内部の反応分布を評価するためには、繰り返し充放電した二次電池を解体して各部分の電極活物質等を分析する必要があり、手間がかかるという問題がある。 Secondary batteries are used not only as power sources for mobile devices such as mobile phones and laptop computers, but also as power sources for electric vehicles and hybrid vehicles. If the electrochemical reaction inside the secondary battery is not uniform, the current distribution will be non-uniform, and some of the electrode active materials where the current will be concentrated will deteriorate, causing problems in durability and safety such as over-discharging and over-charging. There is a fear. Therefore, it is required to uniformly maintain the electrochemical reaction inside the secondary battery. However, in order to evaluate the reaction distribution inside the secondary battery, it is necessary to disassemble the secondary battery that has been repeatedly charged and discharged and analyze the electrode active material of each part, which is troublesome.

特許文献1では、充放電中の二次電池の発熱量から充電率を推定しているが、反応分布を推定することはできない。また、適用範囲が小型のラミネート型リチウムイオン電池に限定されており、電気自動車等に搭載される複数の二次電池を直列に接続して組電池として用いられる大型電池には対応できない。また、特許文献2においても、反応分布や電流分布の推定をすることはできない。 In Patent Document 1, the charge rate is estimated from the calorific value of the secondary battery during charging / discharging, but the reaction distribution cannot be estimated. Further, the scope of application is limited to a small laminated lithium-ion battery, and it cannot be applied to a large battery used as an assembled battery by connecting a plurality of secondary batteries mounted on an electric vehicle or the like in series. Further, also in Patent Document 2, it is not possible to estimate the reaction distribution or the current distribution.

電極の抵抗分布を測定する特許文献4では、電極活物質層にプローブを接触させる必要があるため、二次電池を解体する必要がある。また、特許文献4に開示される方法では、電解液の状態変化による抵抗変化を評価することはできない。 In Patent Document 4, which measures the resistance distribution of the electrode, it is necessary to bring the probe into contact with the electrode active material layer, so that it is necessary to disassemble the secondary battery. Further, the method disclosed in Patent Document 4 cannot evaluate the change in resistance due to the change in the state of the electrolytic solution.

本発明は、このような問題に鑑みてなされたものであり、本発明の目的は、簡便に二次電池の反応分布を得ることが可能な技術を提供することである。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a technique capable of easily obtaining a reaction distribution of a secondary battery.

本発明の一態様に係る二次電池の反応分布推定方法は、少なくとも2つの異なる電流値で二次電池の充放電を行い、前記二次電池の表面の複数の箇所で前記二次電池の外部へ向かう熱流束を測定して、前記複数の箇所のそれぞれの複数の測定データを取得する第1工程と、前記電流値毎に前記複数の測定データをそれぞれ積算し、前記電流値毎に積算値の平均値を算出する第2工程と、前記電流値と前記平均値との第1関係式を算出する第3工程と、前記第1関係式に基づいて、反応分布を推定する第4工程とを有する。 In the method for estimating the reaction distribution of a secondary battery according to one aspect of the present invention, the secondary battery is charged and discharged with at least two different current values, and the outside of the secondary battery is located at a plurality of locations on the surface of the secondary battery. The first step of measuring the heat flux toward the current and acquiring a plurality of measurement data at each of the plurality of locations, and the integration of the plurality of measurement data for each current value, and the integration value for each current value. The second step of calculating the average value of, the third step of calculating the first relational expression between the current value and the average value, and the fourth step of estimating the reaction distribution based on the first relational expression. Has.

本発明の他の態様に係る二次電池の反応分布推定方法は、前記第1工程において少なくとも2つの異なる前記二次電池の抵抗水準条件下で、前記二次電池の充放電を行い、前記第2工程及び前記第3工程を経て、それぞれの抵抗水準条件における複数の第1関係式を取得し、前記第4工程は、前記複数の第1関係式のそれぞれの傾きと前記二次電池の平均抵抗値から第2関係式を算出する工程と、前記複数の箇所それぞれにおいて、前記第2関係式から前記平均抵抗値に対する抵抗割合を算出する工程と、前記複数の箇所それぞれの前記抵抗割合と前記二次電池の平均電流値から反応分布を推定する工程とを含む。 In the method for estimating the reaction distribution of a secondary battery according to another aspect of the present invention, the secondary battery is charged and discharged under at least two different resistance level conditions of the secondary battery in the first step, and the first step is performed. Through the two steps and the third step, a plurality of first relational expressions under the respective resistance level conditions are acquired, and in the fourth step, the inclination of each of the plurality of first relational expressions and the average of the secondary battery are obtained. A step of calculating the second relational expression from the resistance value, a step of calculating the resistance ratio with respect to the average resistance value from the second relational expression at each of the plurality of places, and the resistance ratio and the above-mentioned at each of the plurality of places. It includes a step of estimating the reaction distribution from the average current value of the secondary battery.

本発明によれば、簡便に二次電池の反応分布を得ることが可能な技術を提供することができる。 According to the present invention, it is possible to provide a technique capable of easily obtaining a reaction distribution of a secondary battery.

実施の形態に係る二次電池の反応分布推定装置の構成を示す図である。It is a figure which shows the structure of the reaction distribution estimation apparatus of the secondary battery which concerns on embodiment. 二次電池における熱流束センサの貼り付け位置を示す図である。It is a figure which shows the sticking position of the heat flux sensor in a secondary battery. 二次電池に熱伝導シートを貼り付ける工程を説明する図である。It is a figure explaining the process of attaching a heat conduction sheet to a secondary battery. 二次電池を放熱/拘束冶具で拘束した状態を説明する図である。It is a figure explaining the state which confined the secondary battery with a heat dissipation / restraint jig. 二次電池を放熱/拘束冶具で拘束した状態を説明する図である。It is a figure explaining the state which confined the secondary battery with a heat dissipation / restraint jig. 実施の形態に係る二次電池の反応分布推定方法を説明するフロー図である。It is a flow diagram explaining the reaction distribution estimation method of the secondary battery which concerns on embodiment. 充電/放電による電池電圧と、熱流束の関係を示す図である。It is a figure which shows the relationship between the battery voltage by charge / discharge, and the heat flux. 二次電池を充放電するための通電パターンの一例を示す図である。It is a figure which shows an example of the energization pattern for charging / discharging a secondary battery. 充放電中の二次電池の熱流束の測定データの一例を示す図である。It is a figure which shows an example of the measurement data of the heat flux of a secondary battery during charging and discharging. 二次電池に貼り付けられた複数の熱流束センサによってそれぞれ測定された測定データの積算値と、その平均値を示す図である。It is a figure which shows the integrated value of the measurement data measured by each of a plurality of heat flux sensors attached to a secondary battery, and the average value thereof. 熱流束積算値の平均値と平均電流値の二乗との関係を示す図である。It is a figure which shows the relationship between the mean value of the heat flux integrated value, and the square of the mean current value. 実施の形態に係る二次電池の電流分布推定方法を説明する図である。It is a figure explaining the current distribution estimation method of the secondary battery which concerns on embodiment. 他の実施の形態に係る二次電池の反応分布推定方法を説明するフロー図である。It is a flow figure explaining the reaction distribution estimation method of the secondary battery which concerns on other embodiment. 各評価温度における熱流束積算値の平均値と平均電流値の二乗との関係を示す図である。It is a figure which shows the relationship between the mean value of the heat flux integrated value and the square of the mean current value at each evaluation temperature. 第1関係式の傾きと二次電池のI-V抵抗値との関係を示す図である。It is a figure which shows the relationship between the inclination of the 1st relational expression, and the IV resistance value of a secondary battery. 解析エリアの第1関係式の傾きと解析エリアの見かけ上の第1関係式の傾きとの関係を示す図である。It is a figure which shows the relationship between the inclination of the 1st relational expression of an analysis area, and the inclination of the 1st relational expression of an analysis area.

以下、図面を参照して本発明の実施形態について説明する。各図における同等の構成要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Equivalent components in each figure are designated by the same reference numerals, and duplicate description is omitted.

一般的に、二次電池は、正極集電体と負極集電体との間にセパレータが介在するように複数積層された電極体を有する。実施の形態では、二次電池の一例として、リチウムイオン二次電池について説明する。 Generally, a secondary battery has a plurality of stacked electrodes so that a separator is interposed between a positive electrode current collector and a negative electrode current collector. In the embodiment, a lithium ion secondary battery will be described as an example of the secondary battery.

正極集電体は、アルミニウム箔等の集電箔の表面に正極活性物質層が形成された構成を有している。正極活物質は、リチウムを吸蔵・放出可能な材料であり、例えばコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)、これらを所定の割合で混合した材料等を用いることができる。正極活物質層は、任意のバインダや導電助剤等を含有し得る。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラック、黒鉛(グラファイト)を用いることができる。バインダとしては、ポリフッ化ビニリデン(PVDF)等が用いられ得る。 The positive electrode current collector has a structure in which a positive electrode active material layer is formed on the surface of a current collector foil such as an aluminum foil. The positive electrode active material is a material that can occlude and release lithium, for example, lithium cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickel oxide (LiNiO 2 ), and these are mixed in a predetermined ratio. Materials and the like can be used. The positive electrode active material layer may contain any binder, a conductive auxiliary agent, or the like. As the conductive material, for example, carbon black such as acetylene black (AB) or graphite (graphite) can be used. As the binder, polyvinylidene fluoride (PVDF) or the like can be used.

負極集電体は、銅箔等の集電箔の表面に負極活性物層が形成された構成を有している。負極活物質は、リチウムを吸蔵・放出可能な材料であり、例えば、黒鉛(グラファイト)等を用いることができる。負極活物質層、任意のバインダや増粘剤等を含み得る。バインダとしては、スチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等が用いられ得る。 The negative electrode current collector has a structure in which a negative electrode active material layer is formed on the surface of a current collector foil such as a copper foil. The negative electrode active material is a material that can occlude and release lithium, and for example, graphite can be used. It may contain a negative electrode active material layer, any binder, a thickener, and the like. As the binder, styrene butadiene rubber (SBR) or the like can be used. As the thickener, for example, carboxymethyl cellulose (CMC) or the like can be used.

電解液は、リチウム塩と溶剤とを含み、リチウムイオン電池の電解液として使用可能な従来知られた材料を用いることができる。リチウム塩としては、例えば六フッ化リン酸リチウム(LiPF)、四フッ化リン酸リチウム(LiBF)が用いられ得る。溶剤としては、例えば環状エステル類(エチレンカーボネート(EC)等)、鎖状エステル類(ジメチルカーボネート(DMC)等)が用いられ得る。 The electrolytic solution contains a lithium salt and a solvent, and a conventionally known material that can be used as an electrolytic solution for a lithium ion battery can be used. As the lithium salt, for example, lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluorophosphate (LiBF 4 ) can be used. As the solvent, for example, cyclic esters (ethylene carbonate (EC) and the like) and chain esters (dimethyl carbonate (DMC) and the like) can be used.

正極集電体、負極集電体及びセパレータを含む電極体は、電池ケース内に収容される。電池ケースは、開口部を有する矩形状の箱形であり、アルミニウム、スチール等の金属材料から形成されている。電池ケースの開口部は、矩形板状の封口蓋により閉塞してされている。封口蓋には、正極集電体と電気的に接続されている正極端子、負極集電体と電気的に接続されている負極端子が、封口蓋の表面から突出するように設けられている。 The electrode body including the positive electrode current collector, the negative electrode current collector and the separator is housed in the battery case. The battery case has a rectangular box shape with an opening and is made of a metal material such as aluminum or steel. The opening of the battery case is closed by a rectangular plate-shaped sealing lid. The sealing lid is provided with a positive electrode terminal electrically connected to the positive electrode current collector and a negative electrode terminal electrically connected to the negative electrode current collector so as to protrude from the surface of the sealing lid.

なお、上述したリチウムイオン電池ではなく、他の二次電池、例えば全固体電池であってもよい。その場合、電解質としては、電解液ではなく固体電解質が用いられる。固体電解質の材料としては、全固体電池の電解質として使用可能な従来知られた材料であれば特に制限はない。 In addition to the above-mentioned lithium ion battery, another secondary battery, for example, an all-solid-state battery may be used. In that case, as the electrolyte, a solid electrolyte is used instead of an electrolytic solution. The material of the solid electrolyte is not particularly limited as long as it is a conventionally known material that can be used as an electrolyte of an all-solid-state battery.

充電時には、正極集電体の正極活性物質からリチウムイオンが放出され、電解液を介して、負極集電体の負極活性物質にそのリチウムイオンが取り込まれる。放電時には、負極集電体の負極活性物質からリチウムイオンが放出され、電解液を介して、正極集電体の正極活性物質にそのリチウムイオンが取り込まれる。正極集電体、負極集電体には集電部がそれぞれ接続され、電流が正極端子、負極端子に集電される。このような二次電池は、各種用途、特に電気自動車、ハイブリッド車等の車両に搭載される駆動用の大型電池としても利用され得る。この二次電池は、複数個を直列及び/又は並列に接続した組電池の形態でも使用され得る。 At the time of charging, lithium ions are released from the positive electrode active material of the positive electrode current collector, and the lithium ions are taken into the negative electrode active material of the negative electrode current collector via the electrolytic solution. At the time of discharge, lithium ions are released from the negative electrode active material of the negative electrode current collector, and the lithium ions are taken into the positive electrode active material of the positive electrode current collector via the electrolytic solution. A current collector is connected to the positive electrode current collector and the negative electrode current collector, respectively, and current is collected in the positive electrode terminal and the negative electrode terminal. Such a secondary battery can also be used for various purposes, particularly as a large drive battery mounted on a vehicle such as an electric vehicle or a hybrid vehicle. This secondary battery can also be used in the form of an assembled battery in which a plurality of batteries are connected in series and / or in parallel.

このような二次電池において、集電部から遠い箇所では二次電池内部における電気化学反応が低くなることが懸念されており、二次電池の反応分布を簡便に取得することが望まれている。本発明者は、鋭意検討の結果、二次電池の充放電を行うために印加する電流値の二乗と、二次電池の充放電中に測定される熱流束(発熱量)との間に相関関係があることを見出した。この関係を用いることで、二次電池の解体や分析をすることなく、面内の電流分布を評価することができ、簡便に反応分布を得ることが可能となる。 In such a secondary battery, there is a concern that the electrochemical reaction inside the secondary battery will be low at a location far from the current collector, and it is desired to easily obtain the reaction distribution of the secondary battery. .. As a result of diligent studies, the present inventor correlates between the square of the current value applied to charge and discharge the secondary battery and the heat flux (calorific value) measured during charging and discharging of the secondary battery. I found it to be related. By using this relationship, the in-plane current distribution can be evaluated without disassembling or analyzing the secondary battery, and the reaction distribution can be easily obtained.

本発明は、二次電池の反応分布推定方法に関する。実施の形態に係る反応分布推定方法では、少なくとも2つの異なる値の電流値で二次電池の充放電を行い、二次電池の表面の複数の箇所で二次電池の外部へ向かう熱流束を測定する。そして、電流値毎に測定データをそれぞれ積算し、積算値の平均値を算出して、電流値と平均値との関係式を求める。当該関係式に複数の熱流束センサによるそれぞれの実測値を代入して、反応分布を推定する。 The present invention relates to a method for estimating the reaction distribution of a secondary battery. In the reaction distribution estimation method according to the embodiment, the secondary battery is charged and discharged with at least two different current values, and the heat flux toward the outside of the secondary battery is measured at a plurality of points on the surface of the secondary battery. do. Then, the measurement data is integrated for each current value, the average value of the integrated values is calculated, and the relational expression between the current value and the average value is obtained. The reaction distribution is estimated by substituting the measured values of each of the multiple heat flux sensors into the relational expression.

図1は、実施の形態に係る二次電池の反応分布推定装置の構成を示す図である。図2は、二次電池Wにおける熱流束センサ11の貼り付け位置を示している。図1、2に示すように、反応分布推定装置10は、熱流束センサ11、恒温槽12、充放電装置13、熱流束ロガー14、データ解析装置15を備える。 FIG. 1 is a diagram showing a configuration of a reaction distribution estimation device for a secondary battery according to an embodiment. FIG. 2 shows the attachment position of the heat flux sensor 11 in the secondary battery W. As shown in FIGS. 1 and 2, the reaction distribution estimation device 10 includes a heat flux sensor 11, a constant temperature bath 12, a charging / discharging device 13, a heat flux logger 14, and a data analysis device 15.

熱流束センサ11は、評価対象となる二次電池Wから二次電池Wの外部へ向かう熱流束を検出する。熱流束センサ11による測定結果により、二次電池Wの充放電による発熱量分布を計測することができる。図2に示すように、熱流束センサ11は、板状の二次電池Wの電池ケースの外側において、電極が積層される方向に垂直な2面のうちの一方の面に貼り付けられている。すなわち、二次電池Wの熱流束センサ11が貼り付けられる面は、積層される電極面に平行である。 The heat flux sensor 11 detects the heat flux from the secondary battery W to be evaluated toward the outside of the secondary battery W. Based on the measurement result by the heat flux sensor 11, the calorific value distribution due to charging / discharging of the secondary battery W can be measured. As shown in FIG. 2, the heat flux sensor 11 is attached to one of two surfaces perpendicular to the direction in which the electrodes are laminated on the outside of the battery case of the plate-shaped secondary battery W. .. That is, the surface to which the heat flux sensor 11 of the secondary battery W is attached is parallel to the electrode surface to be laminated.

実施の形態では、板状の二次電池Wの電極の積層方向に垂直な面の一方を9分割した領域(1)~(9)のそれぞれに、熱流束センサ11が設置されている。熱流束センサ11としては、例えば、二次電池Wに貼り付ける先端の部分のみにセンシング部が設けられたものを選択することができる。 In the embodiment, the heat flux sensor 11 is installed in each of the regions (1) to (9) in which one of the surfaces perpendicular to the stacking direction of the electrodes of the plate-shaped secondary battery W is divided into nine. As the heat flux sensor 11, for example, a sensor having a sensing unit provided only at the tip portion to be attached to the secondary battery W can be selected.

充放電時の二次電池Wからの熱流束を感度よく計測するため、図3に示すように、二次電池Wの両面をゴム状の熱伝導シート16で挟み込む。熱流束センサ11は、二次電池Wと熱伝導シート16との間に挟み込まれる。また、熱伝導シート16の間に挟み込まれた二次電池Wは、放熱/拘束冶具20により拘束される。二次電池Wの電気化学反応及び電池から熱伝導シート16への伝熱状態を安定させるため、放熱/拘束冶具20は一定の面圧で二次電池Wを拘束する。熱伝導シート16は、放熱/拘束冶具20への放熱を促進する。 In order to measure the heat flux from the secondary battery W during charging and discharging with high sensitivity, both sides of the secondary battery W are sandwiched between rubber-like heat conductive sheets 16 as shown in FIG. The heat flux sensor 11 is sandwiched between the secondary battery W and the heat conductive sheet 16. Further, the secondary battery W sandwiched between the heat conductive sheets 16 is constrained by the heat dissipation / restraint jig 20. In order to stabilize the electrochemical reaction of the secondary battery W and the heat transfer state from the battery to the heat conductive sheet 16, the heat dissipation / restraint jig 20 restrains the secondary battery W with a constant surface pressure. The heat conductive sheet 16 promotes heat dissipation to the heat dissipation / restraint jig 20.

図4、5は、二次電池Wを放熱/拘束冶具20で拘束した状態を示している。図4は、二次電池Wを側方から見た図であり、図5は、二次電池Wを電極端子が設けられた上方から見た図である。図4、5に示すように、両熱伝導シート16を挟み込むように、放熱プレート21が設けられている。放熱プレート21は、熱伝導シート16、二次電池W、熱流束センサ11に所定の荷重が加えられるように、送りネジ22に螺合するナットにより締め付けられている。この荷重は、ロードセル23によって測定される。 FIGS. 4 and 5 show a state in which the secondary battery W is constrained by the heat dissipation / restraint jig 20. FIG. 4 is a side view of the secondary battery W, and FIG. 5 is a view of the secondary battery W seen from above where the electrode terminals are provided. As shown in FIGS. 4 and 5, a heat radiating plate 21 is provided so as to sandwich the both heat conductive sheets 16. The heat dissipation plate 21 is tightened by a nut screwed into the feed screw 22 so that a predetermined load is applied to the heat conduction sheet 16, the secondary battery W, and the heat flux sensor 11. This load is measured by the load cell 23.

二次電池Wは温度により抵抗値が変化するため、面内に温度ムラがあると抵抗にバラツキが生じる。正極と負極との間には等しい電圧が印加されるため、抵抗が小さい部分では大きい電流が流れて発熱量は大きくなり、抵抗が大きい部分では小さい電流が流れて発熱量が小さくなる。この発熱量の面内バラツキを防止するために、二次電池Wは、放熱/拘束冶具20により拘束された状態で恒温槽12内に配置される。恒温槽12は、二次電池Wの温度を所定の温度に保ち、二次電池Wの面内の抵抗値のバラツキを抑制する。 Since the resistance value of the secondary battery W changes depending on the temperature, if there is temperature unevenness in the plane, the resistance will vary. Since the same voltage is applied between the positive electrode and the negative electrode, a large current flows in the portion where the resistance is small and the calorific value increases, and a small current flows in the portion where the resistance is large and the calorific value decreases. In order to prevent this in-plane variation in the amount of heat generated, the secondary battery W is arranged in the constant temperature bath 12 in a state of being constrained by the heat dissipation / restraint jig 20. The constant temperature bath 12 keeps the temperature of the secondary battery W at a predetermined temperature and suppresses variations in the in-plane resistance value of the secondary battery W.

二次電池Wの正極端子、負極端子には、充放電装置13が接続されている。充放電装置13は、後述する所定の通電パターンで二次電池Wの充放電を行う。熱流束ロガー14は、複数の熱流束センサ11からの熱流束の時系列の測定データをそれぞれ取得し、格納する。データ解析装置15は、熱流束ロガー14に格納された複数の測定データに基づいて、反応分布の推定を行う。 A charging / discharging device 13 is connected to the positive electrode terminal and the negative electrode terminal of the secondary battery W. The charging / discharging device 13 charges / discharges the secondary battery W in a predetermined energization pattern described later. The heat flux logger 14 acquires and stores time-series measurement data of heat flux from a plurality of heat flux sensors 11, respectively. The data analysis device 15 estimates the reaction distribution based on a plurality of measurement data stored in the heat flux logger 14.

ここで、図6~12を参照して、実施の形態に係る二次電池の反応分布推定方法について説明する。図6は、実施の形態に係る二次電池の反応分布推定方法を説明するフロー図である。図6に示すように、まず、二次電池Wの表面に複数の熱流束センサ11を貼り付ける(S1)。上述したように、実施の形態では、二次電池Wの電池ケースの外側において、電極の積層方向に垂直な面の一方を9分割した領域(1)~(9)のそれぞれに、熱流束センサ11を貼り付ける。 Here, a method for estimating the reaction distribution of the secondary battery according to the embodiment will be described with reference to FIGS. 6 to 12. FIG. 6 is a flow chart illustrating a method for estimating the reaction distribution of the secondary battery according to the embodiment. As shown in FIG. 6, first, a plurality of heat flux sensors 11 are attached to the surface of the secondary battery W (S1). As described above, in the embodiment, on the outside of the battery case of the secondary battery W, the heat flux sensor is formed in each of the regions (1) to (9) in which one of the surfaces perpendicular to the stacking direction of the electrodes is divided into nine. 11 is pasted.

次に、熱流束センサ11を貼り付けた二次電池Wを熱伝導シート16で挟み、熱伝導シート16ごと二次電池Wを放熱/拘束冶具20で拘束する(S2)。二次電池Wの一方の面では、熱流束センサ11の上から二次電池Wの表面を覆うように熱伝導シート16が貼り付けられる。二次電池Wの他方の面では、二次電池Wの表面上に直接熱伝導シート16が貼り付けられる。そして、両熱伝導シート16を放熱プレート21で挟み、一定の面圧で二次電池Wが放熱/拘束冶具20に拘束される。 Next, the secondary battery W to which the heat flux sensor 11 is attached is sandwiched between the heat conductive sheets 16, and the secondary battery W together with the heat conductive sheet 16 is restrained by the heat dissipation / restraining tool 20 (S2). On one surface of the secondary battery W, a heat conductive sheet 16 is attached so as to cover the surface of the secondary battery W from above the heat flux sensor 11. On the other side of the secondary battery W, the heat conductive sheet 16 is directly attached on the surface of the secondary battery W. Then, both heat conductive sheets 16 are sandwiched between the heat radiating plates 21, and the secondary battery W is restrained by the heat radiating / restraining jig 20 at a constant surface pressure.

その後、恒温槽12内に放熱/拘束冶具20で拘束された状態の二次電池Wが配置され、二次電池W全体が規定した温度になるまで放置する(S3)。これにより、二次電池Wを通電する前に、電極面内の温度を均一にすることができる。なお、二次電池Wの面内温度が均一になったことは、二次電池Wに貼り付けた熱流束センサ11の測定値が略等しくなったことにより確認することが可能である。 After that, the secondary battery W in a state of being restrained by the heat radiation / restraint jig 20 is arranged in the constant temperature bath 12, and is left to stand until the temperature of the entire secondary battery W becomes a specified temperature (S3). As a result, the temperature in the electrode surface can be made uniform before the secondary battery W is energized. It is possible to confirm that the in-plane temperature of the secondary battery W is uniform because the measured values of the heat flux sensor 11 attached to the secondary battery W are substantially equal.

二次電池Wは電圧によって抵抗値が変化するため、通電中の熱流束測定を行う前に任意の電圧へ調整する必要がある。そこで、次に、充放電装置13を用いて、二次電池Wの電圧を任意の値に調整する(S4)。充電/放電中の二次電池Wの発熱を熱流束センサ11で測定すると、一例として、図7に示される電池電圧と熱流束との関係が得られる。図7において、横軸が電池電圧(V)を示し、縦軸が熱流束(W/m)を示している。これは、充放電による発熱(吸熱)プロファイルである。通電による発熱(吸熱)量が大きく、かつ、充放電による熱流束の和が小さくなるように、例えば、図7に一点鎖線で示される電池電圧が選択される。これにより、充放電による二次電池Wの発熱に起因する抵抗変化を最小限に抑えることができる。 Since the resistance value of the secondary battery W changes depending on the voltage, it is necessary to adjust the voltage to an arbitrary voltage before measuring the heat flux during energization. Therefore, next, the voltage of the secondary battery W is adjusted to an arbitrary value by using the charging / discharging device 13 (S4). When the heat generated by the secondary battery W during charging / discharging is measured by the heat flux sensor 11, the relationship between the battery voltage and the heat flux shown in FIG. 7 can be obtained as an example. In FIG. 7, the horizontal axis represents the battery voltage (V) and the vertical axis represents the heat flux (W / m 2 ). This is a heat generation (endothermic) profile due to charge / discharge. For example, the battery voltage shown by the alternate long and short dash line is selected so that the amount of heat generation (endothermic) due to energization is large and the sum of heat flux due to charge / discharge is small. As a result, it is possible to minimize the resistance change caused by the heat generation of the secondary battery W due to charging / discharging.

そして、二次電池Wの充放電を行い、通電中の二次電池Wの熱流束を複数の熱流束センサ11を用いて測定する(S5)。このとき、恒温槽12内で二次電池Wの温度を一定に保った状態で、充放電装置13により所定の通電パターンを印加する。二次電池Wを充放電するための通電パターンの一例を図8に示す。図8に示す例では、電圧3.5(V)で電流-x(A)を10秒間、電流+x(A)を10秒間印加するのを1サイクルとして、nサイクル繰り返す。この通電パターンを印加した際の二次電池Wの熱流束の時系列の測定データが、複数の熱流束センサ11でそれぞれ取得される。 Then, the secondary battery W is charged and discharged, and the heat flux of the energized secondary battery W is measured using a plurality of heat flux sensors 11 (S5). At this time, a predetermined energization pattern is applied by the charging / discharging device 13 while the temperature of the secondary battery W is kept constant in the constant temperature bath 12. FIG. 8 shows an example of an energization pattern for charging / discharging the secondary battery W. In the example shown in FIG. 8, the current −x (A) is applied for 10 seconds and the current + x (A) is applied for 10 seconds at a voltage of 3.5 (V), and n cycles are repeated. The time-series measurement data of the heat flux of the secondary battery W when this energization pattern is applied is acquired by each of the plurality of heat flux sensors 11.

S5の二次電池Wの熱流束の測定は、少なくとも2つの異なる電流値で実行される。実施の形態では、二次電池Wの熱流束の測定を、3つの異なる電流値で実行する。ここでは、条件1を6.9A、条件2を14.3A、条件3を21.6Aとする。図9に、充放電中の二次電池Wの熱流束の測定データを示す。図9中、実線が条件1、破線が条件2、一点鎖線が条件3の測定データを示している。図9において、横軸は時間(秒)を示しており、縦軸は熱流束(W/m)を示している。図9中の1サイクルの測定データは、図8の通電パターンの1サイクルを印加した時の熱流束の測定データを示している。このような測定データが、二次電池Wの面内の各領域にそれぞれ配置された熱流束センサ11毎に取得される。 The measurement of the heat flux of the secondary battery W of S5 is performed with at least two different current values. In the embodiment, the measurement of the heat flux of the secondary battery W is performed with three different current values. Here, condition 1 is 6.9A, condition 2 is 14.3A, and condition 3 is 21.6A. FIG. 9 shows the measurement data of the heat flux of the secondary battery W during charging / discharging. In FIG. 9, the solid line shows the measurement data of the condition 1, the broken line shows the measurement data of the condition 2, and the alternate long and short dash line shows the measurement data of the condition 3. In FIG. 9, the horizontal axis represents time (seconds) and the vertical axis represents heat flux (W / m 2 ). The measurement data of one cycle in FIG. 9 shows the measurement data of the heat flux when one cycle of the energization pattern of FIG. 8 is applied. Such measurement data is acquired for each heat flux sensor 11 arranged in each region in the plane of the secondary battery W.

その後、電流値毎に面内の複数の測定データをそれぞれ積算した後、電流値毎に面内の複数の積算値の平均値が算出される(S6)。図10に、二次電池Wの各領域(1)~(9)に設置された複数の熱流束センサ11によってそれぞれ測定された測定データの積算値と、その平均値を示す。上記の条件1~3の通電パターン印加中に測定した複数の熱流束測定データの積算値を平均値化することにより、電流値毎の二次電池Wの面内の平均発熱量を取得することができる。 After that, after integrating a plurality of in-plane measurement data for each current value, the average value of the plurality of in-plane integrated values is calculated for each current value (S6). FIG. 10 shows the integrated value of the measurement data measured by each of the plurality of heat flux sensors 11 installed in each region (1) to (9) of the secondary battery W, and the average value thereof. By averaging the integrated values of a plurality of heat flux measurement data measured while applying the energization pattern of the above conditions 1 to 3, the average in-plane calorific value of the secondary battery W for each current value is acquired. Can be done.

そして、電流値の二乗(Iave)と熱流束積算値の平均値(ΣQave)との関係式が取得される(S7)。この関係式は、特許請求の範囲に記載した第1関係式に相当する。熱流束積算値の平均値と二次電池Wの面内に流れた平均電流値の二乗との関係をグラフ化すると、図11に示されるような相関関係が取得される。図11から、以下の関係式(1)が得られる。
y=31.218x+130.74・・・(1)
このときの決定係数はR=1であり、電流値の二乗(Iave)と熱流束積算値の平均値(ΣQave)との間に強い相関関係があることがわかる。
Then, the relational expression between the square of the current value (Iave 2 ) and the average value of the heat flux integrated value (ΣQave) is acquired (S7). This relational expression corresponds to the first relational expression described in the claims. When the relationship between the average value of the integrated heat flux and the square of the average current value flowing in the plane of the secondary battery W is graphed, the correlation as shown in FIG. 11 is obtained. From FIG. 11, the following relational expression (1) is obtained.
y = 31.218x + 130.74 ... (1)
The coefficient of determination at this time is R 2 = 1, and it can be seen that there is a strong correlation between the square of the current value (Iave 2 ) and the average value of the heat flux integrated value (ΣQave).

その後、上記関係式(1)に、各熱流束センサ11による熱流束の実測値を代入して(S8)、二次電池Wの面内の電流分布が取得される(S9)。二次電池Wの電極面内の抵抗は均一であることから、複数の熱流束センサ11で測定した個々の実測値を関係式(1)に代入することで、面内の電流分布を推定することができる。 After that, the measured value of the heat flux by each heat flux sensor 11 is substituted into the above relational expression (1) (S8), and the in-plane current distribution of the secondary battery W is acquired (S9). Since the resistance in the electrode surface of the secondary battery W is uniform, the in-plane current distribution is estimated by substituting the individual measured values measured by the plurality of heat flux sensors 11 into the relational expression (1). be able to.

図12は、図11の破線部分を拡大した図である。図12において、■は条件3の電流値(平均電流)が印加されたときの面内の熱流束積算値の平均値(面内熱流束平均値)を示している。図12に示す例では、○は、図2の(2)の領域の熱流束センサ11で測定した熱流束実測値(1)を示しており、●は、図2の(8)の領域の熱流束センサ11で測定した熱流束実測値(2)を示している。 FIG. 12 is an enlarged view of the broken line portion of FIG. In FIG. 12, (1) shows the average value (in-plane heat flux average value) of the in-plane heat flux integrated value when the current value (average current) of the condition 3 is applied. In the example shown in FIG. 12, ◯ indicates the measured heat flux value (1) measured by the heat flux sensor 11 in the region of FIG. 2 (2), and ● indicates the measured value of heat flux in the region of FIG. 2 (8). The heat flux actual measurement value (2) measured by the heat flux sensor 11 is shown.

熱流束実測値(1)を関係式(1)に代入することで、当該領域(2)の面内電流値(1)が得られる。同様に、熱流束実測値(2)を関係式(1)に代入することで、当該領域(8)の面内電流値(2)が得られる。このように、二次電池Wの電極面内に発生している電流分布を評価することで、二次電池Wを解体することなく反応分布を推定することが可能となる。この反応分布推定方法は、電気自動車、ハイブリッド車等の車両に搭載される大型電池にも適用可能である。 By substituting the heat flux measured value (1) into the relational expression (1), the in-plane current value (1) in the region (2) can be obtained. Similarly, by substituting the heat flux measured value (2) into the relational expression (1), the in-plane current value (2) in the region (8) can be obtained. By evaluating the current distribution generated in the electrode plane of the secondary battery W in this way, it is possible to estimate the reaction distribution without disassembling the secondary battery W. This reaction distribution estimation method can also be applied to large batteries mounted on vehicles such as electric vehicles and hybrid vehicles.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。実施の形態では、二次電池Wの表面に熱流束センサ11を設けたが、熱流束センサ11の代わりに、電池ケースの内側と外側に一対の温度センサを設置することも可能である。この一対の温度センサの温度差から二次電池Wの外部へ向かう熱流束を測定することができ、上記と同様に反応分布を推定することができる。また、熱流束センサ11は、電池ケースの外側に限らず、内側に設置してもよい。 The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit. In the embodiment, the heat flux sensor 11 is provided on the surface of the secondary battery W, but instead of the heat flux sensor 11, a pair of temperature sensors can be installed inside and outside the battery case. The heat flux toward the outside of the secondary battery W can be measured from the temperature difference between the pair of temperature sensors, and the reaction distribution can be estimated in the same manner as described above. Further, the heat flux sensor 11 may be installed not only on the outside of the battery case but also on the inside.

上述の方法では、熱流束センサ11による通電中の二次電池Wの発熱分布の測定結果から、面内の電流分布が推定される。このとき、電極面内に抵抗ムラがない状態とする必要がある。しかし、実車に搭載される場合、拘束圧や温度にムラが生じ、抵抗ムラが発生してしまう。そこで、以下では、他の実施の形態として、電極面内に抵抗ムラが発生した場合でも、非破壊で、二次電池Wの面内の抵抗分布、電流分布を評価する方法について説明する。 In the above method, the in-plane current distribution is estimated from the measurement result of the heat generation distribution of the secondary battery W during energization by the heat flux sensor 11. At this time, it is necessary to make sure that there is no resistance unevenness in the electrode surface. However, when it is mounted on an actual vehicle, the restraint pressure and temperature become uneven, and resistance unevenness occurs. Therefore, as another embodiment, a method of evaluating the resistance distribution and the current distribution in the surface of the secondary battery W in a non-destructive manner even when resistance unevenness occurs in the electrode surface will be described below.

他の実施の形態に係る反応分布推定方法では、少なくとも2つの異なる電流値で二次電池の充放電を行い、二次電池の表面の複数の箇所で二次電池の外部へ向かう熱流束を測定して、複数の箇所のそれぞれの複数の測定データを取得する第1工程と、電流値毎に複数の測定データをそれぞれ積算し、電流値毎に積算値の平均値を算出する第2工程と、電流値と平均値との第1関係式を算出する第3工程と、第1関係式に基づいて、反応分布を推定する第4工程とを有する。 In the reaction distribution estimation method according to another embodiment, the secondary battery is charged and discharged with at least two different current values, and the heat flux toward the outside of the secondary battery is measured at a plurality of points on the surface of the secondary battery. Then, the first step of acquiring a plurality of measurement data of each of a plurality of locations, and the second step of integrating a plurality of measurement data for each current value and calculating the average value of the integrated values for each current value. It has a third step of calculating a first relational expression between a current value and an average value, and a fourth step of estimating a reaction distribution based on the first relational expression.

第1工程では、少なくとも2つの異なる前記二次電池の抵抗水準条件下で、前記二次電池の充放電を行い、第2工程及び前記第3工程を経て、それぞれの抵抗水準条件における複数の第1関係式が取得される。第4工程は、複数の第1関係式のそれぞれの傾きと二次電池の平均抵抗値から第2関係式を算出する工程と、複数の箇所それぞれにおいて、第2関係式から平均抵抗値に対する抵抗割合を算出する工程と、複数の箇所それぞれの抵抗割合と二次電池の平均電流値から反応分布を推定する工程とを含む。これにより、電池を解体することなく、非破壊で面内の抵抗分布、反応分布を評価することができる。また、電解液の状態変化による抵抗変化も評価することが可能である。 In the first step, the secondary battery is charged and discharged under at least two different resistance level conditions of the secondary battery, and after the second step and the third step, a plurality of first steps under the respective resistance level conditions are performed. 1 The relational expression is acquired. The fourth step is a step of calculating the second relational expression from the inclination of each of the plurality of first relational expressions and the average resistance value of the secondary battery, and the resistance to the average resistance value from the second relational expression at each of the plurality of locations. It includes a step of calculating the ratio and a step of estimating the reaction distribution from the resistance ratio of each of the plurality of locations and the average current value of the secondary battery. This makes it possible to evaluate the in-plane resistance distribution and reaction distribution in a non-destructive manner without disassembling the battery. It is also possible to evaluate changes in resistance due to changes in the state of the electrolytic solution.

この実施の形態では、図1~5で説明した反応分布推定装置10を用いることができる。図13~16を参照して、他の実施の形態に係る二次電池の反応分布推定方法について説明する。図13は、他の実施の形態に係る二次電池の反応分布推定方法を説明するフロー図である。図13において、S11~S17は、図6のS1~S7と同一であり、重複した説明を省略する。 In this embodiment, the reaction distribution estimation device 10 described with reference to FIGS. 1 to 5 can be used. A method for estimating the reaction distribution of the secondary battery according to another embodiment will be described with reference to FIGS. 13 to 16. FIG. 13 is a flow chart illustrating a method for estimating the reaction distribution of the secondary battery according to another embodiment. In FIG. 13, S11 to S17 are the same as S1 to S7 in FIG. 6, and duplicated description will be omitted.

なお、S15において、充放電装置13により印加される通電パターンは、図8と同一とすることができる。また、本実施の形態においても、二次電池Wの熱流束の測定を、3つの異なる電流値(条件1、2、3)で行うものとする。 In S15, the energization pattern applied by the charging / discharging device 13 can be the same as that in FIG. Further, also in the present embodiment, the heat flux of the secondary battery W is measured under three different current values (conditions 1, 2, and 3).

本実施の形態では、評価温度10℃、25℃、45℃の3つの温度条件で二次電池Wの充放電を行う例について説明する。評価温度は、評価中の二次電池W全体の温度である。S13では、まず、二次電池Wの温度が10℃に設定されるものとする。二次電池Wの温度が10℃になった後、S14~S17を経て、評価温度10℃のときの第1関係式が取得される。 In this embodiment, an example in which the secondary battery W is charged and discharged under three temperature conditions of evaluation temperatures of 10 ° C., 25 ° C., and 45 ° C. will be described. The evaluation temperature is the temperature of the entire secondary battery W under evaluation. In S13, first, it is assumed that the temperature of the secondary battery W is set to 10 ° C. After the temperature of the secondary battery W reaches 10 ° C., the first relational expression when the evaluation temperature is 10 ° C. is acquired through S14 to S17.

その後、評価温度を10℃から25℃へと変更して、二次電池の抵抗の水準を振る(S18)。そして、S13へと戻り、S14~S17を経て評価温度25℃のときの第1関係式が取得される。同様に、評価温度を25℃から45℃へと変更して、S13~S17を繰り返すことで、評価温度45℃のときの第1関係式が取得される。 After that, the evaluation temperature is changed from 10 ° C. to 25 ° C., and the resistance level of the secondary battery is changed (S18). Then, the process returns to S13, and the first relational expression when the evaluation temperature is 25 ° C. is acquired through S14 to S17. Similarly, by changing the evaluation temperature from 25 ° C. to 45 ° C. and repeating S13 to S17, the first relational expression when the evaluation temperature is 45 ° C. is obtained.

熱流束積算値の平均値と二次電池Wの面内に流れた平均電流値の二乗との関係をグラフ化すると、図14に示されるような評価温度毎の相関関係が取得される。3つの第1関係式は、図14から算出することができる。このように、この実施の形態では、評価温度10℃、25℃、45℃の温度条件における3つの第1関係式が得られる。図14に示すように、評価温度10℃のときの第1関係式の傾きを傾きA、評価温度25℃のときの第1関係式の傾きを傾きB、評価温度45℃のときの第1関係式の傾きを傾きCとする。 When the relationship between the average value of the integrated heat flux and the square of the average current value flowing in the plane of the secondary battery W is graphed, the correlation for each evaluation temperature as shown in FIG. 14 is obtained. The three first relational expressions can be calculated from FIG. As described above, in this embodiment, three first relational expressions are obtained under the temperature conditions of the evaluation temperatures of 10 ° C, 25 ° C, and 45 ° C. As shown in FIG. 14, the slope of the first relational expression is tilted A when the evaluation temperature is 10 ° C., the slope of the first relational expression is tilted B when the evaluation temperature is 25 ° C., and the first relation is tilted when the evaluation temperature is 45 ° C. Let the slope of the relational expression be the slope C.

また、第1関係式の傾き(平均電流値の二乗に対する電池熱流束積算値の平均値の増加率)は二次電池のI-V抵抗と相関関係がある。本実施の形態では、この関係を利用することで、面内の抵抗分布及び電流分布を導出する。 Further, the slope of the first relational expression (the rate of increase of the average value of the battery heat flux integrated value with respect to the square of the average current value) has a correlation with the IV resistance of the secondary battery. In the present embodiment, the in-plane resistance distribution and the current distribution are derived by utilizing this relationship.

二次電池Wの端子間のI-V抵抗は、電流を印加したとき充電時及び放電時の過電圧を測定し、それらの値を印加した電流値で除することで算出した抵抗の平均値(平均抵抗値)である。ここでは、通電10s経過後の降下電圧量(V)を印加電流値(A)で除することでI-V抵抗を算出したが、通電後の時間は任意に変更することが可能である。 The IV resistance between the terminals of the secondary battery W is the average value of the resistance calculated by measuring the overvoltage during charging and discharging when a current is applied and dividing those values by the applied current value ( Average resistance value). Here, the IV resistance is calculated by dividing the amount of voltage drop (V) after 10 s of energization by the applied current value (A), but the time after energization can be arbitrarily changed.

第1関係式の傾きと二次電池WのI-V抵抗との関係をグラフ化すると、図15に示される相関関係が取得される。S19では、上述した3つの第1関係式のそれぞれの傾きA、B、Cと二次電池Wの平均抵抗値から第2関係式が算出される。図15から、以下の第2関係式(2)が得られる。
y=11.24x+24.925・・・(2)
このときの決定係数はR=0.9998であり、第1関係式の傾きと二次電池Wの平均抵抗値との間に強い相関関係があることがわかる。
When the relationship between the slope of the first relational expression and the IV resistance of the secondary battery W is graphed, the correlation shown in FIG. 15 is obtained. In S19, the second relational expression is calculated from the slopes A, B, C of each of the above-mentioned three first relational expressions and the average resistance value of the secondary battery W. From FIG. 15, the following second relational expression (2) is obtained.
y = 11.24x + 24.925 ... (2)
The coefficient of determination at this time is R 2 = 0.9998, and it can be seen that there is a strong correlation between the slope of the first relational expression and the average resistance value of the secondary battery W.

その後、S20において、第2関係式と個々の熱流束積算値ΣQとの関係から面内の電流分布を導出する。二次電池Wの面内の個々の熱流束実測値は、抵抗分布による電流分配の影響を受ける。面内の平均抵抗値(端子間I-V抵抗)に対する抵抗割合をzと定義すると、オームの法則により、抵抗がz倍高い箇所には1/z倍の電流が流れる。このことを利用して、第2関係式(2)と熱流束実測値から面内の抵抗分布及び電流分布を導出することができる。 Then, in S20, the in-plane current distribution is derived from the relationship between the second relational expression and the individual heat flux integrated value ΣQ. The measured values of the individual heat fluxes in the plane of the secondary battery W are affected by the current distribution due to the resistance distribution. If the resistance ratio to the in-plane average resistance value (IV resistance between terminals) is defined as z, a current of 1 / z times flows in a place where the resistance is z times higher according to Ohm's law. Utilizing this, the in-plane resistance distribution and current distribution can be derived from the second relational expression (2) and the measured value of heat flux.

具体的には、まず、熱流束センサ11を貼り付けた9分割した領域(1)~(9)(以下、解析エリアとする)のそれぞれにおいて、第2関係式から平均抵抗値に対する抵抗割合を算出する。上述の通り、二次電池Wの面内平均の第1関係式の傾きと平均抵抗値との関係は、第2関係式(2)から以下のように表される。
(第1関係式の傾き)=11.24×(平均抵抗値)+24.925・・・(3)
Specifically, first, in each of the nine divided regions (1) to (9) (hereinafter referred to as an analysis area) to which the heat flux sensor 11 is attached, the resistance ratio to the average resistance value is calculated from the second relational expression. calculate. As described above, the relationship between the slope of the first relational expression of the in-plane average of the secondary battery W and the average resistance value is expressed as follows from the second relational expression (2).
(Slope of the first relational expression) = 11.24 × (average resistance value) + 24.925 ... (3)

解析エリアのそれぞれにおいても、同様の関係が成り立つと考えられる。
(解析エリアの第1関係式の傾き)=11.24×(解析エリアの平均抵抗値)+24.925・・・(4)
ここで、(解析エリアの平均抵抗値)=(平均抵抗値)×z・・・(5)と定義する。
It is considered that the same relationship holds in each of the analysis areas.
(Slope of the first relational expression in the analysis area) = 11.24 × (average resistance value in the analysis area) +24.925 ... (4)
Here, it is defined as (average resistance value in the analysis area) = (average resistance value) × z ... (5).

式(4)に、式(5)を代入すると、以下の式が得られる。
(解析エリアの第1関係式の傾き)=11.24×(平均抵抗値×z)+24.925・・・(6)
By substituting the equation (5) into the equation (4), the following equation is obtained.
(Slope of the first relational expression in the analysis area) = 11.24 × (average resistance value × z) +24.925 ... (6)

ここで、解析エリアの見かけ上の第1関係式の傾きSを求める。解析エリアの見かけ上の第1関係式の傾きSは、縦軸を熱流束積算値の平均値ΣQaveとし、横軸を二次電池Wの端子間の電流値Iの二乗として計算される。 Here, the slope S of the apparent first relational expression in the analysis area is obtained. The apparent slope S of the first relational expression in the analysis area is calculated with the vertical axis as the mean value ΣQave of the heat flux integrated value and the horizontal axis as the square of the current value I between the terminals of the secondary battery W.

図16に、解析エリアの第1関係式の傾きと解析エリアの見かけ上の第1関係式の傾きとの関係が示される。オームの法則により、解析エリアの抵抗がz倍高い場合、解析エリアに分配される電流は1/z倍となるため、式(5)の定義では、その箇所に実際の流れる電流は端子間電流の1/zとなる。 FIG. 16 shows the relationship between the slope of the first relational expression in the analysis area and the apparent slope of the first relational expression in the analysis area. According to Ohm's law, when the resistance of the analysis area is z times higher, the current distributed to the analysis area is 1 / z times, so in the definition of equation (5), the current actually flowing at that location is the inter-terminal current. It becomes 1 / z 2 of.

従って、実際の解析エリアの第1関係式の傾きは、端子間電流値を用いて計算した、解析エリアの見かけ上の第1関係式の傾きのz倍(S×z)となる。
(解析エリアの第1関係式の傾き)=(解析エリアの見かけ上の第1関係式の傾き)×z・・・(7)
Therefore, the slope of the first relational expression in the actual analysis area is z2 times ( S × z2) the slope of the apparent first relational expression in the analysis area calculated by using the current value between terminals.
(Slope of the first relational expression in the analysis area) = (Slope of the first relational expression in the analysis area) × z 2 ... (7)

式(6)に式(7)を代入すると、
(解析エリアの見かけ上の第1関係式の傾き)×z=11.24×(平均抵抗値×z)+24.925・・・(8)
となる。これを整理すると、
(解析エリアの見かけ上の第1関係式の傾き)×z-11.24×(平均抵抗値×z)-24.925=0・・・(9)
の二次方程式が得られる。
Substituting equation (7) into equation (6),
(Slope of the first relational expression apparently in the analysis area) × z 2 = 11.24 × (average resistance value × z) +24.925 ... (8)
Will be. To organize this,
(Slope of the first relational expression apparently in the analysis area) × z 2 -11.24 × (average resistance value × z) -24.925 = 0 ... (9)
The quadratic equation of is obtained.

これにより得られる下記の式(10)を解くことで、平均抵抗値に対する抵抗割合zを導出することができる。
az+bz+c=0・・・(10)
a:解析エリアの見かけ上の第1関係式の傾き
b:-1×第2関係式の傾き×平均抵抗値
c:-1×第2関係式の切片
By solving the following equation (10) obtained by this, the resistance ratio z with respect to the average resistance value can be derived.
az 2 + bz + c = 0 ... (10)
a: Apparent slope of the first relational expression in the analysis area b: -1 x slope of the second relational expression x average resistance value c: -1 x intercept of the second relational expression

そして、二次電池Wの複数の箇所それぞれの抵抗割合と二次電池の平均電流値から反応分布を推定する。具体的には、二次電池Wの面内の平均電流値を、解析エリアごとに求めた抵抗割合zの値で除することで、電流分布を導出することができる。また、解析エリアごとに求めた抵抗割合zの値に、I-V抵抗値(平均抵抗値)をかけることで、二次電池W面内の抵抗分布を導出することができる。 Then, the reaction distribution is estimated from the resistance ratio of each of the plurality of locations of the secondary battery W and the average current value of the secondary battery. Specifically, the current distribution can be derived by dividing the in-plane average current value of the secondary battery W by the value of the resistance ratio z obtained for each analysis area. Further, by multiplying the value of the resistance ratio z obtained for each analysis area by the IV resistance value (average resistance value), the resistance distribution in the W plane of the secondary battery can be derived.

このように、この他の実施の形態では、平均電流値の二乗に対する熱流束積算値の平均値の増加率と平均抵抗値との相関関係に対し、電極面内の電流分配を踏まえた解析手法を用いている。これにより、熱流束センサで実測した熱流束と二次電池の平均抵抗値と平均電流値から反応分布を推定することができ、電池の解体を行う必要がない。 As described above, in the other embodiment, the analysis method based on the current distribution in the electrode plane with respect to the correlation between the increase rate of the average value of the heat flux integrated value with respect to the square of the average current value and the average resistance value. Is used. As a result, the reaction distribution can be estimated from the heat flux actually measured by the heat flux sensor and the average resistance value and average current value of the secondary battery, and it is not necessary to disassemble the battery.

また、二次電池の面内に抵抗分布が生じているケースであっても、面内抵抗分布の影響による誤差が生じず、高精度に抵抗分布、電流分布を評価することができる。これにより、実車搭載状態を模擬した二次電池の評価が可能になる。さらに、本手法を適用することで、電極の厚みのばらつきなどが原因で生じる製造起因の抵抗分布についても、電池の解体や分析等をすることなく、且つ大型電池に手を加えることなく評価できる。また、電解液の状態変化による抵抗変化も評価することが可能となる。 Further, even in the case where the resistance distribution is generated in the plane of the secondary battery, the error due to the influence of the in-plane resistance distribution does not occur, and the resistance distribution and the current distribution can be evaluated with high accuracy. This makes it possible to evaluate a secondary battery that simulates the state of being mounted on an actual vehicle. Furthermore, by applying this method, the resistance distribution caused by manufacturing caused by variations in the thickness of the electrodes can be evaluated without disassembling or analyzing the battery and without modifying the large battery. .. It is also possible to evaluate changes in resistance due to changes in the state of the electrolytic solution.

なお、上述の他の実施の形態では、評価温度を振って二次電池の抵抗の水準を振るようにしたが、これに限定されない。例えば、二次電池の拘束圧やSOC(State of charge)等が二次電池の抵抗値に依存することを用いて、二次電池の抵抗の水準を振ることも可能である。 In the other embodiment described above, the evaluation temperature is shaken to shake the resistance level of the secondary battery, but the present invention is not limited to this. For example, it is possible to change the resistance level of the secondary battery by using the fact that the restraint pressure of the secondary battery, the SOC (State of charge), and the like depend on the resistance value of the secondary battery.

10 反応分布推定装置
11 熱流束センサ
12 恒温槽
13 充放電装置
14 熱流束ロガー
15 データ解析装置
16 熱伝導シート
20 放熱/拘束冶具
21 放熱プレート
22 送りネジ
23 ロードセル
W 二次電池
10 Reaction distribution estimation device 11 Heat flux sensor 12 Constant temperature bath 13 Charging / discharging device 14 Heat flux logger 15 Data analysis device 16 Heat conduction sheet 20 Heat dissipation / restraint jig 21 Heat dissipation plate 22 Feed screw 23 Load cell W Secondary battery

Claims (2)

少なくとも2つの異なる電流値で二次電池の充放電を行い、前記二次電池の表面の複数の箇所で前記二次電池の外部へ向かう熱流束を測定して、前記複数の箇所のそれぞれの複数の測定データを取得する第1工程と、
前記電流値毎に前記複数の測定データをそれぞれ積算し、前記電流値毎に積算値の平均値を算出する第2工程と、
前記電流値の二乗と前記平均値との第1関係式を算出する第3工程と、
前記第1関係式に複数の箇所で測定した熱流束値を代入してそれぞれの箇所の電流値を算出することで得られる面内電流分布を、反応分布として推定する第4工程と、
を有する、
二次電池の反応分布推定方法。
The secondary battery is charged and discharged at at least two different current values, and the heat flux toward the outside of the secondary battery is measured at a plurality of points on the surface of the secondary battery, and a plurality of each of the plurality of points is measured. The first step to acquire the measurement data of
The second step of integrating the plurality of measurement data for each current value and calculating the average value of the integrated values for each current value.
The third step of calculating the first relational expression between the square of the current value and the average value, and
The fourth step of estimating the in-plane current distribution obtained by substituting the heat flux values measured at a plurality of points into the first relational expression and calculating the current value at each point as a reaction distribution.
Have,
A method for estimating the reaction distribution of a secondary battery.
前記第1工程において少なくとも2つの異なる前記二次電池の温度条件下で、前記二次電池の充放電を行い、前記第2工程及び前記第3工程を経て、それぞれの温度条件における複数の前記第1関係式を取得し、
前記第4工程は、
複数の前記第1関係式のそれぞれの傾きと前記二次電池に電流を印加したときの充電時及び放電時の過電圧の値を印加した電流値で除することで算出した平均抵抗値から第2関係式を算出する工程と、
前記複数の箇所それぞれにおいて、前記第2関係式から前記平均抵抗値に対する抵抗割合を算出する工程と、
前記二次電池の平均電流値を前記複数の箇所それぞれの前記抵抗割合の値で除することで得られる面内電流分布を、反応分布として推定する工程と、
を含む、
請求項1に記載の二次電池の反応分布推定方法。
In the first step, the secondary battery is charged and discharged under at least two different temperature conditions of the secondary battery, and after the second step and the third step, a plurality of the first steps in each temperature condition are performed. 1 Get the relational expression,
The fourth step is
The second from the average resistance value calculated by dividing the slope of each of the plurality of first relational expressions and the value of the overvoltage during charging and discharging when a current is applied to the secondary battery by the applied current value . The process of calculating the relational expression and
A step of calculating the resistance ratio to the average resistance value from the second relational expression at each of the plurality of locations, and a step of calculating the resistance ratio to the average resistance value.
A step of estimating the in-plane current distribution obtained by dividing the average current value of the secondary battery by the value of the resistance ratio at each of the plurality of locations as a reaction distribution.
including,
The method for estimating the reaction distribution of a secondary battery according to claim 1.
JP2018128105A 2018-03-29 2018-07-05 Secondary battery reaction distribution estimation method Active JP6992690B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018064453 2018-03-29
JP2018064453 2018-03-29

Publications (2)

Publication Number Publication Date
JP2019175831A JP2019175831A (en) 2019-10-10
JP6992690B2 true JP6992690B2 (en) 2022-01-13

Family

ID=68170451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018128105A Active JP6992690B2 (en) 2018-03-29 2018-07-05 Secondary battery reaction distribution estimation method

Country Status (1)

Country Link
JP (1) JP6992690B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6857362B2 (en) * 2018-06-14 2021-04-14 株式会社パルメトリクス Heat measuring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086255A (en) 2001-09-12 2003-03-20 Toyota Motor Corp State estimating method of secondary battery
JP2005337750A (en) 2004-05-24 2005-12-08 Komatsu Ltd Heat flux measuring substrate
JP2009099375A (en) 2007-10-17 2009-05-07 Sony Corp Battery pack and temperature estimation method
JP2014092428A (en) 2012-11-02 2014-05-19 Semitec Corp Battery life prediction device and battery life prediction system
JP2016110965A (en) 2014-07-10 2016-06-20 東洋ゴム工業株式会社 Deterioration diagnosis method and deterioration diagnosis system for sealed secondary battery
JP2016133413A (en) 2015-01-20 2016-07-25 株式会社日本自動車部品総合研究所 Charge-rate estimation apparatus
WO2017163089A1 (en) 2016-03-24 2017-09-28 Imperial Innovations Limited An energy storage device monitoring technique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086255A (en) 2001-09-12 2003-03-20 Toyota Motor Corp State estimating method of secondary battery
JP2005337750A (en) 2004-05-24 2005-12-08 Komatsu Ltd Heat flux measuring substrate
JP2009099375A (en) 2007-10-17 2009-05-07 Sony Corp Battery pack and temperature estimation method
JP2014092428A (en) 2012-11-02 2014-05-19 Semitec Corp Battery life prediction device and battery life prediction system
JP2016110965A (en) 2014-07-10 2016-06-20 東洋ゴム工業株式会社 Deterioration diagnosis method and deterioration diagnosis system for sealed secondary battery
JP2016133413A (en) 2015-01-20 2016-07-25 株式会社日本自動車部品総合研究所 Charge-rate estimation apparatus
WO2017163089A1 (en) 2016-03-24 2017-09-28 Imperial Innovations Limited An energy storage device monitoring technique

Also Published As

Publication number Publication date
JP2019175831A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
Hosseinzadeh et al. A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application
US10938075B2 (en) Battery safety evaluation apparatus, battery control apparatus, battery safety evaluation method, non-transitory computer readable medium, control circuit, and power storage
US11623526B2 (en) State of battery health estimation based on swelling characteristics
Ghalkhani et al. Electrochemical–thermal model of pouch-type lithium-ion batteries
Song et al. Non-uniform effect on the thermal/aging performance of Lithium-ion pouch battery
US11462780B2 (en) Charge/discharge control apparatus, condition-of-use creation apparatus, non-transitory computer readable medium, and power storage system
Yang et al. State of charge estimation for pulse discharge of a LiFePO4 battery by a revised Ah counting
US10074996B2 (en) Bulk force in a battery pack and its application to state of charge estimation
US9366732B2 (en) Estimation of state-of-health in batteries
Eddahech et al. Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes
US8836284B2 (en) Device and method for calculating value of rechargeable battery
US20170324122A1 (en) Sensitive strain-based soc and soh monitoring of battery cells
Panchal et al. Measurement of temperature gradient (dT/dy) and temperature response (dT/dt) of a prismatic lithium-ion pouch cell with LiFePO 4 cathode material
CN103797679A (en) Secondary battery control device
JP2017097997A (en) Characteristic analysis method of secondary battery, and characteristic analysis device
Kim et al. Numerical analysis of accelerated degradation in large lithium-ion batteries
US20190195961A1 (en) Battery Information Processing Apparatus, Battery Manufacturing Support Apparatus, Battery Assembly, Battery Information Processing Method, and Method of Manufacturing Battery Assembly
US20220179010A1 (en) Estimation apparatus and estimation method
Yazdanpour et al. A circuit-based approach for electro-thermal modeling of lithium-ion batteries
JP6992690B2 (en) Secondary battery reaction distribution estimation method
JP6396812B2 (en) Charging rate estimation system
JP2019145342A (en) Diagnostic device and control device
CN113835031A (en) Information processing method, device, electronic equipment and storage medium
JP6365820B2 (en) Secondary battery abnormality determination device
Samadani et al. Thermal Behavior of Two Commercial Li-Ion Batteries for Plug-in Hybrid Electric Vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R151 Written notification of patent or utility model registration

Ref document number: 6992690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151