JP6991572B2 - Barrier function measurement system for artificial 3D tissue, barrier function measurement method for artificial 3D tissue, and drug evaluation method using artificial 3D tissue - Google Patents

Barrier function measurement system for artificial 3D tissue, barrier function measurement method for artificial 3D tissue, and drug evaluation method using artificial 3D tissue Download PDF

Info

Publication number
JP6991572B2
JP6991572B2 JP2018006606A JP2018006606A JP6991572B2 JP 6991572 B2 JP6991572 B2 JP 6991572B2 JP 2018006606 A JP2018006606 A JP 2018006606A JP 2018006606 A JP2018006606 A JP 2018006606A JP 6991572 B2 JP6991572 B2 JP 6991572B2
Authority
JP
Japan
Prior art keywords
flow path
tissue
electrode
artificial
barrier function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018006606A
Other languages
Japanese (ja)
Other versions
JP2019122335A (en
Inventor
昌治 竹内
雄矢 森本
宣仁 森
文智 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2018006606A priority Critical patent/JP6991572B2/en
Publication of JP2019122335A publication Critical patent/JP2019122335A/en
Application granted granted Critical
Publication of JP6991572B2 publication Critical patent/JP6991572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、人工三次元組織のバリア機能測定システム、人工三次元組織のバリア機能測定方法及び人工三次元組織を用いた薬剤評価方法に関する。 The present invention relates to a barrier function measuring system for an artificial three-dimensional tissue, a barrier function measuring method for an artificial three-dimensional tissue, and a drug evaluation method using an artificial three-dimensional tissue.

近年、薬剤の開発において血管の壁面におけるバリア機能、例えば、中枢神経系をターゲットとして脳血管の壁面におけるバリア機能である血液脳関門(blood-brain barrier, BBB)のモデルが必要とされている。上記のバリア機能を評価する指標としては、管腔側と管腔外側との間の電気抵抗である経内皮電気抵抗(trans endothelial electrical resistance: TEER)が広く用いられている。 In recent years, in the development of drugs, a model of the blood-brain barrier (BBB), which is a barrier function on the wall surface of a blood vessel, for example, a barrier function on the wall surface of a cerebral blood vessel targeting the central nervous system is required. Transendothelial electrical resistance (TEER), which is the electrical resistance between the lumen side and the outside of the lumen, is widely used as an index for evaluating the barrier function.

非特許文献1には、一面側に血管内皮細胞を配置し、他面側に神経細胞(astrocytes)を配置した平面状の多孔質膜を挟んだ両側に電極を配置し、電極間の電気抵抗を測定する技術が開示されている。 In Non-Patent Document 1, vascular endothelial cells are arranged on one side, and electrodes are arranged on both sides of a planar porous membrane in which nerve cells (astrocytes) are arranged on the other side, and electrical resistance between the electrodes is provided. The technology for measuring is disclosed.

Y.Wang,et al,Biotechnology and Bioengineering (2017)Y. Wang, et al, Biotechnology and Bioengineering (2017)

非特許文献1に記載された技術は、血管内皮細胞及び神経細胞が二次元的に配置されているため、血管内皮細胞側を流動する培地の流れが不均一になりやすい。そのため、測定された電気抵抗が培地の流動方向で不均一になり、結果として、得られた経内皮電気抵抗及びバリア機能の評価に対する信頼性が低下する可能性がある。 In the technique described in Non-Patent Document 1, since vascular endothelial cells and nerve cells are arranged two-dimensionally, the flow of the medium flowing on the vascular endothelial cell side tends to be uneven. Therefore, the measured electrical resistance may become non-uniform in the flow direction of the medium, and as a result, the reliability of the obtained transendothelial electrical resistance and the evaluation of the barrier function may decrease.

本発明は上記問題に鑑みてなされたものであり、高い信頼性で経内皮電気抵抗の測定及びバリア機能の評価が可能となる人工三次元組織のバリア機能測定システム、人工三次元組織のバリア機能測定方法及び人工三次元組織を用いた薬剤評価方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is an artificial three-dimensional tissue barrier function measuring system capable of measuring transendothelial electrical resistance and evaluating the barrier function with high reliability, and a barrier function of an artificial three-dimensional tissue. It is an object of the present invention to provide a measurement method and a drug evaluation method using an artificial three-dimensional tissue.

本発明の第1の態様に従えば、所定方向に延びる灌流流路を有する管状の管腔部と、前記管腔部の外側に配置された組織部と、前記灌流流路に培地を供給する供給装置と、前記灌流流路に配置された流路電極と、前記組織部に配置された組織電極と、前記流路電極及び前記組織電極を介して経内皮電気抵抗を測定する測定装置と、を備えることを特徴とする人工三次元組織のバリア機能測定システムが提供される。 According to the first aspect of the present invention, a medium is supplied to a tubular cavity having a perfusion channel extending in a predetermined direction, a tissue portion arranged outside the cavity, and the perfusion channel. A supply device, a flow path electrode arranged in the perfusion flow path, a tissue electrode arranged in the tissue portion, and a measurement device for measuring transendothelial electrical resistance via the flow path electrode and the tissue electrode. A barrier function measuring system for an artificial three-dimensional tissue is provided.

本発明の第2の態様に従えば、所定方向に延びる灌流流路を有する管状の管腔部と、前記管腔部の外側に配置された組織部と、を有する人工三次元組織を形成することと、前記灌流流路に培地を供給することと、前記灌流流路に配置した流路電極及び前記組織部に配置した組織電極を介して経内皮電気抵抗を測定することと、を含むことを特徴とする人工三次元組織のバリア機能測定方法が提供される。 According to the second aspect of the present invention, an artificial three-dimensional tissue having a tubular cavity portion having a perfusion flow path extending in a predetermined direction and a tissue portion arranged outside the lumen portion is formed. It includes supplying a medium to the perfusion channel and measuring transendothelial electrical resistance via a channel electrode arranged in the perfusion channel and a tissue electrode arranged in the tissue portion. A method for measuring the barrier function of an artificial three-dimensional tissue is provided.

本発明の第3の態様に従えば、本発明の第2の態様の測定方法で人工三次元組織のバリア機能を測定することと、薬剤を前記人工三次元組織に接触させることと、前記薬剤の接触による刺激に対する前記人工三次元組織の応答を測定することと、を含むことを特徴とする人工三次元組織を用いた薬剤評価方法が提供される。 According to the third aspect of the present invention, the barrier function of the artificial three-dimensional tissue is measured by the measuring method of the second aspect of the present invention, the drug is brought into contact with the artificial three-dimensional tissue, and the drug is used. Provided is a method for evaluating a drug using an artificial three-dimensional tissue, which comprises measuring the response of the artificial three-dimensional tissue to a stimulus by contact with the artificial three-dimensional tissue.

本発明によれば、信頼性が高い経内皮電気抵抗及びバリア機能が得られる人工三次元組織のバリア機能測定システム、人工三次元組織のバリア機能測定方法及び人工三次元組織を用いた薬剤評価方法を提供することができる。 According to the present invention, a barrier function measuring system for artificial three-dimensional tissues, a barrier function measuring method for artificial three-dimensional tissues, and a drug evaluation method using artificial three-dimensional tissues, which can obtain highly reliable transendothelial electrical resistance and barrier function. Can be provided.

本発明の実施の形態に係る人工三次元組織1を模式的に示した斜視断面図である。It is a perspective sectional view schematically showing the artificial three-dimensional structure 1 which concerns on embodiment of this invention. 人工三次元組織を形成(培養)する前段階の灌流デバイス40の外観斜視図である。It is an external perspective view of the perfusion device 40 in the pre-stage of forming (culturing) an artificial three-dimensional tissue. 流路形成部材43を長さ方向に含む面で灌流デバイス40を切断した断面図である。It is sectional drawing which cut the perfusion device 40 in the plane which includes the flow path forming member 43 in the length direction. 流路形成部材43を移動させた後の灌流デバイス40断面図である。It is sectional drawing of the perfusion device 40 after moving a flow path forming member 43. 係合部42cを軸方向で視た正面図である。It is a front view which looked at the engaging part 42c in the axial direction. 図5におけるA-A線視断面図である。FIG. 5 is a cross-sectional view taken along the line AA in FIG. 測定部90に流路電極70及び組織電極80が接続された図である。It is a figure which connected the flow path electrode 70 and the tissue electrode 80 to the measuring part 90. 人工三次元組織1の概略的な構成図である。It is a schematic block diagram of an artificial three-dimensional tissue 1. 人工三次元組織1の製造手順を示す図である。It is a figure which shows the manufacturing procedure of the artificial three-dimensional structure 1. 人工三次元組織1の製造手順を示す図である。It is a figure which shows the manufacturing procedure of the artificial three-dimensional structure 1. 人工三次元組織1の製造手順を示す図である。It is a figure which shows the manufacturing procedure of the artificial three-dimensional structure 1. 人工三次元組織1の製造手順を示す図である。It is a figure which shows the manufacturing procedure of the artificial three-dimensional structure 1. 人工三次元組織1における培養時間と経内皮電気抵抗(TEER)との関係を示す図である。It is a figure which shows the relationship between the culture time and transendothelium electrical resistance (TEER) in the artificial three-dimensional tissue 1.

以下、本発明の人工三次元組織のバリア機能測定システム、人工三次元組織のバリア機能測定方法及び人工三次元組織を用いた薬剤評価方法の実施の形態を、図1ないし図13を参照して説明する。 Hereinafter, embodiments of the barrier function measuring system for artificial three-dimensional tissues, the barrier function measuring method for artificial three-dimensional tissues, and the drug evaluation method using artificial three-dimensional tissues of the present invention will be described with reference to FIGS. 1 to 13. explain.

なお、以下の実施の実施形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせている。 It should be noted that the following embodiments show one aspect of the present invention, do not limit the present invention, and can be arbitrarily changed within the scope of the technical idea of the present invention. Further, in the following drawings, in order to make each configuration easy to understand, the scale and number of each structure are different from the actual structure.

(バリア機能測定システム)
まず、本発明に係るバリア機能測定システムについて、図1を参照して説明する。
図1は、バリア機能測定システム100の概略的な構成図である。
図1に示すように、バリア機能測定システム100は、灌流デバイス(デバイス)40、培養皿50、ポンプ(供給装置)60、培地リザーバー61、フィルター62、流路電極70、組織電極80及び測定部90を備えている。
(Barrier function measurement system)
First, the barrier function measuring system according to the present invention will be described with reference to FIG.
FIG. 1 is a schematic configuration diagram of a barrier function measuring system 100.
As shown in FIG. 1, the barrier function measuring system 100 includes a perfusion device (device) 40, a culture dish 50, a pump (supply device) 60, a medium reservoir 61, a filter 62, a flow path electrode 70, a tissue electrode 80, and a measuring unit. It has 90.

培養皿50の内部空間には、灌流デバイス40が載置される。培地リザーバー61は、培地Mを貯留する。ポンプ60は、培地リザーバー61に貯留された培地Mを配管63を介して灌流デバイス40に培地Mを供給する。灌流デバイス40から排出された培地Mは、フィルター62によって異物が除去された後に灌流デバイス40に供給される。ポンプ60としては、一例として、ペリスタルティックポンプが用いられる。 The perfusion device 40 is placed in the internal space of the culture dish 50. The medium reservoir 61 stores the medium M. The pump 60 supplies the medium M stored in the medium reservoir 61 to the perfusion device 40 via the pipe 63. The medium M discharged from the perfusion device 40 is supplied to the perfusion device 40 after the foreign matter is removed by the filter 62. As the pump 60, a peristaltic pump is used as an example.

(灌流デバイス40)
図2は、人工三次元組織を形成(培養)する前段階の灌流デバイス40の外観斜視図である。
灌流デバイス40は、培養槽41、コネクタ(支持部)42、流路形成部材43及び組織電極80を備えている。培養槽41は、側壁44に囲まれた上部が開口する培養空間45と、底壁46に設けられた底板47を備えている。側壁44は、平面視で矩形状に設けられている。底板47は、培養槽41に取り付けおよび取り外し自在である。底板47は、培養槽41の底壁46に設けられた開口部を開閉可能である。
(Perfusion device 40)
FIG. 2 is an external perspective view of the perfusion device 40 in the pre-stage of forming (culturing) an artificial three-dimensional tissue.
The perfusion device 40 includes a culture tank 41, a connector (support portion) 42, a flow path forming member 43, and a tissue electrode 80. The culture tank 41 includes a culture space 45 surrounded by a side wall 44 and an open upper portion, and a bottom plate 47 provided on the bottom wall 46. The side wall 44 is provided in a rectangular shape in a plan view. The bottom plate 47 can be attached to and removed from the culture tank 41. The bottom plate 47 can open and close the opening provided in the bottom wall 46 of the culture tank 41.

コネクタ42は、対向する側壁44のそれぞれに貫通孔42dが同軸となる位置に複数対(図2では6対)装着される。3対のコネクタ42は、第1方向に沿って配置され、他の3対のコネクタ42は、第1方向とで水平方向で直交する第2方向に沿って配置されている。コネクタ42のうち、少なくとも培養空間45に露出する領域には、細胞外マトリックス成分11(後述;図6、図8参照)に対する親液化処理が施されている。親液化処理としては、例えば、Oプラズマ処理を採用できる。 A plurality of pairs (6 pairs in FIG. 2) of the connectors 42 are mounted at positions where the through holes 42d are coaxial with each of the facing side walls 44. The three pairs of connectors 42 are arranged along the first direction, and the other three pairs of connectors 42 are arranged along the second direction which is horizontally orthogonal to the first direction. Of the connector 42, at least the region exposed to the culture space 45 is subjected to a liquefaction treatment for extracellular matrix component 11 (described later; see FIGS. 6 and 8). As the liquefaction treatment, for example, O 2 plasma treatment can be adopted.

本実施形態では、6対のコネクタ42のうち、隣り合う2対のコネクタ42のうちの一方に流路形成部材43及び流路電極70を挿通させ、他方に組織電極80を挿通させる場合について説明する。以下では、組織電極80は、コネクタ(第1支持部)42Aに挿通されて支持され、流路形成部材43及び流路電極70は、コネクタ(第2支持部)42Bに挿通されて支持されるものとして説明する。 In the present embodiment, a case will be described in which the flow path forming member 43 and the flow path electrode 70 are inserted into one of two adjacent pairs of connectors 42 among the six pairs of connectors 42, and the tissue electrode 80 is inserted into the other. do. In the following, the tissue electrode 80 is inserted and supported by the connector (first support portion) 42A, and the flow path forming member 43 and the flow path electrode 70 are inserted and supported by the connector (second support portion) 42B. Explain as a thing.

図3は、流路形成部材43を長さ方向に含む面で灌流デバイス40を切断した断面図である。
図3に示すように、コネクタ42A、42Bは、装着部(筒部)42a、接続部42b、係合部42cおよび流路形成部材43の延びる方向(側壁44を貫通する方向)に内部を貫通する貫通孔42dを有している。装着部42aは軸状に形成され培養槽41の側壁44を貫通して装着されている。接続部42bは、装着部42bの一端に設けられている。接続部42bは、培養槽41の外側に配置された配管64に接続可能である。
FIG. 3 is a cross-sectional view of the perfusion device 40 cut at a surface including the flow path forming member 43 in the length direction.
As shown in FIG. 3, the connectors 42A and 42B penetrate the inside in the extending direction (the direction penetrating the side wall 44) of the mounting portion (cylinder portion) 42a, the connecting portion 42b, the engaging portion 42c, and the flow path forming member 43. It has a through hole 42d to be formed. The mounting portion 42a is formed in a shaft shape and is mounted so as to penetrate the side wall 44 of the culture tank 41. The connecting portion 42b is provided at one end of the mounting portion 42b. The connection portion 42b can be connected to the pipe 64 arranged outside the culture tank 41.

人工三次元組織を形成(培養)する前段階において、コネクタ42Bの貫通孔(挿通孔)42dには、流路形成部材43が長さ方向に移動可能に挿通し培養空間45に懸架されている。流路形成部材43は、一例として外径が0.5mmの軸状に形成されている。流路形成部材43は、端部がコネクタ42B(接続部42b)から突出する長さに形成されている。流路形成部材43の一端には、流路電極70の一端が連結されている。 In the stage before forming (culturing) the artificial three-dimensional tissue, the flow path forming member 43 is movably inserted in the through hole (insertion hole) 42d of the connector 42B in the length direction and suspended in the culture space 45. .. As an example, the flow path forming member 43 is formed in a shaft shape having an outer diameter of 0.5 mm. The flow path forming member 43 is formed so as to have an end portion protruding from the connector 42B (connecting portion 42b). One end of the flow path electrode 70 is connected to one end of the flow path forming member 43.

図4は、流路形成部材43を移動させた後の灌流デバイス40断面図である。
図4に示すように、流路形成部材43を長さ方向の他端側(図4中、左側)に移動させることにより、流路電極70が培養空間45に懸架される。
FIG. 4 is a cross-sectional view of the perfusion device 40 after moving the flow path forming member 43.
As shown in FIG. 4, the flow path electrode 70 is suspended in the culture space 45 by moving the flow path forming member 43 to the other end side (left side in FIG. 4) in the length direction.

図3及び図4に示すように、配管64には、測定部90に接続される流路電極70が挿通される挿通孔65aを有する挿通部65と、流路電極70が培養空間45に懸架されたときに、図1に示したように、配管63を介して培地が供給される供給孔66aを有する培地供給部66とに分岐された二股構造になっている。 As shown in FIGS. 3 and 4, the pipe 64 has an insertion portion 65 having an insertion hole 65a through which the flow path electrode 70 connected to the measurement unit 90 is inserted, and the flow path electrode 70 is suspended in the culture space 45. When this is done, as shown in FIG. 1, it has a bifurcated structure branched into a medium supply unit 66 having a supply hole 66a to which the medium is supplied via the pipe 63.

なお、図3及び図4においては、配管64は、流路形成部材43及び流路電極70が懸架される対向するコネクタ42の一方のみに接続されているが、実際には対向するコネクタ42A、42Bの両方にそれぞれ接続されている。 In FIGS. 3 and 4, the pipe 64 is connected to only one of the opposing connectors 42 on which the flow path forming member 43 and the flow path electrode 70 are suspended, but in reality, the opposing connectors 42A, It is connected to both of 42B respectively.

係合部42cは、装着部42bの他端に設けられている。係合部42cは、培養槽41の培養空間45に側壁44と隙間をあけて配置されている。図5は、係合部42cを軸方向で視た正面図である。図6は、図5におけるA-A線視断面図である。図5および図6に示すように、係合部42cは、装着部42aの外周面と隙間をあけて同軸で配置された第2筒部42eと、装着部42aの周方向に間隔をあけて配置された複数のリブ部42fとを備えている。リブ部42fは、装着部42aの外周面と第2筒部42eの内周面とを接続する。リブ部42fは、90度間隔で4つ設けられている。装着部42a、第2筒部42eおよびリブ部42fで囲まれた隙間42gは、係合部42cを軸方向に貫通している。 The engaging portion 42c is provided at the other end of the mounting portion 42b. The engaging portion 42c is arranged in the culture space 45 of the culture tank 41 with a gap from the side wall 44. FIG. 5 is a front view of the engaging portion 42c as viewed in the axial direction. FIG. 6 is a cross-sectional view taken along the line AA in FIG. As shown in FIGS. 5 and 6, the engaging portion 42c is spaced coaxially with the outer peripheral surface of the mounting portion 42a from the second tubular portion 42e and the mounting portion 42a in the circumferential direction. It is provided with a plurality of arranged rib portions 42f. The rib portion 42f connects the outer peripheral surface of the mounting portion 42a and the inner peripheral surface of the second tubular portion 42e. Four rib portions 42f are provided at 90-degree intervals. The gap 42g surrounded by the mounting portion 42a, the second cylinder portion 42e, and the rib portion 42f penetrates the engaging portion 42c in the axial direction.

図7は、測定部90に流路電極70及び組織電極80が接続された図である。
図7に示すように、流路電極70は、第1流路電極71及び第2流路電極72を有している。第1流路電極71と第2流路電極72とは、互いに撚り合わされた第1撚り線73を形成している。組織電極80は、第1組織電極81及び第2組織電極82を有している。第1組織電極81と第2組織電極82とは、互いに撚り合わされた第2撚り線83を形成している。第1撚り線73の最大外径は、流路形成部材43の外径よりも小さく形成されている。
FIG. 7 is a diagram in which the flow path electrode 70 and the tissue electrode 80 are connected to the measuring unit 90.
As shown in FIG. 7, the flow path electrode 70 has a first flow path electrode 71 and a second flow path electrode 72. The first flow path electrode 71 and the second flow path electrode 72 form a first stranded wire 73 twisted to each other. The tissue electrode 80 has a first tissue electrode 81 and a second tissue electrode 82. The first structure electrode 81 and the second structure electrode 82 form a second stranded wire 83 twisted to each other. The maximum outer diameter of the first stranded wire 73 is formed to be smaller than the outer diameter of the flow path forming member 43.

第1流路電極71、第2流路電極72、第1組織電極81及び第2組織電極82としては、Ag、AgCl、白金、金、カーボン等で形成された金属線材を用いることができる。第1撚り線73を構成する第1流路電極71及び第2流路電極72のうち、第2流路電極72は、外周面が絶縁被覆されている。第2流路電極72の端面は、金属線材が露出している。第2撚り線83を構成する第1組織電極81及び第2組織電極82のうち、第2組織電極82は、外周面が絶縁被覆されている。第2組織電極82の端面は、金属線材が露出している。これにより、第1流路電極71と第2流路電極72との短絡、及び第1組織電極81と第2組織電極82との短絡を抑制できる。第2流路電極72及び第2組織電極82の外周面は、一例として、ポリパラキシリレン(以下、パリレンと称する)によって絶縁被覆されている。 As the first flow path electrode 71, the second flow path electrode 72, the first tissue electrode 81, and the second structure electrode 82, a metal wire rod made of Ag, AgCl, platinum, gold, carbon, or the like can be used. Of the first flow path electrode 71 and the second flow path electrode 72 constituting the first stranded wire 73, the outer peripheral surface of the second flow path electrode 72 is insulated and coated. A metal wire is exposed on the end face of the second flow path electrode 72. Of the first structure electrode 81 and the second structure electrode 82 constituting the second stranded wire 83, the outer peripheral surface of the second structure electrode 82 is insulated and coated. A metal wire is exposed on the end face of the second structure electrode 82. This makes it possible to suppress a short circuit between the first flow path electrode 71 and the second flow path electrode 72 and a short circuit between the first tissue electrode 81 and the second tissue electrode 82. The outer peripheral surfaces of the second flow path electrode 72 and the second tissue electrode 82 are, for example, insulated and coated with polyparaxylylene (hereinafter referred to as parylene).

(人工三次元組織)
次に、図8を参照して人工三次元組織について説明する。図8は、人工三次元組織1の概略的な構成図である。
図8に示すように、人工三次元組織1は、灌流流路13を有する管状の管腔部15と、管腔部15の外側に配置された組織部10とを含む。本実施形態における組織部10は、細胞外マトリックス成分11で形成されている。
(Artificial 3D tissue)
Next, the artificial three-dimensional structure will be described with reference to FIG. FIG. 8 is a schematic configuration diagram of the artificial three-dimensional organization 1.
As shown in FIG. 8, the artificial three-dimensional tissue 1 includes a tubular lumen portion 15 having a perfusion flow path 13 and a tissue portion 10 arranged outside the lumen portion 15. The tissue portion 10 in the present embodiment is formed of the extracellular matrix component 11.

細胞外マトリックス成分11としては、特に限定されないが、例えば、コラーゲン(I型、II型、III型、V型、XI型など)、マウスEHS腫瘍抽出物(IV型コラーゲン、ラミニン、ヘパラン硫酸プロテオグリカンなどを含む)より再構成された基底膜成分(商品名:マトリゲル)、ゼラチン、寒天、アガロース、フィブリン、グリコサミノグリカン、ヒアルロン酸、プロテオグリカンなどを例示することができる。 The extracellular matrix component 11 is not particularly limited, and is, for example, collagen (type I, type II, type III, type V, type XI, etc.), mouse EHS tumor extract (type IV collagen, laminin, heparan sulfate proteoglycan, etc.). (Including), basement membrane components reconstituted (trade name: Matrigel), gelatin, agar, agarose, fibrin, glycosaminoglycan, hyaluronic acid, proteoglycan and the like can be exemplified.

灌流流路13は、培地が灌流する流路であり、組織部10の内部を貫通し第1方向に延びている。管腔部15は、灌流流路13に臨む組織部10の表面に血管系細胞14を用いて形成されている。血管系細胞14としては、例えば、内皮細胞を用いることができる。 The perfusion flow path 13 is a flow path through which the medium is perfused, and penetrates the inside of the tissue portion 10 and extends in the first direction. The luminal portion 15 is formed by using vasculature cells 14 on the surface of the tissue portion 10 facing the perfusion flow path 13. As the vasculature cell 14, for example, endothelial cells can be used.

血管系細胞としては、血管上皮細胞、血管内皮細胞等が挙げられ、血管内皮細胞が好ましい。血管内皮細胞としては、ヒト、マウス、ラット等、哺乳動物由来の細胞が挙げられ、ヒト由来血管内皮細胞が好ましい。ヒト由来血管内皮細胞としては、ヒト臍帯静脈内皮細胞(Human Umbilical Vein Endothelial Cells:HUVEC)、 ヒト臍帯動脈内皮細胞(Human Umbilical Artery Endothelial Cells:HUAEC) 、ヒト冠状動脈内皮細胞(Human Coronary Artery Endothelial Cells:HCAEC)、 ヒト伏在静脈内皮細胞(Human Saphenous Vein Endothelial Cells:HSaVEC)、 ヒト肺動脈内皮細胞(Human Pulmonary Artery Endothelial Cells:HPAEC)、 ヒト大動脈内皮細胞(Human Aortic Endothelial Cells:HAoEC)、ヒト皮膚微小血管内皮細胞(Human Dermal Microvascular Endothelial Cells:HDMEC)、 ヒト皮膚血管内皮細胞(Human Dermal Blood Endothelial Cells:HDBEC)、 ヒト皮膚リンパ管内皮細胞(Human Dermal Lymphatic Endothelial Cells:HDLEC)、 ヒト肺微小血管内皮細胞(Human Pulmonary Microvascular Endothelial Cells:HPMEC)、 ヒト心臓微小血管内皮細胞(Human Cardiac Microvascular Endothelial Cells:HCMEC)、 ヒト膀胱微小血管内皮細胞(Human Bladder Microvascular Endothelial Cells:HBdMEC)、 ヒト子宮微小血管内皮細胞(Human Uterine Microvascular Endothelial Cells:HUtMEC)、ヒト脳微小血管内皮細胞等が挙げられる。 Examples of the vascular lineage cells include vascular epithelial cells and vascular endothelial cells, and vascular endothelial cells are preferable. Examples of vascular endothelial cells include cells derived from mammals such as humans, mice, and rats, and human-derived vascular endothelial cells are preferable. Human-derived vascular endothelial cells include Human Umbilical Vein Endothelial Cells (HUVEC), Human Umbilical Artery Endothelial Cells (HUAEC), and Human Coronary Artery Endothelial Cells: HCAEC), Human Saphenous Vein Endothelial Cells (HSaVEC), Human Pulmonary Artery Endothelial Cells (HPAEC), Human Aortic Endothelial Cells (HAoEC), Human Skin Microvascular Human Dermal Microvascular Endothelial Cells (HDMEC), Human Dermal Blood Endothelial Cells (HDBEC), Human Dermal Lymphatic Endothelial Cells (HDLEC), Human Lung Microvascular Endothelial Cells (HDLEC) Human Pulmonary Microvascular Endothelial Cells (HPMEC), Human Cardiac Microvascular Endothelial Cells (HCMEC), Human Bladder Microvascular Endothelial Cells (HBdMEC), Human Uterine Microvascular Endothelial Cells: HUtMEC), human brain microvascular endothelial cells and the like.

(人工三次元組織製造方法)
次に、人工三次元組織1の製造方法について、図9乃至図12を参照して説明する。
本発明に係る人工三次元組織1の製造方法は、側壁44に囲まれた培養空間45を有する培養槽41と、対向する側壁44を貫いて培養空間45に所定方向に沿って懸架された流路形成部材43及び組織電極80とを備えた灌流デバイス(人工三次元組織灌流デバイス、デバイス)40を準備することと、培養空間45で細胞外マトリックス成分11を培養して、流路形成部材43及び組織電極80が貫く組織部10を形成することと、組織部10から流路形成部材43を抜去して組織部10を貫通する灌流流路13を形成することと、灌流流路13に流路電極70を配置することと、灌流流路13に臨む組織部10の表面に血管系細胞を播種して管腔部15を形成することを含む。
(Artificial three-dimensional structure manufacturing method)
Next, a method for manufacturing the artificial three-dimensional structure 1 will be described with reference to FIGS. 9 to 12.
The method for producing an artificial three-dimensional tissue 1 according to the present invention is a flow in which a culture tank 41 having a culture space 45 surrounded by a side wall 44 and a flow suspended in a culture space 45 through the opposite side wall 44 in a predetermined direction. A perfusion device (artificial three-dimensional tissue perfusion device, device) 40 provided with a path forming member 43 and a tissue electrode 80 is prepared, and the extracellular matrix component 11 is cultured in the culture space 45 to form a flow path forming member 43. And forming the tissue portion 10 through which the tissue electrode 80 penetrates, removing the flow path forming member 43 from the tissue portion 10 to form a perfusion channel 13 penetrating the tissue portion 10, and flowing into the perfusion channel 13. It includes arranging the path electrode 70 and seeding vascular cells on the surface of the tissue portion 10 facing the perfusion channel 13 to form the lumen portion 15.

以下、人工三次元組織の製造方法について詳細に説明する。
図9乃至図12においては、適宜、灌流デバイス40のみを図示し、培養皿50、ポンプ60等の図示を省略している。
Hereinafter, a method for manufacturing an artificial three-dimensional structure will be described in detail.
In FIGS. 9 to 12, only the perfusion device 40 is shown as appropriate, and the culture dish 50, the pump 60, and the like are omitted.

(灌流デバイス40の準備)
灌流デバイス40の準備としては、図2及び図9に示すように、上記の培養槽41の対向する側壁44に貫通孔42dが同軸となるようにコネクタ42A、42Bを装着する。同軸となっているコネクタ42Bの貫通孔42dに流路形成部材43を挿通し、コネクタ42Aの貫通孔42dに組織電極80を挿通し、培養空間45に流路形成部材43及び組織電極80を懸架させる。
(Preparation of perfusion device 40)
As a preparation for the perfusion device 40, as shown in FIGS. 2 and 9, connectors 42A and 42B are attached to the facing side walls 44 of the culture tank 41 so that the through holes 42d are coaxial. The flow path forming member 43 is inserted through the through hole 42d of the coaxial connector 42B, the tissue electrode 80 is inserted through the through hole 42d of the connector 42A, and the flow path forming member 43 and the tissue electrode 80 are suspended in the culture space 45. Let me.

側壁44へのコネクタ42A、42Bの装着部の隙間、および底壁46への底板47の取付部の隙間をシールするために、シール材で培養空間45に臨む培養槽41の表面を被膜する。シール材としては、細胞外マトリックス成分11に悪影響を与えない材料、一例として、ポリパラキシリレン(以下、パリレンと称する)が蒸着等の成膜方法により成膜される。シール材の膜厚としては、上記装着部の隙間および取付部の隙間に対して1/100~1/10であることが好ましい。また、シール材の膜厚は、上記装着部の隙間および取付部の隙間に対して1/50~1/10であることが好ましく、1/50~1/20であることがより好ましい。本実施形態では、約50μmの隙間に対して2μmの膜厚(1/25)でシール材を成膜した。 In order to seal the gap between the attachment portions of the connectors 42A and 42B to the side wall 44 and the attachment portion of the bottom plate 47 to the bottom wall 46, the surface of the culture tank 41 facing the culture space 45 is coated with a sealing material. As the sealing material, a material that does not adversely affect the extracellular matrix component 11, for example, polyparaxylylene (hereinafter referred to as parylene) is formed by a film forming method such as thin film deposition. The film thickness of the sealing material is preferably 1/100 to 1/10 with respect to the gap between the mounting portions and the gap between the mounting portions. The film thickness of the sealing material is preferably 1/50 to 1/10, more preferably 1/50 to 1/20 with respect to the gap between the mounting portions and the gap between the mounting portions. In the present embodiment, a sealing material is formed with a film thickness (1/25) of 2 μm with respect to a gap of about 50 μm.

コネクタ42A、42Bのうち、少なくとも培養空間45に露出する領域に親液化処理を施す。親液化処理は、培養槽41に装着する前にコネクタ42A、42Bに実施してもよいし、側壁44に装着したコネクタ42A、42Bに対して実施してもよい。 Of the connectors 42A and 42B, at least the region exposed to the culture space 45 is subjected to the liquefaction treatment. The liquefaction treatment may be carried out on the connectors 42A and 42B before being attached to the culture tank 41, or may be carried out on the connectors 42A and 42B mounted on the side wall 44.

(組織部10の形成)
灌流デバイス40の準備が完了すると、組織部10を形成する。組織部10の形成は、図9に示すように、細胞外マトリックス成分11の溶液を培養槽41の培養空間45に注ぎ込む。細胞外マトリックス成分11は、流路形成部材43及び組織電極80が浸漬される高さとなる量で注ぎ込まれる。本実施形態では、細胞外マトリックス成分11としてコラーゲン、10倍濃度のPBS及び細胞培養液の混合液を用いており、混合比は、9:1:5である。細胞培養液としては、例えば血管内皮細胞用の培養液であるEGMを用いる。また、混合比はコラーゲン溶液がゲル化される範囲であれば、必ずしも前記比率でなくともよい。
(Formation of tissue portion 10)
When the preparation of the perfusion device 40 is completed, the tissue portion 10 is formed. For the formation of the tissue portion 10, as shown in FIG. 9, the solution of the extracellular matrix component 11 is poured into the culture space 45 of the culture tank 41. The extracellular matrix component 11 is poured in an amount that is high enough to immerse the flow path forming member 43 and the tissue electrode 80. In this embodiment, collagen is used as the extracellular matrix component 11, and a mixed solution of 10-fold concentration PBS and cell culture solution is used, and the mixing ratio is 9: 1: 5. As the cell culture medium, for example, EGM, which is a culture medium for vascular endothelial cells, is used. Further, the mixing ratio does not necessarily have to be the above ratio as long as the collagen solution is gelled.

細胞外マトリックス成分11が培養槽41に注ぎ込まれると、所定条件で培養(インキュベーション)する。培養条件は、一例として、37℃の温度下で30~60分間行った。 When the extracellular matrix component 11 is poured into the culture tank 41, it is cultured (incubated) under predetermined conditions. As an example, the culture conditions were carried out at a temperature of 37 ° C. for 30 to 60 minutes.

培養によって細胞外マトリックス成分11はゲル化する。細胞外マトリックス成分11がゲル化して培養が完了することにより、内部を流路形成部材43が貫く組織部10が形成される。また、組織部10においては、部分平面断面図である図11に示されるように、流路形成部材43と間隔をあけて平行に組織電極80が貫いている。 The extracellular matrix component 11 gels by culturing. When the extracellular matrix component 11 gels and the culture is completed, the tissue portion 10 through which the flow path forming member 43 penetrates is formed. Further, in the tissue portion 10, as shown in FIG. 11 which is a partial plan sectional view, the tissue electrode 80 penetrates in parallel with the flow path forming member 43 at intervals.

なお、細胞外マトリックス成分11に細胞が含まれている場合、さらに培養を継続することで細胞外マトリックス成分11は収縮する。細胞外マトリックス成分11は収縮時に係合部42cに係合しているため、積層方向の収縮は拘束されないが、第1方向および第2方向の収縮は拘束される。より詳細には、図6に示されるように、細胞外マトリックス成分11は、培養空間45の中心とは逆側から係合部42cの第2筒部42e、リブ部42fに係合しているため、第2筒部42e、リブ部42fが障壁となって中心側への収縮が抑制される。また、細胞外マトリックス成分11が収縮する場合には、積層方向への収縮により、第2筒部42eの外周面、装着部42aの先端側の外周面に圧着されることになる。従って、細胞外マトリックス成分11と係合部42cとの間の摩擦力が大きくなり、第1方向および第2方向への収縮に対する抵抗力が大きくなる。特に、本実施形態では、係合部42cが細胞外マトリックス成分11に対する親液化処理が施されているため、細胞外マトリックス成分11は、より大きな密着力で係合部42cに密着し第1方向および第2方向への収縮に対する抵抗力が大きくなる。従って、細胞が含まれている場合等、細胞外マトリックス成分11が収縮する条件で培養を行っても、細胞外マトリックス成分11を安定して支持できる。 When cells are contained in the extracellular matrix component 11, the extracellular matrix component 11 contracts by further continuing the culture. Since the extracellular matrix component 11 is engaged with the engaging portion 42c at the time of contraction, the contraction in the stacking direction is not constrained, but the contraction in the first direction and the second direction is constrained. More specifically, as shown in FIG. 6, the extracellular matrix component 11 is engaged with the second tubular portion 42e and the rib portion 42f of the engaging portion 42c from the side opposite to the center of the culture space 45. Therefore, the second tubular portion 42e and the rib portion 42f serve as barriers to suppress the contraction toward the center side. Further, when the extracellular matrix component 11 contracts, it is crimped to the outer peripheral surface of the second tubular portion 42e and the outer peripheral surface on the tip end side of the mounting portion 42a due to the contraction in the stacking direction. Therefore, the frictional force between the extracellular matrix component 11 and the engaging portion 42c increases, and the resistance to contraction in the first direction and the second direction increases. In particular, in the present embodiment, since the engaging portion 42c is subjected to the liquefaction treatment with respect to the extracellular matrix component 11, the extracellular matrix component 11 adheres to the engaging portion 42c with a larger adhesion force in the first direction. And the resistance to shrinkage in the second direction increases. Therefore, even if the culture is performed under the condition that the extracellular matrix component 11 contracts, such as when cells are contained, the extracellular matrix component 11 can be stably supported.

(灌流流路13および管腔部15の形成)
次に、コネクタ42Bに支持されている流路形成部材43を抜去する。具体的には、流路電極70が連結された一端側とは逆側(図10中。左側)に流路形成部材43を移動させる。流路形成部材43が他端側へ移動することにより、組織部10には流路形成部材43の外径に応じた直径で直線状に延びる空洞である灌流流路13が形成される。このとき、組織部10は、両端部において係合部42cに係合しているため、流路形成部材43の抜去時にコネクタ42Bから脱離することなく安定してコネクタ42Bに支持される。
(Formation of perfusion channel 13 and lumen 15)
Next, the flow path forming member 43 supported by the connector 42B is removed. Specifically, the flow path forming member 43 is moved to the side opposite to the one end side (on the left side in FIG. 10) to which the flow path electrode 70 is connected. By moving the flow path forming member 43 to the other end side, a perfusion flow path 13 which is a cavity extending linearly with a diameter corresponding to the outer diameter of the flow path forming member 43 is formed in the tissue portion 10. At this time, since the tissue portion 10 is engaged with the engaging portions 42c at both ends, it is stably supported by the connector 42B without being detached from the connector 42B when the flow path forming member 43 is removed.

また、流路形成部材43が他端側へ移動することにより、灌流流路13には、図12に示すように、流路形成部材43の一端側に連結された流路電極70が挿通される。また、流路形成部材43に連結されていた流路電極70の一端側は、流路形成部材43と切り離されて、例えば、コネクタ42Bの貫通孔42dに配置される。 Further, as the flow path forming member 43 moves to the other end side, the flow path electrode 70 connected to one end side of the flow path forming member 43 is inserted into the perfusion flow path 13 as shown in FIG. To. Further, one end side of the flow path electrode 70 connected to the flow path forming member 43 is separated from the flow path forming member 43 and arranged in, for example, the through hole 42d of the connector 42B.

組織電極80における第2組織電極82は、絶縁被覆されているが、端面が露出しているため、組織部(コラーゲン)10と接触した状態となる。また、流路電極70における第2流路電極72は、絶縁被覆されているが、流路形成部材43と切り離された端面が露出し、灌流流路13と連通する貫通孔42dに配置される。 The second tissue electrode 82 in the tissue electrode 80 is insulated and coated, but since the end face is exposed, it is in contact with the tissue portion (collagen) 10. Further, although the second flow path electrode 72 in the flow path electrode 70 is insulated and coated, the end surface separated from the flow path forming member 43 is exposed and is arranged in the through hole 42d communicating with the perfusion flow path 13. ..

次に、図12に示すように、コネクタ42Bの貫通孔42dを介して、灌流流路13に臨む組織部10の表面に血管系細胞14として上述したHUVECを注入(播種)し、一例として、37℃、5%のCO雰囲気下で一定時間培養することにより、管腔部15を形成する。血管系細胞14の培養時には、図1に示したフィルター62の下流の配管63の端部を、培養槽41の外側に配置された配管64における培地供給部66と接続する。また、培地排出側の配管64については、ポンプ60に導入される側の配管63の端部を接続する。 Next, as shown in FIG. 12, the above-mentioned HUVEC as vasculature cells 14 is injected (seed) into the surface of the tissue portion 10 facing the perfusion flow path 13 through the through hole 42d of the connector 42B, and as an example. The lumen 15 is formed by culturing for a certain period of time in a CO 2 atmosphere at 37 ° C. and 5%. When culturing the vascular cells 14, the end of the pipe 63 downstream of the filter 62 shown in FIG. 1 is connected to the medium supply unit 66 in the pipe 64 arranged outside the culture tank 41. Further, for the pipe 64 on the culture medium discharge side, the end of the pipe 63 on the side introduced into the pump 60 is connected.

そして、図1に示したポンプ60を駆動することにより、培地リザーバー61に貯留された培地Mは、フィルター62を経た後に灌流流路13に供給される。また、灌流流路13から排出された培地Mは、配管63に戻されフィルター62で異物等を除去された後に灌流流路13に供給されて循環する。使用された培地Mは、管腔部15が、例えば、70~90%に集密するまで2~3日毎に交換する。これにより、灌流流路13は、管腔部15に囲まれた状態となり、管腔部15の外側に組織部10が配置された人工三次元組織1が形成される。 Then, by driving the pump 60 shown in FIG. 1, the medium M stored in the medium reservoir 61 is supplied to the perfusion flow path 13 after passing through the filter 62. Further, the medium M discharged from the perfusion channel 13 is returned to the pipe 63, foreign matter and the like are removed by the filter 62, and then supplied to the perfusion channel 13 for circulation. The medium M used is replaced every 2-3 days until the lumen 15 is concentrated, for example, 70-90%. As a result, the perfusion flow path 13 is surrounded by the lumen portion 15, and an artificial three-dimensional tissue 1 in which the tissue portion 10 is arranged outside the lumen portion 15 is formed.

(バリア機能測定)
次に、形成された人工三次元組織1のバリア機能を測定する方法について、図13を参照して説明する。
(Barrier function measurement)
Next, a method of measuring the barrier function of the formed artificial three-dimensional tissue 1 will be described with reference to FIG.

上述したように、組織電極80における第1組織電極81は、露出した状態で組織部10に配置され、流路電極70における第1流路電極71は、灌流流路13及び培地M内に露出した状態で配置されている。測定部90は、灌流流路13に培地Mが灌流する状態で第1組織電極81及び第1流路電極71を介して電流値を測定する。 As described above, the first tissue electrode 81 in the tissue electrode 80 is arranged in the tissue portion 10 in an exposed state, and the first flow path electrode 71 in the flow path electrode 70 is exposed in the perfusion flow path 13 and the medium M. It is arranged in the state of being. The measuring unit 90 measures the current value via the first tissue electrode 81 and the first flow path electrode 71 in a state where the medium M is perfused into the perfusion flow path 13.

また、組織電極80における第2組織電極82は、露出した端面が貫通孔42dに配置され組織部10と接触し、流路電極70における第2流路電極72は、露出した端面が貫通孔42dに配置され培地Mと接触している。測定部90は、灌流流路13に培地Mが灌流する状態で第2組織電極82及び第2流路電極72を介して電圧値を測定する。測定部90における内部インピーダンスは、管腔部15の電気抵抗(経内皮抵抗)と比較して十分に大きな内部インピーダンスを有している。 Further, the second tissue electrode 82 in the tissue electrode 80 has an exposed end surface arranged in the through hole 42d and comes into contact with the tissue portion 10, and the second flow path electrode 72 in the flow path electrode 70 has an exposed end surface in the through hole 42d. It is placed in contact with the medium M. The measuring unit 90 measures the voltage value via the second tissue electrode 82 and the second flow path electrode 72 in a state where the medium M is perfused into the perfusion flow path 13. The internal impedance in the measuring unit 90 has a sufficiently large internal impedance as compared with the electrical resistance (transendothelial resistance) of the lumen portion 15.

そして、測定部90は、第1組織電極81及び第1流路電極71を介して測定した電流値と、第2組織電極82及び第2流路電極72を介して測定した電圧値とを用いた4端子法により、組織部10と灌流流路13における培地Mとの間の電気抵抗値(経内皮抵抗値)を測定する。 Then, the measuring unit 90 uses the current value measured through the first tissue electrode 81 and the first flow path electrode 71 and the voltage value measured via the second tissue electrode 82 and the second flow path electrode 72. The electrical resistance value (transendothelium resistance value) between the tissue portion 10 and the medium M in the perfusion channel 13 is measured by the four-terminal method.

例えば、第1組織電極81及び第1流路電極71を介して2端子法で電気抵抗値を測定した場合は、電極自体の抵抗及び組織部10、培地Mとの接触抵抗による電圧降下が誤差として含まれる電気抵抗値を測定することになる。これに対して、測定部90における内部インピーダンスが大きいことから、第2組織電極82及び第2流路電極72にはほとんど電流が流れない。そのため、電極自体の抵抗及び組織部10、培地Mとの接触抵抗による電圧降下の影響を受けることなく高精度に電圧値を測定可能になる。 For example, when the electric resistance value is measured by the two-terminal method via the first tissue electrode 81 and the first flow path electrode 71, the voltage drop due to the resistance of the electrode itself and the contact resistance with the tissue portion 10 and the medium M is an error. The electrical resistance value included as is to be measured. On the other hand, since the internal impedance in the measuring unit 90 is large, almost no current flows through the second tissue electrode 82 and the second flow path electrode 72. Therefore, the voltage value can be measured with high accuracy without being affected by the voltage drop due to the resistance of the electrode itself and the contact resistance with the tissue portion 10 and the medium M.

図13は、上記の人工三次元組織1において、血管系細胞14を注入(播種)し、ほぼ一日経過後から培地の灌流を実施して培養した場合(perfused)と、培地の灌流を実施しないで培養した場合(non-perfused)の、培養時間と経内皮電気抵抗(TEER)との関係を示す図である。 FIG. 13 shows the case where the vascular cells 14 are injected (seed) in the artificial three-dimensional tissue 1 and the culture medium is perfused and cultured after about one day (perfused), and the culture medium is not perfused. It is a figure which shows the relationship between the culture time and trans-endothelial electrical resistance (TEER) in the case of culturing in (non-perfused).

図13に示されるように、血管系細胞14を播種後、培地の灌流を開始するまで経内皮電気抵抗が上昇した。これは、血管系細胞14が増加して、灌流流路13に臨む組織部10の表面を覆ったためと考えられ、観察結果と一致する。 As shown in FIG. 13, after seeding the vasculature cells 14, transendothelium electrical resistance increased until the perfusion of the medium was started. It is considered that this is because the vasculature cells 14 increased and covered the surface of the tissue portion 10 facing the perfusion channel 13, which is consistent with the observation result.

そして、播種後、一日経過した後には、培地の灌流の有無により経内皮電気抵抗に差が生じた。これは、培養時に培地の灌流による栄養供給と、非灌流による栄養供給遮断との差により、血管系細胞14の成長状態の差に応じて生じたと考えられる。
すなわち、本実施形態では、管腔部15における血管系細胞14の成長状態の差に伴って生じる経内皮電気抵抗の差を測定できることを確認できた。
Then, one day after sowing, there was a difference in transendothelial electrical resistance depending on the presence or absence of perfusion of the medium. It is considered that this was caused by the difference in the growth state of the vasculature cells 14 due to the difference between the nutrient supply by perfusion of the medium and the cutoff of the nutrient supply by non-perfusion during culturing.
That is, in the present embodiment, it was confirmed that the difference in transendothelial electrical resistance caused by the difference in the growth state of the vasculature cells 14 in the lumen 15 can be measured.

(評価方法)
本発明は、さらにその他の態様として、本発明の人工三次元組織1を用いた薬剤の組織部10に対する刺激性を評価する方法に関する。本発明における薬剤とは、医薬品等の薬物、化粧品や医薬部外品等を含む。本発明の評価方法によれば、例えば、従来の方法と比較して実際の組織部10に近い環境で薬剤の評価を行うことができる。また、本発明の評価方法は、例えば、新薬の創出(スクリーニング)等における各種分子量の薬物の動態評価、化粧品や医薬部外品等の開発における評価において極めて有用である。
(Evaluation methods)
As yet another aspect, the present invention relates to a method for evaluating the irritation of a drug to a tissue portion 10 using the artificial three-dimensional tissue 1 of the present invention. The drug in the present invention includes drugs such as pharmaceuticals, cosmetics, quasi-drugs and the like. According to the evaluation method of the present invention, for example, the drug can be evaluated in an environment closer to the actual tissue portion 10 as compared with the conventional method. Further, the evaluation method of the present invention is extremely useful in, for example, dynamic evaluation of drugs having various molecular weights in the creation (screening) of new drugs, and evaluation in the development of cosmetics, quasi-drugs, and the like.

本発明の評価方法は、例えば、薬剤を人工三次元組織1と接触させること、及び、薬剤の接触による刺激に対する応答を測定することにより行うことができる。応答の測定は、例えば、経皮電気抵抗を測定すること等によって行うことができる。薬剤は、評価対象となる物質のことをいい、例えば、無機化合物及び有機化合物等が挙げられる。 The evaluation method of the present invention can be carried out, for example, by contacting the drug with the artificial three-dimensional tissue 1 and measuring the response to the stimulus caused by the contact of the drug. The response can be measured, for example, by measuring the transdermal electrical resistance. The drug refers to a substance to be evaluated, and examples thereof include inorganic compounds and organic compounds.

また、上記のバリア機能測定システム100及びバリア機能測定方法を用いることにより、薬剤を管腔部(血管)15内に流動させたときに組織部10に透過する量を測定するに際して、人工三次元組織1における経内皮電気抵抗を生体における経内皮電気抵抗に対して評価することができる。あるいは、上記のバリア機能測定システム100及びバリア機能測定方法を用いることにより、管腔部(血管)15のバリア機能に影響を与える薬剤を管腔部15に流動させた際にバリア機能の変動を測定することができる。
また、上記のバリア機能測定方法を用いることにより、バリア機能測定システム100における管腔部においてバリア機能が十分に構築されているかどうかバリデートすることができる。
Further, by using the barrier function measuring system 100 and the barrier function measuring method described above, when measuring the amount of the drug permeating into the tissue portion 10 when flowing into the lumen portion (blood vessel) 15, an artificial three-dimensional structure is used. The transendothelial electrical resistance in tissue 1 can be evaluated with respect to the transendothelial electrical resistance in a living body. Alternatively, by using the barrier function measuring system 100 and the barrier function measuring method described above, fluctuations in the barrier function are caused when a drug that affects the barrier function of the lumen (blood vessel) 15 is flowed into the lumen 15. Can be measured.
Further, by using the above-mentioned barrier function measuring method, it is possible to validate whether or not the barrier function is sufficiently constructed in the lumen portion of the barrier function measuring system 100.

以上説明したように、本実施形態では、管状の管腔部15の外側に組織部10が配置された人工三次元組織1を用いて経内皮抵抗値及びバリア機能の指標を測定しているため、二次元的に配置された組織を用いて電気抵抗値を測定した場合のように、培地の流れが不均一になることで、得られた経内皮抵抗値の信頼性が低下することを抑制できる。そのため、本実施形態のバリア機能測定システム100及び測定方法では、信頼性が高い経内皮電気抵抗が得られ、バリア機能を高い信頼性で評価することが可能となる。 As described above, in the present embodiment, the transendothelium resistance value and the index of the barrier function are measured using the artificial three-dimensional tissue 1 in which the tissue portion 10 is arranged outside the tubular cavity portion 15. , Suppresses the reliability of the obtained transendothelium resistance value due to non-uniform flow of the medium, as in the case of measuring the electrical resistance value using a two-dimensionally arranged tissue. can. Therefore, in the barrier function measuring system 100 and the measuring method of the present embodiment, highly reliable transendothelial electrical resistance can be obtained, and the barrier function can be evaluated with high reliability.

また、本実施形態では、経内皮抵抗値を測定する際に、第1流路電極71、第2流路電極72、第1組織電極81及び第2組織電極82の4つの電極を用いた4端子測定を行っているため、電極自体の抵抗及び組織部10、培地Mとの接触抵抗の影響を抑えることができ、より高精度、高信頼性で経内皮抵抗値の測定及びバリア機能の評価が可能となる。 Further, in the present embodiment, four electrodes of the first flow path electrode 71, the second flow path electrode 72, the first tissue electrode 81, and the second tissue electrode 82 are used when measuring the transendothelium resistance value. Since the terminal measurement is performed, the influence of the resistance of the electrode itself and the contact resistance with the tissue part 10 and the medium M can be suppressed, and the trans-endothelial resistance value is measured and the barrier function is evaluated with higher accuracy and reliability. Is possible.

さらに、本実施形態では、流路電極70を構成する第1流路電極71及び第2流路電極72が第1撚り線73を形成し、組織電極80を構成する第1組織電極81及び第2組織電極82が第2撚り線83を形成しているため、流路電極70のハンドリング性及び組織電極80のハンドリング性が向上し、バリア機能を評価の指標する際の作業性が向上する。また、第1撚り線73を形成する第2流路電極72の外周面及び第2撚り線83を形成する第2組織電極82の外周面に絶縁被覆を施しているため、第1撚り線73及び第2撚り線83のそれぞれで電極同士が短絡することを防止することができる。 Further, in the present embodiment, the first flow path electrode 71 and the second flow path electrode 72 constituting the flow path electrode 70 form the first stranded wire 73, and the first structure electrode 81 and the first structure electrode 80 constituting the structure electrode 80 are formed. Since the two structure electrodes 82 form the second stranded wire 83, the handleability of the flow path electrode 70 and the handleability of the tissue electrode 80 are improved, and the workability when indexing the barrier function is improved. Further, since the outer peripheral surface of the second flow path electrode 72 forming the first stranded wire 73 and the outer peripheral surface of the second structure electrode 82 forming the second stranded wire 83 are coated with insulation, the first stranded wire 73 is provided. It is possible to prevent the electrodes from being short-circuited at each of the second stranded wire 83 and the second stranded wire 83.

加えて、本実施形態では、流路形成部材43の一端側に流路電極70を連結しているため、流路形成部材43を他端側に抜去することにより、流路電極70を容易に灌流流路13に配置することができる。また、本実施形態では、コネクタ42Bに装着される配管64が、流路電極70が挿通される挿通孔65aと培地が供給される供給孔66aとを有しているため、測定部90に接続された状態の流路電極70が配置された灌流流路13への培地供給を容易に実施することが可能である。 In addition, in the present embodiment, since the flow path electrode 70 is connected to one end side of the flow path forming member 43, the flow path electrode 70 can be easily removed by removing the flow path forming member 43 to the other end side. It can be arranged in the perfusion channel 13. Further, in the present embodiment, the pipe 64 mounted on the connector 42B has an insertion hole 65a through which the flow path electrode 70 is inserted and a supply hole 66a into which the medium is supplied, so that the pipe 64 is connected to the measurement unit 90. It is possible to easily supply the medium to the perfusion flow path 13 in which the flow path electrode 70 in the laid state is arranged.

また、本実施形態では、コネクタ42A、42Bが設けられた側壁44に対向する面を有する係合部42cに細胞外マトリックス成分11が係合することにより、細胞外マトリックス成分11の収縮を抑えながら組織部10を形成するため、細胞外マトリックス成分11の収縮が大きい場合でも、灌流流路13を保持することで、高品質の人工三次元組織1を安定して製造することが可能である。 Further, in the present embodiment, the extracellular matrix component 11 engages with the engaging portion 42c having a surface facing the side wall 44 provided with the connectors 42A and 42B, thereby suppressing the contraction of the extracellular matrix component 11. Since the tissue portion 10 is formed, even when the extracellular matrix component 11 has a large contraction, it is possible to stably produce a high-quality artificial three-dimensional tissue 1 by retaining the perfusion flow path 13.

以上、本発明の好ましい実施の形態について詳述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, but is within the scope of the gist of the present invention described within the scope of the claims. Various modifications and changes are possible.

例えば、上記実施形態では、血管系細胞14を培養して管腔部(血管)15を形成する構成を例示したが、この構成に限定されない。例えば、食道、腸等の管腔臓器系の細胞を培養して管腔部15を形成してもよい。 For example, in the above embodiment, a configuration in which vascular cells 14 are cultured to form a lumen (blood vessel) 15 is exemplified, but the configuration is not limited to this configuration. For example, cells of a luminal organ system such as the esophagus and the intestine may be cultured to form the luminal portion 15.

また、上記実施形態では、細胞外マトリックス成分11を培養して組織部10を形成する構成を例示したが、この構成に限定されない。例えば、神経細胞、脳血管内皮細胞、星状膠細胞、血管周皮細胞を含む細胞外マトリックス成分11を培養して組織部を形成してもよい。この場合には、上記のバリア機能測定システム100を用いて経内皮電気抵抗を測定することにより、血液脳関門透過性を評価することが可能になる。
ヒトの脳から細胞を採取することは困難であるから、血液脳関門モデルを構築する際に必要な細胞は、iPS細胞から分化させた細胞であってもよい。iPS細胞へ初期化する際に用いられる細胞としては、脂肪細胞、軟骨細胞、骨芽細胞、血液細胞、線維芽細胞等が挙げられる。
Further, in the above embodiment, the configuration in which the extracellular matrix component 11 is cultured to form the tissue portion 10 is exemplified, but the configuration is not limited to this configuration. For example, extracellular matrix component 11 including nerve cells, cerebral vascular endothelial cells, astrocytes, and vascular pericytes may be cultured to form a tissue portion. In this case, the blood-brain barrier permeability can be evaluated by measuring the transendothelial electrical resistance using the barrier function measuring system 100 described above.
Since it is difficult to collect cells from the human brain, the cells required for constructing the blood-brain barrier model may be cells differentiated from iPS cells. Examples of cells used for reprogramming into iPS cells include fat cells, chondrocytes, osteoblasts, blood cells, fibroblasts and the like.

また、神経系細胞の他に、線維芽細胞、骨格筋細胞または心筋細胞を用いた筋組織であってもよい。さらに、肝細胞を用いた肝臓組織、膵臓系細胞を用いた膵臓組織であってもよい。このような組織に本発明を適用する場合には、上記実施形態で用いた細胞外マトリクスは必ずしも存在していなくてもよく、各種細胞のみを集積したものであってもよい。 Further, in addition to the nervous system cells, it may be a muscle tissue using fibroblasts, skeletal muscle cells or cardiomyocytes. Further, it may be a liver tissue using hepatocytes or a pancreatic tissue using pancreatic cells. When the present invention is applied to such a tissue, the extracellular matrix used in the above embodiment does not necessarily have to exist, and may be one in which only various cells are accumulated.

また、上記実施形態では、4端子測定にて経内皮電気抵抗を測定する構成を例示したが、この構成に限定されず2端子測定で経内皮電気抵抗を測定する構成であってもよい。2端子測定を実施する場合は、電極自体の抵抗及び組織部10、培地Mとの接触抵抗を補正値として実験やシミュレーション等により予め求めておき、測定された経内皮電気抵抗を上記の補正値で補正すればよい。 Further, in the above embodiment, the configuration in which the transendocardial electrical resistance is measured by 4-terminal measurement is exemplified, but the configuration is not limited to this configuration, and the trans-endothelial electrical resistance may be measured by 2-terminal measurement. When performing two-terminal measurement, the resistance of the electrode itself and the contact resistance with the tissue part 10 and the medium M are used as correction values in advance by experiments or simulations, and the measured transendothelial electrical resistance is the above correction value. It should be corrected with.

また、上記実施形態では、第1流路電極71及び第2流路電極72が第1撚り線73を形成し、組織電極80を構成する第1組織電極81及び第2組織電極82が第2撚り線83を形成する構成を例示したが、この構成に限定されず、互いに間隔をあけて配置されている構成であってもよい。 Further, in the above embodiment, the first flow path electrode 71 and the second flow path electrode 72 form the first stranded wire 73, and the first tissue electrode 81 and the second structure electrode 82 constituting the tissue electrode 80 are the second. Although the configuration for forming the stranded wire 83 is illustrated, the configuration is not limited to this configuration, and the configuration may be arranged so as to be spaced apart from each other.

また、上記実施形態で示した電圧参照極である第2流路電極72及び第2組織電極82が配置された位置、すなわち、第2流路電極72及び第2組織電極82の露出した各端面が配置される位置(測定位置)は一例であり、第2流路電極72の測定位置は灌流流路13のどの位置でもよく、第2組織電極82の測定位置は組織部10のどの位置であってもよい。 Further, the positions where the second flow path electrode 72 and the second tissue electrode 82, which are the voltage reference electrodes shown in the above embodiment, are arranged, that is, the exposed end faces of the second flow path electrode 72 and the second tissue electrode 82. Is placed as an example, the measurement position of the second flow path electrode 72 may be any position of the perfusion flow path 13, and the measurement position of the second tissue electrode 82 may be any position of the tissue portion 10. There may be.

また、上記実施形態では、流路形成部材43の一端に流路電極70を連結し、流路形成部材43を他端側に移動させることにより、流路電極70を灌流流路13に引き込む構成を例示したが、この構成に限定されない。例えば、筒状の流路形成部材43の内部空間に流路電極70を挿通し、流路形成部材43を抜去したときに流路電極70が灌流流路13に露出する構成であってもよい。 Further, in the above embodiment, the flow path electrode 70 is connected to one end of the flow path forming member 43, and the flow path electrode 70 is pulled into the perfusion flow path 13 by moving the flow path forming member 43 to the other end side. However, the present invention is not limited to this configuration. For example, the flow path electrode 70 may be inserted into the internal space of the tubular flow path forming member 43, and the flow path electrode 70 may be exposed to the perfusion flow path 13 when the flow path forming member 43 is removed. ..

また、上記実施形態では、管腔部15が直線状に形成される構成を例示したが、途中で分岐するY字状に形成される構成であってもよい。この場合、流路形成部材43は、側壁44の一方と直交する基部と、基部の一端から分岐して側壁44の他方に延び、基部に対して分離可能な二つの分岐部とからなる構成とし、基部を側壁44の一方側に移動させ、分岐部を側壁44の他方側に移動させることにより、Y字状の灌流流路13を形成することができる。この構成を採る場合には、基部及び分岐部を上述したように、それぞれ筒状に形成し、基部及び分岐部の内部空間に流路電極70を挿通すればよい。 Further, in the above embodiment, the configuration in which the lumen portion 15 is formed linearly is exemplified, but the configuration may be such that the lumen portion 15 is formed in a Y-shape that branches in the middle. In this case, the flow path forming member 43 is composed of a base portion orthogonal to one of the side wall 44 and two branch portions that branch from one end of the base portion and extend to the other side of the side wall 44 and are separable from the base portion. The Y-shaped perfusion channel 13 can be formed by moving the base portion to one side of the side wall 44 and the branch portion to the other side of the side wall 44. When this configuration is adopted, the base portion and the branch portion may be formed in a cylindrical shape as described above, and the flow path electrode 70 may be inserted into the internal space of the base portion and the branch portion.

本発明によれば、高い信頼性で経内皮電気抵抗の測定及びバリア機能の評価が可能となる人工三次元組織のバリア機能測定システム、人工三次元組織のバリア機能測定方法及び人工三次元組織を用いた薬剤評価方法を提供できる。このため、本発明は、例えば、化粧品、医薬、製薬等の分野において有用である。 According to the present invention, a barrier function measuring system for an artificial three-dimensional tissue, a barrier function measuring method for an artificial three-dimensional tissue, and an artificial three-dimensional tissue capable of measuring transendothelial electrical resistance and evaluating a barrier function with high reliability are provided. The drug evaluation method used can be provided. Therefore, the present invention is useful in the fields of cosmetics, pharmaceuticals, pharmaceuticals and the like, for example.

1…人工三次元組織、 10…組織部、 11…細胞外マトリックス成分、 13…灌流流路、 14…血管系細胞、 15…管腔部、 40…灌流デバイス(デバイス)、 41…培養槽、 42…コネクタ(支持部)、 42A…コネクタ(第1支持部)、 42Bコネクタ(第2支持部)、 42c…係合部、 42d…貫通孔(挿通孔)、 43…流路形成部材、 44…側壁、 45…培養空間、 60…ポンプ(供給装置)、 70…流路電極、 71…第1流路電極、 72…第2流路電極、 80…組織電極、 81…第1組織電極、 82…第2組織電極、 90…測定部、 100…バリア機能測定システム、 M…培地 1 ... Artificial three-dimensional tissue, 10 ... Tissue part, 11 ... Extracellular matrix component, 13 ... Perfusion channel, 14 ... Vascular cells, 15 ... Cavity part, 40 ... Perfusion device (device), 41 ... Culture tank, 42 ... Connector (support part), 42A ... Connector (first support part), 42B connector (second support part), 42c ... Engagement part, 42d ... Through hole (insertion hole), 43 ... Flow path forming member, 44 ... Side wall, 45 ... culture space, 60 ... pump (supply device), 70 ... flow path electrode, 71 ... first flow path electrode, 72 ... second flow path electrode, 80 ... tissue electrode, 81 ... first tissue electrode, 82 ... 2nd tissue electrode, 90 ... Measuring unit, 100 ... Barrier function measuring system, M ... Medium

Claims (20)

所定方向に延びる灌流流路を有する管腔部と、
前記管腔部の外側に配置された組織部と、
前記灌流流路に培地を供給する供給装置と、
前記灌流流路に配置された流路電極と、
前記組織部に配置された組織電極と、
前記流路電極及び前記組織電極を介して経内皮電気抵抗を測定する測定装置と、
を備えることを特徴とする人工三次元組織のバリア機能測定システム。
A lumen with a perfusion channel extending in a predetermined direction,
Tissues located outside the lumen and
A supply device that supplies the medium to the perfusion channel and
The flow path electrodes arranged in the perfusion flow path and
The tissue electrodes arranged in the tissue portion and
A measuring device for measuring transendothelial electrical resistance via the flow path electrode and the tissue electrode,
A barrier function measurement system for artificial three-dimensional tissues characterized by being equipped with.
前記流路電極は、前記灌流流路に配置された第1流路電極及び第2流路電極を有し、
前記組織電極は、前記組織部に配置された第1組織電極及び第2組織電極を有し、
前記測定装置は、前記第1流路電極及び前記第1組織電極を介して測定された電流値と、前記第2流路電極及び前記第2組織電極を介して測定された電圧値とに基づいて前記経内皮電気抵抗を測定することを特徴とする請求項1記載の人工三次元組織のバリア機能測定システム。
The flow path electrode has a first flow path electrode and a second flow path electrode arranged in the perfusion flow path.
The tissue electrode has a first tissue electrode and a second tissue electrode arranged in the tissue portion.
The measuring device is based on a current value measured through the first flow path electrode and the first tissue electrode, and a voltage value measured through the second flow path electrode and the second tissue electrode. The barrier function measuring system for an artificial three-dimensional tissue according to claim 1, wherein the transdermal electrical resistance is measured.
前記第1流路電極と外周面を絶縁被覆された前記第2流路電極とは、互いに撚り合わされた第1撚り線を形成し、
前記第1組織電極と外周面を絶縁被覆された前記第2組織電極とは、互いに撚り合わされた第2撚り線を形成することを特徴とする請求項2記載の人工三次元組織のバリア機能測定システム。
The first flow path electrode and the second flow path electrode whose outer peripheral surface is insulated and coated form a first stranded wire twisted to each other.
The barrier function measurement of the artificial three-dimensional structure according to claim 2, wherein the first structure electrode and the second structure electrode whose outer peripheral surface is insulated and coated form a second stranded wire twisted to each other. system.
前記人工三次元組織を培養するデバイスを備え、
前記デバイスは、側壁に囲まれた培養空間を有する培養槽と、
対向する前記側壁を貫いて前記培養空間における前記人工三次元組織を配置する領域に前記所定方向に沿って懸架される前記組織電極を支持する第1支持部と、
対向する前記側壁を貫いて前記培養空間における前記人工三次元組織を配置する領域に前記所定方向に沿って懸架される軸状の流路形成部材を取り付けおよび取り外し自在に支持する第2支持部とを有し、
前記人工三次元組織から前記流路形成部材が抜去された空間に前記灌流流路が形成されるとともに、前記流路電極が配置されていることを特徴とする請求項1から3のいずれか一項に記載の人工三次元組織のバリア機能測定システム。
A device for culturing the artificial three-dimensional tissue is provided.
The device includes a culture tank having a culture space surrounded by a side wall and a culture tank.
A first support portion that supports the tissue electrode suspended along the predetermined direction in a region in the culture space where the artificial three-dimensional tissue is arranged through the opposite side wall.
A second support portion for attaching and detachably supporting an axial flow path forming member suspended along a predetermined direction in a region in the culture space where the artificial three-dimensional tissue is arranged through the opposite side wall. Have,
Any one of claims 1 to 3, wherein the perfusion flow path is formed in a space from which the flow path forming member is removed from the artificial three-dimensional structure, and the flow path electrode is arranged. Barrier function measurement system for artificial three-dimensional tissue as described in the section.
前記流路形成部材の一端に前記流路電極の一端が連結され、
前記流路形成部材を他端側に抜去した際に前記流路電極が前記灌流流路に配置されることを特徴とする請求項4記載の人工三次元組織のバリア機能測定システム。
One end of the flow path electrode is connected to one end of the flow path forming member, and the flow path electrode is connected to one end.
The barrier function measuring system for an artificial three-dimensional tissue according to claim 4, wherein the flow path electrode is arranged in the perfusion flow path when the flow path forming member is removed to the other end side.
前記第1支持部及び前記第2支持部は、前記人工三次元組織に係合して前記人工三次元組織の前記所定方向への収縮を抑える係合部をそれぞれ有することを特徴とする請求項4または5記載の人工三次元組織のバリア機能測定システム。 The claim is characterized in that the first support portion and the second support portion each have an engaging portion that engages with the artificial three-dimensional tissue and suppresses the contraction of the artificial three-dimensional structure in the predetermined direction. The barrier function measuring system for artificial three-dimensional tissue according to 4 or 5. 前記第2支持部は、前記流路形成部材及び前記流路電極が挿通される挿通孔を有し、
前記供給装置は、前記挿通孔を介して前記灌流流路に培地を供給することを特徴とする請求項4から6のいずれか一項に記載の人工三次元組織のバリア機能測定システム。
The second support portion has an insertion hole through which the flow path forming member and the flow path electrode are inserted.
The barrier function measuring system for an artificial three-dimensional tissue according to any one of claims 4 to 6, wherein the supply device supplies a medium to the perfusion channel through the insertion hole.
前記管腔部は、血管系細胞を用いて形成されていることを特徴とする請求項1から7のいずれか一項に記載の人工三次元組織のバリア機能測定システム。 The barrier function measuring system for an artificial three-dimensional tissue according to any one of claims 1 to 7, wherein the lumen is formed using vascular cells. 前記組織部は、細胞外マトリックス成分を含むことを特徴とする請求項1から8のいずれか一項に記載の人工三次元組織のバリア機能測定システム。 The barrier function measuring system for an artificial three-dimensional tissue according to any one of claims 1 to 8, wherein the tissue portion contains an extracellular matrix component. 前記組織部は、神経系細胞を含むことを特徴とする請求項9記載の人工三次元組織のバリア機能測定システム。 The barrier function measuring system for an artificial three-dimensional tissue according to claim 9, wherein the tissue portion contains nervous system cells. 所定方向に延びる灌流流路を有する管腔部と、前記管腔部の外側に配置された組織部と、を有する人工三次元組織を形成することと、
前記灌流流路に培地を供給することと、
前記灌流流路に配置した流路電極及び前記組織部に配置した組織電極を介して経内皮電気抵抗を測定することと、を含むことを特徴とする人工三次元組織のバリア機能測定方法。
To form an artificial three-dimensional tissue having a lumen having a perfusion flow path extending in a predetermined direction and a tissue having a tissue located outside the lumen.
Supplying the medium to the perfusion channel and
A method for measuring a barrier function of an artificial three-dimensional tissue, which comprises measuring transendothelial electrical resistance via a flow path electrode arranged in the perfusion flow path and a tissue electrode arranged in the tissue portion.
前記流路電極は、前記灌流流路に配置された第1流路電極及び第2流路電極を有し、
前記組織電極は、前記組織部に配置された第1組織電極及び第2組織電極を有し、
前記経内皮電気抵抗を測定することは、前記第1流路電極及び前記第1組織電極を介して測定された電流値と、前記第2流路電極及び前記第2組織電極を介して測定された電圧値とに基づいて前記経内皮電気抵抗を測定することを特徴とする請求項11記載の人工三次元組織のバリア機能測定方法。
The flow path electrode has a first flow path electrode and a second flow path electrode arranged in the perfusion flow path.
The tissue electrode has a first tissue electrode and a second tissue electrode arranged in the tissue portion.
The measurement of the transendothelial electrical resistance is measured through the first flow path electrode and the first tissue electrode, and the current value measured through the second flow path electrode and the second tissue electrode. The method for measuring the barrier function of an artificial three-dimensional structure according to claim 11, wherein the transdermal electrical resistance is measured based on the voltage value.
前記第1流路電極と外周面を絶縁被覆された前記第2流路電極とは、互いに撚り合わされた第1撚り線を形成し、
前記第1組織電極と外周面を絶縁被覆された前記第2組織電極とは、互いに撚り合わされた第2撚り線を形成することを特徴とする請求項12記載の人工三次元組織のバリア機能測定方法。
The first flow path electrode and the second flow path electrode whose outer peripheral surface is insulated and coated form a first stranded wire twisted to each other.
The barrier function measurement of the artificial three-dimensional structure according to claim 12, wherein the first structure electrode and the second structure electrode whose outer peripheral surface is insulated and coated form a second stranded wire twisted to each other. Method.
側壁に囲まれた培養空間を有する培養槽と、対向する前記側壁を貫いて前記培養空間に前記所定方向に沿って懸架された軸状の流路形成部材及び前記組織電極とを備えたデバイスを準備することと、
前記培養空間で細胞を培養して、前記流路形成部材及び前記組織電極が貫く前記組織部を形成することと、
前記人工三次元組織から前記流路形成部材を抜去して前記人工三次元組織を貫通する前記灌流流路を形成することと、
前記灌流流路に前記流路電極を配置することと、
前記灌流流路に臨む前記組織部の表面に血管系細胞を播種して前記管腔部を形成することと、を含むことを特徴とする請求項11から13のいずれか一項に記載の人工三次元組織のバリア機能測定方法。
A device including a culture tank having a culture space surrounded by a side wall, an axial flow path forming member suspended along the predetermined direction in the culture space through the opposite side wall, and the tissue electrode. To prepare and
By culturing cells in the culture space to form the tissue portion through which the flow path forming member and the tissue electrode penetrate.
To form the perfusion flow path penetrating the artificial three-dimensional tissue by removing the flow path forming member from the artificial three-dimensional tissue.
By arranging the flow path electrode in the perfusion flow path,
The artificiality according to any one of claims 11 to 13, wherein vascular cells are seeded on the surface of the tissue portion facing the perfusion flow path to form the lumen portion, and the present invention comprises. A method for measuring the barrier function of a three-dimensional tissue.
前記デバイスは、前記所定方向に沿って懸架される前記組織電極を支持する第1支持部と、前記所定方向に沿って懸架される前記流路形成部材を取り付けおよび取り外し自在に支持する第2支持部とを有し、
前記第1支持部及び前記第2支持部にそれぞれ設けた係合部に、前記人工三次元組織の一部を係合させて前記所定方向への収縮を抑えながら前記組織部を形成することを特徴とする請求項14記載の人工三次元組織のバリア機能測定方法。
The device has a first support portion that supports the tissue electrode suspended along the predetermined direction, and a second support that attaches and detachably supports the flow path forming member suspended along the predetermined direction. Has a part and
A part of the artificial three-dimensional tissue is engaged with the engaging portions provided on the first support portion and the second support portion, respectively, to form the tissue portion while suppressing the contraction in the predetermined direction. The method for measuring the barrier function of an artificial three-dimensional tissue according to claim 14.
前記第2支持部は、前記流路形成部材及び前記流路電極が挿通される挿通孔を有し、
前記灌流流路に培地を供給することは、前記挿通孔を介して前記灌流流路に培地を供給することを特徴とする請求項15記載の人工三次元組織のバリア機能測定方法。
The second support portion has an insertion hole through which the flow path forming member and the flow path electrode are inserted.
The method for measuring the barrier function of an artificial three-dimensional tissue according to claim 15, wherein supplying the medium to the perfusion channel is to supply the medium to the perfusion channel through the insertion hole.
前記灌流流路に前記流路電極を配置することは、一端に前記流路電極の一端が連結された前記流路形成部材を他端側に抜去することにより、前記流路電極を前記灌流流路に配置することを含むことを特徴とする請求項14から16のいずれか一項に記載の人工三次元組織のバリア機能測定方法。 By arranging the flow path electrode in the perfusion flow path, the flow path forming member having one end of the flow path electrode connected to one end thereof is removed to the other end side, whereby the flow path electrode is perfused. The method for measuring a barrier function of an artificial three-dimensional tissue according to any one of claims 14 to 16, wherein the method comprises arranging the artificial three-dimensional tissue on a road. 前記組織部は、細胞外マトリックス成分を含むことを特徴とする請求項11から17のいずれか一項に記載の人工三次元組織のバリア機能測定方法。 The method for measuring a barrier function of an artificial three-dimensional tissue according to any one of claims 11 to 17, wherein the tissue portion contains an extracellular matrix component. 前記組織部は、神経系細胞を含むことを特徴とする請求項11から18のいずれか一項に記載の人工三次元組織のバリア機能測定方法。 The method for measuring a barrier function of an artificial three-dimensional tissue according to any one of claims 11 to 18, wherein the tissue portion contains nervous system cells. 請求項11から19のいずれか一項に記載の測定方法で人工三次元組織のバリア機能を測定することと、
薬剤を前記人工三次元組織に接触させることと、
前記薬剤の接触による刺激に対する前記人工三次元組織の応答を測定することと、
を含むことを特徴とする人工三次元組織を用いた薬剤評価方法。
To measure the barrier function of the artificial three-dimensional tissue by the measuring method according to any one of claims 11 to 19.
Contacting the drug with the artificial three-dimensional tissue and
To measure the response of the artificial three-dimensional tissue to the stimulus by the contact of the drug,
A drug evaluation method using an artificial three-dimensional tissue characterized by containing.
JP2018006606A 2018-01-18 2018-01-18 Barrier function measurement system for artificial 3D tissue, barrier function measurement method for artificial 3D tissue, and drug evaluation method using artificial 3D tissue Active JP6991572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018006606A JP6991572B2 (en) 2018-01-18 2018-01-18 Barrier function measurement system for artificial 3D tissue, barrier function measurement method for artificial 3D tissue, and drug evaluation method using artificial 3D tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006606A JP6991572B2 (en) 2018-01-18 2018-01-18 Barrier function measurement system for artificial 3D tissue, barrier function measurement method for artificial 3D tissue, and drug evaluation method using artificial 3D tissue

Publications (2)

Publication Number Publication Date
JP2019122335A JP2019122335A (en) 2019-07-25
JP6991572B2 true JP6991572B2 (en) 2022-01-12

Family

ID=67397029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006606A Active JP6991572B2 (en) 2018-01-18 2018-01-18 Barrier function measurement system for artificial 3D tissue, barrier function measurement method for artificial 3D tissue, and drug evaluation method using artificial 3D tissue

Country Status (1)

Country Link
JP (1) JP6991572B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220344227A1 (en) 2019-06-28 2022-10-27 Mitsubishi Gas Chemical Company, Inc. Film, laminate, semiconductor wafer with film layer, substrate for mounting a semiconductor with film layer, and semiconductor device
WO2022059498A1 (en) * 2020-09-15 2022-03-24 日清食品ホールディングス株式会社 Device for forming three-dimensional muscle tissue and method of producing three-dimensional muscle tissue

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014786A (en) 2005-07-08 2007-01-25 Biosense Webster Inc Relative impedance measurement
JP2009506836A (en) 2005-08-31 2009-02-19 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Biologically integrated electrode device
JP2009267267A (en) 2008-04-28 2009-11-12 Tdk Corp Electronic component mounting device
JP2010539938A (en) 2007-09-24 2010-12-24 ノーティス,インク. Method for making a perfusable microvascular system
WO2016047230A1 (en) 2014-09-23 2016-03-31 国立大学法人東京大学 Three-dimensional artificial tissue, method for producing the same, three-dimensional artificial tissue perfusion device, and drug evaluation method using three-dimensional artificial tissue
JP2017500055A (en) 2013-09-29 2017-01-05 ウニヴェルズィテート チューリッヒ Method, device and system for electrochemically spatially controlling the formation of a hydrogel
WO2017126532A1 (en) 2016-01-20 2017-07-27 国立大学法人東京大学 Artificial three-dimensional tissue and method for manufacturing same, perfusion device for artificial three-dimensional tissue, and method for evaluating drug using artificial three-dimensional tissue

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066115B2 (en) * 1987-08-27 1994-01-26 新技術事業団 Electrodes for implantation in the body
JP2821525B2 (en) * 1989-07-29 1998-11-05 科学技術振興事業団 Stimulator and environment controller
US5366493A (en) * 1991-02-04 1994-11-22 Case Western Reserve University Double helix functional stimulation electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014786A (en) 2005-07-08 2007-01-25 Biosense Webster Inc Relative impedance measurement
JP2009506836A (en) 2005-08-31 2009-02-19 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Biologically integrated electrode device
JP2010539938A (en) 2007-09-24 2010-12-24 ノーティス,インク. Method for making a perfusable microvascular system
JP2009267267A (en) 2008-04-28 2009-11-12 Tdk Corp Electronic component mounting device
JP2017500055A (en) 2013-09-29 2017-01-05 ウニヴェルズィテート チューリッヒ Method, device and system for electrochemically spatially controlling the formation of a hydrogel
WO2016047230A1 (en) 2014-09-23 2016-03-31 国立大学法人東京大学 Three-dimensional artificial tissue, method for producing the same, three-dimensional artificial tissue perfusion device, and drug evaluation method using three-dimensional artificial tissue
WO2017126532A1 (en) 2016-01-20 2017-07-27 国立大学法人東京大学 Artificial three-dimensional tissue and method for manufacturing same, perfusion device for artificial three-dimensional tissue, and method for evaluating drug using artificial three-dimensional tissue

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Chrobak K M et al,Formation of perfused, functional microvascular tubes in vitro,Microvascular Research,2006年,71,185-196
Cucullo, L et al,A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier,Brain research,2002年,951(2),243-254
Shima, F et al,Construction and histological analysis of a 3D human arterial wall model containing vasa vasorum using a layer-by-layer technique,Journal of Biomedical Materials Research Part A,2017年,105(3),814-823
Wang, Ying I et al,Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening,Biotechnology and Bioengineering,2017年,114(1),184-194

Also Published As

Publication number Publication date
JP2019122335A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
Wang et al. Microfluidic-based 3D engineered microvascular networks and their applications in vascularized microtumor models
Bursac et al. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies
Irvin et al. Techniques and assays for the study of angiogenesis
Zhao et al. The role of tissue engineering and biomaterials in cardiac regenerative medicine
JP6991572B2 (en) Barrier function measurement system for artificial 3D tissue, barrier function measurement method for artificial 3D tissue, and drug evaluation method using artificial 3D tissue
JP2009531067A (en) Method for making a perfusable microvascular system
Zamani et al. Multicellular interactions in 3D engineered myocardial tissue
US20210171889A1 (en) Microengineered tissue barrier system
WO2016007879A1 (en) Methods for producing bioprotein tubes and uses thereof
CN108373974B (en) Chip device for three-dimensional cell culture and in-situ real-time myocardial tissue monitoring and application thereof
US7439057B2 (en) Convective flow tissue assembly
US10624991B2 (en) Three-dimensional artificial tissue, method for producing the same, three-dimensional artificial tissue perfusion device, and drug evaluation method using three-dimensional artificial tissue
Aubin et al. A novel native derived coronary artery tissue-flap model
JP6933855B2 (en) Artificial skin tissue manufacturing method, artificial skin tissue perfusion device, drug evaluation method using artificial skin tissue
WO2017090777A1 (en) Human-heart-like structural body and production method for same
US20170067015A1 (en) Electrophysiological recording system and methods of using same
CN104931683B (en) A kind of cardiac muscular tissue sensor and the preparation method of cardiac muscular tissue's chip
US20200370000A1 (en) Systems and methods for monitoring behavior of cells and/or tissues in culturing media
Ren et al. Realizations of vascularized tissues: From in vitro platforms to in vivo grafts
WO2019156941A9 (en) Tissue engineered scaffolds, instrumented bioreactors and methods of use thereof
Silva Internship Reports and Monograph entitled" Blood-brain barrier-on-a-chip for central nervous system disease modeling and drug screening"
Lindner et al. P458 Cardiac fibroblasts as inflammatory supporter cells trigger cardiac inflammation in heart failure-Influence of Heart Rate on Pathophysiological Fibroblast Activation
WO2018207783A1 (en) Multilayer structure body, method for producing same, and method for using same
Salazar et al. 16-Channel Flexible System to Measure Electrophysiological Properties of Bioengineered Hearts
Jiang et al. Construction of chamber-specific engineered cardiac tissues in vitro with human iPSC-derived cardiomyocytes and human foreskin fibroblasts

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211201

R150 Certificate of patent or registration of utility model

Ref document number: 6991572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150