JP6990993B2 - Polishing pad and its manufacturing method, and manufacturing method of polished products - Google Patents

Polishing pad and its manufacturing method, and manufacturing method of polished products Download PDF

Info

Publication number
JP6990993B2
JP6990993B2 JP2017104786A JP2017104786A JP6990993B2 JP 6990993 B2 JP6990993 B2 JP 6990993B2 JP 2017104786 A JP2017104786 A JP 2017104786A JP 2017104786 A JP2017104786 A JP 2017104786A JP 6990993 B2 JP6990993 B2 JP 6990993B2
Authority
JP
Japan
Prior art keywords
polishing
resin
polishing pad
convex portion
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017104786A
Other languages
Japanese (ja)
Other versions
JP2018199182A (en
Inventor
恵介 中瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujibo Holdins Inc
Original Assignee
Fujibo Holdins Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujibo Holdins Inc filed Critical Fujibo Holdins Inc
Priority to JP2017104786A priority Critical patent/JP6990993B2/en
Priority to CN201880025797.7A priority patent/CN110536775B/en
Priority to PCT/JP2018/019103 priority patent/WO2018216593A1/en
Publication of JP2018199182A publication Critical patent/JP2018199182A/en
Application granted granted Critical
Publication of JP6990993B2 publication Critical patent/JP6990993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/12Lapping plates for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は、研磨パッド及びその製造方法、並びに、研磨加工品の製造方法に関する。 The present invention relates to a polishing pad, a method for manufacturing the same, and a method for manufacturing a polished product.

近年、次世代パワー半導体素子材料として、ワイドバンドギャップ半導体である炭化珪素(SiC)、窒化ガリウム(GaN)、ダイヤモンド(C)、サファイア(Al2O3)及び窒化アルミニウム(AlN)などの材料が注目されている。例えば、炭化珪素(SiC)はシリコン(Si)と比べてバンドギャップが3倍であり、絶縁破壊電界強度が約7倍である等優れた物性値を有しており、現在のシリコン半導体に比べ高温動作性に優れ、小型で省エネ効果も高いといった点で優れている。また、サファイアウエハについては、その化学的安定性、光学的特性(透明性)、機械的強度、熱的特性(熱伝導性)等から、光学的要素を持った電子機器、例えば高性能プロジェクター用部品としての重要性が高まりつつある。これらの次世代パワーデバイスの本格的普及に向けて、基板の大口径化・量産化が進められ、それに伴い、基板加工技術の重要性も増している。その加工プロセスでは、Siと同様に、ウエハに用いる円柱状単結晶(インゴット)をスライスすることで円盤状に切り出す。次に、スライスした円盤状単結晶の表面を平坦化するが、まずは、その表面の粗さを大まかに取り除くため、ラッピング定盤を用いてラッピング加工を行う。その後、円盤状単結晶の表面の平坦性を更に向上させ、かつ、表面の微細な傷を除去して鏡面化するためのポリシング加工を行う。そして、円盤状単結晶の表面の平坦性を更に向上させ、かつ、表面の微細な傷を除去して鏡面化するために、ポリシング加工を行う。したがって、ラッピング加工により円盤状単結晶表面の平坦性を高め、かつ微細な傷を少なくすることは、その後のポリシング加工に影響を与えるために重要である。 In recent years, as next-generation power semiconductor device materials, materials such as silicon carbide (SiC), gallium nitride (GaN), diamond (C), sapphire (Al2O3), and aluminum nitride (AlN), which are wide bandgap semiconductors, have attracted attention. There is. For example, silicon carbide (SiC) has excellent physical properties such as a band gap three times that of silicon (Si) and a dielectric breakdown electric field strength of about seven times, which is higher than that of current silicon semiconductors. It has excellent high-temperature operability, is compact, and has a high energy-saving effect. In addition, sapphire wafers are used for electronic devices with optical elements, such as high-performance projectors, because of their chemical stability, optical properties (transparency), mechanical strength, thermal properties (thermal conductivity), etc. It is becoming more important as a component. Toward the full-scale spread of these next-generation power devices, the diameter and mass production of substrates are being promoted, and along with this, the importance of substrate processing technology is increasing. In the processing process, similar to Si, a columnar single crystal (ingot) used for a wafer is sliced and cut into a disk shape. Next, the surface of the sliced disk-shaped single crystal is flattened. First, in order to roughly remove the roughness of the surface, a lapping process is performed using a lapping surface plate. After that, a polishing process is performed to further improve the flatness of the surface of the disk-shaped single crystal and to remove fine scratches on the surface to make it a mirror surface. Then, in order to further improve the flatness of the surface of the disk-shaped single crystal and to remove fine scratches on the surface to make it a mirror surface, a polishing process is performed. Therefore, it is important to improve the flatness of the disk-shaped single crystal surface by lapping and reduce fine scratches in order to affect the subsequent polishing process.

一般的なラッピング加工においては、ダイヤモンド砥粒を含むスラリーの存在下、金属系定盤を用いて研磨を行う。これにより、金属系定盤表面に遊離砥粒であるダイヤモンド砥粒が埋め込まれ、ラッピング加工を行うことができる。特に、Siに比べて遙かに硬質であるSiC等の高硬度材料用のラッピング加工としては、銅及び錫等の金属系定盤を用い、その定盤と遊離砥粒であるダイヤモンド砥粒とを組み合わせたラッピング加工(以下、「ダイヤモンドラッピング」ともいう。)が知られている(例えば、特許文献1参照)。また、ラッピング加工後の工程であるポリッシング工程においては、飽和共重合ポリエステル樹脂に、一次粒子径が3μm未満の研磨材粒子(固定砥粒)が分散された複数の研磨構造体が形成された研磨シートを用いて、遊離砥粒を用いずに研磨を行う方法が知られている(例えば、特許文献2参照)。 In general lapping processing, polishing is performed using a metal surface plate in the presence of a slurry containing diamond abrasive grains. As a result, diamond abrasive grains, which are free abrasive grains, are embedded in the surface of the metal surface plate, and lapping processing can be performed. In particular, as a wrapping process for a high-hardness material such as SiC, which is much harder than Si, a metal-based surface plate such as copper and tin is used, and the surface plate and diamond abrasive grains which are free abrasive grains are used. A wrapping process (hereinafter, also referred to as “diamond wrapping”) in which the above is combined is known (see, for example, Patent Document 1). Further, in the polishing step, which is a step after the lapping process, polishing in which a plurality of polishing structures in which abrasive particles (fixed abrasive grains) having a primary particle diameter of less than 3 μm are dispersed is formed on a saturated copolymer resin. A method of polishing using a sheet without using free abrasive grains is known (see, for example, Patent Document 2).

特開2007-61961号公報Japanese Unexamined Patent Publication No. 2007-61961 特開2009-72832号公報Japanese Unexamined Patent Publication No. 2009-72832

しかしながら、特許文献1に記載されるような金属系定盤は重いため、取り扱い難く、また遊離砥粒であるダイヤモンド砥粒が埋め込まれる定盤表面の手入れ等、使用後の維持管理に労力を要するという問題点がある。 However, since the metal surface plate as described in Patent Document 1 is heavy, it is difficult to handle, and labor is required for maintenance after use such as maintenance of the surface plate surface on which diamond abrasive grains, which are free abrasive grains, are embedded. There is a problem.

また、特許文献2に記載の研磨シートは、ガラス、セラミック、プラスチック、金属等の一般的な研磨加工に用いられるものである。このような一般的な研磨加工に用いられる研磨シートをSiC等の加工に採用すると、研磨レートが低く、実用的ではないという問題がある。特に、特許文献2に記載の研磨シートでは、研磨構造体表面に露出した研磨材粒子のみが固定砥粒として機能し、研磨構造体内に埋没している研磨材粒子は砥粒として作用しないため、研磨レートに更に改良の余地がある。 Further, the polishing sheet described in Patent Document 2 is used for general polishing processing of glass, ceramics, plastics, metals and the like. When a polishing sheet used for such a general polishing process is used for processing SiC or the like, there is a problem that the polishing rate is low and it is not practical. In particular, in the polishing sheet described in Patent Document 2, only the abrasive particles exposed on the surface of the polishing structure function as fixed abrasive particles, and the abrasive particles buried in the polishing structure do not act as abrasive grains. There is room for further improvement in the polishing rate.

また、SiCの他、サファイアも、ダイヤモンド、SiCに次ぐ修正モース硬度を有しており、薬品に対する耐性が高く、加工が極めて難しい。そのため、一般的なSi半導体ウエハ等の他、次世代パワー半導体素子材料として期待される材料、特に高い硬度を有する難加工材料の研磨加工において、取扱い性に優れ、かつ、研磨レートにも優れる研磨パッドが望まれている。 In addition to SiC, sapphire also has a modified Mohs hardness next to diamond and SiC, has high resistance to chemicals, and is extremely difficult to process. Therefore, in addition to general Si semiconductor wafers, polishing of materials expected as next-generation power semiconductor device materials, especially difficult-to-process materials with high hardness, is excellent in handleability and polishing rate. Pads are desired.

上記問題に対して、本発明者らは、樹脂で構成された凸部パターンを所定の密度で有し、かつ研磨に寄与する凸部上面の面積(研磨有効面積)を所定の範囲内とすることにより、上記金属定盤と比較して取扱い性及び維持管理性に優れ、特に難削材の研磨において研磨レートに優れる研磨パッドを達成できることを見出した。 In response to the above problem, the present inventors set the area of the upper surface of the convex portion (effective polishing area) which has a convex portion pattern composed of resin at a predetermined density and contributes to polishing within a predetermined range. As a result, it has been found that it is possible to achieve a polishing pad which is excellent in handleability and maintenance manageability as compared with the above-mentioned metal surface plate, and which is particularly excellent in polishing rate in polishing difficult-to-cut materials.

今般、本発明者らは当該研磨パッドのより一層の製品価値の向上を達成するために、製品寿命をより向上させることについて検討をした。一般に、凸部が樹脂で構成された研磨パッドにおいては、研磨に使用するにつれて徐々に凸部が減少し、凸部の減少とともに研磨レートが減少する。研磨レートが一定以上減少すると研磨加工効率が低下するため、新しい研磨パッドに交換される。研磨パッドの製品寿命向上の観点からは、凸部の高さを高くし、研磨レートが一定以上減少するまでの時間をより長くすることが考えられる。しかしながら、本発明者らが検討を進めたところ、製品寿命の観点から凸部の高さを高く、言い換えれば凸部間の溝を深く構成した場合には、砥粒が凸部間の溝にトラップされ、かえって研磨レートが低下することがわかってきた。 Now, the present inventors have studied to further improve the product life in order to achieve further improvement in the product value of the polishing pad. Generally, in a polishing pad whose convex portion is made of resin, the convex portion gradually decreases as it is used for polishing, and the polishing rate decreases as the convex portion decreases. If the polishing rate decreases by more than a certain level, the polishing processing efficiency will decrease, so it will be replaced with a new polishing pad. From the viewpoint of improving the product life of the polishing pad, it is conceivable to increase the height of the convex portion and lengthen the time until the polishing rate decreases by a certain amount or more. However, as a result of the study by the present inventors, when the height of the convex portion is increased from the viewpoint of product life, in other words, when the groove between the convex portions is deeply formed, the abrasive grains become the groove between the convex portions. It has been found that the polishing rate is rather lowered due to being trapped.

本発明は、上記事情に鑑みてなされたものであり、取扱い性及び維持管理性に優れ、特に難削材の研磨において研磨レートに優れる上、製品寿命のより一層の向上を達成可能な研磨パッド及びその製造方法、並びに、その研磨パッドを用いた研磨加工品の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is excellent in handleability and maintenance, a polishing pad which is particularly excellent in polishing rate in polishing difficult-to-cut materials and can achieve further improvement in product life. And a method for manufacturing the same, and a method for manufacturing a polished product using the polishing pad.

本発明者らは、上記課題を解決するために鋭意検討した。その結果、所定の凹凸パターンを持つ研磨面を有する研磨パッドであれば、上記課題が解決できることを見出して、本発明を完成するに至った。 The present inventors have diligently studied to solve the above problems. As a result, they have found that the above-mentioned problems can be solved by a polishing pad having a polishing surface having a predetermined uneven pattern, and have completed the present invention.

すなわち、本発明は以下のとおりである。
〔1〕
基材と、該基材上に配された樹脂部と、を備える研磨パッドであって、
該樹脂部は、単独で又は前記基材と共に凹凸パターンを構成し、
前記凹凸パターンは、研磨面を有する複数の凸部が配列されたパターンであり、
前記凸部に研磨圧力500g/cm2を掛けたときの前記研磨面の面積の総和が、前記基材表面の単位面積(1cm2)当たりにおいて、0.05~0.8cm2であり、
面粗さRzが、研磨に用いる遊離砥粒の平均粒径1~18μmを基準1.0として、0.75以下であり、
下記式(1)をみたすθが、5~60°である、
tanθ=t/((L1-M1)/2)・・・(1)
t :前記凸部に研磨圧力500g/cm2を掛けたときの前記凸部の平均高さ
L1:前記凸部の底面の平均円相当直径
M1:前記凸部に研磨圧力500g/cm2を掛けたときの前記凸部の上面の平均円相当直径
研磨パッド。
〔2〕
前記凸部の平均高さtが0.06~1mmである、
〔1〕に記載の研磨パッド。
〔3〕
前記凸部の平均円相当直径L1が、1~5mmである、
〔1〕又は〔2〕のいずれか1項に記載の研磨パッド。
〔4〕
隣り合う前記凸部の最近接距離L2が、0.1~3mmである、
〔1〕~〔3〕のいずれか1項に記載の研磨パッド。
〔5〕
前記樹脂部が、エポキシ系樹脂、アクリル系樹脂、ポリエステル系樹脂、不飽和ポリエステル系樹脂、ポリアミド系樹脂、及びポリウレタン系樹脂からなる群より選ばれる少なくとも1種を含む、
〔1〕~〔4〕のいずれか1項に記載の研磨パッド。
〔6〕
前記基材の前記樹脂部とは反対側に、接着層をさらに備える、
〔1〕~〔5〕のいずれか1項に記載の研磨パッド。
〔7〕
前記研磨面が、固定砥粒を実質的に含まない、
〔1〕~〔6〕のいずれか1項に記載の研磨パッド。
〔8〕
〔1〕~〔7〕のいずれか1項に記載の研磨パッドの製造方法であって、
スクリーン印刷法、露光製版法、又はモールド成型法により、研磨面を有する複数の凸部が配列された凹凸パターンからなる樹脂部を基板上に形成する工程を有する、
研磨パッドの製造方法。
〔9〕
遊離砥粒の存在下、〔1〕~〔7〕のいずれか1項に記載の研磨パッドを用いて、被研磨物を研磨する研磨工程を有する、
研磨加工品の製造方法。
〔10〕
前記遊離砥粒の平均粒径が、0.25~18μmである、
〔9〕に記載の研磨加工品の製造方法。
That is, the present invention is as follows.
[1]
A polishing pad including a base material and a resin portion arranged on the base material.
The resin portion forms a concavo-convex pattern alone or together with the base material.
The uneven pattern is a pattern in which a plurality of convex portions having a polished surface are arranged.
The total area of the polished surface when the polishing pressure of 500 g / cm 2 is applied to the convex portion is 0.05 to 0.8 cm 2 per unit area (1 cm 2 ) of the substrate surface.
The surface roughness Rz is 0.75 or less based on the average particle size of 1 to 18 μm of the free abrasive grains used for polishing as a reference 1.0.
The θ satisfying the following equation (1) is 5 to 60 °.
tan θ = t / ((L1-M1) / 2) ... (1)
t: Average height of the convex portion when a polishing pressure of 500 g / cm 2 is applied to the convex portion L1: Average circle-equivalent diameter of the bottom surface of the convex portion M1: Polishing pressure of 500 g / cm 2 is applied to the convex portion. A polishing pad having a diameter equivalent to an average circle on the upper surface of the convex portion when the protrusion is formed.
[2]
The average height t of the convex portion is 0.06 to 1 mm.
The polishing pad according to [1].
[3]
The average circle-equivalent diameter L1 of the convex portion is 1 to 5 mm.
The polishing pad according to any one of [1] and [2].
[4]
The closest contact distance L2 of the adjacent convex portions is 0.1 to 3 mm.
The polishing pad according to any one of [1] to [3].
[5]
The resin portion contains at least one selected from the group consisting of an epoxy resin, an acrylic resin, a polyester resin, an unsaturated polyester resin, a polyamide resin, and a polyurethane resin.
The polishing pad according to any one of [1] to [4].
[6]
An adhesive layer is further provided on the side of the base material opposite to the resin portion.
The polishing pad according to any one of [1] to [5].
[7]
The polished surface is substantially free of fixed abrasive grains.
The polishing pad according to any one of [1] to [6].
[8]
The method for manufacturing a polishing pad according to any one of [1] to [7].
The present invention comprises a step of forming a resin portion having a concavo-convex pattern in which a plurality of convex portions having a polished surface are arranged on a substrate by a screen printing method, an exposure plate making method, or a molding method.
How to make a polishing pad.
[9]
A polishing step of polishing an object to be polished using the polishing pad according to any one of [1] to [7] in the presence of free abrasive grains.
Manufacturing method of polished products.
[10]
The average particle size of the free abrasive grains is 0.25 to 18 μm.
[9] The method for manufacturing a polished product according to [9].

本発明によれば、取扱い性及び維持管理性に優れ、特に難削材の研磨において、研磨レートに優れる上、製品寿命のより一層の向上を達成可能な研磨パッド及びその製造方法、並びに、その研磨パッドを用いた研磨加工品の製造方法を提供することができる。 According to the present invention, a polishing pad having excellent handleability and maintainability, particularly having an excellent polishing rate in polishing difficult-to-cut materials, and being able to further improve the product life, and a method for manufacturing the polishing pad, and a method thereof. It is possible to provide a method for manufacturing a polished product using a polishing pad.

本実施形態の研磨パッドの一例を示す概略的な斜視図である。It is a schematic perspective view which shows an example of the polishing pad of this embodiment. 本実施形態の凸部の斜視図及び断面図である。It is a perspective view and sectional drawing of the convex part of this embodiment. 凸部に研磨圧力を掛けたときの研磨面の面積(研磨有効面積)の測定方法を示す概略図である。It is a schematic diagram which shows the measuring method of the area (polishing effective area) of a polishing surface when a polishing pressure is applied to a convex part. 本実施形態の凹凸パターンの一例を示す概略図である。It is a schematic diagram which shows an example of the unevenness pattern of this embodiment.

以下、必要に応じて図面を参照しつつ、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail with reference to the drawings as necessary. In the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted. In addition, the positional relationship such as up, down, left, and right shall be based on the positional relationship shown in the drawings unless otherwise specified. Furthermore, the dimensional ratios in the drawings are not limited to the ratios shown.

〔研磨パッド〕
本実施形態の研磨パッドは、基材と、該基材上に配された樹脂部と、を備える研磨パッドであって、該樹脂部は、単独で又は前記基材と共に凹凸パターンを構成し、前記凹凸パターンは、研磨面を有する複数の凸部が配列されたパターンであり、前記凸部に研磨圧力500g/cm2を掛けたときの前記研磨面の面積の総和が、前記基材表面の単位面積(1cm2)当たりにおいて、0.05~0.8cm2であり、下記式(1)をみたすθが、5~60°である。
tanθ=t/((L1-M1)/2)・・・(1)
t :前記凸部に研磨圧力500g/cm2を掛けたときの前記凸部の平均高さ
L1:前記凸部の底面の平均円相当直径
M1:前記凸部に研磨圧力500g/cm2を掛けたときの前記凸部の上面の平均円相当直径
[Polishing pad]
The polishing pad of the present embodiment is a polishing pad including a base material and a resin portion arranged on the base material, and the resin portion constitutes an uneven pattern alone or together with the base material. The uneven pattern is a pattern in which a plurality of convex portions having a polished surface are arranged, and the total area of the polished surface when a polishing pressure of 500 g / cm 2 is applied to the convex portions is the sum of the areas of the base material surface. It is 0.05 to 0.8 cm 2 per unit area (1 cm 2 ), and θ that satisfies the following formula (1) is 5 to 60 °.
tan θ = t / ((L1-M1) / 2) ... (1)
t: Average height of the convex portion when a polishing pressure of 500 g / cm 2 is applied to the convex portion L1: Average circle-equivalent diameter of the bottom surface of the convex portion M1: Polishing pressure of 500 g / cm 2 is applied to the convex portion. Average circle-equivalent diameter of the upper surface of the convex portion when

なお、本実施形態においては、基材表面の単位面積(1cm2)当たりにおける、凸部に研磨圧力500g/cm2を掛けたときの研磨面の面積の総和を単に「研磨有効面積」ともいう。また、上記式(1)をみたすθを、単に「平均角度θ」ともいう。 In the present embodiment, the total area of the polished surface when a polishing pressure of 500 g / cm 2 is applied to the convex portion per unit area (1 cm 2 ) of the surface of the base material is also simply referred to as "effective polishing area". .. Further, θ satisfying the above equation (1) is also simply referred to as “average angle θ”.

図1に、本実施形態の研磨パッドの一例を示す概略的な斜視図を示す。図1に示されるように、この研磨パッド10は、基材12と、該基材12上に配された樹脂部11とを備え、該樹脂部11は、基材12と共に凹凸パターンを構成する。凹凸パターンは、基材12の表面上に樹脂部11による円錐台状の複数のドットが配置されたパターンである。また、本実施形態の研磨パッドは、必要に応じて、接着層13を有していてもよい。 FIG. 1 shows a schematic perspective view showing an example of the polishing pad of the present embodiment. As shown in FIG. 1, the polishing pad 10 includes a base material 12 and a resin portion 11 arranged on the base material 12, and the resin portion 11 constitutes an uneven pattern together with the base material 12. .. The uneven pattern is a pattern in which a plurality of cone-shaped dots formed by the resin portion 11 are arranged on the surface of the base material 12. Further, the polishing pad of the present embodiment may have an adhesive layer 13 if necessary.

本実施形態の研磨パッドは、基材と、該基材上に配された樹脂部とを有するため、金属系定盤と比べて軽く、所定回数の研磨終了後に使い捨てとできる点で、取扱い性及び維持管理性に優れる。また、この研磨パッドは、凹凸パターンを有し、その凹凸パターン表面の研磨面において上記数値範囲内の研磨有効面積を有することにより、研磨レートに優れ、金属系定盤に匹敵する研磨レートを発揮することができる。これは、(1)研磨時に被研磨物とその被研磨物に密着する凸部との間にダイヤモンド砥粒のような遊離砥粒を介在させることで、効果的に凸部及び遊離砥粒を被研磨物に作用させる(研磨する)ことができること、(2)凹部を設けることで、被研磨物と密着する面における、単位面積当たりの押圧力が増大すること、並びに(3)上記数値範囲内の研磨有効面積を有することにより、上記(1)と(2)のバランスを優れたものにできることに起因すると考えられる。ただし、要因はこれに限定されない。また、凹凸パターンが規則的である場合、より均質な研磨が可能となり、面品位に優れた研磨が達成され得る。 Since the polishing pad of the present embodiment has a base material and a resin portion arranged on the base material, it is lighter than a metal-based surface plate and can be disposable after a predetermined number of polishing times. And excellent in maintainability. Further, this polishing pad has a concavo-convex pattern, and has an effective polishing area within the above numerical range on the polished surface of the concavo-convex pattern surface, so that the polishing rate is excellent and the polishing rate is comparable to that of a metal surface plate. can do. This is done by (1) interposing free abrasive grains such as diamond abrasive grains between the object to be polished and the convex portion in close contact with the object to be polished, thereby effectively forming the convex portion and the free abrasive grains. It can act on (polish) the object to be polished, (2) by providing a recess, the pressing force per unit area on the surface in close contact with the object to be polished increases, and (3) the above numerical range. It is considered that this is because the balance between (1) and (2) can be made excellent by having the polishing effective area inside. However, the factors are not limited to this. Further, when the uneven pattern is regular, more uniform polishing is possible, and polishing with excellent surface quality can be achieved.

また、図2に示すとおり、研磨工程における遊離した砥粒AGには、大別すると、研磨パッドの回転による遠心力F1と、砥粒自体の重力F2が加わっている。砥粒が凸部11aの上面にまで到達するには、研磨パッドの面方向に働く遠心力F1と平均角度θにより決定される斜面を上ろうとする力が、斜面を下ろうとする重力F2よりも、大きくなる必要がある。このような観点から、本実施形態においては、研磨パッドの有する凸部11aは、凸部11aの平均角度θを所定の範囲とすることにより、砥粒AGが被研磨物を研磨するための研磨面を構成する凸部11aの上面まで到達することができるようにする。 Further, as shown in FIG. 2, the centrifugal force F1 due to the rotation of the polishing pad and the gravity F2 of the abrasive grains themselves are applied to the abrasive grains AG released in the polishing step. In order for the abrasive grains to reach the upper surface of the convex portion 11a, the force for climbing the slope determined by the centrifugal force F1 acting in the surface direction of the polishing pad and the average angle θ is larger than the gravity F2 for descending the slope. , Need to grow. From such a viewpoint, in the present embodiment, the convex portion 11a of the polishing pad is polished so that the abrasive grain AG polishes the object to be polished by setting the average angle θ of the convex portion 11a within a predetermined range. It is possible to reach the upper surface of the convex portion 11a constituting the surface.

〔基材〕
基材としては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系フィルム;ポリエチレン(PE)フィルム、ポリプロピレン(PP)フィルム、エチレン-プロピレン共重合体フィルム等のポリオレフィン系フィルム;ポリエーテルエーテルケトン(PEEK)フィルム、ポリフェニレンサルファイド(PPS)フィルムが挙げられる。基材としては上面に後述する樹脂を印刷可能なものであればよいが、耐薬品性・耐熱性・経済性などの観点からポリステル系フィルムが好ましい。
〔Base material〕
The base material is not particularly limited, but is, for example, a polyester-based film such as polyethylene terephthalate, polypropylene terephthalate, or polybutylene terephthalate; a polyolefin-based film such as polyethylene (PE) film, polypropylene (PP) film, or ethylene-propylene copolymer film. Films: Polyetheretherketone (PEEK) films, polyphenylene sulfide (PPS) films, and the like. The base material may be any as long as it can print a resin described later on the upper surface, but a polyester film is preferable from the viewpoint of chemical resistance, heat resistance, economy and the like.

〔樹脂部〕
樹脂部は、基材上に配され、単独で又は基材と共に凹凸パターンを構成する。基材と反対側の樹脂部の表面は、被研磨物を研磨するための研磨面となる。なお、本実施形態の研磨パッドにおいて、研磨面は固定砥粒を実質的に含まないものであることが好ましい。「固定砥粒を実質的に含まない」とは、樹脂部の表面である研磨面に砥粒が現れない状態であることをいう。研磨面が実質的に砥粒を含まないことにより、遊離砥粒がとどまる研磨面の面積を大きくすることが可能となる。
[Resin part]
The resin portion is arranged on the base material and constitutes an uneven pattern alone or together with the base material. The surface of the resin portion on the opposite side of the base material serves as a polishing surface for polishing the object to be polished. In the polishing pad of the present embodiment, it is preferable that the polishing surface does not substantially contain fixed abrasive grains. "Substantially free of fixed abrasive grains" means that the abrasive grains do not appear on the polished surface which is the surface of the resin portion. Since the polished surface does not substantially contain abrasive grains, it is possible to increase the area of the polished surface on which the free abrasive grains stay.

(研磨有効面積)
研磨有効面積は、表面の単位面積(1cm2)当たり、0.05~0.8cm2であり、好ましくは0.1~0.8cm2、より好ましくは0.15~0.75cm2であり、さらに好ましくは0.2~0.7cm2であり、特に好ましくは0.25~0.7cm2である。研磨有効面積が0.05cm2以上であることにより、研磨に寄与し得る面積が増え、研磨レートがより向上する。また、研磨有効面積が0.8cm2以下であることにより、相対的に凹部が増加し、遊離砥粒を含むスラリーの供給・排出の効率がより向上する。
(Effective polishing area)
The effective polishing area is 0.05 to 0.8 cm 2 per unit area (1 cm 2 ) of the surface, preferably 0.1 to 0.8 cm 2 , and more preferably 0.15 to 0.75 cm 2 . It is more preferably 0.2 to 0.7 cm 2 , and particularly preferably 0.25 to 0.7 cm 2 . When the effective polishing area is 0.05 cm 2 or more, the area that can contribute to polishing increases, and the polishing rate is further improved. Further, when the effective polishing area is 0.8 cm 2 or less, the recesses are relatively increased, and the efficiency of supply / discharge of the slurry containing the free abrasive grains is further improved.

ここで、「研磨有効面積」は、単位面積(1cm2)当たりにおける、研磨圧力500g/cm2を掛けた場合の凹凸パターンのうち研磨に寄与する凸部の上面の面積である。研磨有効面積の測定方法は、単位面積(1cm2)当たり研磨圧力500g/cm2を掛けて測定する方法であれば特に限定されない。 Here, the "effective polishing area" is the area of the upper surface of the convex portion that contributes to polishing in the uneven pattern when a polishing pressure of 500 g / cm 2 is applied per unit area (1 cm 2 ). The method for measuring the effective polishing area is not particularly limited as long as it is a method for measuring by applying a polishing pressure of 500 g / cm 2 per unit area (1 cm 2 ).

例えば、研磨パッド10の研磨面(樹脂部11の表面)にガラス板を接触させるように重ね合わせ、それらを均一に荷重がかかるように研磨圧力500gf/cm2の錘を乗せて加圧させ上方から顕微鏡で測定し、ガラス板に接触する凸部1つあたりの上面(研磨面)の面積を測定し、これを凹凸パターンのうち研磨に寄与する凸部1つあたりの研磨面積とすることができる。 For example, the glass plates are superposed on the polished surface of the polishing pad 10 (the surface of the resin portion 11) so as to be in contact with each other, and a weight having a polishing pressure of 500 gf / cm 2 is placed on them so that a uniform load is applied to them. The area of the upper surface (polished surface) per convex part that comes into contact with the glass plate can be measured with a microscope, and this can be used as the polishing area per convex part that contributes to polishing in the uneven pattern. can.

また、他の方法として図3に示すとおり、研磨パッド10の研磨面(樹脂部11の表面)に研磨有効面積測定用の押さえ板4と感圧紙5の平坦な表面とを直接接触させるように重ね合わせ、それらを均一に荷重がかかるように凹凸パターンに対して十分大きい面積を有するローラー等で研磨圧力500gf/cm2に相当する転写圧を掛け感圧紙5に凸部パターンを転写させる。その後、感圧紙5に転写された凸部1つあたりの上面(研磨面6)の面積を測定し、これを凹凸パターンのうち研磨に寄与する凸部1つあたりの研磨面積とすることもできる。なお、転写が十分ではない場合は研磨パッド10の研磨面(樹脂部11の表面)に直接感圧紙の発色液を塗布し塗布された研磨パッドの研磨面(樹脂部表面)にて上記測定をすることもできる。 Further, as another method, as shown in FIG. 3, the pressing plate 4 for measuring the effective polishing area and the flat surface of the pressure sensitive paper 5 are brought into direct contact with the polished surface (surface of the resin portion 11) of the polishing pad 10. The convex pattern is transferred to the pressure sensitive paper 5 by superimposing them and applying a transfer pressure corresponding to a polishing pressure of 500 gf / cm 2 with a roller or the like having a sufficiently large area with respect to the uneven pattern so that the load is uniformly applied. After that, the area of the upper surface (polished surface 6) per convex portion transferred to the pressure-sensitive paper 5 can be measured, and this can be used as the polishing area per convex portion that contributes to polishing in the uneven pattern. .. If the transfer is not sufficient, apply the color-developing liquid of pressure-sensitive paper directly to the polished surface of the polishing pad 10 (the surface of the resin portion 11), and perform the above measurement on the polished surface (resin portion surface) of the applied polishing pad. You can also do it.

次いで、上記のようにして得られた凸部1つあたりの研磨面を任意に10点抽出し、凸部1つあたりの研磨面の円相当直径を求め、得られた円相当直径を加重平均することにより凸部の上面の平均円相当直径M1を算出する。平均円相当直径M1より凸部1つあたりの相当円面積を求め、基材表面の単位面積(1cm2)当たりにおける凸部の個数と相当円面積を乗じて、研磨有効面積を算出することができる。
研磨有効面積=(平均円相当直径M1)×(基材表面の単位面積(1cm2)当たりにおける凸部の個数)
Next, 10 points of the polished surface per convex portion obtained as described above are arbitrarily extracted, the circle-equivalent diameter of the polished surface per convex portion is obtained, and the obtained circle-equivalent diameter is weighted average. By doing so, the average circle-equivalent diameter M1 of the upper surface of the convex portion is calculated. The equivalent circle area per convex portion can be obtained from the average circle equivalent diameter M1 and the effective polishing area can be calculated by multiplying the number of convex portions per unit area (1 cm 2 ) of the substrate surface by the equivalent circle area. can.
Effective polishing area = (average circle equivalent diameter M1) x (number of convex portions per unit area (1 cm 2 ) of the substrate surface)

なお、平均円相当直径M1の算出においては、転写された凸部パターンをフラットベッドスキャナーあるいはデジタルカメラにより画像データにして、得られた画像データを2値化処理をし、2値化処理した凸部パターンの内、任意に凸部を10点抽出し、各凸部の円相当直径を求め、得られた円相当直径を加重平均することにより凸部の上面の平均円相当直径M1を算出してもよい。なお、2値化処理は、一般的な2値化処理ソフトを用いて算出することができるが、例えば、「Pick Map Version2.4」を用いて閾値を220に設定することで算出することができる。 In the calculation of the average circle equivalent diameter M1, the transferred convex portion pattern is converted into image data by a flatbed scanner or a digital camera, and the obtained image data is binarized and binarized. From the part pattern, 10 convex parts are arbitrarily extracted, the circle-equivalent diameter of each convex part is obtained, and the obtained circle-equivalent diameter is weighted and averaged to calculate the average circle-equivalent diameter M1 of the upper surface of the convex part. You may. The binarization process can be calculated using general binarization processing software, but it can be calculated by setting the threshold value to 220 using, for example, "Pick Map Version 2.4". can.

なお、研磨有効面積(cm2)は後述するドレス処理・バフ処理などにより調整することができる。具体的には、研磨面の研磨有効面積(cm2)を、好ましくは0.2~0.8cm2、より好ましくは0.3~0.75cm2、さらに好ましくは0.4~0.7cm2に調整することができる。 The effective polishing area (cm 2 ) can be adjusted by dressing or buffing, which will be described later. Specifically, the effective polishing area (cm 2 ) of the polished surface is preferably 0.2 to 0.8 cm 2 , more preferably 0.3 to 0.75 cm 2 , and further preferably 0.4 to 0.7 cm. Can be adjusted to 2 .

〔凸部〕
本実施形態において、凸部の上面は被研磨物と接触する研磨面となる。研磨レート向上の観点からは、凸部の上面に遊離砥粒が存在しやすいように凸部の形状を調整することが望まれ、また、製品寿命向上の観点からは、凸部の高さが高いことが望まれる。そこで、本実施形態においては、下記式(1)をみたすθが、5~60°となるように凸部を構成する。
tanθ=t/((L1-M1)/2)・・・(1)
t :前記凸部に研磨圧力500g/cm2を掛けたときの前記凸部の平均高さ
L1:前記凸部の底面の平均円相当直径
M1:前記凸部に研磨圧力500g/cm2を掛けたときの前記凸部の上面の平均円相当直径
[Convex part]
In the present embodiment, the upper surface of the convex portion is a polishing surface that comes into contact with the object to be polished. From the viewpoint of improving the polishing rate, it is desirable to adjust the shape of the convex portion so that free abrasive grains are likely to be present on the upper surface of the convex portion, and from the viewpoint of improving the product life, the height of the convex portion is increased. High is desired. Therefore, in the present embodiment, the convex portion is configured so that θ satisfying the following equation (1) is 5 to 60 °.
tan θ = t / ((L1-M1) / 2) ... (1)
t: Average height of the convex portion when a polishing pressure of 500 g / cm 2 is applied to the convex portion L1: Average circle-equivalent diameter of the bottom surface of the convex portion M1: Polishing pressure of 500 g / cm 2 is applied to the convex portion. Average circle-equivalent diameter of the upper surface of the convex portion when

なお、本実施形態において凸部の断面の形状としては、例えば、台形状、三角形状、半円形状、略半円形状が挙げられる。台形状や三角形状においては、厳密な意味で直線からなる辺で構成される形状のほか、各形状の頂点が定められるのであればその辺については歪んだ直線(曲線)で構成されてもよい。 In the present embodiment, examples of the shape of the cross section of the convex portion include a trapezoidal shape, a triangular shape, a semicircular shape, and a substantially semicircular shape. In a trapezoidal shape or a triangular shape, in addition to a shape composed of straight lines in a strict sense, if the vertices of each shape are defined, the sides may be composed of distorted straight lines (curves). ..

このような、凸部の形状としては、特に限定されないが、例えば、円錐台状、略円錐台状、楕円錐台状、略楕円錐台状、多角錐台状などの錐台状が挙げられる。被研磨物に接触する凸部は、規則的なパターンを形成していることが好ましい。規則的なパターンを有することにより、均質な研磨を可能とし、面品位に優れた研磨を達成し得る。なお、「規則的なパターン」とは、単位となる小パターンを複数並べて得られるパターンをいう。具体的には、図4に示される規則的なパターンは、複数の小パターンPから構成される。単位となる小パターンは1種であっても2種以上を併用してもよい。 The shape of such a convex portion is not particularly limited, and examples thereof include a frustum shape such as a frustum shape, a substantially frustum shape, an elliptical frustum shape, a substantially elliptical frustum shape, and a polygonal frustum shape. .. The protrusions in contact with the object to be polished preferably form a regular pattern. By having a regular pattern, uniform polishing is possible, and polishing with excellent surface quality can be achieved. The "regular pattern" refers to a pattern obtained by arranging a plurality of small patterns as units. Specifically, the regular pattern shown in FIG. 4 is composed of a plurality of small patterns P. The small pattern as a unit may be one type or two or more types may be used in combination.

(平均角度θ)
平均角度θは、5~60°であり、好ましくは10~55°であり、より好ましくは15~50°である。平均角度θが5°以上であることにより、研磨有効面積を必要以上に低減させることがなく、研磨レートがより向上する。また、平均角度θが60°以下であることにより、砥粒が凸部の斜辺を上りやすくなるため、凸部の上面により多くの遊離砥粒が存在することが可能となる。結果として、研磨レートがより向上する。
(Average angle θ)
The average angle θ is 5 to 60 °, preferably 10 to 55 °, and more preferably 15 to 50 °. When the average angle θ is 5 ° or more, the effective polishing area is not reduced more than necessary, and the polishing rate is further improved. Further, when the average angle θ is 60 ° or less, the abrasive grains can easily climb the hypotenuse of the convex portion, so that more free abrasive grains can be present on the upper surface of the convex portion. As a result, the polishing rate is further improved.

なお、凸部が円錐台状又は円錐状であれば、研磨圧力500g/cm2を掛けたときの凸部の上面及び底面は凡そ一様な円形状となり、凸部の斜面をいずれの方向から砥粒が上ったとしてもその上り方は凡そ一様となる。一方で、凸部が多角錐台状又は多角錐状などである場合には、凸部の上面及び底面は多角形状となり、凸部の斜面を砥粒が上る方向によっては急な斜面もあれば緩やかな斜面もある。このような多角錐台状又は多角錐状においては遊離砥粒が上りやすい比較的なだらかな斜辺と上りにくい急峻な斜辺が存在するが、巨視的な観点からすれば、各斜辺が成す角度の平均を指標として、遊離砥粒の上りやすさを評価できる。したがって、本実施形態における「平均角度θ」の算出においては、凸部の上面及び底面の面積と等しい円面積を持つ円の直径、即ち平均円相当直径L1及びM1を用いる。 If the convex portion has a truncated cone shape or a conical shape, the upper surface and the bottom surface of the convex portion have a substantially uniform circular shape when a polishing pressure of 500 g / cm 2 is applied, and the slope of the convex portion is formed from any direction. Even if the abrasive grains rise, the way they rise is almost uniform. On the other hand, when the convex portion has a polygonal pyramid shape or a polygonal pyramid shape, the upper surface and the bottom surface of the convex portion have a polygonal shape, and there may be a steep slope depending on the direction in which the abrasive grains rise on the slope of the convex portion. There is also a gentle slope. In such a polygonal frustum or polygonal pyramid, there are comparatively gentle hypotenuses where free abrasive grains easily rise and steep hypotenuses where it is difficult to climb, but from a macroscopic point of view, the average angle formed by each hypotenuse exists. Can be used as an index to evaluate the ease of climbing of free abrasive grains. Therefore, in the calculation of the "average angle θ" in the present embodiment, the diameters of circles having a circle area equal to the areas of the upper surface and the bottom surface of the convex portion, that is, the average circle equivalent diameters L1 and M1 are used.

また、凸部が円錐台状、円錐状、多角錐台状、又は多角錐状であれば、砥粒が上る斜面は凡そ一様な面となる。一方で、凸部が半球状又は略半球状などである場合には、砥粒が上る斜面は砥粒の位置によっては急な個所もあれば緩やかな個所もある。このような半球状又は略半球状においては遊離砥粒が上りやすい比較的なだらかな個所と上りにくい急峻な個所が存在するが、巨視的な観点からすれば、斜辺が成す角度の平均を指標として、遊離砥粒の上りやすさを評価できる。したがって、本実施形態における「平均角度θ」の算出においては、平均円相当直径L1及びM1と高さtにより算出されるtanθを用いる。 Further, if the convex portion has a truncated cone shape, a conical shape, a polygonal pyramid shape, or a polygonal pyramid shape, the slope on which the abrasive grains rise is a substantially uniform surface. On the other hand, when the convex portion is hemispherical or substantially hemispherical, the slope on which the abrasive grains rise may be steep or gentle depending on the position of the abrasive grains. In such a hemispherical or substantially hemispherical shape, there are comparatively gentle points where free abrasive grains easily rise and steep points where it is difficult to climb, but from a macroscopic point of view, the average angle formed by the hypotenuse is used as an index. , The ease of climbing of free abrasive grains can be evaluated. Therefore, in the calculation of the "average angle θ" in the present embodiment, the tan θ calculated by the average circle equivalent diameters L1 and M1 and the height t is used.

(平均円相当直径L1)
平均円相当直径L1は、好ましくは1~5mmであり、より好ましくは1.5~4.5mmであり、さらに好ましくは2~4mmである。平均円相当直径L1が1mm以上であることにより、所定の平均角度θを維持しつつ、高さtをより高く設計できるため、製品寿命がより向上する傾向にある。また、平均円相当直径L1が5mm以下であることにより、凸部が小さくなり、相対的に凹部が増加し、遊離砥粒を含むスラリーの供給・排出の効率がより向上する傾向にある。
(Diameter equivalent to average circle L1)
The average circle-equivalent diameter L1 is preferably 1 to 5 mm, more preferably 1.5 to 4.5 mm, and even more preferably 2 to 4 mm. Since the diameter L1 corresponding to the average circle is 1 mm or more, the height t can be designed higher while maintaining a predetermined average angle θ, so that the product life tends to be further improved. Further, when the diameter L1 corresponding to the average circle is 5 mm or less, the convex portion becomes smaller, the concave portion relatively increases, and the efficiency of supply / discharge of the slurry containing the free abrasive grains tends to be further improved.

なお、平均円相当直径L1は、研磨パッド表面の顕微鏡写真より測定することができる。また、平均円相当直径L1は、研磨圧力500g/cm2の加圧前後においてその変化は無視できる程度に小さいため、研磨圧力500g/cm2の加圧前のものを採用してもよい。平均円相当直径L1の算出は、凸部の上面の平均円相当直径M1の算出と同様、凸部研磨面を任意に10点抽出し、凸部1つあたりの底面の円相当直径を求め、得られた円相当直径を加重平均することにより算出することができる。 The average circle-equivalent diameter L1 can be measured from a micrograph of the surface of the polishing pad. Further, since the change in the average circle-equivalent diameter L1 before and after the pressurization of the polishing pressure of 500 g / cm 2 is negligible, the one before the pressurization of the polishing pressure of 500 g / cm 2 may be adopted. The calculation of the average circle-equivalent diameter L1 is the same as the calculation of the average circle-equivalent diameter M1 of the upper surface of the convex portion. It can be calculated by weighted averaging the obtained circle-equivalent diameters.

(平均円相当直径M1)
平均円相当直径M1は、好ましくは0.2~3.5mmであり、より好ましくは0.3~3mmであり、さらに好ましくは0.4~2.5mmである。平均円相当直径M1が0.2mm以上であることにより、所定の平均角度θを維持しつつ、高さtをより高く設計できるため、製品寿命がより向上する傾向にある。また、平均円相当直径M1が3.5mm以下であることにより、凸部が小さくなり、相対的に凹部が増加し、遊離砥粒を含むスラリーの供給・排出の効率がより向上する傾向にある。なお、平均円相当直径M1の算出方法は上述したとおりである。
(Diameter equivalent to average circle M1)
The average circle-equivalent diameter M1 is preferably 0.2 to 3.5 mm, more preferably 0.3 to 3 mm, and even more preferably 0.4 to 2.5 mm. Since the diameter M1 corresponding to the average circle is 0.2 mm or more, the height t can be designed higher while maintaining the predetermined average angle θ, so that the product life tends to be further improved. Further, when the diameter M1 corresponding to the average circle is 3.5 mm or less, the convex portion becomes smaller, the concave portion relatively increases, and the efficiency of supply / discharge of the slurry containing the free abrasive grains tends to be further improved. .. The method for calculating the average circle-equivalent diameter M1 is as described above.

(高さt)
また、砥粒AGに加わる力は研磨工程において複雑に変化しており、一定量の遠心力F1が砥粒AGに常に加わっているわけではないし、遠心力F1が常に砥粒が凸部の坂を上る方向に加わっているとも限らない。このような複雑な力場に置かれる砥粒AGが凸部11aの上面にまで到達するには、平均角度θと、製品寿命の長さと関連する凸部11aの高さtとのバランスも重要となる。このような観点から、研磨圧力500g/cm2を掛けたときの凸部の平均高さtは、好ましくは0.06~1mmであり、より好ましくは0.1~0.9mmであり、さらに好ましくは0.2~0.8mmである。凸部の平均高さtが0.06mm以上であることにより、製品寿命がより向上する傾向にある。また、凸部の平均高さtが1mm以下であることにより、遊離砥粒が凸部の上面まで到達しやすくなるため、研磨レートがより向上する傾向にある。
(Height t)
Further, the force applied to the abrasive grains AG changes in a complicated manner in the polishing process, and a constant amount of centrifugal force F1 is not always applied to the abrasive grains AG, and the centrifugal force F1 always causes the abrasive grains to be on the slope of the convex portion. It is not always the case that you are participating in the direction of climbing. In order for the abrasive grain AG placed in such a complicated force field to reach the upper surface of the convex portion 11a, it is also important to balance the average angle θ with the height t of the convex portion 11a, which is related to the length of product life. It becomes. From this point of view, the average height t of the convex portion when a polishing pressure of 500 g / cm 2 is applied is preferably 0.06 to 1 mm, more preferably 0.1 to 0.9 mm, and further. It is preferably 0.2 to 0.8 mm. When the average height t of the convex portion is 0.06 mm or more, the product life tends to be further improved. Further, when the average height t of the convex portion is 1 mm or less, the free abrasive grains easily reach the upper surface of the convex portion, so that the polishing rate tends to be further improved.

なお、平均高さtの測定方法は、単位面積(1cm2)当たり研磨圧力500g/cm2を掛けて測定する方法であれば特に限定されない。例えば、ガラス板に接触する研磨面の面積を測定する方法であれば、平均高さtは基材とガラス板との平均距離を測定し求めることができる。また、感圧紙を用いる場合には、基材12と感圧紙5との平均距離を測定し求めることができる。 The method for measuring the average height t is not particularly limited as long as it is a method in which a polishing pressure of 500 g / cm 2 is applied per unit area (1 cm 2 ). For example, in the method of measuring the area of the polished surface in contact with the glass plate, the average height t can be obtained by measuring the average distance between the base material and the glass plate. Further, when the pressure-sensitive paper is used, the average distance between the base material 12 and the pressure-sensitive paper 5 can be measured and obtained.

研磨面の表面粗さRzは、JIS B0633:2001(ISO4288:1996)で定める最大高さの粗さとする。 The surface roughness Rz of the polished surface shall be the roughness of the maximum height defined by JIS B0633: 2001 (ISO4288: 1996).

研磨面の表面粗さRzは、好ましくは0.1~20μmであり、より好ましくは0.15~18μmであり、さらに好ましくは0.2~16μmである。 The surface roughness Rz of the polished surface is preferably 0.1 to 20 μm, more preferably 0.15 to 18 μm, and further preferably 0.2 to 16 μm.

一態様として、樹脂部が光硬化性樹脂又は感光性樹脂、より具体的には、アクリル系樹脂、ポリエステル系樹脂、不飽和ポリエステル樹脂、ポリアミド系樹脂、及びポリウレタン系樹脂により構成される場合においては、その樹脂の硬さなどとの物性との関係により、研磨面の表面粗さRzは、好ましくは0.1~3μm、より好ましくは0.15~2μm、さらに好ましくは0.2~1μmである。研磨面の表面粗さRzが0.1μm以上であることにより、凸部の上面に達した遊離砥粒が凸部の上面にとどまりやすくなるため、研磨レートがより向上する傾向にある。また、研磨面の表面粗さRzが3μm以下であることにより、表面のうねりが抑えられ、砥粒が研磨面に留まりやすくなり、研磨面の均質性や平坦性も保たれるため、得られる研磨物の面品位がより向上する傾向にある。 As one embodiment, when the resin portion is composed of a photocurable resin or a photosensitive resin, more specifically, an acrylic resin, a polyester resin, an unsaturated polyester resin, a polyamide resin, and a polyurethane resin, the resin portion is composed of a photocurable resin or a photosensitive resin. The surface roughness Rz of the polished surface is preferably 0.1 to 3 μm, more preferably 0.15 to 2 μm, still more preferably 0.2 to 1 μm, depending on the relationship with the physical properties such as the hardness of the resin. be. When the surface roughness Rz of the polished surface is 0.1 μm or more, the free abrasive grains that have reached the upper surface of the convex portion tend to stay on the upper surface of the convex portion, so that the polishing rate tends to be further improved. Further, since the surface roughness Rz of the polished surface is 3 μm or less, the waviness of the surface is suppressed, the abrasive grains tend to stay on the polished surface, and the homogeneity and flatness of the polished surface are maintained. The surface quality of the polished material tends to be improved.

別態様として、樹脂部が、熱硬化性樹脂、より具体的にはエポキシ樹脂、フェノール樹脂、により構成される場合においては、その樹脂の硬さなどとの物性との関係により、研磨面の表面粗さRzは、好ましくは1~20μmであり、より好ましくは2~18μmであり、さらに好ましくは3~16μmである。研磨面の表面粗さRzが1μm以上であることにより、凸部の上面に達した遊離砥粒が凸部の上面にとどまりやすくなるため、研磨レートがより向上する傾向にある。また、研磨面の表面粗さRzが20μm以下であることにより、表面のうねりが抑えられ、砥粒が研磨面に留まりやすくなり、研磨面の均質性や平坦性も保たれるため、得られる研磨物の面品位がより向上する傾向にある。研磨面の表面粗さRzは後述するドレス処理・バフ処理などにより調整することができる。具体的には、凸部(研磨面)の表面粗さRzを、好ましくは1~7μm、より好ましくは2~6μm、さらに好ましくは3~5μmに調整することができる。 As another embodiment, when the resin portion is composed of a thermosetting resin, more specifically, an epoxy resin or a phenol resin, the surface of the polished surface may be affected by the relationship with the physical properties such as the hardness of the resin. The roughness Rz is preferably 1 to 20 μm, more preferably 2 to 18 μm, and even more preferably 3 to 16 μm. When the surface roughness Rz of the polished surface is 1 μm or more, the free abrasive grains that have reached the upper surface of the convex portion tend to stay on the upper surface of the convex portion, so that the polishing rate tends to be further improved. Further, since the surface roughness Rz of the polished surface is 20 μm or less, the waviness of the surface is suppressed, the abrasive grains tend to stay on the polished surface, and the homogeneity and flatness of the polished surface are maintained. The surface quality of the polished material tends to be improved. The surface roughness Rz of the polished surface can be adjusted by a dressing treatment, a buffing treatment, or the like, which will be described later. Specifically, the surface roughness Rz of the convex portion (polished surface) can be adjusted to preferably 1 to 7 μm, more preferably 2 to 6 μm, and further preferably 3 to 5 μm.

さらに、表面粗さRzは、用いる遊離砥粒の平均粒径0.25~18μmを基準1.0として、好ましくは0.75以下であり、より好ましくは0.65以下であり、さらに好ましくは0.6以下である。用いる遊離砥粒との関係において表面粗さRzが上記範囲を満たすことにより、凸部の上面に到達した遊離砥粒が研磨面の溝に埋まることなく、かつ留まりやすくなる傾向にある。 Further, the surface roughness Rz is preferably 0.75 or less, more preferably 0.65 or less, still more preferably 0.65 or less, with the average particle size of the free abrasive grains used being 0.25 to 18 μm as a reference 1.0. It is 0.6 or less. When the surface roughness Rz satisfies the above range in relation to the free abrasive grains used, the free abrasive grains that have reached the upper surface of the convex portion tend not to be buried in the grooves of the polished surface and tend to stay easily.

任意に選択した隣接する凸部同士の最近接距離(例えば、図4において符号L2で表される凸部同士の距離)は、好ましくは0.1~3mmであり、より好ましくは0.5~2.5mmであり、さらに好ましくは1.0~2.0mmである。隣接する凸部同士の最近接距離が上記範囲内であることにより、比較的小さい凸部が比較的高密度に配された凹凸パターンを得ることができるため、研磨レートがより向上する傾向にある。 The closest contact distance between adjacent convex portions (for example, the distance between the convex portions represented by the reference numeral L2 in FIG. 4) is preferably 0.1 to 3 mm, more preferably 0.5 to 0.5 mm. It is 2.5 mm, more preferably 1.0 to 2.0 mm. When the closest contact distance between adjacent convex portions is within the above range, an uneven pattern in which relatively small convex portions are arranged at a relatively high density can be obtained, so that the polishing rate tends to be further improved. ..

単位面積(1cm2)当たりの凸部の個数は、好ましくは4~80個であり、より好ましくは6~75個であり、さらに好ましくは9~70個である。この単位面積当たりの凸部の個数が4個以上であることにより、遊離砥粒を含むスラリーの供給・排出能力に優れ、研磨レートが向上する傾向にある。単位面積当たりの凸部の個数が80個以下であることにより、凸部一つあたりの高さをより高くすることが可能となり、製品寿命がより向上する傾向にある。なお、凸部の単位面積当たりの個数については、所定面積、例えば4cm2(2cm四方)の凸部の個数を目視で確認し、単位面積当たりの個数に換算することで算出することができる。 The number of convex portions per unit area (1 cm 2 ) is preferably 4 to 80, more preferably 6 to 75, and even more preferably 9 to 70. When the number of convex portions per unit area is 4 or more, the slurry supply / discharge capacity containing free abrasive grains is excellent, and the polishing rate tends to be improved. When the number of convex portions per unit area is 80 or less, the height per convex portion can be made higher, and the product life tends to be further improved. The number of convex portions per unit area can be calculated by visually checking the number of convex portions having a predetermined area, for example, 4 cm 2 (2 cm square), and converting the number into the number per unit area.

樹脂部を構成する樹脂としては、特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のエポキシ系樹脂;ポリエチレンテレフタレートや、ポリブチレンテレフタレート等のポリエステル系樹脂;不飽和ポリエステル系樹脂;ポリエーテルアミド、ポリエーテルエステルアミド、アンモニウム塩型三級窒素原子含有ポリアミド等のポリアミド系樹脂;分子内にエーテル又はエステル結合を有するポリウレタン、ポリウレタンポリウレア、ポリウレタンアクリレート、アミド化合物とイソシアネート化合物の付加重合体等のポリウレタン系樹脂;ポリアクリレート、ポリアクリロニトリル等のアクリル系樹脂;ポリ塩化ビニル、ポリ酢酸ビニル、ポリフッ化ビニリデン等のビニル系樹脂;ポリサルホン、ポリエーテルサルホン等のポリサルホン系樹脂;アセチル化セルロース、ブチリル化セルロース等のアシル化セルロース系樹脂;及びポリスチレン系樹脂が挙げられる。このなかでも、エポキシ系樹脂、不飽和ポリエステル系樹脂、ポリアミド系樹脂、及びポリウレタン系樹脂が好ましい。このような樹脂を用いることにより、研磨レートがより向上する傾向にある。なお、樹脂部を構成する樹脂は、1種単独で用いても、2種以上を併用してもよい。 The resin constituting the resin portion is not particularly limited, and is, for example, an epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a phenol novolac type epoxy resin, and a cresol novolac type epoxy resin. Polyester resin such as polyethylene terephthalate and polybutylene terephthalate; unsaturated polyester resin; polyamide resin such as polyether amide, polyether ester amide, ammonium salt type tertiary nitrogen atom-containing polyamide; ether or ester in the molecule Polyurethane-based resins such as polyurethanes, polyurethane polyureas, polyurethane acrylates, and addition polymers of amide compounds and isocyanate compounds with bonds; acrylic resins such as polyacrylates and polyacrylonitriles; polyvinyl chlorides, polyvinylacetates, polyvinylidene fluorides, etc. Examples thereof include vinyl-based resins; polysulfone-based resins such as polysulfone and polyether sulfone; acylated cellulose-based resins such as acetylated cellulose and butyrylated cellulose; and polystyrene-based resins. Of these, epoxy resins, unsaturated polyester resins, polyamide resins, and polyurethane resins are preferable. By using such a resin, the polishing rate tends to be further improved. The resin constituting the resin portion may be used alone or in combination of two or more.

〔接着層〕
本実施形態の研磨パッドは、基材の樹脂部とは反対側に、研磨機の研磨定盤に研磨パッドを貼着するための接着層をさらに備えてもよい。接着層は、従来知られている研磨パッドに用いられている接着剤又は粘着剤を含むものであってもよい。接着層の材料としては、例えば、アクリル系接着剤、ニトリル系接着剤、ニトリルゴム系接着剤、ポリアミド系接着剤、ポリウレタン系接着剤、ポリエステル系接着剤、シリコーン系接着剤等の各種熱可塑性接着剤が挙げられる。接着層は、例えば両面テープであってもよい。
[Adhesive layer]
The polishing pad of the present embodiment may further include an adhesive layer for attaching the polishing pad to the polishing surface plate of the polishing machine on the side opposite to the resin portion of the base material. The adhesive layer may contain an adhesive or an adhesive used in conventionally known polishing pads. Examples of the material of the adhesive layer include various thermoplastic adhesives such as acrylic adhesives, nitrile adhesives, nitrile rubber adhesives, polyamide adhesives, polyurethane adhesives, polyester adhesives, and silicone adhesives. The agent is mentioned. The adhesive layer may be, for example, double-sided tape.

〔アンカー層〕
本実施形態の研磨パッドは、基材と樹脂部との間にアンカー層を有していてもよい。アンカー層を有することにより、基材と樹脂部との密着性をより向上する傾向にある。アンカー層を構成する材料としては、特に限定されないが、例えば、アクリル系樹脂コート剤が挙げられる。
[Anchor layer]
The polishing pad of the present embodiment may have an anchor layer between the base material and the resin portion. By having the anchor layer, the adhesion between the base material and the resin portion tends to be further improved. The material constituting the anchor layer is not particularly limited, and examples thereof include an acrylic resin coating agent.

〔研磨パッドの製造方法〕
本実施形態の研磨パッドの製造方法は、スクリーン印刷法、露光製版法、又はモールド成型法により、研磨面を有する複数の凸部が配列された凹凸パターンからなる樹脂部を基板上に形成する工程を有する。
[Manufacturing method of polishing pad]
The method for manufacturing a polishing pad of the present embodiment is a step of forming a resin portion having a concavo-convex pattern in which a plurality of convex portions having a polished surface are arranged on a substrate by a screen printing method, an exposure plate making method, or a molding method. Has.

〔スクリーン印刷法〕
スクリーン印刷法(孔版印刷)においては、凸部のパターンを形成可能に作製されたスクリーンマスクを用意し、スクリーンマスクを用いて基板上に硬化性組成物を印刷し、硬化させる。微細な凹凸パターンを形成する観点からは、樹脂液の粘度は低いことが好ましく、この観点から、樹脂種を選択することができる。スクリーン印刷法によれば、比較的に平均角度θの小さい凸部を形成することが可能となる。また、露光製版法との相対的な比較でいえば、スクリーン印刷法においては、熱硬化性樹脂、光硬化性樹脂等を用いることが可能であり、樹脂種の選択の幅が広いという利点がある。
[Screen printing method]
In the screen printing method (stencil printing), a screen mask made so as to be able to form a pattern of convex portions is prepared, and the curable composition is printed on a substrate using the screen mask and cured. From the viewpoint of forming a fine uneven pattern, the viscosity of the resin liquid is preferably low, and from this viewpoint, the resin type can be selected. According to the screen printing method, it is possible to form a convex portion having a relatively small average angle θ. Further, in relative comparison with the exposure plate making method, it is possible to use a thermosetting resin, a photocurable resin, etc. in the screen printing method, and there is an advantage that a wide range of resin types can be selected. be.

さらに、光硬化性樹脂を用いた場合には、得られる凸部(研磨面)の表面粗さRzを、好ましくは0.1~3μm、より好ましくは0.15~2μm、さらに好ましくは0.2~1μmに調整しやすい傾向にある。 Further, when a photocurable resin is used, the surface roughness Rz of the obtained convex portion (polished surface) is preferably 0.1 to 3 μm, more preferably 0.15 to 2 μm, still more preferably 0. It tends to be easy to adjust to 2 to 1 μm.

一方で、熱硬化性樹脂を用いた場合には、得られる凸部(研磨面)の表面粗さRzを、好ましくは1~20μm、より好ましくは2~18μm、さらに好ましくは3~16μmに調整しやすい傾向にある。また、後述するドレス処理により、凸部(研磨面)の表面粗さRzを、好ましくは1~7μm、より好ましくは2~6μm、さらに好ましくは3~5μmに調整してもよい。 On the other hand, when a thermosetting resin is used, the surface roughness Rz of the obtained convex portion (polished surface) is preferably adjusted to 1 to 20 μm, more preferably 2 to 18 μm, and further preferably 3 to 16 μm. It tends to be easy to do. Further, the surface roughness Rz of the convex portion (polished surface) may be adjusted to preferably 1 to 7 μm, more preferably 2 to 6 μm, and further preferably 3 to 5 μm by a dressing treatment described later.

スクリーン印刷法において、高さtを高くする方法としては、特に制限されないが、例えば、凸部の底面の平均円相当直径L1を大きくすることにより、相対的に高さtを高くする方法が挙げられる。 In the screen printing method, the method for increasing the height t is not particularly limited, and for example, a method for increasing the height t relatively by increasing the diameter L1 corresponding to the average circle on the bottom surface of the convex portion can be mentioned. Be done.

(硬化性組成物)
硬化性組成物としては、特に限定されないが、例えば、光重合開始剤及び重合性化合物を含む光硬化性組成物、熱重合開始剤及び重合性化合物を含む熱硬化性組成物、熱硬化性樹脂、UV硬化樹脂、2液混合型の硬化樹脂を含む硬化性組成物等が挙げられる。また、硬化性組成物は、必要に応じて、重合性官能基を2以上有する架橋剤等を含んでもよい。
(Curable composition)
The curable composition is not particularly limited, and is, for example, a photocurable composition containing a photopolymerization initiator and a polymerizable compound, a thermosetting composition containing a thermal polymerization initiator and a polymerizable compound, and a thermosetting resin. , UV curable resin, a curable composition containing a two-component mixed type curable resin, and the like. Further, the curable composition may contain a cross-linking agent or the like having two or more polymerizable functional groups, if necessary.

重合性化合物としては、特に限定されないが、例えば、(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートが挙げられる。 The polymerizable compound is not particularly limited, and examples thereof include (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, and polyester (meth) acrylate.

光重合開始剤としては、特に限定されないが、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、チオチサントン系化合物が挙げられる。また、熱重合性開始剤としては、特に限定されないが、例えば、2,2’-アゾビスブチロニトリルのようなアゾ化合物、過酸化ベンゾイル(BPO)などの過酸化物が挙げられる。 The photopolymerization initiator is not particularly limited, and examples thereof include benzophenone-based compounds, acetophenone-based compounds, and thiothysanton-based compounds. The thermal polymerizable initiator is not particularly limited, and examples thereof include azo compounds such as 2,2'-azobisbutyronitrile and peroxides such as benzoyl peroxide (BPO).

熱硬化性樹脂としては、特に限定されないが、例えば、フェノール樹脂、エポキシ樹脂、アクリル樹脂、ウレア樹脂、ホルムアルデヒド樹脂等が挙げられる。 The thermosetting resin is not particularly limited, and examples thereof include a phenol resin, an epoxy resin, an acrylic resin, a urea resin, and a formaldehyde resin.

UV硬化樹脂としては、特に限定されないが、例えば、数平均分子量1000~10000程度のプレポリマーが良く、材料としてはアクリル(メタクリル)系エステル樹脂やそのウレタン変性樹脂、チオコール系樹脂等が挙げられ、適宜用途に応じて反応性希釈剤や有機溶剤を用いることができる。 The UV curable resin is not particularly limited, but for example, a prepolymer having a number average molecular weight of about 1000 to 10000 is preferable, and examples of the material include an acrylic (methacrylic) ester resin, a urethane modified resin thereof, and a thiocol resin. A reactive diluent or an organic solvent can be appropriately used depending on the intended use.

また、2液混合型の硬化樹脂としては、特に限定されないが、例えば、異なる物性のプレポリマーを用いることができ、エポキシ樹脂や、不飽和ポリエステル樹脂、ポリアミド樹脂などが挙げられる。 The two-component mixed type curing resin is not particularly limited, but for example, prepolymers having different physical properties can be used, and examples thereof include epoxy resins, unsaturated polyester resins, and polyamide resins.

(硬化工程)
本実施形態の研磨パッドの製造方法は、上記スクリーン印刷工程のほか、硬化性樹脂を硬化させる硬化工程を有していてもよい。硬化工程は、付着した硬化性組成物を硬化させて硬化層を得る工程である。硬化方法としては、特に限定されないが、例えば、光硬化、熱硬化等が挙げられる。硬化層は、基材とは反対側の表面に凹凸パターンを有し、表面は、被研磨物を研磨するための研磨面を有する。
(Curing process)
In addition to the screen printing step, the method for manufacturing a polishing pad of the present embodiment may include a curing step of curing the curable resin. The curing step is a step of curing the adhered curable composition to obtain a cured layer. The curing method is not particularly limited, and examples thereof include photocuring and thermosetting. The cured layer has an uneven pattern on the surface opposite to the base material, and the surface has a polished surface for polishing the object to be polished.

(その他の工程)
本実施形態の研磨パッドの製造方法は、必要に応じて、その他の工程等を有してもよい。例えば、スクリーン印刷工程の後、硬化工程の前に硬化性組成物中の揮発成分の少なくとも一部を揮発除去する工程を有していてもよい。また、スクリーン印刷工程の後であって硬化工程の前、及び/又は、硬化工程の後に、所望の凹凸パターンを形成するために、硬化性組成物や硬化層の一部を除去する工程を有していてもよい。除去する方法としては、例えば、切削が挙げられる。
(Other processes)
The polishing pad manufacturing method of the present embodiment may include other steps and the like, if necessary. For example, it may have a step of volatilizing and removing at least a part of the volatile components in the curable composition after the screen printing step and before the curing step. Further, there is a step of removing a part of the curable composition or the cured layer in order to form a desired uneven pattern after the screen printing step and before the curing step and / or after the curing step. You may be doing it. As a method of removing, for example, cutting may be mentioned.

〔露光製版法〕
本実施形態の研磨パッドの製造方法において、凸部の成型方法としては、凸版用の製版方法を応用することができる。露光製版法においては、まず、基材と、光感光性樹脂版(常温で固体状)とを接合させる工程と、光感光性樹脂版の表面に凸部パターンを記録可能なネガまたはポジフィルムを密着させる工程と、ネガまたはポジフィルムを介して光感光性樹脂版を露光する工程と、ネガまたはポジフィルムをはがして未露光部分を洗い流し露光部分を凸部として現像する工程と、を有する方法があげられる。また、当該方法においては、その他の工程として、熱風乾燥で凸部パターンを乾燥させる工程や、基材と凸部との密着性向上及び凸部の硬度向上を目的とする後露光を行ってもよい。
[Exposure plate making method]
In the method for manufacturing a polishing pad of the present embodiment, a plate-making method for letterpress can be applied as a method for molding the convex portion. In the exposure plate making method, first, a step of joining a base material and a photosensitive resin plate (solid state at room temperature) and a negative or positive film capable of recording a convex pattern on the surface of the photosensitive resin plate are formed. A method having a step of bringing them into close contact, a step of exposing a photosensitive resin plate via a negative or a positive film, and a step of peeling off the negative or the positive film to wash away an unexposed portion and developing the exposed portion as a convex portion. can give. Further, in the method, as other steps, a step of drying the convex portion pattern by hot air drying, or post-exposure for the purpose of improving the adhesion between the base material and the convex portion and improving the hardness of the convex portion may be performed. good.

このような凸版用の製版方法を応用した研磨パッドの製造方法においては、所定の平均角度θ等を得るため、露光光がネガまたはポジフィルムの下に回り込みやすいように直上だけでなく斜めからも露光をするか、もしくはネガまたはポジフィルムの穴がテーパー状を有するようにしてもよい。このような方法であれば、高い凸部を形成することが困難な上記スクリーン印刷法と異なり、より厚い光感光性樹脂版を用いるだけで容易に高さtを高くすることができる。また、上記のとおり、平均角度θを可能することも可能である。 In the method of manufacturing a polishing pad applying such a plate making method for a relief plate, in order to obtain a predetermined average angle θ and the like, the exposure light can easily wrap under the negative or positive film not only directly above but also diagonally. It may be exposed or the holes in the negative or positive film may be tapered. With such a method, unlike the screen printing method in which it is difficult to form a high convex portion, the height t can be easily increased only by using a thicker photosensitive resin plate. Further, as described above, it is also possible to enable an average angle θ.

光感光性樹脂版を構成する樹脂としては、特に制限されないが、例えば、ポリエーテルアミド、ポリエーテルエステルアミド、アンモニウム塩型三級窒素原子含有ポリアミド、アミド結合を1つ以上有するアミド化合物と有機ジイソシアネート化合物の付加重合体、アミド結合を有しないジアミンと有機ジイソシアネート化合物の付加重合体などが挙げられる。また、上述した光重合開始剤が含まれている方がより好ましい。 The resin constituting the photosensitive resin plate is not particularly limited, and is, for example, a polyether amide, a polyether ester amide, an ammonium salt type tertiary nitrogen atom-containing polyamide, an amide compound having one or more amide bonds, and an organic diisocyanate. Examples thereof include an addition polymer of a compound, an addition polymer of a diamine having no amide bond and an organic diisocyanate compound, and the like. Further, it is more preferable that the above-mentioned photopolymerization initiator is contained.

〔モールド成型法〕
本実施形態の研磨パッドの製造方法において、成型用の版(モールド)を用いて凸部パターンを研磨層に転写形成することもできる。複数の凹部が配列された凹凸パターンからなる版を作製する工程、版の凹部内に硬化性樹脂を流し込む工程、基材を硬化性樹脂およびに版に接合させる工程、硬化性樹脂を硬化させ、版より硬化性樹脂を剥離させる工程などにより凸部パターンを研磨層に転写形成することもできる。版としてゴム版、樹脂版などを用いることができる。硬化性樹脂は、上述した熱硬化性樹脂、光硬化性樹脂、二液型硬化樹脂などが挙げられる。成型方法は常温常圧で樹脂自身の重さによって型に流し込む重力注型法や、型と樹脂を真空容器に入れて減圧し大気圧で押し込む真空注型法などが挙げられる。
[Molding method]
In the method for manufacturing a polishing pad of the present embodiment, a convex pattern can be transferred and formed on a polishing layer by using a molding plate (mold). A process of producing a plate consisting of an uneven pattern in which a plurality of recesses are arranged, a process of pouring a curable resin into the recesses of the plate, a process of joining a base material to a curable resin and a plate, and a process of curing the curable resin. It is also possible to transfer and form the convex pattern on the polishing layer by a step of peeling the curable resin from the plate. A rubber plate, a resin plate, or the like can be used as the plate. Examples of the curable resin include the above-mentioned thermosetting resin, photocurable resin, and two-component curable resin. Examples of the molding method include a gravity casting method in which the mold and the resin are poured into a mold by the weight of the resin itself at normal temperature and pressure, and a vacuum casting method in which the mold and the resin are placed in a vacuum container, depressurized and pushed in at atmospheric pressure.

さらに、スクリーン印刷法、露光製版法、又はモールド成型法の後に、凹凸パターンの表面をドレス処理・バフ処理により整える工程を有していてもよい。 Further, after the screen printing method, the exposure plate making method, or the molding method, the surface of the uneven pattern may be prepared by dressing or buffing.

〔研磨加工品の製造方法〕
本実施形態の研磨加工品の製造方法は、遊離砥粒の存在下、上記研磨パッドを用いて、被研磨物を研磨する研磨工程を有する方法であれば、特に限定されない。研磨工程は、1次ラッピング研磨(粗ラッピング)であってもよく、2次ラッピング(仕上げラッピング)であってもよく、ポリッシング研磨であってもよく、これらのうち複数の研磨を兼ねるものであってもよい。
[Manufacturing method of polished products]
The method for producing the polished product of the present embodiment is not particularly limited as long as it has a polishing step of polishing the object to be polished using the above-mentioned polishing pad in the presence of free abrasive grains. The polishing step may be primary wrapping polishing (coarse wrapping), secondary wrapping (finish wrapping), or polishing polishing, and of these, a plurality of of these may be combined. You may.

被研磨物としては、特に限定されないが、例えば、半導体デバイス、電子部品等の材料、特に、Si基板(シリコンウェハ)、SiC(炭化珪素)基板、GaAs(ガリウム砒素)基板、ガラス、ハードディスクやLCD(液晶ディスプレイ)用基板等の薄型基板(被研磨物)が挙げられる。このなかでも、本実施形態の研磨加工品の製造方法は、パワーデバイス、LEDなどに適用され得る材料、例えば、サファイア、SiC、GaN、及びダイヤモンドなど、研磨加工の困難な難加工材料の製造方法として好適に用いることができる。これらの中では、本実施形態の研磨パッドによる作用効果をより有効に活用できる観点から、半導体ウエハが好ましく、SiC基板、サファイア基板又はGaN基板が好ましい。その材質としては、SiC単結晶及びGaN単結晶等の難削材が好ましいが、サファイア、窒化珪素、窒化アルミニウムの単結晶などであってもよい。 The object to be polished is not particularly limited, but is, for example, a material such as a semiconductor device or an electronic component, particularly a Si substrate (silicon wafer), a SiC (silicon carbide) substrate, a GaAs (gallium arsenide) substrate, glass, a hard disk, or an LCD. Examples thereof include thin substrates (objects to be polished) such as substrates for (liquid crystal displays). Among these, the method for manufacturing a polished product of the present embodiment is a method for manufacturing a difficult-to-polish material such as sapphire, SiC, GaN, and diamond, which can be applied to power devices, LEDs, and the like. Can be suitably used as. Among these, a semiconductor wafer is preferable, and a SiC substrate, a sapphire substrate, or a GaN substrate is preferable from the viewpoint that the action and effect of the polishing pad of the present embodiment can be more effectively utilized. As the material, a difficult-to-cut material such as a SiC single crystal or a GaN single crystal is preferable, but a single crystal of sapphire, silicon nitride, aluminum nitride or the like may be used.

〔研磨工程〕
研磨工程は、遊離砥粒の存在下、上記研磨パッドを用いて、被研磨物を研磨する工程である。研磨方法としては、従来公知の方法を用いることができ、特に限定されない。
[Polishing process]
The polishing step is a step of polishing the object to be polished using the above-mentioned polishing pad in the presence of free abrasive grains. As the polishing method, a conventionally known method can be used and is not particularly limited.

研磨方法では、まず、研磨装置の所定位置に研磨パッドを装着する。この装着の際には、上述の接着層を介して、研磨パッドが研磨装置に固定されるよう装着される。そして、研磨定盤としての研磨パッドと対向するように配置された保持定盤に保持させた被研磨物を研磨面側へ押し付けると共に、外部からダイヤモンド砥粒を含む研磨スラリーを供給しながら、研磨パッド及び/又は保持定盤を回転させる。これにより、研磨パッドと被研磨物との間に供給された砥粒の作用で、被研磨物の加工面(被研磨面)に研磨加工を施す。 In the polishing method, first, a polishing pad is attached to a predetermined position of the polishing device. At the time of this mounting, the polishing pad is mounted so as to be fixed to the polishing device via the above-mentioned adhesive layer. Then, the object to be polished held on the holding surface plate arranged so as to face the polishing pad as the polishing surface plate is pressed against the polishing surface side, and polishing is performed while supplying the polishing slurry containing diamond abrasive grains from the outside. Rotate the pad and / or holding platen. As a result, the machined surface (polished surface) of the object to be polished is polished by the action of the abrasive grains supplied between the polishing pad and the object to be polished.

研磨スラリーは、好ましくは、ダイヤモンド砥粒と、それを分散する分散媒とを含む。研磨スラリーにおけるダイヤモンド砥粒の含有割合は特に限定されないが、研磨加工をより有効に行うと共に、被研磨物における加工変質層が厚くなるのを抑制する観点から、研磨スラリーの全体量に対して0.01~1.0重量%であると好ましい。 The polishing slurry preferably contains diamond abrasive grains and a dispersion medium for dispersing the diamond abrasive grains. The content ratio of diamond abrasive grains in the polishing slurry is not particularly limited, but from the viewpoint of more effectively performing the polishing process and suppressing the thickening of the work-altered layer in the object to be polished, it is 0 with respect to the total amount of the polishing slurry. It is preferably 0.01 to 1.0% by weight.

なお、研磨において用いる遊離砥粒は、ダイヤモンド砥粒に限定されず、例えば、シリカやアルミナなどであってもよい。また、遊離砥粒の平均粒径は0.25~18μmが好ましく、0.5~18μmがより好ましく、1~15μmが更に好ましく、2~13μmが特に好ましい。砥粒の平均粒径が大きいほど砥粒が凸部の坂を駆け上って研磨面に到達しやすくなり、研磨レートがより向上する傾向にある。また、砥粒の平均粒径が小さいほどワーク表面におけるスクラッチの発生をより抑制するできる傾向にある。 The free abrasive grains used in polishing are not limited to diamond abrasive grains, and may be, for example, silica or alumina. The average particle size of the free abrasive grains is preferably 0.25 to 18 μm, more preferably 0.5 to 18 μm, still more preferably 1 to 15 μm, and particularly preferably 2 to 13 μm. The larger the average particle size of the abrasive grains, the easier it is for the abrasive grains to run up the slope of the convex portion and reach the polished surface, and the polishing rate tends to be further improved. Further, the smaller the average particle size of the abrasive grains, the more the generation of scratches on the work surface tends to be suppressed.

また、遊離砥粒の平均粒径は、表面粗さRzの1.35倍以上が好ましく、1.5倍以上がより好ましく、1.65倍以上がさらに好ましい。遊離砥粒と表面粗さRzが上記関係を満たすことにより、凸部の上面に達した遊離砥粒が研磨面の溝に埋まることなくとどまりやすくなる傾向にある。 The average particle size of the free abrasive grains is preferably 1.35 times or more, more preferably 1.5 times or more, still more preferably 1.65 times or more the surface roughness Rz. When the free abrasive grains and the surface roughness Rz satisfy the above relationship, the free abrasive grains that have reached the upper surface of the convex portion tend to stay easily without being buried in the grooves on the polished surface.

分散媒としては、例えば、水及び有機溶媒が挙げられ、被研磨物の変質をより抑制する観点から、有機溶媒が好ましい。有機溶媒としては、一般的に沸点110~300℃程度の有機溶媒が適する。有機溶媒の種類には、脂肪族及び芳香族、環状炭化水素やエステル、エーテル、アミン、アミド系、ケトン類等の市販の有機溶媒を樹脂や作業的性に応じて適宜選択できる。溶媒は1種を単独で又は2種以上を組み合わせて用いられる。また、溶媒には、必要に応じて、その他の添加剤が含まれていてもよい。そのような添加剤としては、例えば極性化合物が挙げられ、具体的には、非イオン界面活性剤、陰イオン界面活性剤、カルボン酸エステル、カルボン酸アミド及びカルボン酸が挙げられる。さらに、消泡剤、分散剤、レべリング剤、粘性改良材として、各種シリコーン、無機微粉末を添加することができる。 Examples of the dispersion medium include water and an organic solvent, and an organic solvent is preferable from the viewpoint of further suppressing deterioration of the object to be polished. As the organic solvent, an organic solvent having a boiling point of about 110 to 300 ° C. is generally suitable. As the type of organic solvent, commercially available organic solvents such as aliphatic and aromatic, cyclic hydrocarbons, esters, ethers, amines, amides, and ketones can be appropriately selected according to the resin and workability. The solvent may be used alone or in combination of two or more. Further, the solvent may contain other additives, if necessary. Examples of such additives include polar compounds, and specific examples thereof include nonionic surfactants, anionic surfactants, carboxylic acid esters, carboxylic acid amides and carboxylic acids. Further, various silicones and inorganic fine powders can be added as a defoaming agent, a dispersant, a leveling agent, and a viscosity improving material.

なお、研磨加工時に研磨パッドと被研磨物との間の摩擦に伴う温度上昇を抑制する観点から、砥粒を含まず、添加剤を含んでもよい溶媒を研磨パッドの研磨面に適宜供給してもよい。その溶媒及び添加剤の例としては上記のものが挙げられる。 From the viewpoint of suppressing the temperature rise due to friction between the polishing pad and the object to be polished during the polishing process, a solvent that does not contain abrasive grains and may contain additives is appropriately supplied to the polished surface of the polishing pad. May be good. Examples of the solvent and additive include the above.

以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

〔研磨有効面積〕
研磨パッドの研磨面に感圧紙の発色液を塗布し、発色液が塗布された研磨パッドの研磨面(樹脂部表面)と研磨有効面積測定用の押さえ板4と感圧紙5とを重ね合わせ、凹凸パターンに対して十分大きい面積を有するローラーで研磨圧力500gf/cm2に相当する転写圧を掛け感圧紙に凸部パターンを転写させた。また、加圧時の凸部平均高さtを測定した。その後、研磨パッドと感圧紙を引き離し、感圧紙上に転写された研磨面の面積を測定した。感圧紙表面の単位面積(1cm2)当たりにおける、転写された研磨面の面積を研磨パッドの研磨有効面積とした。
[Effective polishing area]
A pressure-sensitive paper coloring liquid is applied to the polishing surface of the polishing pad, and the polishing surface (resin portion surface) of the polishing pad coated with the color-developing liquid is superposed on the pressing plate 4 for measuring the effective polishing area and the pressure-sensitive paper 5. A transfer pressure corresponding to a polishing pressure of 500 gf / cm 2 was applied by a roller having a sufficiently large area to the uneven pattern, and the convex pattern was transferred to the pressure sensitive paper. Moreover, the average height t of the convex portion at the time of pressurization was measured. Then, the polishing pad and the pressure-sensitive paper were separated from each other, and the area of the polished surface transferred onto the pressure-sensitive paper was measured. The area of the transferred polished surface per unit area (1 cm 2 ) of the pressure-sensitive paper surface was defined as the effective polishing area of the polishing pad.

以下に示す実施例1乃至3については、ドレス前の研磨パッドの研磨有効面積(cm2)を評価した後、以下に示すドレス条件でドレス工程を行い、ドレス後の研磨パッドの研磨パッドの研磨有効面積(cm2)を評価した。以下に示す実施例4乃至5、並びに比較例1乃至3については、ドレス前の研磨パッドの研磨有効面積(cm2)のみ評価した。 For Examples 1 to 3 shown below, after evaluating the effective polishing area (cm 2 ) of the polishing pad before dressing, the dressing process is performed under the dressing conditions shown below, and the polishing pad of the polishing pad after dressing is polished. The effective area (cm 2 ) was evaluated. In Examples 4 to 5 and Comparative Examples 1 to 3 shown below, only the effective polishing area (cm 2 ) of the polishing pad before dressing was evaluated.

〔平均角度θ〕
研磨有効面積の測定により得られた二値化した凸部パターンの内、任意に凸部を3つ抽出し、凸部の円相当直径を求め、得られた円相当直径を加重平均することにより凸部の上面の平均円相当直径M1を算出した。また、このときに、基材12と感圧紙5との平均距離を測定し、平均高さtも算出した。さらに、研磨パッドの表面をレーザー顕微鏡(キーエンス社製 LASER MICROSCOPE VH-5500)により撮影し、得られた画像から凸部の底面の輪郭を特定して、特定された輪郭より凸部の底面の平均円相当直径を算出した。最後に、下記式(1)により算出されたtanθの値からθを算出した。
tanθ=t/((L1-M1)/2)・・・(1)
t :凸部に研磨圧力500g/cm2を掛けたときの凸部の平均高さ
L1:凸部の底面の平均円相当直径
M1:凸部に研磨圧力500g/cm2を掛けたときの凸部の上面の平均円相当直径
[Average angle θ]
From the binarized convex part patterns obtained by measuring the effective polishing area, three convex parts are arbitrarily extracted, the circle-equivalent diameter of the convex part is obtained, and the obtained circle-equivalent diameter is weighted and averaged. The average circle-equivalent diameter M1 of the upper surface of the convex portion was calculated. At this time, the average distance between the base material 12 and the pressure-sensitive paper 5 was measured, and the average height t was also calculated. Furthermore, the surface of the polishing pad was photographed with a laser microscope (LASER MICROSCOPE VH-5500 manufactured by KEYENCE), the contour of the bottom surface of the convex portion was identified from the obtained image, and the average of the bottom surface of the convex portion from the specified contour. The diameter equivalent to a circle was calculated. Finally, θ was calculated from the value of tan θ calculated by the following equation (1).
tan θ = t / ((L1-M1) / 2) ... (1)
t: Average height of the convex portion when a polishing pressure of 500 g / cm 2 is applied to the convex portion L1: Average circle-equivalent diameter of the bottom surface of the convex portion M1: Convex when a polishing pressure of 500 g / cm 2 is applied to the convex portion Average circle equivalent diameter of the upper surface of the part

〔研磨面の表面粗さRz〕
JIS B0633:2001(ISO4288:1996)に従い、研磨面の表面粗さRzを触針式表面粗さ計(テーラーホブソン社製フォームタリサーフPGI1240)を用いて測定した。測定対象物の凸部表面が、頂部中心から隣接する頂部中心にかけて高さ方向のパラメータ(Rz)が最大になる測定方向に計測針が通過するよう設置し、触針により20.1mm測定した。計測した断面画像より凸部表面頂部を選択し、Rzが0.5mm以下の場合は0.25mmにてカットオフし、Rzが0.5mm超の場合は0.8mmにてカットオフし、凸部表面頂部の長さを評価長さとして表面粗さRzを求めた。
[Surface roughness Rz of polished surface]
According to JIS B0633: 2001 (ISO4288: 1996), the surface roughness Rz of the polished surface was measured using a stylus type surface roughness meter (Taylor Hobson Foam Talisurf PGI1240). The surface of the convex portion of the object to be measured was installed so that the measuring needle passed in the measuring direction in which the parameter (Rz) in the height direction was maximized from the center of the apex to the center of the adjacent apex, and the measurement was performed by a stylus at 20.1 mm. Select the top of the convex surface from the measured cross-sectional image, cut off at 0.25 mm when Rz is 0.5 mm or less, cut off at 0.8 mm when Rz exceeds 0.5 mm, and convex. The surface roughness Rz was determined by using the length of the top of the surface of the portion as the evaluation length.

以下に示す実施例1乃至3については、ドレス前の研磨パッドの表面粗さRzを評価した後、以下に示すドレス条件でドレス工程を行い、ドレス後の研磨パッドの表面粗さRzを評価した。以下に示す実施例4乃至5、並びに比較例1乃至3については、ドレス前の研磨パッドの表面粗さRzのみ評価した。 For Examples 1 to 3 shown below, the surface roughness Rz of the polishing pad before dressing was evaluated, and then the dressing process was performed under the dressing conditions shown below, and the surface roughness Rz of the polishing pad after dressing was evaluated. .. In Examples 4 to 5 and Comparative Examples 1 to 3 shown below, only the surface roughness Rz of the polishing pad before dressing was evaluated.

〔研磨試験〕
研磨パッドを研磨装置の所定位置に両面テープを介して設置し、被研磨物としての2インチのサファイアCウエハに対して、下記条件にて研磨を施す研磨試験を行った。なお、以下に示す実施例1乃至3については、研磨試験の際には、まず、下記ドレス条件に示す条件にて研磨パッドのドレス工程を行い、下記研磨条件に示す条件にて研磨を実施した。
以下に示す実施例4乃至5、並びに比較例1乃至3については、下記ドレス工程を行わず、下記研磨条件に示す条件にて研磨を実施した。
(ドレス条件)
ドレス番手 :#270(65μm相当)
ドレス回転数 :70rpm
ドレス圧 :311gf/cm2
ドレス時間 :5min
(研磨条件)
定盤回転数 :100rpm
面圧力 :495gf/cm2
ルブリカント高粘度:V600
研磨時間:
研磨レート:20min
連続研磨 :最長15時間超
砥粒 :多結晶ダイヤモンド(砥粒径7μm)
[Polishing test]
A polishing pad was placed at a predetermined position of the polishing device via double-sided tape, and a polishing test was conducted in which a 2-inch sapphire C wafer as an object to be polished was polished under the following conditions. In Examples 1 to 3 shown below, in the polishing test, the polishing pad was first dressed under the conditions shown in the following dressing conditions, and the polishing was performed under the conditions shown in the following polishing conditions. ..
In Examples 4 to 5 and Comparative Examples 1 to 3 shown below, polishing was carried out under the conditions shown in the following polishing conditions without performing the following dressing process.
(Dress condition)
Dress count: # 270 (equivalent to 65 μm)
Dress rotation speed: 70 rpm
Dress pressure: 311gf / cm 2
Dress time: 5min
(Polishing conditions)
Surface plate rotation speed: 100 rpm
Surface pressure: 495 gf / cm 2
Lubricant High Viscosity: V600
Polishing time:
Polishing rate: 20min
Continuous polishing: Up to 15 hours or more Abrasive grain: Polycrystalline diamond (abrasive particle size 7 μm)

(研磨レート)
研磨レート(単位:μm/h)は、上記研磨前後の被研磨物の質量減少から求めた研磨量、被研磨物の研磨面積及び比重から、研磨により除去された厚さを算出し、時間当たりの除去された厚さとして評価した。なお、厚さは、加工前後の被研磨物の質量減少から求めた研磨量、被研磨物の研磨面積及び比重から算出した。なお、研磨試験は、3枚のサファイアCウエハに対して行い、その加重平均を研磨レートとした。
(Polishing rate)
For the polishing rate (unit: μm / h), the thickness removed by polishing is calculated from the polishing amount obtained from the mass reduction of the object to be polished before and after the polishing, the polishing area and the specific gravity of the object to be polished, and per hour. Was evaluated as the removed thickness of. The thickness was calculated from the polishing amount obtained from the mass reduction of the object to be polished before and after processing, the polishing area of the object to be polished, and the specific gravity. The polishing test was performed on three sapphire C wafers, and the weighted average thereof was taken as the polishing rate.

(製品寿命)
製品寿命は、初期研磨レートを100%としたときに、研磨レートが60%まで低下する時間として次の三段階で評価した。
○:15時間超をクリアした。
△:7~15時間に留まった。
×:7時間に満たなかった。
(Product life)
The product life was evaluated in the following three stages as the time for the polishing rate to decrease to 60% when the initial polishing rate was 100%.
◯: Cleared over 15 hours.
Δ: Stayed for 7 to 15 hours.
X: Less than 7 hours.

〔実施例1〕
エポキシ樹脂(DIC社製、商品名「EPICLON850-S」、エポキシ当量:183~193g/eq)51質量部と、テトラヒドロフタル酸無水物(DIC社製、商品名「EPICLONB-570-H」、酸無水物当量:166g/eq)45質量部と、ヒュームドシリカ(日本アエロジル社製:アエロジルRY200S)3質量部と、イミダゾール(2E4MZ、四国化成工業(株)製)1質量部と、を混合し硬化性組成物を調製した。なお、前記ヒュームドシリカによる砥粒としての研磨効果は無いか、あっても極めて低いものである。
[Example 1]
51 parts by mass of epoxy resin (manufactured by DIC, trade name "EPICLON850-S", epoxy equivalent: 183 to 193 g / eq) and tetrahydrophthalic anhydride (manufactured by DIC, trade name "EPICLONB-570-H", acid) Anhydrous equivalent: 166 g / eq) 45 parts by mass, fumed silica (manufactured by Nippon Aerosil Co., Ltd .: Aerosil RY200S) by 3 parts by mass, and imidazole (2E4MZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.) by 1 part by mass. A curable composition was prepared. It should be noted that the polishing effect of the fumed silica as abrasive grains is not present, or even if it is present, it is extremely low.

基材であるポリエチレンテレフタレートフィルム(東洋紡績株式会社製、製品名コスモシャイン A4300 250μm)上に、スクリーン印刷にて、ドット状の凸部が図1に示す凹凸パターンで規則的に配列されるようにドット直径は2mm、隣接するドット同士の最近接距離を0.5mmとしたスクリーンマスクを用いて硬化性組成物を塗布した。 On the polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., product name Cosmo Shine A4300 250 μm), which is the base material, the dot-shaped protrusions are regularly arranged in the uneven pattern shown in FIG. 1 by screen printing. The curable composition was applied using a screen mask having a dot diameter of 2 mm and a close contact distance between adjacent dots of 0.5 mm.

その後、130度に加熱することで、硬化性組成物を硬化させ、樹脂部を形成した。最後に、基材の樹脂部とは反対側に、接着層として両面テープ(3M社製、製品名フィルム基材両面粘着テープ 442JS)を貼り付けて、実施例1の研磨パッドを得た。 Then, by heating to 130 degrees, the curable composition was cured and a resin portion was formed. Finally, a double-sided tape (manufactured by 3M, product name film base material double-sided adhesive tape 442JS) was attached as an adhesive layer on the side opposite to the resin portion of the base material to obtain the polishing pad of Example 1.

〔実施例2〕
ドットの直径3mmとし、隣接するドット同士の最近接距離0.5mmとしたスクリーンマスクを用いる以外は実施例1と同様の方法により実施例2の研磨パッドを得た。
[Example 2]
The polishing pad of Example 2 was obtained by the same method as in Example 1 except that a screen mask having a dot diameter of 3 mm and a close contact distance between adjacent dots of 0.5 mm was used.

〔実施例3〕
ドットの直径4mmとし、隣接するドット同士の最近接距離0.5mmとしたスクリーンマスクを用いる以外は実施例1と同様の方法により実施例3の研磨パッドを得た。
[Example 3]
The polishing pad of Example 3 was obtained by the same method as in Example 1 except that a screen mask having a dot diameter of 4 mm and a close contact distance between adjacent dots of 0.5 mm was used.

〔実施例4〕
UV塗工剤(帝国インキ製造社製、製品名UV BOP)100質量部と、光硬化性モノマー(新中村化学工業社製、製品名TMM-360)20質量部と、光硬化性モノマー(新中村化学工業社製、製品名LMA)10質量部とを混合し、硬化性組成物を調製した。
[Example 4]
100 parts by mass of UV coating agent (Teikoku Printing Inks, product name UV BOP), 20 parts by mass of photocurable monomer (Shin Nakamura Chemical Industry Co., Ltd., product name TMM-360), and photocurable monomer (new) A curable composition was prepared by mixing with 10 parts by mass of Nakamura Chemical Industry Co., Ltd., product name LMA).

基材であるポリエチレンテレフタレートフィルム(東洋紡績株式会社製、製品名コスモシャイン A4300 250μm)上に、スクリーン印刷にて、ドット状の凸部が図1に示す凹凸パターンで規則的に配列されるようにドット直径は2mm、隣接するドット同士の最近接距離を0.5mmとしたスクリーンマスクを用いて硬化性組成物を塗布した。 On the polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., product name Cosmo Shine A4300 250 μm), which is the base material, the dot-shaped protrusions are regularly arranged in the uneven pattern shown in FIG. 1 by screen printing. The curable composition was applied using a screen mask having a dot diameter of 2 mm and a close contact distance between adjacent dots of 0.5 mm.

その後、UV装置(アイグラフィックス社製、製品名メタルハライドランプ 120W/cm)にてUV照射することで、硬化性組成物を硬化させ、樹脂部を形成した。最後に、基材の樹脂部とは反対側に、接着層として両面テープ(3M社製、製品名フィルム基材両面粘着テープ 442JS)を貼り付けて、実施例4の研磨パッドを得た。 Then, the curable composition was cured by UV irradiation with a UV device (manufactured by Eye Graphics Co., Ltd., product name: metal halide lamp 120 W / cm) to form a resin portion. Finally, a double-sided tape (manufactured by 3M, product name film base material double-sided adhesive tape 442JS) was attached as an adhesive layer on the side opposite to the resin portion of the base material to obtain the polishing pad of Example 4.

〔実施例5〕
ドットの直径1mmとし、隣接するドット同士の最近接距離1mmとしたスクリーンマスクを用いる以外は実施例4と同様の方法により実施例5の研磨パッドを得た。
[Example 5]
The polishing pad of Example 5 was obtained by the same method as in Example 4 except that a screen mask having a dot diameter of 1 mm and a closest contact distance between adjacent dots of 1 mm was used.

〔比較例1〕
ドットの直径1mmとし、隣接するドット同士の最近接距離2mmとしたスクリーンマスクを用いる以外は実施例4と同様の方法により比較例1の研磨パッドを得た。
[Comparative Example 1]
The polishing pad of Comparative Example 1 was obtained by the same method as in Example 4 except that a screen mask having a dot diameter of 1 mm and a closest contact distance between adjacent dots of 2 mm was used.

〔比較例2〕
ドットの直径0.5mmとし、隣接するドット同士の最近接距離0.33mmとしたスクリーンマスクを用いる以外は実施例4と同様の方法により比較例2の研磨パッドを得た。
[Comparative Example 2]
The polishing pad of Comparative Example 2 was obtained by the same method as in Example 4 except that a screen mask having a dot diameter of 0.5 mm and a closest contact distance between adjacent dots of 0.33 mm was used.

〔比較例3〕
直径が8mm、隣接する凹部同士の最近接距離が3mm、高さが1.6mmでテーパー角度が83度からなる円錐台状の凹部を有する金型を準備した。
次に、UV塗工剤(帝国インキ製造社製、製品名UV BOP)100質量部と、光硬化性モノマー(新中村化学工業社製、製品名TMM-360)20質量部と、光硬化性モノマー(新中村化学工業社製、製品名LMA)10質量部とを混合し、硬化性組成物を調製した。
[Comparative Example 3]
A mold having a truncated cone-shaped recess having a diameter of 8 mm, a close contact distance between adjacent recesses of 3 mm, a height of 1.6 mm, and a taper angle of 83 degrees was prepared.
Next, 100 parts by mass of UV coating agent (manufactured by Teikoku Printing Co., Ltd., product name UV BOP), 20 parts by mass of photocurable monomer (manufactured by Shin Nakamura Chemical Industry Co., Ltd., product name TMM-360), and photocurability. A curable composition was prepared by mixing with 10 parts by mass of a monomer (manufactured by Shin-Nakamura Chemical Industry Co., Ltd., product name LMA).

次に、硬化性組成物を金型の凹部に注型し、金型の上に基材であるポリエチレンテレフタレートフィルム(東洋紡績株式会社製、製品名コスモシャイン A4300 250μm)をローラーにより圧力を加えながら敷設し、硬化性組成物と基材フィルムを接着する状態にした。さらに、UV装置(アイグラフィックス社製、製品名メタルハライドランプ 120W/cm)にて基材フィルムを通じてUV照射することで、硬化性組成物を硬化させ、金型から基材フィルムを離型させて樹脂部を形成した。最後に、基材の樹脂部とは反対側に、接着層として両面テープ(3M社製、製品名フィルム基材両面粘着テープ 442JS)を貼り付けて、比較例3の研磨パッドを得た。 Next, the curable composition is cast into the concave portion of the mold, and a polyethylene terephthalate film (manufactured by Toyobo Co., Ltd., product name Cosmo Shine A4300 250 μm) as a base material is applied on the mold while applying pressure with a roller. It was laid so that the curable composition and the base film were adhered to each other. Further, by irradiating UV through the base film with a UV device (manufactured by Eye Graphics Co., Ltd., product name: metal halide lamp 120 W / cm), the curable composition is cured and the base film is released from the mold. A resin part was formed. Finally, a double-sided tape (manufactured by 3M, product name film base material double-sided adhesive tape 442JS) was attached as an adhesive layer on the side opposite to the resin portion of the base material to obtain a polishing pad of Comparative Example 3.

Figure 0006990993000001
():カッコ内はドレス後
Figure 0006990993000001
(): After dressing in parentheses

本発明の研磨パッドは、光学材料、半導体デバイス、ハードディスク用のガラス基板等のラッピングや研磨、特にサファイアやSiCなどのラッピングや研磨用の研磨パッドとして産業上の利用可能性を有する。 The polishing pad of the present invention has industrial applicability as a polishing pad for wrapping and polishing optical materials, semiconductor devices, glass substrates for hard disks, and particularly for wrapping and polishing sapphire and SiC.

10…研磨パッド、11…樹脂部、11a…凸部、11b…断面、12…基材、13…接着層、4…押さえ板、5…感圧紙、6…研磨面 10 ... Polishing pad, 11 ... Resin part, 11a ... Convex part, 11b ... Cross section, 12 ... Base material, 13 ... Adhesive layer, 4 ... Pressing plate, 5 ... Pressure sensitive paper, 6 ... Polished surface

Claims (10)

基材と、該基材上に配された樹脂部と、を備える研磨パッドであって、
該樹脂部は、単独で又は前記基材と共に凹凸パターンを構成し、
前記凹凸パターンは、研磨面を有する複数の凸部が配列されたパターンであり、
前記凸部に研磨圧力500g/cm2を掛けたときの前記研磨面の面積の総和が、前記基材表面の単位面積(1cm2)当たりにおいて、0.05~0.8cm2であり、
面粗さRzが、研磨に用いる遊離砥粒の平均粒径1~18μmを基準1.0として、0.75以下であり、
下記式(1)をみたすθが、5~60°である、
tanθ=t/((L1-M1)/2)・・・(1)
t :前記凸部に研磨圧力500g/cm2を掛けたときの前記凸部の平均高さ
L1:前記凸部の底面の平均円相当直径
M1:前記凸部に研磨圧力500g/cm2を掛けたときの前記凸部の上面の平均円相当直径
研磨パッド。
A polishing pad including a base material and a resin portion arranged on the base material.
The resin portion forms a concavo-convex pattern alone or together with the base material.
The uneven pattern is a pattern in which a plurality of convex portions having a polished surface are arranged.
The total area of the polished surface when the polishing pressure of 500 g / cm 2 is applied to the convex portion is 0.05 to 0.8 cm 2 per unit area (1 cm 2 ) of the substrate surface.
The surface roughness Rz is 0.75 or less based on the average particle size of 1 to 18 μm of the free abrasive grains used for polishing as a reference 1.0.
The θ satisfying the following equation (1) is 5 to 60 °.
tan θ = t / ((L1-M1) / 2) ... (1)
t: Average height of the convex portion when a polishing pressure of 500 g / cm 2 is applied to the convex portion L1: Average circle-equivalent diameter of the bottom surface of the convex portion M1: Polishing pressure of 500 g / cm 2 is applied to the convex portion. A polishing pad having a diameter equivalent to an average circle on the upper surface of the convex portion when the protrusion is formed.
前記凸部の平均高さtが0.06~1mmである、
請求項1に記載の研磨パッド。
The average height t of the convex portion is 0.06 to 1 mm.
The polishing pad according to claim 1.
前記凸部の平均円相当直径L1が、1~5mmである、
請求項1又は2に記載の研磨パッド。
The average circle-equivalent diameter L1 of the convex portion is 1 to 5 mm.
The polishing pad according to claim 1 or 2.
隣り合う前記凸部の最近接距離L2が、0.1~3mmである、
請求項1~3のいずれか1項に記載の研磨パッド。
The closest contact distance L2 of the adjacent convex portions is 0.1 to 3 mm.
The polishing pad according to any one of claims 1 to 3.
前記樹脂部が、エポキシ系樹脂、アクリル系樹脂、ポリエステル系樹脂、不飽和ポリエステル系樹脂、ポリアミド系樹脂、及びポリウレタン系樹脂からなる群より選ばれる少なくとも1種を含む、
請求項1~4のいずれか1項に記載の研磨パッド。
The resin portion contains at least one selected from the group consisting of an epoxy resin, an acrylic resin, a polyester resin, an unsaturated polyester resin, a polyamide resin, and a polyurethane resin.
The polishing pad according to any one of claims 1 to 4.
前記基材の前記樹脂部とは反対側に、接着層をさらに備える、
請求項1~5のいずれか1項に記載の研磨パッド。
An adhesive layer is further provided on the side of the base material opposite to the resin portion.
The polishing pad according to any one of claims 1 to 5.
前記研磨面が、固定砥粒を実質的に含まない、
請求項1~6のいずれか1項に記載の研磨パッド。
The polished surface is substantially free of fixed abrasive grains.
The polishing pad according to any one of claims 1 to 6.
請求項1~7のいずれか1項に記載の研磨パッドの製造方法であって、
スクリーン印刷法、露光製版法、又はモールド成型法により、研磨面を有する複数の凸部が配列された凹凸パターンからなる樹脂部を基板上に形成する工程を有する、
研磨パッドの製造方法。
The method for manufacturing a polishing pad according to any one of claims 1 to 7.
The present invention comprises a step of forming a resin portion having a concavo-convex pattern in which a plurality of convex portions having a polished surface are arranged on a substrate by a screen printing method, an exposure plate making method, or a molding method.
How to make a polishing pad.
遊離砥粒の存在下、請求項1~7のいずれか1項に記載の研磨パッドを用いて、被研磨物を研磨する研磨工程を有する、
研磨加工品の製造方法。
A polishing step of polishing an object to be polished using the polishing pad according to any one of claims 1 to 7 in the presence of free abrasive grains.
Manufacturing method of polished products.
前記遊離砥粒の平均粒径が、0.25~18μmである、
請求項9に記載の研磨加工品の製造方法。
The average particle size of the free abrasive grains is 0.25 to 18 μm.
The method for manufacturing a polished product according to claim 9.
JP2017104786A 2017-05-26 2017-05-26 Polishing pad and its manufacturing method, and manufacturing method of polished products Active JP6990993B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017104786A JP6990993B2 (en) 2017-05-26 2017-05-26 Polishing pad and its manufacturing method, and manufacturing method of polished products
CN201880025797.7A CN110536775B (en) 2017-05-26 2018-05-17 Polishing pad, method for producing same, and method for producing polished product
PCT/JP2018/019103 WO2018216593A1 (en) 2017-05-26 2018-05-17 Polishing pad, method for producing same, and method for producing polished article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017104786A JP6990993B2 (en) 2017-05-26 2017-05-26 Polishing pad and its manufacturing method, and manufacturing method of polished products

Publications (2)

Publication Number Publication Date
JP2018199182A JP2018199182A (en) 2018-12-20
JP6990993B2 true JP6990993B2 (en) 2022-01-12

Family

ID=64396457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017104786A Active JP6990993B2 (en) 2017-05-26 2017-05-26 Polishing pad and its manufacturing method, and manufacturing method of polished products

Country Status (3)

Country Link
JP (1) JP6990993B2 (en)
CN (1) CN110536775B (en)
WO (1) WO2018216593A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210387119A1 (en) 2018-10-23 2021-12-16 Teijin Limited Filtration filter, filter-equipped container, and method for removing foreign matter in cell suspension

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225855A (en) 2002-01-30 2003-08-12 Hitachi Chem Co Ltd Polishing pad and method for polishing matter to be polished using the same
JP2005074614A (en) 2003-09-03 2005-03-24 Nitta Haas Inc Polishing pad and its manufacturing method
JP2005149668A (en) 2003-11-19 2005-06-09 Hoya Corp Manufacturing method for glass substrate for magnetic disk, and manufacturing method for magnetic disk
JP2005166712A (en) 2003-11-28 2005-06-23 Dainippon Printing Co Ltd Polishing pad for cmp and polishing method
JP2005183712A (en) 2003-12-19 2005-07-07 Toyo Tire & Rubber Co Ltd Polishing pad, method of polishing, semiconductor device and its manufacturing method
JP2013193181A (en) 2012-03-21 2013-09-30 Fujibo Holdings Inc Sheet for polishing pad, method for manufacturing the same, polishing pad, method for manufacturing the same, and polishing method
JP2017064882A (en) 2015-10-02 2017-04-06 富士紡ホールディングス株式会社 Polishing brush
JP2017071053A (en) 2013-03-14 2017-04-13 ネクスプラナー コーポレイション Polishing pad having polishing surface with continuous protrusions having tapered sidewalls

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6206759B1 (en) * 1998-11-30 2001-03-27 Micron Technology, Inc. Polishing pads and planarizing machines for mechanical or chemical-mechanical planarization of microelectronic-device substrate assemblies, and methods for making and using such pads and machines
CN102601747B (en) * 2011-01-20 2015-12-09 中芯国际集成电路制造(上海)有限公司 A kind of grinding pad and preparation method thereof, using method
JPWO2015194278A1 (en) * 2014-06-17 2017-04-20 バンドー化学株式会社 Polishing pad and polishing pad manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225855A (en) 2002-01-30 2003-08-12 Hitachi Chem Co Ltd Polishing pad and method for polishing matter to be polished using the same
JP2005074614A (en) 2003-09-03 2005-03-24 Nitta Haas Inc Polishing pad and its manufacturing method
JP2005149668A (en) 2003-11-19 2005-06-09 Hoya Corp Manufacturing method for glass substrate for magnetic disk, and manufacturing method for magnetic disk
JP2005166712A (en) 2003-11-28 2005-06-23 Dainippon Printing Co Ltd Polishing pad for cmp and polishing method
JP2005183712A (en) 2003-12-19 2005-07-07 Toyo Tire & Rubber Co Ltd Polishing pad, method of polishing, semiconductor device and its manufacturing method
JP2013193181A (en) 2012-03-21 2013-09-30 Fujibo Holdings Inc Sheet for polishing pad, method for manufacturing the same, polishing pad, method for manufacturing the same, and polishing method
JP2017071053A (en) 2013-03-14 2017-04-13 ネクスプラナー コーポレイション Polishing pad having polishing surface with continuous protrusions having tapered sidewalls
JP2017064882A (en) 2015-10-02 2017-04-06 富士紡ホールディングス株式会社 Polishing brush

Also Published As

Publication number Publication date
JP2018199182A (en) 2018-12-20
CN110536775A (en) 2019-12-03
CN110536775B (en) 2022-11-29
WO2018216593A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
JP4515316B2 (en) Method for polishing an exposed surface of a semiconductor wafer
EP0984846B1 (en) Method of manufacturing a polymeric polishing pad having photolithographically induced surface pattern
JP5620141B2 (en) Polishing pad
KR100777846B1 (en) Polishing Pad and Method of Use Thereof
CN102123830B (en) Abrasive material product, its production method and use method
JP2980682B2 (en) Polishing tape and method of manufacturing the same
TW201600233A (en) Polishing pad and method for producing polishing pad
JP6317842B1 (en) Polishing pad and manufacturing method thereof
JP2013505145A (en) Structured abrasive article and method of use
JP6792988B2 (en) Polishing pad and its manufacturing method, and manufacturing method of polished products
JP2013533125A (en) Bonding technique for fixed abrasives used for chemical mechanical planarization
TW201936883A (en) Fixed abrasive three-dimensional lapping and polishing plate and methods of making and using the same
JP6990993B2 (en) Polishing pad and its manufacturing method, and manufacturing method of polished products
JP2005166712A (en) Polishing pad for cmp and polishing method
CN110774172A (en) Polishing pad
JP6970493B2 (en) Polishing pad and its manufacturing method, and manufacturing method of polished products
JP4845347B2 (en) Polishing pad and manufacturing method thereof
JP7002853B2 (en) Polishing pad and its manufacturing method, and manufacturing method of polished products
JP2002059357A (en) Polishing pad, polishing device and polishing method
JP7193221B2 (en) Polishing pad, method for producing same, and method for producing abrasive product
JP2002075932A (en) Polishing pad, and apparatus and method for polishing
JP2017131977A (en) Wrapping sheet for hard-to-cut material and method for manufacturing the same, and method for manufacturing wrapped product
JP2024024760A (en) Polishing pad and manufacturing method for the same as well as manufacturing method for polished product
JP2023124048A (en) Polishing pad and method for manufacturing the same
JP2023148907A (en) Method for manufacturing polishing pad, and polishing pad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 6990993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150