JP6990005B2 - Chemical injection method and equipment - Google Patents

Chemical injection method and equipment Download PDF

Info

Publication number
JP6990005B2
JP6990005B2 JP2017235981A JP2017235981A JP6990005B2 JP 6990005 B2 JP6990005 B2 JP 6990005B2 JP 2017235981 A JP2017235981 A JP 2017235981A JP 2017235981 A JP2017235981 A JP 2017235981A JP 6990005 B2 JP6990005 B2 JP 6990005B2
Authority
JP
Japan
Prior art keywords
injection
groove
elastic member
hollow cylindrical
cylindrical elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017235981A
Other languages
Japanese (ja)
Other versions
JP2019100165A (en
Inventor
直人 巴
芳隆 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittoc Constructions Co Ltd
Original Assignee
Nittoc Constructions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittoc Constructions Co Ltd filed Critical Nittoc Constructions Co Ltd
Priority to JP2017235981A priority Critical patent/JP6990005B2/en
Publication of JP2019100165A publication Critical patent/JP2019100165A/en
Application granted granted Critical
Publication of JP6990005B2 publication Critical patent/JP6990005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

本発明は、注入装置を用いて地中に注入薬液(例えばセメントミルク)を注入する注入工法に関する。 The present invention relates to an injection method for injecting an injection chemical solution (for example, cement milk) into the ground using an injection device.

注入工法では、施工するべき地盤中にボーリング孔を掘削し、薬液注入装置を挿入する。
図10で示す様に、薬液注入装置100は外管11と注入内管12を備えており、外管11には長手方向に所定間隔で複数の注入口11Aが形成されており、長手方向の個々の注入口形成位置には逆止弁の機能を有する弾性部材11Bが設けられている。
外管11は中空管状に構成されており、薬液供給口12A(吐出口)及びパッカー12Bを設けた薬液注入管12(パッカー付き内管)を外管11の中空空間に挿入している。
In the injection method, a boring hole is excavated in the ground to be constructed and a chemical injection device is inserted.
As shown in FIG. 10, the drug solution injection device 100 includes an outer tube 11 and an injection inner tube 12, and a plurality of injection ports 11A are formed in the outer tube 11 at predetermined intervals in the longitudinal direction, and the outer tube 11 is formed in the longitudinal direction. An elastic member 11B having a function of a check valve is provided at each injection port forming position.
The outer pipe 11 is formed in a hollow tubular shape, and a chemical liquid injection pipe 12 (inner pipe with a packer) provided with a chemical liquid supply port 12A (discharge port) and a packer 12B is inserted into the hollow space of the outer pipe 11.

図10の点線(仮想線)で示す様に、薬液注入に際しては、薬液を注入するべき領域に注入機構12Cを位置せしめ、外管11の注入口11Aに対応する位置にパッカー付き内管12(薬液注入管)の薬液供給口12Aを位置せしめ、パッカー12Bを膨張させる。パッカー12Bを膨張させることにより、薬液供給口12Aから外管11の中空部に供給される注入薬液は、薬液を注入するべき領域における外管11の注入口11Aのみから吐出する(矢印CP)。薬液を吐出(矢印CP)する際に、逆止弁の機能を有する弾性部材11B(スリーブ状の弾性部材)は実線で示す状態から点線で示す様に変形する。
薬液注入が完了したら、パッカー12Bを収縮してパッカー付き内管12を引き上げ(鉛直方向上方に移動して)、次の注入予定領域(薬液を注入するべき領域)に注入機構12Cを位置させる。そして次の注入予定領域において再びパッカー12Bを膨張させて、薬液注入を行う。この様にして、薬液を注入するべき領域において、順次、薬液を注入する。
As shown by the dotted line (virtual line) in FIG. 10, when injecting the drug solution, the injection mechanism 12C is positioned in the region where the drug solution should be injected, and the inner tube 12 with a packer (the inner tube 12 with a packer) is located at the position corresponding to the injection port 11A of the outer tube 11. The chemical liquid supply port 12A of the chemical liquid injection pipe) is positioned, and the packer 12B is inflated. By expanding the packer 12B, the injected drug solution supplied from the drug solution supply port 12A to the hollow portion of the outer tube 11 is discharged only from the injection port 11A of the outer tube 11 in the region where the drug solution should be injected (arrow CP). When the chemical solution is discharged (arrow CP), the elastic member 11B (sleeve-shaped elastic member) having the function of a check valve is deformed from the state shown by the solid line to the state shown by the dotted line.
When the injection of the drug solution is completed, the packer 12B is contracted to pull up the inner tube 12 with the packer (move vertically upward), and the injection mechanism 12C is positioned in the next planned injection area (the area where the drug solution should be injected). Then, the packer 12B is inflated again in the next scheduled injection region to inject the drug solution. In this way, the drug solution is sequentially injected in the area where the drug solution should be injected.

しかし、図10で示す逆止弁の機能を有する弾性部材11B(スリーブ状の弾性部材)を逆流防止用の弁として使用しているため、当該弾性部材11Bの厚さ寸法(符号δ)の分だけ外管11よりも半径方向外方に突出することになる。図10においては、弾性部材11Bの厚さ寸法を符号δで示している。
厚さ寸法δだけ逆止弁の機能を有する弾性部材11Bが外管11の半径方向外方に突出しているため、図11で示す様に、ボーリング孔Hの内壁面に逆止弁の機能を有する弾性部材11Bの下端部11BEが干渉して、ボーリング孔H内に薬液注入装置100を挿入する際の抵抗となってしまう。特に、図11で示す様に、薬液注入装置100の先端に掘削装置13を設け、ボーリング孔Hを削孔しつつ、薬液注入装置100を当該ボーリング孔H内に挿入させる場合には、ボーリング孔Hの内径は薬液注入装置100の外径と等しいので、逆止弁の機能を有する弾性部材11Bの下端部11BEがボーリング孔H内壁面に干渉することによる抵抗が大きくなってしまう。図11において、符号12はパッカー付き内管(薬液注入管)を表す。
それに加えて、弾性部材11Bの下端部11BEがボーリング孔H内壁面に干渉することで、逆止弁の機能を有する弾性部材11Bが摩耗し或いは破損して、弁としての機能を発揮しなくなる恐れも存在する。
However, since the elastic member 11B (sleeve-shaped elastic member) having the function of the check valve shown in FIG. 10 is used as a valve for preventing backflow, the thickness dimension (reference numeral δ) of the elastic member 11B is used. Only the outer tube 11 protrudes outward in the radial direction. In FIG. 10, the thickness dimension of the elastic member 11B is indicated by the reference numeral δ.
Since the elastic member 11B having the function of the check valve by the thickness dimension δ protrudes outward in the radial direction of the outer tube 11, as shown in FIG. 11, the function of the check valve is provided on the inner wall surface of the boring hole H. The lower end portion 11BE of the elastic member 11B having the elastic member 11B interferes with the boring hole H, which becomes a resistance when the chemical liquid injection device 100 is inserted into the boring hole H. In particular, as shown in FIG. 11, when the excavation device 13 is provided at the tip of the chemical solution injection device 100 and the chemical solution injection device 100 is inserted into the boring hole H while drilling the boring hole H, the boring hole H is formed. Since the inner diameter of H is equal to the outer diameter of the chemical liquid injection device 100, the resistance due to the lower end portion 11BE of the elastic member 11B having the function of the check valve interfering with the inner wall surface of the boring hole H becomes large. In FIG. 11, reference numeral 12 represents an inner tube with a packer (drug injection tube).
In addition, the lower end portion 11BE of the elastic member 11B may interfere with the inner wall surface of the boring hole H, so that the elastic member 11B having the function of a check valve may be worn or damaged and may not function as a valve. Also exists.

また出願人は、外管と注入内管を備え、
前記外管の外周面には円周方向へ延在する溝が形成され、
当該溝には円周方向等間隔に注入口が形成され、
前記溝には円環状弾性部材(例えばO-リング)が2本嵌合しており、
前記溝の半径方向内方の領域は湾曲面で構成され、
前記溝の半径方向距離は、そこに嵌合している円環状弾性部材が外管の外周面から突出しない深さに設定されている薬液注入装置を、先に提案している(特願2016-171665号)。
この薬液注入装置はグラウト溶液を注入するには大変に有効であることが、その後の研究で実証されている。
しかし、円環状弾性部材(例えばO-リング)には常に強い引張力が作用しているので、粒子が懸濁しているタイプのグラウト材(例えばセメント懸濁液)を注入する場合には、グラウト材中で懸濁している粒子により円環状弾性部材が僅かでも摩耗して僅かな亀裂が生じると、当該亀裂に前記強い引張力が作用して(亀裂が)急速に進展して、円環状弾性部材が破断してしまう、という問題が存在する。
The applicant also has an outer tube and an inner tube for injection.
A groove extending in the circumferential direction is formed on the outer peripheral surface of the outer pipe.
Injection ports are formed in the groove at equal intervals in the circumferential direction.
Two annular elastic members (for example, O-rings) are fitted in the groove.
The radial inner region of the groove is composed of a curved surface.
We have previously proposed a chemical solution injection device in which the radial distance of the groove is set to a depth at which the annular elastic member fitted therein does not protrude from the outer peripheral surface of the outer tube (Japanese Patent Application No. 2016). -171665).
Subsequent studies have demonstrated that this drug infusion device is very effective in injecting grout solutions.
However, since a strong tensile force always acts on the annular elastic member (for example, O-ring), when injecting a grout material (for example, a cement suspension) in which particles are suspended, the grout is used. When the annular elastic member is slightly worn by the particles suspended in the material and a slight crack is generated, the strong tensile force acts on the crack and (the crack) rapidly develops, resulting in annular elasticity. There is a problem that the member breaks.

その他の従来技術として、既存構造物直下の領域でも薬液注入を実行することが出来る技術が提案されている(特許文献1参照)。
しかし、係る従来技術(特許文献1)では、上述した逆止弁の機能を有する弾性部材とボーリング孔内壁との干渉による種々の問題を解消することは出来ない。
As another conventional technique, a technique capable of executing chemical injection even in a region directly under an existing structure has been proposed (see Patent Document 1).
However, the above-mentioned prior art (Patent Document 1) cannot solve various problems caused by the interference between the elastic member having the function of the check valve and the inner wall of the boring hole.

特開2014-125781号公報Japanese Unexamined Patent Publication No. 2014-125781

本発明は上述した従来技術の問題点に鑑みて提案されたものであり、薬液注入用の弁としての機能を確実に発揮することが出来て、ボーリング孔内壁面に干渉せず、長期間に亘って弁としての機能を発揮することが出来て、しかも粒子が懸濁しているタイプのグラウト材を注入する場合でも弁の構成要素が破損することがない薬液注入装置と、その様な装置を用いて薬液を注入する方法を提供することを目的としている。 The present invention has been proposed in view of the above-mentioned problems of the prior art, and can reliably exhibit the function as a valve for injecting a chemical solution, does not interfere with the inner wall surface of the boring hole, and does not interfere with the inner wall surface of the boring hole for a long period of time. A chemical injection device that can function as a valve and does not damage the components of the valve even when injecting grout material in which particles are suspended, and such a device. It is intended to provide a method of injecting a drug solution using.

本発明の薬液注入工法は、(ボーリング孔Hを削孔する削孔工程と、)
外管(1)と注入内管(2)を備え、前記外管(1)の外周面(1D)には円周方向へ延在する溝(1A)が形成され、当該溝(1A)には円周方向等間隔に注入口(1B)が形成され、前記溝(1A)には2本の中空円筒形状弾性部材(1C1、1C2)が半径方向について積層する様に嵌合しており、前記溝(1A)の側面(底面1AAと直交して外管1の半径方向に延在する壁面)には段部は形成されておらず、半径方向外方に配置された中空円筒形状弾性部材(1C2)は半径方向内方に配置された中空円筒形状弾性部材(1C1)よりも外管(1)軸方向寸法が大きく設定されており、前記溝(1A)の外管(1)軸方向寸法(B)は前記積層された中空円筒形状弾性部材の半径方向外側に配置された中空円筒形状弾性部材(1C2)の外管(1)軸方向寸法に等しく設定され、前記溝(1A)の深さ(DH)は注入薬液が吐出されていない時(注入時以外)には当該溝(1A)に嵌合している中空円筒形状弾性部材(1C1、1C2)が外管(1)外周面(1D)から外管(1)半径方向外方に突出しない深さであり、注入薬液が吐出されている時には半径方向外側に配置された中空円筒形状弾性部材(1C2)の軸方向両端部が半径方向外方に捲れ上がり外管(1)軸方向両端と前記溝(1A)の側面との間に隙間が形成される深さに設定されている薬液注入装置(10)を(ボーリング孔H内に)配置する薬液注入装置配置工程と、
薬液を注入する注入工程を含み、当該注入工程は、
前記薬液注入装置(10)の注入口(1B)から注入薬液が吐出(注入)される際に、前記中空円筒形状弾性部材(1C1、1C2)が変形して薬液を半径方向外方に吐出する(地盤中に注入する)流路(s)が形成される工程を有していることを特徴としている。
The chemical injection method of the present invention is (a drilling step of drilling a boring hole H).
An outer tube (1) and an injection inner tube (2) are provided, and a groove (1A) extending in the circumferential direction is formed on the outer peripheral surface (1D) of the outer tube (1), and the groove (1A) is formed. The injection ports (1B) are formed at equal intervals in the circumferential direction, and two hollow cylindrical elastic members (1C1 and 1C2) are fitted in the groove (1A) so as to be laminated in the radial direction. A step portion is not formed on the side surface of the groove (1A) (a wall surface extending in the radial direction of the outer tube 1 orthogonal to the bottom surface 1AA), and a hollow cylindrical elastic member arranged radially outward. (1C2) has an outer pipe (1) axial dimension larger than that of the hollow cylindrical elastic member (1C1) arranged inward in the radial direction, and the outer pipe (1) axial direction of the groove (1A) is set. The dimension (B) is set to be equal to the axial dimension of the outer tube (1) of the hollow cylindrical elastic member (1C2) arranged on the radial outer side of the laminated hollow cylindrical elastic member, and the dimension (B) is set to be equal to the axial dimension of the groove (1A). As for the depth (DH), when the injection liquid is not discharged (other than at the time of injection), the hollow cylindrical elastic member (1C1, 1C2) fitted in the groove (1A) is the outer peripheral surface of the outer tube (1). The depth is such that the outer tube (1) does not protrude outward from (1D) in the radial direction, and when the injection liquid is discharged, both ends in the axial direction of the hollow cylindrical elastic member (1C2) arranged on the outer side in the radial direction A chemical injection device (10) set to a depth at which a gap is formed between both ends of the outer tube (1) axially and the side surface of the groove (1A), which is rolled up outward in the radial direction (boring hole H). The process of arranging the chemical injection device (inside) and
The injection step includes an injection step of injecting a drug solution.
When the injected chemical solution is discharged (injected) from the injection port (1B) of the chemical solution injection device (10), the hollow cylindrical elastic member (1C1, 1C2) is deformed and the chemical solution is discharged outward in the radial direction. It is characterized by having a step of forming a flow path (s) (injected into the ground).

本発明の薬液注入工法において、薬液注入装置(10)は先端(削孔方向先端)に削孔装置(例えば削孔ビット、高圧水噴射機構等)を備えており、前記削孔工程の際にボーリング孔(H)の掘削と同時に薬液注入装置(10)がボーリング孔(H)内に挿入され、以て、前記削孔工程と前記薬液注入装置配置工程を同時に実行することが出来るのが好ましい。
もちろん、前記薬液注入装置(10)とは別個に用意した削孔装置により前記削孔工程を実行し、削孔工程でボーリング孔(H)が削孔された後、薬液注入装置(10)をボーリング孔(H)内に挿入することにより薬液注入装置配置工程を実行しても良い。この場合、前記削孔工程と前記薬液注入装置配置工程は同時には実行されず、前記削孔工程の後に前記薬液注入装置配置工程が実行される。
In the chemical solution injection method of the present invention, the chemical solution injection device (10) is provided with a drilling device (for example, a drilling bit, a high-pressure water injection mechanism, etc.) at the tip (tip in the drilling direction), and is used during the drilling step. It is preferable that the chemical injection device (10) is inserted into the boring hole (H) at the same time as the drilling of the boring hole (H), so that the drilling step and the chemical liquid injection device placement step can be executed at the same time. ..
Of course, the drilling step is executed by a drilling device prepared separately from the chemical injection device (10), and after the boring hole (H) is drilled in the drilling step, the chemical solution injection device (10) is used. The chemical liquid injection device arrangement step may be executed by inserting it into the boring hole (H). In this case, the drilling step and the chemical solution injection device placement step are not executed at the same time, and the chemical solution injection device placement step is executed after the drilling step.

また本発明の薬液注入装置(10)は、
外管(1)と注入内管(2)を備え、
前記外管(1)の外周面(1D)には円周方向へ延在する溝(1A)が形成され、
当該溝(1A)には円周方向等間隔に注入口(1B)が形成され、
前記溝(1A)には2本の中空円筒形状弾性部材(1C1、1C2)が半径方向について積層する様に嵌合しており、
前記溝(1A)の側面には段部は形成されておらず、
半径方向外方に配置された中空円筒形状弾性部材(1C2)は半径方向内方に配置された中空円筒形状弾性部材(1C1)よりも外管(1)軸方向寸法が大きく設定されており、
前記溝(1A)の外管(1)軸方向寸法(B)は前記積層された中空円筒形状弾性部材の半径方向外側に配置された中空円筒形状弾性部材(1C2)の外管(1)軸方向寸法に等しく設定され、
前記溝(1A)の深さ(DH)は、注入薬液が吐出されていない時(注入時以外)には前記溝(1A)に嵌合している中空円筒形状弾性部材(1C1、1C2)が外管(1)外周面(1D)から外管(1)半径方向外方に突出しない深さであり、注入薬液が吐出されている時には半径方向外側に配置された中空円筒形状弾性部材(1C2)の軸方向両端部が半径方向外方に捲れ上がり外管(1)軸方向両端と前記溝(1A)の側面との間に隙間が形成される深さに設定されている深さに設定されていることを特徴としている。
Further, the chemical solution injection device (10) of the present invention is
Equipped with an outer tube (1) and an injection inner tube (2),
A groove (1A) extending in the circumferential direction is formed on the outer peripheral surface (1D) of the outer pipe (1).
Injection ports (1B) are formed in the groove (1A) at equal intervals in the circumferential direction.
Two hollow cylindrical elastic members (1C1 and 1C2) are fitted in the groove (1A) so as to be laminated in the radial direction.
No step portion is formed on the side surface of the groove (1A), and the step portion is not formed.
The hollow cylindrical elastic member (1C2) arranged radially outward has a larger outer tube (1) axial dimension than the hollow cylindrical elastic member (1C1) arranged radially inward.
The outer tube (1) axial dimension (B) of the groove (1A) is the outer tube (1) axis of the hollow cylindrical elastic member (1C2) arranged radially outside the laminated hollow cylindrical elastic member. Set equal to the directional dimension,
The depth (DH) of the groove (1A) is determined by the hollow cylindrical elastic member (1C1, 1C2) fitted in the groove (1A) when the injection liquid is not discharged (other than at the time of injection). A hollow cylindrical elastic member (1C2) having a depth that does not protrude outward from the outer tube (1) outer peripheral surface (1D) in the radial direction and is arranged radially outside when the injection liquid is discharged. ) Is rolled up outward in the radial direction, and the depth is set to the depth at which a gap is formed between both ends in the axial direction and the side surface of the groove (1A). It is characterized by being done.

上述の構成を具備する本発明によれば、薬液注入装置(10)の外管(1)外周面(1D)に溝(1A)を形成し、当該溝(1A)には注入口(1B)が形成され且つ2本の中空円筒形状弾性部材(1C1、1C2:例えばゴムリング)が嵌合しているので、注入作業が行われない状態では、溝(1A)に形成された注入口(1B)は2本の中空円筒形状弾性部材(1C1、1C2)により閉鎖されている。
薬液を地盤中に注入する際には、パッカー(2A)を膨張させて注入内管(2)から薬液を吐出すると、当該薬液の吐出圧(P1:薬液注入圧力)が作用して、2本の中空円筒形状弾性部材(1C1、1C2)が変形して溝(1A)との間に隙間を形成し、当該隙間が注入薬液の流路(s)となる。
そして注入薬液は、前記隙間(流路s)を介して、半径方向外方に吐出される(地盤中に注入される)。
According to the present invention having the above-mentioned configuration, a groove (1A) is formed in the outer tube (1) outer peripheral surface (1D) of the chemical solution injection device (10), and the injection port (1B) is formed in the groove (1A). And two hollow cylindrical elastic members (1C1, 1C2: for example, rubber ring) are fitted, so that the injection port (1B) formed in the groove (1A) is in a state where the injection work is not performed. ) Is closed by two hollow cylindrical elastic members (1C1, 1C2).
When injecting the chemical solution into the ground, when the packer (2A) is inflated and the chemical solution is discharged from the injection inner tube (2), the discharge pressure of the chemical solution (P1: chemical solution injection pressure) acts on the two. The hollow cylindrical elastic member (1C1, 1C2) is deformed to form a gap with the groove (1A), and the gap becomes a flow path (s) for the injection drug solution.
Then, the injected chemical solution is discharged outward in the radial direction (injected into the ground) through the gap (flow path s).

薬液の注入(吐出)が終了すると、中空円筒形状弾性部材(1C1、1C2)に作用していた注入薬液の吐出圧(P1)が消失するので、中空円筒形状弾性部材(1C1、1C2)の弾性反撥力が作用して、中空円筒形状弾性部材(1C1、1C2)を注入薬液吐出圧(P1)が作用する以前の状態に復帰せしめて吐出口(1B)を閉鎖する。
換言すれば、本発明によれば、従来の逆止弁の機能を有する弾性部材(スリーブ状の弾性部材)により構成されている弁と同様に、注入時のみ薬液注入流路(s)を開放し、非注入時には薬液注入流路(s)が閉鎖される。
When the injection (discharge) of the chemical solution is completed, the discharge pressure (P1) of the injected chemical solution acting on the hollow cylindrical elastic member (1C1, 1C2) disappears, so that the elasticity of the hollow cylindrical elastic member (1C1, 1C2) disappears. The repulsive force acts to return the hollow cylindrical elastic member (1C1, 1C2) to the state before the injection chemical discharge pressure (P1) acts, and close the discharge port (1B).
In other words, according to the present invention, the chemical liquid injection flow path (s) is opened only at the time of injection, as in the case of a valve composed of an elastic member (sleeve-shaped elastic member) having a function of a conventional check valve. However, when not injecting, the drug solution injection flow path (s) is closed.

また本発明によれば、注入薬液が例えばセメント粒子が懸濁している懸濁液であり、注入薬液を地盤に注入する際に中空円筒形状弾性部材(1C1、1C2)がセメント粒子により摩耗したとしても、半径方向内方に位置する中空円筒形状弾性部材(1C1)の摩耗箇所には半径方向外方に位置する中空円筒形状弾性部材(1C2)の軸方向中央部における弾性反撥力(T)が半径方向内方に向かって作用し、半径方向内方に位置する中空円筒形状弾性部材(1C1)の軸方向中央部には当該弾性部材(1C1)自体の弾性反撥力(T)も作用する。そのため、中空円筒形状弾性部材(1C1)の半径方向内側が摩耗しても、当該摩耗箇所は中空円筒形状弾性部材(1C1、1C2)の軸方向中央部の弾性反撥力(T)によって押し潰されるので、中空円筒形状弾性部材(1C1)と溝(1A)の間に薬液が洩れる流路が形成されてしまうことはない。すなわち、非注入時には、半径方向内方に位置する中空円筒形状弾性部材(1C1)が注入液通路の注入口(1B)と密着して閉鎖している状態が、常時、保持される。
したがって、注入薬液が懸濁液であっても本発明を実施することが出来る。
Further, according to the present invention, the injection chemical solution is, for example, a suspension in which cement particles are suspended, and the hollow cylindrical elastic member (1C1, 1C2) is worn by the cement particles when the injection chemical solution is injected into the ground. In addition, the elastic repulsive force (T) at the axial center of the hollow cylindrical elastic member (1C2) located outward in the radial direction is applied to the worn portion of the hollow cylindrical elastic member (1C1) located inward in the radial direction. It acts inward in the radial direction, and the elastic repulsive force (T) of the elastic member (1C1) itself also acts on the central portion in the axial direction of the hollow cylindrical elastic member (1C1) located inward in the radial direction. Therefore, even if the inner side of the hollow cylindrical elastic member (1C1) is worn in the radial direction, the worn portion is crushed by the elastic repulsive force (T) at the central portion in the axial direction of the hollow cylindrical elastic member (1C1, 1C2). Therefore, a flow path through which the chemical liquid leaks is not formed between the hollow cylindrical elastic member (1C1) and the groove (1A). That is, at the time of non-injection, the state in which the hollow cylindrical elastic member (1C1) located inward in the radial direction is in close contact with and closed with the injection port (1B) of the injection liquid passage is always maintained.
Therefore, the present invention can be carried out even if the injectable drug solution is a suspension.

さらに本発明によれば、中空円筒形状弾性部材(1C1、1C2)には当該弾性部材の弾性反撥力が常に半径方向内方へ向かって作用しているので、半径方向内方の中空円筒形状弾性部材(1C1)の軸方向両端が半径方向外方に捲れ上がる様に変形した状態を保持しようとしても、半径方向外側に位置する他方の中空円筒形状弾性部材(1C2)の軸方向中央の領域に作用する弾性反撥力(T)により、半径方向内方の中空円筒形状弾性部材(1C1)の軸方向両端は半径方向外方に捲れ上がる様に変形した状態を保持することは出来ずに、溝(1A)の半径方向内方面に押し付けられる。
そのため、注入液通路から注入液が吐出することは無く、且つ、地盤側から注入液が逆流して来ても、半径方向内方の中空円筒形状弾性部材(1C1)が溝(1A)の半径方向内方面に押し付けられて密着している箇所において、完全にシールされる。
Further, according to the present invention, since the elastic repulsive force of the elastic member always acts inward in the radial direction on the hollow cylindrical elastic member (1C1, 1C2), the hollow cylindrical elastic member inward in the radial direction is elastic. Even if an attempt is made to maintain the deformed state in which both ends of the member (1C1) in the axial direction are rolled up outward in the radial direction, the other hollow cylindrical elastic member (1C2) located on the outer side in the radial direction is located in the central region in the axial direction. Due to the acting elastic repulsive force (T), both ends in the axial direction of the hollow cylindrical elastic member (1C1) inward in the radial direction cannot be maintained in a deformed state so as to be rolled up in the outward direction in the radial direction. It is pressed inward in the radial direction of (1A).
Therefore, the injection liquid is not discharged from the injection liquid passage, and even if the injection liquid flows backward from the ground side, the hollow cylindrical elastic member (1C1) inward in the radial direction is the radius of the groove (1A). It is completely sealed where it is pressed inward in the direction and is in close contact.

それに加えて、中空円筒形状弾性部材(1C1、1C2)は溝(1A)内に嵌合しており、溝(1A)の半径方向距離(DH:溝の深さ)は、そこに嵌合している中空円筒形状弾性部材(1C1、1C2)が外管(1)の外周面(1D)から突出しない深さに設定されているので、薬液注入装置(10)をボーリング孔(H)内に挿入するに際して、中空円筒形状弾性部材(1C1、1C2)はボーリング孔(H)の内壁面と干渉せず、薬液注入装置(10)のボーリング孔(H)内の移動の抵抗となることはない。
そのため、中空円筒形状弾性部材(1C1、1C2)とボーリング孔(H)の内壁面との干渉による摩擦で、中空円筒形状弾性部材(1C1、1C2)が摩耗や破損することはなく、中空円筒形状弾性部材(1C1、1C2)は弁としての機能を長期間に亘って確実に発揮することが出来る。
In addition, the hollow cylindrical elastic members (1C1, 1C2) are fitted in the groove (1A), and the radial distance (DH: groove depth) of the groove (1A) is fitted therein. Since the hollow cylindrical elastic member (1C1, 1C2) is set to a depth that does not protrude from the outer peripheral surface (1D) of the outer tube (1), the chemical liquid injection device (10) is placed in the boring hole (H). Upon insertion, the hollow cylindrical elastic member (1C1, 1C2) does not interfere with the inner wall surface of the boring hole (H) and does not act as a resistance to movement in the boring hole (H) of the chemical injection device (10). ..
Therefore, the hollow cylindrical elastic member (1C1, 1C2) is not worn or damaged by the friction caused by the interference between the hollow cylindrical elastic member (1C1, 1C2) and the inner wall surface of the boring hole (H), and the hollow cylindrical shape is formed. The elastic members (1C1, 1C2) can surely exert the function as a valve for a long period of time.

本発明の実施形態を示す説明図である。It is explanatory drawing which shows the embodiment of this invention. 図1における符号Aで示す部分の断面を示す部分拡大断面図である。It is a partially enlarged cross-sectional view which shows the cross section of the part indicated by reference numeral A in FIG. 実施形態における作用を説明する部分拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view illustrating the operation in the embodiment. 好適でない構成を示す部分拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view showing an unsuitable configuration. 図4で示す構成が不都合である理由の説明図である。It is explanatory drawing of the reason why the structure shown in FIG. 4 is inconvenient. 好適でない構成であって、図4の構成とは別の構成を示す部分拡大断面図である。It is a partially enlarged sectional view which is unsuitable structure and shows the structure different from the structure of FIG. 図2における各種寸法の説明図である。It is explanatory drawing of various dimensions in FIG. 注入口の位置を示す端面図である。It is an end view which shows the position of an inlet. 本発明の別の実施形態に係る薬液注入工法で用いられるバルブを示す部分拡大断面図である。It is a partially enlarged sectional view which shows the valve used in the chemical solution injection method which concerns on another Embodiment of this invention. 従来の逆止弁の機能を有する弾性部材で構成されているバルブを有する薬液注入装置の要部を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing a main part of a chemical injection device having a valve made of an elastic member having a function of a conventional check valve. 図10の従来技術の問題点を示す説明図である。It is explanatory drawing which shows the problem of the prior art of FIG.

以下、図1~図9を参照して、本発明の実施形態について説明する。
図1は本発明の実施形態の概要を示しており、薬液注入装置10の外管1の外周面1Dには円周方向へ延在する溝1Aが形成されている。
外管1は中空空間を有する中空管状に構成されており、当該中空空間には注入内管2(図1では点線で示す)を備えている。注入内管2はパッカー2Aを備えており、注入内管2の構成及び作用効果は、図10を参照に説明した従来公知のパッカー付き内管12と同様である。
外管1の溝1Aは、外管1の軸方向(図1で上下方向)において、薬液注入すべき複数の箇所に形成される(図1では、軸方向で1箇所の溝1Aのみが示される)。ここで、薬液注入すべき複数の箇所は薬液注入口を設ける箇所であり、図8を参照して後述する。この薬液注入すべき複数の箇所に対応して、注入内管2は外管1内の中空空間を移動して、所定位置に保持される。
図1~図7では、溝1Aには、円周方向等間隔に薬液注入口1Bが例えば4箇所形成されている。ただし図1においては、半径方向(左右方向)中心の注入口1Bは表示されるが、半径方向両端の注入口1Bは符号と引き出し線により位置のみを示している。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 9.
FIG. 1 shows an outline of an embodiment of the present invention, in which a groove 1A extending in the circumferential direction is formed on the outer peripheral surface 1D of the outer tube 1 of the chemical solution injection device 10.
The outer tube 1 is configured as a hollow tubular having a hollow space, and the hollow space is provided with an injection inner tube 2 (indicated by a dotted line in FIG. 1). The injection inner tube 2 includes a packer 2A, and the configuration and operation / effect of the injection inner tube 2 are the same as those of the conventionally known inner tube 12 with a packer described with reference to FIG.
The grooves 1A of the outer tube 1 are formed at a plurality of locations where the chemical solution should be injected in the axial direction of the outer tube 1 (vertical direction in FIG. 1) (in FIG. 1, only one groove 1A in the axial direction is shown. ). Here, the plurality of places where the chemical solution should be injected are the locations where the chemical solution injection port is provided, which will be described later with reference to FIG. The injection inner tube 2 moves in the hollow space in the outer tube 1 and is held at a predetermined position corresponding to the plurality of locations where the chemical solution should be injected.
In FIGS. 1 to 7, for example, four chemical solution injection ports 1B are formed in the groove 1A at equal intervals in the circumferential direction. However, in FIG. 1, the injection port 1B at the center in the radial direction (left-right direction) is displayed, but the injection ports 1B at both ends in the radial direction indicate only the position by the sign and the leader line.

図2において、幅方向(図2では上下方向)寸法Bを有する溝1Aの底面1AAは平坦に加工されており、その幅方向(図2では上下方向)の中央に注入口1Bが形成されている。
溝1Aには、注入口1Bを閉鎖する様に、2本の弾性材(例えばゴム)製の中空円筒状の弾性部材1C1、1C2(ゴムバンド)が半径方向について積層する様に嵌合している。
ゴムバンド1C1は注入液通路の半径方向出口である薬液注入口1Bを閉鎖するように配置されている。ゴムバンド1C2はゴムバンド1C1の半径方向外側(図2で右側)に配置されており、その弾性反撥力(図3の矢印T)によりゴムバンド1C1を半径方向内側に抑え付けている。
溝1Aの深さDH(半径方向距離)は、図2で示す様に、ゴムバンド1C1、1C2が溝1Aに嵌合した際に、ゴムバンド1C1、1C2が外管1の外周面1Dから突出しない深さに設定されている。
溝1Aとゴムバンド1C1、1C2に関する各種寸法については、図7を参照して後述する。
In FIG. 2, the bottom surface 1AA of the groove 1A having the width direction (vertical direction in FIG. 2) dimension B is processed flat, and the injection port 1B is formed in the center of the groove 1A in the width direction (vertical direction in FIG. 2). There is.
Two hollow cylindrical elastic members 1C1 and 1C2 (rubber bands) made of elastic materials (for example, rubber) are fitted in the groove 1A so as to be laminated in the radial direction so as to close the injection port 1B. There is.
The rubber band 1C1 is arranged so as to close the chemical liquid injection port 1B, which is a radial outlet of the injection liquid passage. The rubber band 1C2 is arranged on the outer side in the radial direction (right side in FIG. 2) of the rubber band 1C1, and the rubber band 1C1 is suppressed inward in the radial direction by its elastic repulsive force (arrow T in FIG. 3).
As shown in FIG. 2, the depth DH (radial distance) of the groove 1A is such that when the rubber bands 1C1 and 1C2 are fitted into the groove 1A, the rubber bands 1C1 and 1C2 protrude from the outer peripheral surface 1D of the outer tube 1. It is set to a depth that does not.
Various dimensions of the groove 1A and the rubber bands 1C1 and 1C2 will be described later with reference to FIG. 7.

図3において、薬液注入作業が行われていない状態では、ゴムバンド1C1、1C2(中空円筒形状弾性部材)は実線で示された状態で、溝1A内に収容されている。そして、溝1Aの底面1AAに形成された注入口1Bは、実線で示すゴムバンド1C1により閉鎖されている。
なお、図3において薬液注入作業が行われていない状態では、ゴムバンド1C2の半径方向端部(図5で左側端部)は外管1の外周面1Dから突出していない。
In FIG. 3, in a state where the chemical solution injection operation is not performed, the rubber bands 1C1 and 1C2 (hollow cylindrical elastic members) are housed in the groove 1A in the state shown by the solid line. The injection port 1B formed on the bottom surface 1AA of the groove 1A is closed by the rubber band 1C1 shown by the solid line.
In the state where the chemical solution injection operation is not performed in FIG. 3, the radial end portion (left end portion in FIG. 5) of the rubber band 1C2 does not protrude from the outer peripheral surface 1D of the outer tube 1.

図示しないパッカー付き注入内管から薬液を吐出すると、当該薬液の吐出圧P1(薬液注入圧力)によりゴムバンド1C1、1C2は点線で示す様に変形し(半径方向外方へ捲れ上がり)、溝1Aの壁面との間に隙間が形成され、当該隙間を薬液が流れる。図3において、前記隙間を流れる薬液の流線が複数の矢印sで示されている。換言すれば、薬液は複数の矢印sで示す流路に沿って、半径方向外方(図3では左方)に噴射(吐出)され、地盤中に注入される。
ここで、ゴムバンド1C1、1C2には、素材であるゴム(弾性部材)の弾性反撥力(図3の矢印T)が、半径方向内方に常時作用している。薬液の注入(吐出)が終了すると、ゴムバンド1C1、1C2に作用していた薬液の吐出圧P1が消失するので、ゴムバンド1C1、1C2は(ゴムバンド1C1、1C2自体の)弾性反撥力Tにより、図3の点線で示す変形した状態(捲れ上がった状態)から実線で示す状態に復元する。そして、ゴムバンド1C1が再び注入口1B(吐出口)を閉鎖し、ゴムバンド1C1、1C2は溝1A内に収容された状態に復帰する。
その結果、図示の実施形態によれば、従来の逆止弁の機能を有する弾性部材(スリーブ状の弾性部材)で構成された弁と同様に、薬液の注入時のみ矢印sで示す薬液注入流路が開放され、薬液を注入しない時には矢印sで示す薬液注入流路は閉鎖される。
When the chemical solution is discharged from the injection inner tube with a packer (not shown), the rubber bands 1C1 and 1C2 are deformed as shown by the dotted line (rolled outward in the radial direction) due to the discharge pressure P1 (chemical solution injection pressure) of the chemical solution, and the groove 1A. A gap is formed between the wall surface and the wall surface, and the chemical solution flows through the gap. In FIG. 3, the streamlines of the chemical solution flowing through the gap are indicated by a plurality of arrows s. In other words, the chemical solution is jetted (discharged) outward in the radial direction (left side in FIG. 3) along the flow paths indicated by the plurality of arrows s, and is injected into the ground.
Here, the elastic repulsive force (arrow T in FIG. 3) of the rubber (elastic member) as a material always acts on the rubber bands 1C1 and 1C2 inward in the radial direction. When the injection (discharge) of the chemical solution is completed, the discharge pressure P1 of the chemical solution acting on the rubber bands 1C1 and 1C2 disappears. , The deformed state (rolled up state) shown by the dotted line in FIG. 3 is restored to the state shown by the solid line. Then, the rubber band 1C1 closes the injection port 1B (discharge port) again, and the rubber bands 1C1 and 1C2 return to the state of being housed in the groove 1A.
As a result, according to the illustrated embodiment, the chemical solution injection flow indicated by the arrow s only when the chemical solution is injected, as in the case of a valve composed of an elastic member (sleeve-shaped elastic member) having the function of a conventional check valve. When the path is opened and the drug solution is not injected, the drug solution injection flow path indicated by the arrow s is closed.

ここで、注入薬液が例えばセメント粒子が懸濁している懸濁液であり、注入薬液を地盤に注入する際にゴムバンド1C1、1C2がセメント粒子により摩耗したとしても、ゴムバンド1C1の摩耗箇所にはゴムバンド1C2の軸方向中央部における弾性反撥力Tが半径方向内方(図2、図3では左方)向かって作用し、且つ、ゴムバンド1C1自体の弾性反撥力Tも作用する。そのため、ゴムバンド1C1の半径方向内側が摩耗しても、当該摩耗箇所はゴムバンド1C2の軸方向中央部における弾性反撥力T及びゴムバンド1C1自体の弾性反撥力Tにより押し潰されて、溝1Aの底面1AAと密着するので、ゴムバンド1C1と溝1Aの底面1AA間に薬液が洩れる流路は形成されない。すなわち、薬液を注入しない時(非注入時)においては、ゴムバンド1C1が溝1Aに密着して注入液通路の注入口1Bを閉鎖している状態が、常時、保持される。
したがって、注入薬液が懸濁液であっても、図示の実施形態では良好に実施することが出来る。
Here, the injection chemical solution is, for example, a suspension in which cement particles are suspended, and even if the rubber bands 1C1 and 1C2 are worn by the cement particles when the injection chemical solution is injected into the ground, the rubber band 1C1 is worn at the worn portion. The elastic repulsive force T at the axial center portion of the rubber band 1C2 acts inward in the radial direction (left in FIGS. 2 and 3), and the elastic repulsive force T of the rubber band 1C1 itself also acts. Therefore, even if the inside of the rubber band 1C1 in the radial direction is worn, the worn portion is crushed by the elastic repulsive force T at the axial center portion of the rubber band 1C2 and the elastic repulsive force T of the rubber band 1C1 itself, and the groove 1A Since it is in close contact with the bottom surface 1AA of the rubber band 1C1, a flow path through which the chemical solution leaks is not formed between the rubber band 1C1 and the bottom surface 1AA of the groove 1A. That is, when the chemical solution is not injected (during non-injection), the state in which the rubber band 1C1 is in close contact with the groove 1A and the injection port 1B of the injection solution passage is closed is always maintained.
Therefore, even if the injectable drug solution is a suspension, it can be satisfactorily carried out in the illustrated embodiment.

図4、図5は、本発明の実施形態としては不適切な例を示しており、外管1の溝1E内にゴムバンド1CS(中空円筒形状弾性部材)が1本のみ嵌合している。以下、図4で示す構造が不都合である理由を説明する。
図1~3の実施形態では、図2、図3で詳細に示した通り、溝1A内に2本のゴムバンド1C1、1C2が収容されており、溝1Aの注入口1Bから半径方向外方に薬液吐出圧P1(薬液注入圧力)が作用すると、2本のゴムバンド1C1、1C2が半径方向外方に捲れ上がる様に変形して溝1Aの壁面との間に隙間が形成され、当該隙間が矢印s(図3参照)で示す流路を構成する。
図4の構成であっても、薬液注入時には、薬液注入口1Bを閉鎖するように配置されている単一のゴムバンド1CSが、薬液吐出圧P1により単一のゴムバンド1CSの軸方向両端(図4では上下方向両端)が半径方向外方(図4では右方)に捲れ上がる様に変形(図4ではゴムバンド1CSの上下両端が実線で示す位置から点線で示す様に変形)して、溝1Eの壁面との間に流路s4が構成される。図4において、符号2、2Cは、それぞれ薬液注入管、薬液注入機構を示している。また図4では、半径方向他方の側(図4で左側)における単一のゴムバンド1CSや流路s4等の表示を省略している。
4 and 5 show an example unsuitable for the embodiment of the present invention, in which only one rubber band 1CS (hollow cylindrical elastic member) is fitted in the groove 1E of the outer tube 1. .. Hereinafter, the reason why the structure shown in FIG. 4 is inconvenient will be described.
In the embodiments of FIGS. 1 to 3, as shown in detail in FIGS. 2 and 3, two rubber bands 1C1 and 1C2 are housed in the groove 1A, and are radially outward from the injection port 1B of the groove 1A. When the chemical discharge pressure P1 (chemical liquid injection pressure) acts on the two rubber bands 1C1 and 1C2, the two rubber bands 1C1 and 1C2 are deformed so as to roll up outward in the radial direction to form a gap between the two rubber bands 1C1 and the wall surface of the groove 1A. Consists of the flow path indicated by the arrow s (see FIG. 3).
Even with the configuration of FIG. 4, a single rubber band 1CS arranged so as to close the chemical solution injection port 1B at the time of chemical solution injection is provided at both ends in the axial direction of the single rubber band 1CS due to the chemical solution discharge pressure P1. In FIG. 4, both ends in the vertical direction are deformed so as to be rolled up outward in the radial direction (to the right in FIG. 4) (in FIG. 4, both upper and lower ends of the rubber band 1CS are deformed from the positions shown by solid lines to those shown by dotted lines). , The flow path s4 is configured between the groove 1E and the wall surface. In FIG. 4, reference numerals 2 and 2C indicate a chemical solution injection tube and a chemical solution injection mechanism, respectively. Further, in FIG. 4, the display of the single rubber band 1CS, the flow path s4, and the like on the other side in the radial direction (left side in FIG. 4) is omitted.

しかし、図4の構成であると、単一のゴムバンド1CSが変形して、その軸方向両端(図4では上下方向両端)が半径方向外方(図4では右方)に捲れ上がった状態(図4の点線の状態)になると、薬液注入が終了し注入薬液の吐出圧P1が消失しても、例えばゴムバンド1CSの経年劣化や硬化により、図4の実線で示す状態に復元しなくなる可能性が存在する。
図4で示す薬液注入装置を使用して、図5の符号No.1の位置において薬液注入を行った後、符号No.2の位置で薬液注入を行った場合において、符号No.1のゴムバンド1CSが経年劣化や硬化により図4の点線の状態のままになってしまうと、符号No.1における薬液注入が完了した後、符号No.2の箇所で注入薬液吐出圧P1を作用させて薬液注入を開始すると、符号No.2から吐出された薬液の一部が、例えば経路ROを介して、符号No.1の箇所におけるゴムバンド1CSが変形して捲れ上がった状態(図4の点線の状態)の箇所を通過して、薬液注入装置10の注入内管2内に侵入(逆流)してしまう恐れがある。
なお、図5の左側における単一のゴムバンド1CS、薬液侵入(逆流)の経路ROの表示は省略する。
However, in the configuration of FIG. 4, a single rubber band 1CS is deformed, and both ends in the axial direction (both ends in the vertical direction in FIG. 4) are rolled up outward in the radial direction (to the right in FIG. 4). In the case of (the state shown by the dotted line in FIG. 4), even if the injection of the chemical solution is completed and the discharge pressure P1 of the injected chemical solution disappears, the state shown by the solid line in FIG. 4 cannot be restored due to deterioration or hardening of the rubber band 1CS, for example. There is a possibility.
Using the chemical injection device shown in FIG. 4, reference numeral No. 5 in FIG. After injecting the drug solution at the position No. 1, No. 1 is used. In the case of injecting the chemical solution at the position of 2, reference numeral No. 2. When the rubber band 1CS of No. 1 remains in the state of the dotted line in FIG. 4 due to aged deterioration or curing, the reference numeral No. 1 is used. After the injection of the chemical solution in No. 1 is completed, the reference numeral No. 1 is used. When the chemical solution injection is started by applying the injection chemical solution discharge pressure P1 at the two points, the reference numeral No. A part of the chemical solution discharged from No. 2 has a reference numeral No. 2 via, for example, the path RO. There is a risk that the rubber band 1CS at location 1 will pass through the location where it is deformed and rolled up (the state indicated by the dotted line in FIG. 4) and invade (backflow) into the injection inner tube 2 of the drug solution injection device 10. be.
The display of the single rubber band 1CS and the path RO of the chemical solution intrusion (backflow) on the left side of FIG. 5 is omitted.

図4、図5の例に対して図示の実施形態では、図3で示す様に、2本のゴムバンド1C1、1C2には常に半径方向内方へ向かう弾性反撥力が作用しているので、ゴムバンド1C1の軸方向(図3では上下方向)両端が、半径方向外方(図3では右方)に捲れ上がる様に変形した状態を保持しようとしても、半径方向外側に位置する他方のゴムバンド1C2の軸方向(図3では上下方向)中央の領域に作用する弾性反撥力Tにより、ゴムバンド1C1の軸方向(図3では上下方向)両端は半径方向外方(図3では右方)に捲れ上がる様に変形した状態を保持することは出来ずに、溝1Aの半径方向内方面に押し付けられて底面1AAに密着する。
そのため、注入液通路から注入液が吐出することは無く、且つ、地盤側から注入液が逆流して来ても、ゴムバンド1C1が溝1Aの半径方向内方面に押し付けられている箇所において、完全にシールされる。
In the illustrated embodiment with respect to the examples of FIGS. 4 and 5, as shown in FIG. 3, the two rubber bands 1C1 and 1C2 always have an elastic repulsive force acting inward in the radial direction. Even if both ends of the rubber band 1C1 in the axial direction (vertical direction in FIG. 3) are to be kept deformed so as to be rolled up in the radial direction outward (right side in FIG. 3), the other rubber located on the outer side in the radial direction. Due to the elastic repulsive force T acting on the central region of the band 1C2 in the axial direction (vertical direction in FIG. 3), both ends of the rubber band 1C1 in the axial direction (vertical direction in FIG. 3) are radially outward (right in FIG. 3). It is not possible to maintain the deformed state so that it rolls up, but it is pressed inward in the radial direction of the groove 1A and comes into close contact with the bottom surface 1AA.
Therefore, the injection liquid is not discharged from the injection liquid passage, and even if the injection liquid flows backward from the ground side, the rubber band 1C1 is completely pressed inward in the radial direction of the groove 1A. Is sealed to.

仮に、半径方向外方(図3では右側)に位置するゴムバンド1C2の軸方向(図3では上下方向)両端が半径方向外方(図3では右方)に捲れ上がる様に変形したとしても、ゴムバンド1C1を溝1Aの半径方向内方面に押し付けるのはゴムバンド1C2の軸方向中央の領域における弾性反撥力であり、ゴムバンド1C2の軸方向両端が変形してもゴムバンド1C1を溝1Aの半径方向内方面に押し付ける作用は変化しない。 Even if both ends of the rubber band 1C2 located in the radial direction (right side in FIG. 3) are rolled up in the radial direction (right side in FIG. 3) in the axial direction (vertical direction in FIG. 3). It is the elastic repulsive force in the axial center region of the rubber band 1C2 that presses the rubber band 1C1 inward in the radial direction of the groove 1A, and even if both ends of the rubber band 1C2 in the axial direction are deformed, the rubber band 1C1 is pressed into the groove 1A. The action of pressing inward in the radial direction of is unchanged.

図6も本発明の実施形態としては不適切な例であって、図4とは別の例を示している。図6において、溝F1内の軸方向(図6では上下方向)中央にさらに別の溝F2が形成されており、溝F2には2本のOリング1o、1o(円環形状弾性部材)が嵌合しており、溝F1には単一のゴムバンド1CS(中空円筒形状弾性部材)が嵌合している。
図4で示す構成と同様に、図6の例でも、薬液注入時には注入口1Bから(変形した2本のOリング1oを介して)薬液吐出圧(薬液注入圧力)が作用し、単一のゴムバンド1CSの軸方向(図6では上下方向)両端が捲れ上がる様に変形し、経年劣化や硬化等によりその変形が保持されてしまうと、図5で示すのと同様に薬液が薬液注入装置10の注入内管2内(図1参照)に侵入(逆流)してしまう恐れがある。
また、注入薬液として、例えばセメントの様な粒子が懸濁している懸濁液を用いた場合には、Oリング1o、1oが摩耗して亀裂が生じ、当該亀裂にOリング1o、1o自体の弾性反撥力が作用して進展し、破断してしまう。
さらに、溝F1(深さ寸法D1)に加えて、溝F2(深さ寸法D2)を加工する必要があり、半径方寸法「D1+D2」だけ外管1(図1参照)を(半径方向に)切削しなければならないので、外管1の強度が低下してしまうという問題を有している。
図1~図3の実施形態では、図6の例における上述した問題点を生じない。
FIG. 6 is also an inappropriate example as an embodiment of the present invention, and shows another example from FIG. In FIG. 6, another groove F2 is formed in the center of the groove F1 in the axial direction (vertical direction in FIG. 6), and the groove F2 has two O-rings 1o and 1o (annular elastic members). A single rubber band 1CS (hollow cylindrical elastic member) is fitted in the groove F1.
Similar to the configuration shown in FIG. 4, in the example of FIG. 6, the chemical discharge pressure (drug injection pressure) acts from the injection port 1B (via the two deformed O-rings 1o) at the time of chemical injection, and a single chemical solution is injected. When both ends of the rubber band 1CS in the axial direction (vertical direction in FIG. 6) are deformed so as to be rolled up and the deformation is maintained due to aging deterioration, hardening, etc., the chemical solution is injected into the chemical solution as shown in FIG. There is a risk of invading (backflow) into the injection inner tube 2 (see FIG. 1) of 10.
Further, when a suspension in which particles such as cement are suspended is used as the injection liquid, the O-rings 1o and 1o are worn and cracks are generated, and the O-rings 1o and 1o themselves are cracked in the cracks. The elastic repulsive force acts to advance and break.
Further, in addition to the groove F1 (depth dimension D1), it is necessary to machine the groove F2 (depth dimension D2), and the outer pipe 1 (see FIG. 1) is formed (in the radial direction) only by the radial dimension “D1 + D2”. Since it must be cut, there is a problem that the strength of the outer pipe 1 is lowered.
The embodiments of FIGS. 1 to 3 do not cause the above-mentioned problems in the example of FIG.

次に図7を参照して、図2、図3で示す溝1Aとゴムバンド1C1、1C2(中空円筒形状弾性部材)の寸法について、説明する。
ゴムバンド1C1の軸方向寸法(図7の上下方向寸法)をL1(長さL1=1C1の軸方向長さ)とすると、長さL11と、注入口1Bに通じる注入液通路の直径φ、符号Rαで示す距離との関係は、下式で表すことが出来る。
L1=Rα×2+φ、
∴Rα=(L1-φ)/2
ここで、距離Rαは、ゴムバンド1C1と溝1Aとの間に形成される注入液の流路(全体を符号sで示す)の長さに相当する。
一方、距離Rβは、ゴムバンド1C2の厚さt2に等しい。すなわち、 Rβ=t2 である。また距離Rβは、ゴムバンド1C2と溝1Aとの間に形成される注入液の流路の長さに相当する。
Next, with reference to FIG. 7, the dimensions of the groove 1A and the rubber bands 1C1 and 1C2 (hollow cylindrical elastic member) shown in FIGS. 2 and 3 will be described.
Assuming that the axial dimension of the rubber band 1C1 (vertical dimension in FIG. 7) is L1 (length L1 = axial length of 1C1), the length L11, the diameter φ of the injection liquid passage leading to the injection port 1B, and the reference numeral. The relationship with the distance indicated by Rα can be expressed by the following equation.
L1 = Rα × 2 + φ,
∴Rα = (L1-φ) / 2
Here, the distance Rα corresponds to the length of the flow path of the injection liquid (the whole is indicated by the reference numeral s) formed between the rubber band 1C1 and the groove 1A.
On the other hand, the distance Rβ is equal to the thickness t2 of the rubber band 1C2. That is, Rβ = t2. Further, the distance Rβ corresponds to the length of the flow path of the injection liquid formed between the rubber band 1C2 and the groove 1A.

上述した様に、距離Rαと距離Rβは、ゴムバンド1C1、1C2と溝1Aとの間に形成される注入液の流路sの一部を構成し、流路sの中で流路抵抗が大きい部分である。
したがって、図示の実施形態における薬液注入装置を設定する際、流路s、特に距離Rα及び距離Rβの流路抵抗が、注入薬液(グラウト材)が所定時間内に通常の吐出圧のポンプにより注入できる程度である様に、設定する。それに基づいて、ゴムバンド1C1の軸方向長さL1、注入液通路の直径φ、ゴムバンド1C2の厚さt2を決定している。
換言すれば、距離Rαと距離Rβ(すなわち、ゴムバンド1C1の軸方向長さL1、注入液通路の直径φ、ゴムバンド1C2の厚さt2)は、施工条件や使用されるポンプ吐出圧等により、ケース・バイ・ケースで決定される。
As described above, the distance Rα and the distance Rβ form a part of the flow path s of the injection liquid formed between the rubber bands 1C1 and 1C2 and the groove 1A, and the flow path resistance is increased in the flow path s. It's a big part.
Therefore, when setting the chemical solution injection device according to the illustrated embodiment, the flow path resistance of the flow path s, particularly the distance Rα and the distance Rβ, is such that the injection chemical solution (grout material) is injected by a pump having a normal discharge pressure within a predetermined time. Set as much as possible. Based on this, the axial length L1 of the rubber band 1C1, the diameter φ of the injection liquid passage, and the thickness t2 of the rubber band 1C2 are determined.
In other words, the distance Rα and the distance Rβ (that is, the axial length L1 of the rubber band 1C1, the diameter φ of the injection liquid passage, the thickness t2 of the rubber band 1C2) depend on the construction conditions, the pump discharge pressure used, and the like. , Determined on a case-by-case basis.

図7において、ゴムバンド1C2の軸方向長さL2(図7の上下方向長さ)は、溝1Aの軸方向長さと概略等しい。
実施形態においては、薬液注入の際にゴムバンド1C1の軸方向(図7の上下方向)両端が捲れ上がった状態が保持されない様に、ゴムバンド1C2の弾性反撥力により抑え付けている。ゴムバンド1C2の弾性反撥力は、ゴムバンド1C2の軸方向長さL2及びゴムバンド1C2の厚さt2に基づいて決定される。なお、ゴムバンド1C2の軸方向長さL2の決定に際しては、ゴムバンド1C1の長さL1との比率が大きく影響する。
図示の実施形態における薬液注入装置を設定する際に、ゴムバンド1C2の軸方向長さL2、ゴムバンド1C2の厚さt2に関しては、上述した様に、ゴムバンド1C2の弾性反撥力によりゴムバンド1C1の両端部を抑え付けられる様に設定される。
In FIG. 7, the axial length L2 (vertical length in FIG. 7) of the rubber band 1C2 is substantially equal to the axial length of the groove 1A.
In the embodiment, the elastic repulsive force of the rubber band 1C2 is suppressed so that the state in which both ends of the rubber band 1C1 in the axial direction (vertical direction in FIG. 7) are rolled up is not maintained when the chemical solution is injected. The elastic repulsive force of the rubber band 1C2 is determined based on the axial length L2 of the rubber band 1C2 and the thickness t2 of the rubber band 1C2. In determining the axial length L2 of the rubber band 1C2, the ratio of the rubber band 1C1 to the length L1 has a great influence.
When setting the chemical solution injection device in the illustrated embodiment, regarding the axial length L2 of the rubber band 1C2 and the thickness t2 of the rubber band 1C2, as described above, the rubber band 1C1 is due to the elastic repulsive force of the rubber band 1C2. It is set so that both ends of the rubber band can be suppressed.

ここで、「一般的」とされる注入工法の施工条件が、例えば、
注入薬液の流量Qが、Q=20リットル/分、
注入液通路の直径φが、φ=7mm、
ポンプ吐出圧Peが、0.2MPa≦Pe≦0.5MPa
であれば、図7における各寸法数値は、例えば、
t1=1mm、
t2=2mm、
L1=30mm(Lα=10mm)、
L2=50mm
である。
ただし、発明者の実験によれば、上記t1、t2、L1、L2は、±20%の変動は許容可能であった。
Here, the construction conditions of the injection method, which is considered to be "general", are, for example,
The flow rate Q of the infusion solution is Q = 20 liters / minute,
The diameter φ of the injection liquid passage is φ = 7 mm,
Pump discharge pressure Pe is 0.2MPa ≤ Pe ≤ 0.5MPa
If so, each dimensional value in FIG. 7 is, for example,
t1 = 1mm,
t2 = 2mm,
L1 = 30 mm (Lα = 10 mm),
L2 = 50mm
Is.
However, according to the inventor's experiment, the fluctuation of ± 20% was acceptable for the above t1, t2, L1 and L2.

図8を参照して、外管1における注入口1Bの円周方向位置を説明する。
図8(A)は図1~図7を参照して説明した実施形態の場合であり、注入口1Bは円周方向に4箇所、等間隔に設けられている。なお、図8では外管1に形成した溝1Aの図示は省略している。
注入口1Bの個数は円周方向に4箇所に限定される訳ではなく、図8(B)、(C)に示す様に、注入口1Bを円周方向で3箇所、円周方向で2箇所、それぞれ等間隔に設けることも出来る。
なお、図示しないが、注入口1Bを円周方向で1箇所のみ形成することも可能であり、注入口1Bを円周方向に5箇所以上形成することも可能である。
With reference to FIG. 8, the circumferential position of the injection port 1B in the outer tube 1 will be described.
8 (A) is the case of the embodiment described with reference to FIGS. 1 to 7, and the injection ports 1B are provided at four points in the circumferential direction at equal intervals. In FIG. 8, the groove 1A formed in the outer tube 1 is not shown.
The number of inlets 1B is not limited to four in the circumferential direction, and as shown in FIGS. 8 (B) and 8 (C), the injection port 1B is provided at three locations in the circumferential direction and two in the circumferential direction. It can also be provided at equal intervals at each location.
Although not shown, it is possible to form only one injection port 1B in the circumferential direction, and it is also possible to form five or more injection ports 1B in the circumferential direction.

図示の実施形態を施工するに際しては、先ずボーリング孔H(従来技術を示す図11参照)を削孔する削孔工程を、従来公知の方法で実行する。
次に削孔したボーリング孔H内に、図1~図7を参照して説明した本発明の実施形態に係る薬液注入装置10を配置する。
そして薬液注入装置10から地盤中に薬液を注入する注入工程を実行する。当該注入工程では、パッカー付き注入内管2(図1)のパッカーを膨張した後に薬液を吐出し、薬液注入装置10の注入口1Bから注入薬液が吐出(注入)される。薬液注入の際には、吐出圧P1(薬液注入圧力)によりゴムバンド1C1、1C2(中空円筒形状弾性部材)が変形し、薬液を半径方向外方に吐出する(地盤中に注入する)ための流路sが形成される。
When constructing the illustrated embodiment, first, a drilling step of drilling a boring hole H (see FIG. 11 showing the prior art) is performed by a conventionally known method.
Next, the chemical solution injection device 10 according to the embodiment of the present invention described with reference to FIGS. 1 to 7 is arranged in the drilled borehole H.
Then, the injection step of injecting the chemical solution into the ground from the chemical solution injection device 10 is executed. In the injection step, the drug solution is discharged after the packer of the injection inner tube 2 with a packer (FIG. 1) is expanded, and the injection drug solution is discharged (injected) from the injection port 1B of the drug solution injection device 10. When injecting a chemical solution, the rubber bands 1C1 and 1C2 (hollow cylindrical elastic member) are deformed by the discharge pressure P1 (chemical solution injection pressure), and the chemical solution is discharged outward in the radial direction (injected into the ground). The flow path s is formed.

薬液注入工程に際して、外管1において薬液注入すべき複数の箇所に溝1Aが形成されていれば、当該複数の溝1Aの注入口1Bの位置に対応させて順次、注入内管2を移動、配置させながら、例えば下方領域から上方領域に向かって、地盤中への薬液注入を実行する。
但し、外管1における複数の溝1A(注入口1B)の位置に対応して複数の注入ノズル及び複数のパッカーを有する注入内管を使用すれば、複数の溝1Aの注入口1Bから同時に地盤中に薬液を注入することも出来る。
In the chemical solution injection step, if the grooves 1A are formed at a plurality of locations in the outer tube 1 to be injected with the chemical solution, the injection inner tube 2 is sequentially moved according to the positions of the injection ports 1B of the plurality of grooves 1A. While arranging, the chemical injection into the ground is performed, for example, from the lower region to the upper region.
However, if an injection inner tube having a plurality of injection nozzles and a plurality of packers is used corresponding to the positions of the plurality of grooves 1A (injection ports 1B) in the outer tube 1, the ground can be simultaneously reached from the injection ports 1B of the plurality of grooves 1A. It is also possible to inject a chemical solution into it.

図示の実施形態において、薬液注入装置10の先端(削孔方向先端)に削孔装置(例えば削孔ビット、高圧水噴射機構等、従来技術を示す図11の符号13)を設置すれば、前記ボーリング孔Hの削孔の際に、ボーリング孔Hの削孔と同時に薬液注入装置10がボーリング孔H内に配置されるので、ボーリング孔Hの削孔と薬液注入装置の配置(挿入)を同時に実行することが出来る。
もちろん、薬液注入装置10とは別個に用意した削孔装置によりボーリング孔Hを削孔し、ボーリング孔Hが削孔された後、薬液注入装置10をボーリング孔H内に挿入しても良い。この場合、ボーリング孔Hの削孔と、ボーリング孔H内への薬液注入装置10の挿入(配置)とは同時には実行されず、ボーリング孔Hの削孔の後に、薬液注入装置10が挿入(配置)される。
In the illustrated embodiment, if a drilling device (for example, a drilling bit, a high-pressure water injection mechanism, etc., reference numeral 13 in FIG. 11 showing the prior art) is installed at the tip (tip in the drilling direction) of the chemical injection device 10, the above. Since the chemical injection device 10 is arranged in the boring hole H at the same time as the drilling of the boring hole H at the time of drilling the boring hole H, the drilling of the boring hole H and the arrangement (insertion) of the chemical liquid injection device are performed at the same time. Can be executed.
Of course, the boring hole H may be drilled by a drilling device prepared separately from the chemical liquid injection device 10, and after the boring hole H is drilled, the chemical liquid injection device 10 may be inserted into the boring hole H. In this case, the drilling of the boring hole H and the insertion (arrangement) of the chemical liquid injection device 10 into the boring hole H are not executed at the same time, and the chemical liquid injection device 10 is inserted after the drilling of the boring hole H (the chemical liquid injection device 10 is inserted (arranged). Placed).

図示の実施形態によれば、逆止弁の機能を有する弾性部材で構成された弁を用いた従来技術と同様に、注入時のみ薬液注入流路sを構成し、非注入時には薬液注入流路sは構成されない。
ここで図示の実施形態では、ゴムバンド1C1、1C2は溝1A内に嵌合しており、溝1Aの半径方向距離(DH:溝の深さ、図2参照)は、そこに嵌合しているゴムバンド1C1、1C2が外管1の外周面1Dから突出しない深さに設定されているので、薬液注入装置10をボーリング孔H内に挿入するに際して、ゴムバンド1C1、1C2はボーリング孔Hの内壁面と干渉せず、薬液注入装置10のボーリング孔H内の移動の抵抗となることはない。
そのため、ゴムバンド1C1、1C2とボーリング孔Hの内壁面との干渉による摩擦で、ゴムバンド1C1、1C2が摩耗や破損することはなく、ゴムバンド1C1、1C2は弁としての機能を長期間に亘って確実に発揮することが出来る。
According to the illustrated embodiment, the chemical liquid injection flow path s is configured only at the time of injection, and the chemical liquid injection flow path is formed at the time of non-injection, as in the prior art using a valve composed of an elastic member having a check valve function. s is not configured.
Here, in the illustrated embodiment, the rubber bands 1C1 and 1C2 are fitted in the groove 1A, and the radial distance (DH: groove depth, see FIG. 2) of the groove 1A is fitted therein. Since the rubber bands 1C1 and 1C2 are set to a depth that does not protrude from the outer peripheral surface 1D of the outer tube 1, when the chemical liquid injection device 10 is inserted into the boring hole H, the rubber bands 1C1 and 1C2 are formed in the boring hole H. It does not interfere with the inner wall surface and does not act as a resistance to movement in the boring hole H of the chemical injection device 10.
Therefore, the rubber bands 1C1 and 1C2 are not worn or damaged by the friction caused by the interference between the rubber bands 1C1 and 1C2 and the inner wall surface of the boring hole H, and the rubber bands 1C1 and 1C2 function as valves for a long period of time. It can be surely demonstrated.

そして、2本のゴムバンド1C1、1C2には常に半径方向内方へ向かう弾性反撥力が作用しているので、半径方向内方に位置するゴムバンド1C1の軸方向両端が、半径方向外方に捲れ上がる様に変形しても、半径方向外側に位置する他方のゴムバンド1C2の軸方向中央の領域に作用する弾性反撥力Tにより、ゴムバンド1C1の軸方向両端は半径方向外方に捲れ上がる様に変形せずに、溝1Aの半径方向内方面に押し付けられる。
そのため、注入液通路から注入液が吐出することは無く、且つ、地盤側から注入液が逆流して来ても、ゴムバンド1C1が溝1Aの半径方向内方面に押し付けられている箇所において、完全にシールされる。
それに加えて図1~図7で示す実施形態であれば、注入薬液が例えばセメント粒子が懸濁している懸濁液であり、注入薬液を地盤に注入する際にゴムバンド1C1、1C2がセメント粒子により摩耗しても、半径方向内方に位置するゴムバンド1C1の摩耗箇所はゴムバンド1C2の弾性反発力Tにより半径方向内方に押し潰されるので、ゴムバンド1C1と溝1Aは密着し、その間に薬液が漏れる流路は形成されない。そのため、非注入時にゴムバンド1C1が注入液通路の注入口1Bを閉鎖している状態が、常時、保持される。すなわち、注入薬液が懸濁液であっても、図示の実施形態では良好に実施することが出来る。
Since the two rubber bands 1C1 and 1C2 always have an elastic repulsive force inward in the radial direction, both ends of the rubber band 1C1 located inward in the radial direction are outward in the radial direction. Even if it is deformed so as to be rolled up, both ends in the axial direction of the rubber band 1C1 are rolled up outward due to the elastic repulsive force T acting on the axially central region of the other rubber band 1C2 located on the outer side in the radial direction. It is pressed inward in the radial direction of the groove 1A without being deformed in the same manner.
Therefore, the injection liquid is not discharged from the injection liquid passage, and even if the injection liquid flows backward from the ground side, the rubber band 1C1 is completely pressed inward in the radial direction of the groove 1A. Is sealed to.
In addition, in the embodiment shown in FIGS. 1 to 7, the injection liquid is, for example, a suspension in which cement particles are suspended, and the rubber bands 1C1 and 1C2 are the cement particles when the injection liquid is injected into the ground. Since the worn part of the rubber band 1C1 located inward in the radial direction is crushed inward in the radial direction by the elastic repulsive force T of the rubber band 1C2, the rubber band 1C1 and the groove 1A are in close contact with each other. A flow path through which the chemical liquid leaks is not formed. Therefore, the state in which the rubber band 1C1 closes the injection port 1B of the injection liquid passage during non-injection is always maintained. That is, even if the injectable drug solution is a suspension, it can be satisfactorily carried out in the illustrated embodiment.

上述した図1~図7の実施形態とは別の実施形態に係る薬液注入工法では、外管1の溝1Aに2本のゴムバンド1C1、1C2(中空円筒形状弾性部材)を嵌合することに代えて、図9で示す様に、外管1における湾曲した溝1Gに2本のOリング1o1を嵌合している。
すなわち、溝1Gの底面1GAにおいて、幅方向(図9では上下方向)の中央の注入口1Bを閉鎖する様に、弾性材(例えばゴム)製の円環状弾性部材であるOリング1o1が2本嵌合している。その際、2本のOリング1o1は、溝1Gの幅方向に均等に配置されており、注入口1Bの中心軸1BCは2本のOリング1o1の境界を定義している。
溝1Gの深さDH(半径方向距離)は、図9で示す様に、Oリング1o1を溝1Gに嵌合した際、Oリング1o1が外管1の外周面1Dから突出しない深さに設定される。
ここで図9においては、外管1の外周面1Dに形成した溝1Gの底面1GAは所定の曲率半径を有する湾曲面に形成される。
In the chemical solution injection method according to the embodiment different from the above-described embodiments of FIGS. 1 to 7, two rubber bands 1C1 and 1C2 (hollow cylindrical elastic members) are fitted into the groove 1A of the outer pipe 1. Instead, as shown in FIG. 9, two O-rings 1o1 are fitted in the curved groove 1G in the outer tube 1.
That is, in the bottom surface 1GA of the groove 1G, two O-rings 1o1 which are annular elastic members made of an elastic material (for example, rubber) are closed so as to close the central injection port 1B in the width direction (vertical direction in FIG. 9). It is fitted. At that time, the two O-rings 1o1 are evenly arranged in the width direction of the groove 1G, and the central axis 1BC of the injection port 1B defines the boundary between the two O-rings 1o1.
As shown in FIG. 9, the depth DH (radial distance) of the groove 1G is set to a depth at which the O-ring 1o1 does not protrude from the outer peripheral surface 1D of the outer tube 1 when the O-ring 1o1 is fitted into the groove 1G. Will be done.
Here, in FIG. 9, the bottom surface 1GA of the groove 1G formed on the outer peripheral surface 1D of the outer tube 1 is formed on a curved surface having a predetermined radius of curvature.

薬液注入時に注入口1Bから薬液による吐出圧を受けた際に、2本のOリング1o1は適正に変形し、当該2本のOリング1o1間に薬液流路は形成され、薬液は外管1の半径方向外方に吐出される(地盤中に注入される)。
図9で示すバルブを用いる実施形態におけるその他の構成及び作用効果は、図1~図7で示す実施形態と同様である。
When the discharge pressure of the chemical solution is received from the injection port 1B at the time of injecting the chemical solution, the two O-rings 1o1 are properly deformed, a chemical solution flow path is formed between the two O-rings 1o1, and the chemical solution is the outer tube 1. Is discharged outward in the radial direction (injected into the ground).
Other configurations and operational effects in the embodiment using the valve shown in FIG. 9 are the same as those in the embodiments shown in FIGS. 1 to 7.

図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではないことを付記する。
例えば、円環状弾性部材として、実施形態ではゴム製のOリングを例示したが、他の材質によるものでも良く、また円環状弾性部材の断面形状も円形でなくても良い。
It should be added that the illustrated embodiment is merely an example and is not a description to the effect of limiting the technical scope of the present invention.
For example, as the annular elastic member, a rubber O-ring is exemplified in the embodiment, but other materials may be used, and the cross-sectional shape of the annular elastic member may not be circular.

1・・・外管
1A・・・溝
1B・・・注入口
1C1、1C2・・・ゴムバンド(中空円筒形状弾性部材)
1D・・・外周面
2・・・注入内管
10・・・薬液注入装置
H・・・ボーリング孔
s・・・流路
1 ... Outer tube 1A ... Groove 1B ... Injection port 1C1, 1C2 ... Rubber band (hollow cylindrical elastic member)
1D ... Outer peripheral surface 2 ... Injection inner tube 10 ... Chemical injection device H ... Boring hole s ... Flow path

Claims (2)

外管(1)と注入内管(2)を備え、前記外管(1)の外周面(1D)には円周方向へ延在する溝(1A)が形成され、当該溝(1A)には円周方向等間隔に注入口(1B)が形成され、前記溝(1A)には2本の中空円筒形状弾性部材(1C1、1C2)が半径方向について積層する様に嵌合しており、前記溝(1A)の側面には段部は形成されておらず、半径方向外方に配置された中空円筒形状弾性部材(1C2)は半径方向内方に配置された中空円筒形状弾性部材(1C1)よりも外管(1)軸方向寸法が大きく設定されており、前記溝(1A)の外管(1)軸方向寸法(B)は前記積層された中空円筒形状弾性部材の半径方向外側に配置された中空円筒形状弾性部材(1C2)の外管(1)軸方向寸法に等しく設定され、前記溝(1A)の深さ(DH)は、注入薬液が吐出されていない時には前記溝(1A)に嵌合している中空円筒形状弾性部材(1C1、1C2)が外管(1)外周面(1D)から外管(1)半径方向外方に突出しない深さであり、注入薬液が吐出されている時には半径方向外側に配置された中空円筒形状弾性部材(1C2)の軸方向両端部が半径方向外方に捲れ上がり外管(1)軸方向両端と前記溝(1A)の側面との間に隙間が形成される深さに設定されている薬液注入装置(10)を配置する薬液注入装置配置工程と、
薬液を注入する注入工程を含み、当該注入工程は、
前記薬液注入装置(10)の注入口(1B)から注入薬液が吐出される際に、前記中空円筒形状弾性部材(1C1、1C2)が変形して薬液を半径方向外方に吐出する流路(s)が形成される工程を有していることを特徴とする薬液注入工法。
An outer tube (1) and an injection inner tube (2) are provided, and a groove (1A) extending in the circumferential direction is formed on the outer peripheral surface (1D) of the outer tube (1), and the groove (1A) is formed. The injection ports (1B) are formed at equal intervals in the circumferential direction, and two hollow cylindrical elastic members (1C1 and 1C2) are fitted in the groove (1A) so as to be laminated in the radial direction. No step is formed on the side surface of the groove (1A), and the hollow cylindrical elastic member (1C2) arranged radially outward is the hollow cylindrical elastic member (1C1) arranged radially inward. The outer pipe (1) axial dimension is set larger than that of), and the outer pipe (1) axial dimension (B) of the groove (1A) is located on the radial outer side of the laminated hollow cylindrical elastic member. The depth (DH) of the groove (1A) is set to be equal to the axial dimension of the outer tube (1) of the arranged hollow cylindrical elastic member (1C2), and the depth (DH) of the groove (1A) is the groove (1A) when the injection liquid is not discharged. ), The hollow cylindrical elastic member (1C1, 1C2) has a depth that does not protrude outward from the outer tube (1) outer peripheral surface (1D) in the radial direction, and the injection drug solution is discharged. When this is done, both ends in the radial direction of the hollow cylindrical elastic member (1C2) arranged on the outer side in the radial direction are rolled up outward in the radial direction, and the outer tube (1) both ends in the axial direction and the side surface of the groove (1A). A chemical injection device placement step for arranging the chemical injection device (10) set to a depth at which a gap is formed, and a chemical solution injection device placement step.
The injection step includes an injection step of injecting a drug solution.
When the injected chemical solution is discharged from the injection port (1B) of the chemical solution injection device (10), the hollow cylindrical elastic member (1C1, 1C2) is deformed and the chemical solution is discharged outward in the radial direction. A chemical injection method characterized by having a step of forming s).
外管と注入内管を備え、
前記外管の外周面には円周方向へ延在する溝が形成され、
当該溝には円周方向等間隔に注入口が形成され、
前記溝には2本の中空円筒形状弾性部材が半径方向について積層する様に嵌合しており、
前記溝(1A)の側面には段部は形成されておらず、
半径方向外方に配置された中空円筒形状弾性部材(1C2)は半径方向内方に配置された中空円筒形状弾性部材(1C1)よりも外管(1)軸方向寸法が大きく設定されており、
前記溝(1A)の外管(1)軸方向寸法(B)は前記積層された中空円筒形状弾性部材の半径方向外側に配置された中空円筒形状弾性部材(1C2)の外管(1)軸方向寸法に等しく設定され、
前記溝(1A)の深さ(DH)は、注入薬液が吐出されていない時以外(注入時以外)には前記溝(1A)に嵌合している中空円筒形状弾性部材(1C1、1C2)は外管(1)外周面(1D)から外管(1)半径方向外方に突出しない深さであり、注入薬液が吐出されている時には半径方向外側に配置された中空円筒形状弾性部材(1C2)の軸方向両端部が半径方向外方に捲れ上がり外管(1)軸方向両端と前記溝(1A)の側面との間に隙間が形成される深さに設定されていることを特徴とする薬液注入装置。
Equipped with an outer tube and an inner tube for injection,
A groove extending in the circumferential direction is formed on the outer peripheral surface of the outer pipe.
Injection ports are formed in the groove at equal intervals in the circumferential direction.
Two hollow cylindrical elastic members are fitted in the groove so as to be laminated in the radial direction.
No step portion is formed on the side surface of the groove (1A), and the step portion is not formed.
The hollow cylindrical elastic member (1C2) arranged radially outward has a larger outer tube (1) axial dimension than the hollow cylindrical elastic member (1C1) arranged radially inward.
The outer tube (1) axial dimension (B) of the groove (1A) is the outer tube (1) axis of the hollow cylindrical elastic member (1C2) arranged radially outside the laminated hollow cylindrical elastic member. Set equal to the directional dimension,
The depth (DH) of the groove (1A) is a hollow cylindrical elastic member (1C1, 1C2) fitted in the groove (1A) except when the injection liquid is not discharged (other than injection). Is a depth that does not protrude outward from the outer tube (1) outer peripheral surface (1D) in the radial direction, and is a hollow cylindrical elastic member arranged radially outside when the injection liquid is discharged. 1C2) is characterized in that both ends in the axial direction are rolled up outward in the radial direction and the depth is set so that a gap is formed between both ends in the axial direction of the outer tube (1) and the side surface of the groove (1A). Chemical injection device.
JP2017235981A 2017-12-08 2017-12-08 Chemical injection method and equipment Active JP6990005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017235981A JP6990005B2 (en) 2017-12-08 2017-12-08 Chemical injection method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017235981A JP6990005B2 (en) 2017-12-08 2017-12-08 Chemical injection method and equipment

Publications (2)

Publication Number Publication Date
JP2019100165A JP2019100165A (en) 2019-06-24
JP6990005B2 true JP6990005B2 (en) 2022-01-12

Family

ID=66976251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017235981A Active JP6990005B2 (en) 2017-12-08 2017-12-08 Chemical injection method and equipment

Country Status (1)

Country Link
JP (1) JP6990005B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123674A1 (en) 2007-04-05 2008-10-16 Ki Pyo Jeon Grouting apparatus and grouting method
JP2010047950A (en) 2008-08-21 2010-03-04 Fudo Tetra Corp Ground injection method and ground injection apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5327764Y2 (en) * 1974-02-07 1978-07-13
JPS5644844Y2 (en) * 1976-09-28 1981-10-20
JPS57209315A (en) * 1981-06-19 1982-12-22 Toa Gurauto Kogyo Kk Grout injecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123674A1 (en) 2007-04-05 2008-10-16 Ki Pyo Jeon Grouting apparatus and grouting method
JP2010047950A (en) 2008-08-21 2010-03-04 Fudo Tetra Corp Ground injection method and ground injection apparatus

Also Published As

Publication number Publication date
JP2019100165A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
CN112513411B (en) Underground fracturing method
AU2009295276B2 (en) An injection, sealing valving and passageway system
JP3345594B2 (en) Multi-stage grouting equipment
US20240076950A1 (en) Punch and inject tool for downhole casing and method for use thereof
RU2717466C1 (en) Device for well clogging and method of temporary well clogging
KR101868086B1 (en) drive rod apparatus for a drilling and grouting
KR100842925B1 (en) Grouting apparatus and grouting method
JP5198992B2 (en) Ground injection device and ground improvement method using the same
JP6990005B2 (en) Chemical injection method and equipment
JP7075270B2 (en) Reinforcement method
CN104481412A (en) Well drilling device
CA3010364C (en) Burst plug assembly with choke insert, fracturing tool and method of fracturing with same
JP4827689B2 (en) Ground improvement method
JP6263598B2 (en) Retaining method of retaining wall
US11879305B2 (en) Behind casing cementing tool
JP6804901B2 (en) Chemical injection method and equipment
JP2009002043A (en) Packer
US20220307345A1 (en) Method and apparatus for use in plug and abandon operations
JP6633343B2 (en) Boring rod
JP4916395B2 (en) Drainage pipe set and drainage method
JPH0633454A (en) Method and device for pulling-out casing pipe for anchor
JPH07317059A (en) Casing packer
JP2022180263A (en) Rock bolt structural body and natural ground reinforcement structure
JP2006283290A (en) Soil improving method
JP2006283290A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211202

R150 Certificate of patent or registration of utility model

Ref document number: 6990005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150