JP6989911B2 - Spectroscopic elements, measuring methods, and measuring devices - Google Patents

Spectroscopic elements, measuring methods, and measuring devices Download PDF

Info

Publication number
JP6989911B2
JP6989911B2 JP2017135803A JP2017135803A JP6989911B2 JP 6989911 B2 JP6989911 B2 JP 6989911B2 JP 2017135803 A JP2017135803 A JP 2017135803A JP 2017135803 A JP2017135803 A JP 2017135803A JP 6989911 B2 JP6989911 B2 JP 6989911B2
Authority
JP
Japan
Prior art keywords
dielectric layer
measured
spectroscopic element
incident
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017135803A
Other languages
Japanese (ja)
Other versions
JP2019020147A (en
Inventor
裕久 内田
遼平 古橋
光司 水津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Chiba Institute of Technology
Original Assignee
Arkray Inc
Chiba Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray Inc, Chiba Institute of Technology filed Critical Arkray Inc
Priority to JP2017135803A priority Critical patent/JP6989911B2/en
Publication of JP2019020147A publication Critical patent/JP2019020147A/en
Application granted granted Critical
Publication of JP6989911B2 publication Critical patent/JP6989911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、分光素子、測定方法、及び測定装置に関する。 The present invention relates to a spectroscopic element, a measuring method, and a measuring device.

特許文献1には、テラヘルツ波を用いた全反射減衰法(Attenuated Total Reflection、ATR法)により溶液の濃度を高感度に測定する装置として、導電性周期構造体を、テラヘルツ波が全反射する界面に設けた構成とし、テラヘルツ波の所定の周波数帯域に特徴的な吸収を示すディップを形成することで測定対象物質の濃度等を測定する装置が開示されている。 Patent Document 1 describes a conductive periodic structure as a device for measuring the concentration of a solution with high sensitivity by an Attenuated Total Reflection (ATR method) using a terahertz wave, and an interface at which the terahertz wave is totally reflected. Disclosed is an apparatus for measuring the concentration of a substance to be measured and the like by forming a dip showing characteristic absorption in a predetermined frequency band of a terahertz wave.

また、特許文献2には、ATRプリズム上に設けられた薄膜試料と、その上部に設置された積層試料の界面における反射係数を用いてテラヘルツ波の減衰を修正することで、薄膜試料の含水率を求める方法が開示されている。 Further, in Patent Document 2, the water content of the thin film sample is modified by correcting the attenuation of the terahertz wave by using the reflectance coefficient at the interface between the thin film sample provided on the ATR prism and the laminated sample installed above the thin film sample. The method of finding is disclosed.

また、特許文献3には、プリズムに対し任意の距離調整機構を設けて、試料と反射面との間の距離が一定となるように制御し、反射面側での光の干渉現象を利用することでテラヘルツ波の測定精度を向上させることができる装置が開示されている。 Further, in Patent Document 3, an arbitrary distance adjusting mechanism is provided for the prism to control the distance between the sample and the reflecting surface to be constant, and the interference phenomenon of light on the reflecting surface side is used. A device capable of improving the measurement accuracy of the terahertz wave is disclosed.

特開2014-77672号公報Japanese Unexamined Patent Publication No. 2014-77672 特開2016-53527号公報Japanese Unexamined Patent Publication No. 2016-53527 特開2016-90314号公報Japanese Unexamined Patent Publication No. 2016-90314

一般的にテラヘルツ波による液体の測定については、特に水などの極性の高い液体に対するテラヘルツ波の強い吸収が存在するため透過測定を行うことが難しく、試料部位の光路長を極端に短くする必要がある。また、水溶液ではテラヘルツ波の吸収が広範囲に変化するために特徴的なスペクトル構造が存在しないことが多く、定量的な変化を確認することが困難である。 In general, when measuring liquids with terahertz waves, it is difficult to perform transmission measurement due to the strong absorption of terahertz waves, especially for highly polar liquids such as water, and it is necessary to extremely shorten the optical path length of the sample site. be. In addition, since the absorption of terahertz waves changes over a wide range in an aqueous solution, the characteristic spectral structure often does not exist, and it is difficult to confirm the quantitative change.

上記の課題を解決するための具体的な方法として、上記特許文献1に記載された方法が挙げられるが、複雑な周期構造を有する導電性の構造体が必要となること、テラヘルツ波の波長程度の開口を有するため、そのサイズによってテラヘルツ波が予期しない回折を起こす可能性がある、という問題がある。 As a specific method for solving the above problems, the method described in Patent Document 1 can be mentioned, but a conductive structure having a complicated periodic structure is required, and the wavelength of a terahertz wave is about the same. There is a problem that the terahertz wave may cause unexpected diffraction due to its size.

また、特許文献2記載の方法では、特定のサンプルの含水率を求めるために、一部の材質の物理定数が既知である必要がある、という問題がある。 Further, the method described in Patent Document 2 has a problem that the physical constants of some materials need to be known in order to obtain the water content of a specific sample.

また、特許文献3記載の方法では、試料の表面が極端に柔軟性に富む場合(特に液体表面)は、波紋の発生などにより試料表面の形状が変化し、試料との距離が必ずしも一定でなくなる場合が発生する。という問題がある。 Further, in the method described in Patent Document 3, when the surface of the sample is extremely flexible (particularly the liquid surface), the shape of the sample surface changes due to the generation of ripples and the like, and the distance from the sample is not always constant. The case occurs. There is a problem.

本発明は上記問題点を解決するためになされたものであり、被測定物の分光情報を高感度で測定することができる分光素子、測定方法、及び測定装置を提供することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a spectroscopic element, a measuring method, and a measuring device capable of measuring spectral information of a measured object with high sensitivity.

上記目的を達成するために、本発明の第1態様に係る分光素子は、第1の誘電体層と、前記第1の誘電体層上に設けられた第2の誘電体層と、前記第2の誘電体層上に設けられた第3の誘電体層と、を備え、前記第1の誘電体層に入射した電磁波が、前記第1の誘電体層と前記第2の誘電体層との界面で全反射するように、前記第1の誘電体層の第1の屈折率が前記第2の誘電体層の第2の屈折率よりも大きく、前記第2の誘電体層に生じたエバネッセント波が、前記第3の誘電体層内で多重反射するように、前記第3の誘電体層の第3の屈折率が、前記第2の屈折率よりも大きく、前記第2の誘電体層の厚みは、前記第1の誘電体層に入射する電磁波の波長よりも小さい。 In order to achieve the above object, the spectroscopic element according to the first aspect of the present invention includes a first dielectric layer, a second dielectric layer provided on the first dielectric layer, and the first dielectric layer. A third dielectric layer provided on the second dielectric layer is provided, and an electromagnetic wave incident on the first dielectric layer is provided with the first dielectric layer and the second dielectric layer. The first refractive index of the first dielectric layer is larger than the second refractive index of the second dielectric layer so as to be totally reflected at the interface of the second dielectric layer. The third dielectric layer of the third dielectric layer has a higher refractive index than the second dielectric layer so that the evanescent wave is multiple-reflected in the third dielectric layer. The thickness of the layer is smaller than the wavelength of the electromagnetic wave incident on the first dielectric layer.

また、本発明の第2態様に係る分光素子は、前記第1の誘電体層は、入射した電磁波が前記界面で全反射する条件を満たす角度で前記界面に入射するように成形されたプリズムである。 Further, the spectroscopic element according to the second aspect of the present invention is a prism formed so that the first dielectric layer is incident on the interface at an angle satisfying the condition that the incident electromagnetic wave is totally reflected at the interface. be.

また、本発明の第3態様に係る分光素子は、前記第2の誘電体層は、石英板である。 Further, in the spectroscopic element according to the third aspect of the present invention, the second dielectric layer is a quartz plate.

また、本発明の第4態様に係る分光素子は、前記第3の誘電体層は、シリコンウェハである。
また、本発明の第5態様に係る分光素子は、前記第3の誘電体層上に形成された側壁により、被測定物を保持する保持部を備える。
Further, in the spectroscopic element according to the fourth aspect of the present invention, the third dielectric layer is a silicon wafer.
Further, the spectroscopic element according to the fifth aspect of the present invention includes a holding portion for holding the object to be measured by the side wall formed on the third dielectric layer.

また、本発明の第6態様に係る測定方法は、第1態様~第5態様の何れかに係る分光素子の前記第3の誘電体層上に被測定物を配置し、前記第1の誘電体層に電磁波を入射し、前記第1の誘電体層と前記第2の誘電体層の界面および前記第3の誘電体層と前記被測定物との界面にエバネッセント波を発生させ、前記第3の誘電体層内で多重反射した波を含む、前記分光素子から出射された電磁波の強度が特徴的なスペクトル構造を有する特定周波数の強度に基づいて、被測定物の分光情報を測定する。 Further, in the measuring method according to the sixth aspect of the present invention, the object to be measured is arranged on the third dielectric layer of the spectroscopic element according to any one of the first to fifth aspects, and the first dielectric is provided. An electromagnetic wave is incident on the body layer to generate an evanescent wave at the interface between the first dielectric layer and the second dielectric layer and the interface between the third dielectric layer and the object to be measured. The spectral information of the object to be measured is measured based on the intensity of a specific frequency having a spectral structure characterized by the intensity of the electromagnetic wave emitted from the spectroscopic element, including the wave multiple reflected in the dielectric layer of 3.

また、本発明の第7態様に係る測定方法は、前記被測定物は溶液であり、前記特定周波数の強度に基づいて、前記溶液の濃度を前記分光情報として測定する。 Further, in the measuring method according to the seventh aspect of the present invention, the object to be measured is a solution, and the concentration of the solution is measured as the spectral information based on the intensity of the specific frequency.

また、本発明の第8態様に係る測定方法は、前記分光素子に入射される電磁波がテラヘルツ波である。 Further, in the measuring method according to the eighth aspect of the present invention, the electromagnetic wave incident on the spectroscopic element is a terahertz wave.

また、本発明の第9態様に係る測定装置は、第1態様~第5態様の何れかに係る分光素子と、前記分光素子に入射する電磁波を生成する光源と、前記分光素子から出射された電磁波の強度が特徴的なスペクトル構造を有する特定周波数の強度に基づいて、前記第3の誘電体層上の被測定物の分光情報を測定する測定部と、を備える。 Further, the measuring device according to the ninth aspect of the present invention is emitted from the spectroscopic element according to any one of the first to fifth aspects, a light source for generating an electromagnetic wave incident on the spectroscopic element, and the spectroscopic element. A measuring unit for measuring spectral information of a measured object on the third dielectric layer based on the intensity of a specific frequency having a spectral structure characterized by the intensity of electromagnetic waves is provided.

以上説明したように、本発明の分光素子、測定方法、及び測定装置によれば、被測定物の分光情報を高感度で測定することができる、という効果が得られる。 As described above, according to the spectroscopic element, the measuring method, and the measuring device of the present invention, it is possible to obtain the effect that the spectroscopic information of the object to be measured can be measured with high sensitivity.

測定装置の構成を示す構成図である。It is a block diagram which shows the structure of a measuring device. 分光素子の構成を示す構成図である。It is a block diagram which shows the structure of a spectroscopic element. 多重反射について説明するための図である。It is a figure for demonstrating multiple reflection. テラヘルツ波の周波数と強度との関係を示すグラフである。It is a graph which shows the relationship between the frequency and the intensity of a terahertz wave. テラヘルツ波の周波数と強度との関係を示すグラフである。It is a graph which shows the relationship between the frequency and the intensity of a terahertz wave. テラヘルツ波の周波数と強度との関係を示すグラフである。It is a graph which shows the relationship between the frequency and the intensity of a terahertz wave. テラヘルツ波の周波数と強度との関係を示すグラフである。It is a graph which shows the relationship between the frequency and the intensity of a terahertz wave. テラヘルツ波の周波数と強度との関係を示すグラフである。It is a graph which shows the relationship between the frequency and the intensity of a terahertz wave. 溶液の含水率とテラヘルツ波の強度との関係を示すグラフである。It is a graph which shows the relationship between the water content of a solution, and the intensity of a terahertz wave. テラヘルツ波の周波数と強度との関係を示すグラフである。It is a graph which shows the relationship between the frequency and the intensity of a terahertz wave. 溶液の濃度とテラヘルツ波の強度との関係を示すグラフである。It is a graph which shows the relationship between the concentration of a solution and the intensity of a terahertz wave.

以下、図面を参照して、本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本実施の形態に係る測定装置について説明する。図1には、本実施の形態に係る測定装置10の構成を示した。測定装置10は、テラヘルツ波を用いたATR法により被測定物の分光情報を測定する装置である。 First, the measuring device according to the present embodiment will be described. FIG. 1 shows the configuration of the measuring device 10 according to the present embodiment. The measuring device 10 is a device that measures the spectral information of the object to be measured by the ATR method using the terahertz wave.

図1に示すように、測定装置10は、テラヘルツ波励起光源としてのフェムト秒ファイバレーザ12を備える。フェムト秒ファイバレーザ12としては、例えば中心波長が780nm、パルス幅が100fs、平均パワーが20mW、繰返し周波数が50MHzのフェムト秒ファイバレーザを用いることができるが、これに限られるものではない。 As shown in FIG. 1, the measuring device 10 includes a femtosecond fiber laser 12 as a terahertz wave excitation light source. As the femtosecond fiber laser 12, for example, a femtosecond fiber laser having a center wavelength of 780 nm, a pulse width of 100 fs, an average power of 20 mW, and a repetition frequency of 50 MHz can be used, but is not limited thereto.

フェムト秒ファイバレーザ12が発振したレーザ光は、ビームスプリッター14によりテラヘルツ波発生用のポンプ光L1と、テラヘルツ波検出用のプローブ光L2に分けられる。 The laser light oscillated by the femtosecond fiber laser 12 is divided into a pump light L1 for generating a terahertz wave and a probe light L2 for detecting the terahertz wave by the beam splitter 14.

ポンプ光L1は、ミラーM1、M2で反射されてテラヘルツ波発生用光伝導アンテナ16に入射される。テラヘルツ波発生用光伝導アンテナ16は、例えば低温成長のガリウムヒ素(GaAs)を基板としたものが用いられる。 The pump light L1 is reflected by the mirrors M1 and M2 and incident on the terahertz wave generation photoconducting antenna 16. As the terahertz wave generation photoconducting antenna 16, for example, a gallium arsenide (GaAs) grown at low temperature is used as a substrate.

テラヘルツ波発生用光伝導アンテナ16のギャップ間に図示しない電源から矩形波電圧が印加されると、テラヘルツ波発生用光伝導アンテナ16に装着された図示しない超半球型シリコンレンズを介して自由空間にテラヘルツ波(テラヘルツパルス)が放射される。なお、上記矩形波電圧としては、例えば±10V、50kHzの矩形波電圧とすることができる。 When a rectangular wave voltage is applied from a power source (not shown) between the gaps of the terahertz wave generation photoconducting antenna 16, it enters free space via a super hemispherical silicon lens (not shown) mounted on the terahertz wave generation photoconducting antenna 16. A terahertz wave (terahertz pulse) is emitted. The square wave voltage may be, for example, ± 10 V, 50 kHz square wave voltage.

テラヘルツ波発生用光伝導アンテナ16から放射されたテラヘルツパルスは、テラヘルツ用レンズ18によりコリメートされ、分光素子20に入射される。 The terahertz pulse radiated from the terahertz wave generation photoconducting antenna 16 is collimated by the terahertz lens 18 and incident on the spectroscopic element 20.

分光素子20は、図2に示すように、抵抗率が1kΩcm以上である高抵抗率のノンドープシリコン製の第1の誘電体層としてのプリズム22と、プリズム22上に設けられた第2の誘電体層としての石英(S)板24と、石英板24上に設けられた第3の誘電体層としての抵抗率が1kΩcm以上である高抵抗率のノンドープシリコン製のシリコン(S)ウェハ26と、シリコンウェハ26上に設けられた溶液セル28と、を備えている。溶液セル28は、シリコンウェハ26上に側壁を設けることにより、溶液を保持する保持部を有する。なお、被測定物が個体の場合でも測定可能であるが、正確な測定のためには被測定物と第3の誘電体層との間に隙間がなく、密着していることが望ましい。被測定物が液体の場合には、第3の誘電体層と隙間なく接触させることが容易であるため好適である。 As shown in FIG. 2, the spectroscopic element 20 has a prism 22 as a first dielectric layer made of non-doped silicon having a resistivity of 1 kΩcm or more and a second dielectric provided on the prism 22. Silicon ( Si O 2) made of high resistivity non-doped silicon having a resistivity of 1 kΩcm or more as a quartz ( Si O 2 ) plate 24 as a body layer and a third dielectric layer provided on the quartz plate 24. ) A wafer 26 and a solution cell 28 provided on the silicon wafer 26. The solution cell 28 has a holding portion for holding the solution by providing a side wall on the silicon wafer 26. Although it is possible to measure even if the object to be measured is an individual, it is desirable that there is no gap between the object to be measured and the third dielectric layer and they are in close contact with each other for accurate measurement. When the object to be measured is a liquid, it is suitable because it can be easily brought into contact with the third dielectric layer without a gap.

なお、プリズム22と石英板24との間、石英板24とシリコンウェハ26との間、シリコンウェハ26と溶液セル28との間は、化学的または物理的な結合は必要なく、各々が単に密着していればよい。また、溶液セル28は、例えばテフロン(登録商標)製の溶液セルを用いることができるが、これに限られるものではない。 No chemical or physical bond is required between the prism 22 and the quartz plate 24, between the quartz plate 24 and the silicon wafer 26, and between the silicon wafer 26 and the solution cell 28, and they are simply in close contact with each other. You just have to do it. Further, as the solution cell 28, for example, a solution cell made of Teflon (registered trademark) can be used, but the solution cell 28 is not limited thereto.

プリズム22は、側面から入射したテラヘルツ波Tが石英板24との界面30で全反射する条件を満たす角度、すなわちテラヘルツ波Tの界面30への入射角が臨界角より大きい角度で界面30に入射するように成形されている。本実施の形態では、プリズム22の形状は一例として台形であるが、入射したテラヘルツ波Tが界面30で全反射する条件を満たす角度で界面30に入射するものであれば、台形に限られるものではない。なお、プリズム22に入射されるテラヘルツ波Tの周波数は、本実施の形態では一例として0.1~4THzの帯域を含むテラヘルツパルスである。また、プリズム22は、例えばシリコン製のプリズムを用いることができるが、これに限られるものではない。 The prism 22 is incident on the interface 30 at an angle that satisfies the condition that the terahertz wave T incident from the side surface is totally reflected at the interface 30 with the quartz plate 24, that is, the angle of incidence of the terahertz wave T on the interface 30 is larger than the critical angle. It is molded to do so. In the present embodiment, the shape of the prism 22 is a trapezoid as an example, but the prism 22 is limited to a trapezoid as long as it is incident on the interface 30 at an angle satisfying the condition that the incident terahertz wave T is totally reflected at the interface 30. is not it. The frequency of the terahertz wave T incident on the prism 22 is a terahertz pulse including a band of 0.1 to 4 THz as an example in the present embodiment. Further, as the prism 22, for example, a prism made of silicon can be used, but the prism 22 is not limited to this.

また、プリズム22の屈折率n1は、石英板24の屈折率n2よりも大きく(n1>n2)、シリコンウェハ26の屈折率n3は、石英板24の屈折率n2よりも大きい(n3>n2)。 Further, the refractive index n1 of the prism 22 is larger than the refractive index n2 of the quartz plate 24 (n1> n2), and the refractive index n3 of the silicon wafer 26 is larger than the refractive index n2 of the quartz plate 24 (n3> n2). ..

このように、プリズム22の屈折率n1は石英板24の屈折率n2よりも大きいため、図3に示すように、プリズム22に入射したテラヘルツ波Tは、プリズム22と石英板24との界面30で反射波Rのように全反射する。 As described above, since the refractive index n1 of the prism 22 is larger than the refractive index n2 of the quartz plate 24, as shown in FIG. 3, the terahertz wave T incident on the prism 22 is the interface 30 between the prism 22 and the quartz plate 24. It is totally reflected like the reflected wave R.

界面30で全反射が生じると、界面30の石英板24側にエバネッセント波Eが生じる。エバネッセント波Eは、全反射条件下において低屈折率媒質側に、波長程度の領域に染み出すという特性を有する。石英板24の屈折率n2はシリコンウェハ26の屈折率n3よりも小さいため、石英板24側に生じたエバネッセント波Eは、シリコンウェハ26側へ透過する。石英板24の厚みは、プリズム22に入射するテラヘルツ波の波長よりも小さい。石英板24の厚みがプリズム22に入射するテラヘルツ波の波長よりも小さければ、エバネッセント波Eがシリコンウェハ26にまで到達する。なお、プリズム22に入射するテラヘルツ波の波長がある帯域(幅)を持っている場合には、石英板24の厚みは、プリズム22に入射するテラヘルツ波に含まれる一番長い波長よりも小さければよい。 When total reflection occurs at the interface 30, an evanescent wave E is generated on the quartz plate 24 side of the interface 30. The evanescent wave E has a characteristic of seeping into a region of about a wavelength on the low refractive index medium side under total reflection conditions. Since the refractive index n2 of the quartz plate 24 is smaller than the refractive index n3 of the silicon wafer 26, the evanescent wave E generated on the quartz plate 24 side is transmitted to the silicon wafer 26 side. The thickness of the quartz plate 24 is smaller than the wavelength of the terahertz wave incident on the prism 22. If the thickness of the quartz plate 24 is smaller than the wavelength of the terahertz wave incident on the prism 22, the evanescent wave E reaches the silicon wafer 26. If the wavelength of the terahertz wave incident on the prism 22 has a certain band (width), the thickness of the quartz plate 24 is smaller than the longest wavelength included in the terahertz wave incident on the prism 22. good.

そして、溶液セル28に充填された被測定物としての溶液Sの屈折率がシリコンウェハ26の屈折率n3よりも小さい場合、シリコンウェハ26と溶液Sとの界面32でエバネッセント波Eが石英板24側へ全反射する。また、シリコンウェハ26の屈折率n3は石英板24の屈折率n2よりも大きいので、シリコンウェハ26と石英板24との界面34でも全反射が生じる。これにより、図3に示す光路のように、シリコンウェハ26内でエバネッセント波Eの全反射が複数回繰り返される、すなわち、シリコンウェハ26内でエバネッセント波Eが多重反射する。エバネッセント波Eの強度は小さいため、通常であればスペクトル構造の変化を検出することが困難であるが、多重反射による干渉によりスペクトル構造の変化を高感度に検出することが可能となる。 When the refractive index of the solution S as the object to be measured filled in the solution cell 28 is smaller than the refractive index n3 of the silicon wafer 26, the evanescent wave E is generated on the quartz plate 24 at the interface 32 between the silicon wafer 26 and the solution S. Total internal reflection to the side. Further, since the refractive index n3 of the silicon wafer 26 is larger than the refractive index n2 of the quartz plate 24, total reflection also occurs at the interface 34 between the silicon wafer 26 and the quartz plate 24. As a result, as in the optical path shown in FIG. 3, the total reflection of the evanescent wave E is repeated a plurality of times in the silicon wafer 26, that is, the evanescent wave E is repeatedly reflected in the silicon wafer 26. Since the intensity of the evanescent wave E is small, it is usually difficult to detect changes in the spectral structure, but it is possible to detect changes in the spectral structure with high sensitivity due to interference due to multiple reflections.

シリコンウェハ26内で多重反射されたエバネッセント波Eは、界面30で全反射されたテラヘルツ波Tと共にプリズム22から放射(出射)される。シリコンウェハ26内でエバネッセント波Eが多重反射することにより、プリズム22から放射されたテラヘルツ波Tが干渉し、検出されたテラヘルツ波Tの波形にディップ(干渉縞)が生じる。なお、ディップについての詳細は後述する。 The evanescent wave E multiplely reflected in the silicon wafer 26 is radiated (exited) from the prism 22 together with the terahertz wave T totally reflected at the interface 30. Due to the multiple reflection of the evanescent wave E in the silicon wafer 26, the terahertz wave T radiated from the prism 22 interferes, and a dip (interference fringe) is generated in the detected terahertz wave T waveform. The details of the dip will be described later.

図1に示すように、分光素子20から出力されたテラヘルツ波Tは、テラヘルツ用レンズ40によりコリメートされ、テラヘルツ波検出用光伝導アンテナ42に入射される。 As shown in FIG. 1, the terahertz wave T output from the spectroscopic element 20 is collimated by the terahertz lens 40 and incident on the terahertz wave detection photoconducting antenna 42.

一方、プローブ光L2は、ミラーM3で反射され、遅延器44に入射される。遅延器44は、図中矢印A方向へ移動可能な可動ミラーMaを備え、可動ミラーMaを移動させることにより光路長を変化させることが可能な構成となっている。 On the other hand, the probe light L2 is reflected by the mirror M3 and incident on the delay device 44. The delay device 44 includes a movable mirror Ma that can move in the direction of arrow A in the figure, and has a configuration in which the optical path length can be changed by moving the movable mirror Ma.

遅延器44から出射された光は、ミラーM4~M9により反射されてテラヘルツ波検出用光伝導アンテナ42に入射される。テラヘルツ波検出用光伝導アンテナ42は、テラヘルツ波発生用光伝導アンテナ16と同様に、例えば低温成長のガリウムヒ素(GaAs)を基板としたものが用いられる。 The light emitted from the delay device 44 is reflected by the mirrors M4 to M9 and incident on the terahertz wave detection optical conduction antenna 42. As the terahertz wave detection optical conduction antenna 42, for example, a gallium arsenide (GaAs) having a low temperature growth as a substrate is used as in the terahertz wave generation optical conduction antenna 16.

遅延器44の可動ミラーMaを移動させることにより光路長を変化させて、プローブ光L2がテラヘルツ波検出用光伝導アンテナ42に到達するタイミングをずらしながら、プローブ光L2と分光素子20から出力されたテラヘルツ波Tとの時間的な重なりを変化させることにより、テラヘルツ波Tの時間波形をロックインアンプ46で検出する。 The optical path length was changed by moving the movable mirror Ma of the delay device 44, and the probe light L2 was output from the probe light L2 and the spectroscopic element 20 while shifting the timing at which the probe light L2 reached the terahertz wave detection photoconducting antenna 42. The lock-in amplifier 46 detects the time waveform of the terahertz wave T by changing the temporal overlap with the terahertz wave T.

パーソナルコンピュータ48は、ロックインアンプ46で検出されたテラヘルツ波Tの時間波形に基づいて、被測定物の分光情報を求める。 The personal computer 48 obtains spectral information of the object to be measured based on the time waveform of the terahertz wave T detected by the lock-in amplifier 46.

図4には、本実施の形態に係る測定装置10で測定したテラヘルツ波の周波数と強度との関係を示した。なお、溶液セル28は、長さ60mm、幅20mm、高さ30mm(内寸の長さ40mm、幅13mm、高さ30mm)のテフロン(登録商標)製の溶液セルとし、被測定物としての溶液はメタノール(MeOH)とした。 FIG. 4 shows the relationship between the frequency and the intensity of the terahertz wave measured by the measuring device 10 according to the present embodiment. The solution cell 28 is a solution cell made of Teflon (registered trademark) having a length of 60 mm, a width of 20 mm, and a height of 30 mm (internal dimensions of 40 mm in length, 13 mm in width, and 30 mm in height), and is a solution as a material to be measured. Was methanol (MeOH).

図4の例では、分光素子20のシリコンウェハ26の厚みを300μmとし、石英板24の厚みを50μmとした場合(Siウェハ+石英板50μm)、石英板24の厚みを100μmとした場合(Siウェハ+石英板100μm)の測定結果を示した。 In the example of FIG. 4, when the thickness of the silicon wafer 26 of the spectroscopic element 20 is 300 μm, the thickness of the quartz plate 24 is 50 μm (Si wafer + quartz plate 50 μm), and the thickness of the quartz plate 24 is 100 μm (Si). The measurement result of the wafer + quartz plate 100 μm) is shown.

また、図4には、分光素子20から石英板24を除いた構成、すなわちプリズム22と溶液セル28との間にシリコンウェハ26のみが設けられた構成の測定結果(Siウェハ)と、分光素子20から石英板24及びシリコンウェハ26を除いた構成、すなわちプリズム22上に溶液セル28が設けられた構成の測定結果(プリズムのみ)も示した。 Further, FIG. 4 shows a measurement result (Si wafer) of the configuration in which the quartz plate 24 is removed from the spectroscopic element 20, that is, a configuration in which only the silicon wafer 26 is provided between the prism 22 and the solution cell 28, and the spectroscopic element. The measurement result (prism only) of the configuration in which the quartz plate 24 and the silicon wafer 26 are removed from 20, that is, the configuration in which the solution cell 28 is provided on the prism 22 is also shown.

図4に示すように、「Siウェハ+石英板50μm」の場合、周波数が0.68THz付近の周波数に特徴的なディップが発生しているのが判る。 As shown in FIG. 4, in the case of "Si wafer + quartz plate 50 μm", it can be seen that a characteristic dip is generated at a frequency around 0.68 THz.

ここで、ディップとは、テラヘルツ波の強度が急激に落ち込む部分、すなわち、他の周波数の強度と比較して特徴的なスペクトル構造を有する部分をいう。以下では、ディップが形成される特定周波数を「ディップ周波数」と称する。 Here, the dip refers to a portion where the intensity of the terahertz wave drops sharply, that is, a portion having a characteristic spectral structure as compared with the intensity of other frequencies. Hereinafter, the specific frequency at which the dip is formed is referred to as a “dip frequency”.

また、図4の例では、石英板24の厚みが50μmの場合と100μmの場合を比較すると、石英板24の厚みが50μmの方が、より深いディップが発生しているのが判る。すなわち、石英板24をシリコンウェハ26とプリズム22との間に設け、石英板24の厚みを調整することでディップの深さを調整することができることが判った。 Further, in the example of FIG. 4, when comparing the case where the thickness of the quartz plate 24 is 50 μm and the case where the thickness of the quartz plate 24 is 100 μm, it can be seen that a deeper dip is generated when the thickness of the quartz plate 24 is 50 μm. That is, it was found that the depth of the dip can be adjusted by providing the quartz plate 24 between the silicon wafer 26 and the prism 22 and adjusting the thickness of the quartz plate 24.

次に、図5、6に、本実施の形態に係る分光素子20の石英板24の厚みは50μm固定で、シリコンウェハ26の厚みが300μm、500μm、750μmの場合におけるテラヘルツ波の周波数と強度との関係を示す。なお、図5には、溶液セル28には何も入れず空気のみとした場合の測定結果を示した。また、図6には、溶液セル28に純度99.9%のメタノール(MeOH)を6mL入れた場合の測定結果を示した。 Next, FIGS. 5 and 6 show the frequency and intensity of the terahertz wave when the thickness of the quartz plate 24 of the spectroscopic element 20 according to the present embodiment is fixed at 50 μm and the thickness of the silicon wafer 26 is 300 μm, 500 μm, and 750 μm. Shows the relationship between. Note that FIG. 5 shows the measurement results when nothing was put into the solution cell 28 and only air was used. Further, FIG. 6 shows the measurement results when 6 mL of methanol (MeOH) having a purity of 99.9% was added to the solution cell 28.

下記表1に、図5の測定結果に基づいて、溶液セル28内が空気のみの場合におけるシリコンウェハ26の厚み毎のディップ周波数をまとめた結果を示す。 Table 1 below shows the results of summarizing the dip frequencies for each thickness of the silicon wafer 26 when the inside of the solution cell 28 is only air, based on the measurement results of FIG.

Figure 0006989911000001

また、下記表2に、図6の測定結果に基づいて、溶液セル28内に純度99.9%のメタノールを6mL入れた場合におけるシリコンウェハ26の厚み毎のディップ周波数をまとめた結果を示す。
Figure 0006989911000001

Table 2 below shows the results of summarizing the dip frequencies for each thickness of the silicon wafer 26 when 6 mL of methanol having a purity of 99.9% was put into the solution cell 28 based on the measurement results of FIG.

Figure 0006989911000002

上記表1、2に示すように、溶液セル28内が空気のみの場合、メタノールを入れた場合の何れの場合においても、シリコンウェハ26の厚みが変わると、発生するディップの数やディップ周波数が異なることが判った。
Figure 0006989911000002

As shown in Tables 1 and 2 above, when the thickness of the silicon wafer 26 changes, the number of dips generated and the dip frequency change regardless of whether the solution cell 28 contains only air or methanol. It turned out to be different.

従って、シリコンウェハ26の厚みを調整することにより、特定の周波数帯域にディップを発生させることができることが判った。 Therefore, it was found that the dip can be generated in a specific frequency band by adjusting the thickness of the silicon wafer 26.

次に、図7に、分光素子20の石英板24の厚みを50μm、シリコンウェハ26の厚みを750μmとした構成で測定したテラヘルツ波の周波数と強度との関係を示した。 Next, FIG. 7 shows the relationship between the frequency and the intensity of the terahertz wave measured in a configuration in which the thickness of the quartz plate 24 of the spectroscopic element 20 is 50 μm and the thickness of the silicon wafer 26 is 750 μm.

また、図7の測定結果は、溶液セル28に水とメタノールを混合した溶液を入れ、含水率を変えて測定した結果である。含水率は、水0%(メタノール100%)、水20%(メタノール80%)、水40%(メタノール60%)、水60%(メタノール40%)、水80%(メタノール20%)、水100%(メタノール0%)とした。 Further, the measurement result of FIG. 7 is a result of putting a solution in which water and methanol are mixed into the solution cell 28 and measuring by changing the water content. The water content is 0% water (100% methanol), 20% water (80% methanol), 40% water (60% methanol), 60% water (40% methanol), 80% water (20% methanol), and water. It was set to 100% (methanol 0%).

また、図8には、図7の比較対象として、分光素子20から石英板24及びシリコンウェハ26を除いた構成、すなわちプリズム22上に溶液セル28が設けられた構成で測定したテラヘルツ波の周波数と強度との関係を含水率毎に示した。 Further, in FIG. 8, as a comparison target of FIG. 7, the frequency of the terahertz wave measured in the configuration in which the quartz plate 24 and the silicon wafer 26 are removed from the spectroscopic element 20, that is, the configuration in which the solution cell 28 is provided on the prism 22 The relationship between and strength is shown for each water content.

図7に示すように、本実施の形態に係る分光素子20を用いて測定した場合、含水率によってディップの深さに顕著な変化が生じていることが判る。 As shown in FIG. 7, when the measurement is performed using the spectroscopic element 20 according to the present embodiment, it can be seen that the depth of the dip is significantly changed depending on the water content.

これに対し、図8に示すように、石英板24及びシリコンウェハ26を省略したプリズム22のみの構成の場合は、ディップが発生していないことが判る。 On the other hand, as shown in FIG. 8, in the case of the configuration of only the prism 22 in which the quartz plate 24 and the silicon wafer 26 are omitted, it can be seen that no dip has occurred.

図9には、図7の測定結果においてディップが発生している0.49THzのテラヘルツ波の強度と含水率との関係(石英板50μm+シリコンウェハ750μm)と、図8の測定結果における0.49THzのテラヘルツ波の強度と含水率との関係(プリズムのみ)と、を示した。 FIG. 9 shows the relationship between the intensity of the 0.49 THz terahertz wave in which the dip occurs in the measurement result of FIG. 7 and the water content (quartz plate 50 μm + silicon wafer 750 μm), and 0.49 THz in the measurement result of FIG. The relationship between the intensity of the terahertz wave and the water content (prism only) was shown.

図9に示すように、本実施の形態に係る分光素子20を用いることにより、含水率が0%の場合のテラヘルツ波の強度と含水率が100%の場合のテラヘルツ波の強度との差が約2桁程度ある。これに対し、プリズム22のみの構成の場合は、含水率が0%の場合のテラヘルツ波の強度と含水率が100%の場合のテラヘルツ波の強度との差がほとんどない。 As shown in FIG. 9, by using the spectroscopic element 20 according to the present embodiment, the difference between the intensity of the terahertz wave when the water content is 0% and the intensity of the terahertz wave when the water content is 100% There are about two digits. On the other hand, in the case of the configuration of only the prism 22, there is almost no difference between the intensity of the terahertz wave when the water content is 0% and the intensity of the terahertz wave when the water content is 100%.

従って、本実施の形態に係る分光素子20を用いることにより、プリズム22のみの構成の場合と比較して高感度に溶液の濃度を測定することができる。 Therefore, by using the spectroscopic element 20 according to the present embodiment, the concentration of the solution can be measured with higher sensitivity than in the case of the configuration of only the prism 22.

次に、図10に、溶液セル28に、23度飽和に調整した4-Dimethylamino-N’-methyl-4’-stilbazolium tosylate-MeOH溶液(以下、DAST-MeOH溶液と称する)を入れて、分光素子20の石英板24の厚みを50μm、シリコンウェハ26の厚みを750μmとした構成で測定したテラヘルツ波の周波数と強度との関係を示す。 Next, in FIG. 10, a 4-Dimethylamino-N'-methyl-4'-stilbazolium tosylate-MeOH solution (hereinafter referred to as DAST-MeOH solution) adjusted to saturation at 23 degrees was placed in the solution cell 28 and subjected to spectroscopy. The relationship between the frequency and the intensity of the terahertz wave measured in the configuration where the thickness of the quartz plate 24 of the element 20 is 50 μm and the thickness of the silicon wafer 26 is 750 μm is shown.

DAST-MeOH溶液は、1.89グラムのDAST粉末(純度99.9 %以上)を100グラムのメタノール、具体的にはHPLC(high performance liquid chromatography)用メタノールを混合させた後に、55℃に加熱して完全に溶解させた。また、DAST-MeOH溶液の濃度は、初期濃度1.86wt%で測定した後に、同溶液に対して1.59wt%、1.40wt%、1.20wt%となるように溶液セル28中にメタノールを追加し、一度マイクロピペットにて撹拌した後に、液面の揺れが治まってから測定を開始した。 The DAST-MeOH solution is heated to 55 ° C. after mixing 1.89 grams of DAST powder (purity 99.9% or higher) with 100 grams of methanol, specifically methanol for HPLC (high performance liquid chromatography). And completely dissolved. The concentration of the DAST-MeOH solution was measured at an initial concentration of 1.86 wt%, and then methanol was added to the solution cell 28 so as to be 1.59 wt%, 1.40 wt%, and 1.20 wt% with respect to the solution. Was added, and after stirring once with a micropipette, the measurement was started after the fluctuation of the liquid level had subsided.

図10に示すように、DAST-MeOH溶液の濃度変化に伴い、0.49THzのディップ周波数におけるテラヘルツ波の強度が変化していることが判る。 As shown in FIG. 10, it can be seen that the intensity of the terahertz wave at the dip frequency of 0.49 THz changes with the change in the concentration of the DAST-MeOH solution.

また、図11に、0.49THzにおけるDAST-MeOH溶液の濃度とテラヘルツ波の強度の関係を示す。図11に示すように、DAST-MeOH溶液の濃度が減少するに従って、テラヘルツ波の強度が増加していることが判る。 Further, FIG. 11 shows the relationship between the concentration of the DAST-MeOH solution at 0.49 THz and the intensity of the terahertz wave. As shown in FIG. 11, it can be seen that the intensity of the terahertz wave increases as the concentration of the DAST-MeOH solution decreases.

従って、本実施の形態に係る分光素子20を用いて溶液の分光を行うことにより、溶液の濃度を高感度で測定することができる。すなわち、パーソナルコンピュータ48は、ロックインアンプ46で検出されたテラヘルツ波に基づいて、ディップ発生する周波数のテラヘルツ波の強度を求め、求めた強度に基づいて溶液の濃度を求めることができる。 Therefore, the concentration of the solution can be measured with high sensitivity by performing the spectroscopy of the solution using the spectroscopic element 20 according to the present embodiment. That is, the personal computer 48 can obtain the intensity of the terahertz wave at the frequency at which the dip is generated based on the terahertz wave detected by the lock-in amplifier 46, and can obtain the concentration of the solution based on the obtained intensity.

このように、本実施の形態では、テラヘルツ波がプリズム22と石英板24との界面30で全反射した際に生じるエバネッセント波をシリコンウェハ26内で多重反射させる構成としたことにより特定の周波数にディップを発生させることができ、ディップ周波数のテラヘルツ波の強度を測定することで溶液セル28内の溶液の濃度等、被測定物の分光情報を高感度で測定することができる。 As described above, in the present embodiment, the evanescent wave generated when the terahertz wave is totally reflected at the interface 30 between the prism 22 and the quartz plate 24 is multi-reflected in the silicon wafer 26 to a specific frequency. A dip can be generated, and by measuring the intensity of the terahertz wave at the dip frequency, the spectral information of the object to be measured such as the concentration of the solution in the solution cell 28 can be measured with high sensitivity.

また、テラヘルツ波の発生方法は限定されないため、連続してテラヘルツ波を発生する発生装置を使用することにより、リアルタイムで溶液の濃度変化を計測することもできる。 Further, since the method of generating the terahertz wave is not limited, it is possible to measure the change in the concentration of the solution in real time by using the generator that continuously generates the terahertz wave.

なお、本実施の形態では、テラヘルツ波を用いて溶液の濃度を測定する場合について説明したが、テラヘルツ波に限らず、他の周波数帯域の電磁波、特に光領域の電磁波を用いて被測定物の分光情報を測定してもよい。 In the present embodiment, the case where the concentration of the solution is measured using the terahertz wave has been described, but the object to be measured is not limited to the terahertz wave but also uses electromagnetic waves in other frequency bands, particularly electromagnetic waves in the optical region. Spectral information may be measured.

また、本実施の形態では、被測定物が溶液であり、分光情報として溶液の濃度を測定する場合について説明したが、測定する分光情報は、溶液の濃度に限られるものではない。 Further, in the present embodiment, the case where the object to be measured is a solution and the concentration of the solution is measured as spectral information has been described, but the spectral information to be measured is not limited to the concentration of the solution.

また、本実施の形態では、第1の誘電体層がプリズム、第2の誘電体層が石英板、第3の誘電体層がシリコンウェハの場合について説明したが、これらに限られるものではない。すなわち、第1の誘電体層の屈折率が第2の誘電体層の屈折率よりも大きく、第3の誘電体層の屈折率が、第2の誘電体層の屈折率よりも大きい材料で構成されればよい。 Further, in the present embodiment, the case where the first dielectric layer is a prism, the second dielectric layer is a quartz plate, and the third dielectric layer is a silicon wafer has been described, but the present invention is not limited thereto. .. That is, in a material in which the refractive index of the first dielectric layer is larger than the refractive index of the second dielectric layer and the refractive index of the third dielectric layer is larger than the refractive index of the second dielectric layer. It may be configured.

10 測定装置
12 フェムト秒ファイバレーザ
14 ビームスプリッター
16 テラヘルツ波発生用光伝導アンテナ
18、40 テラヘルツ用レンズ
20 分光素子
22 プリズム
24 石英板
26 シリコンウェハ
28 溶液セル
30、32、34 界面
42 テラヘルツ波検出用光伝導アンテナ
44 遅延器
46 ロックインアンプ
48 パーソナルコンピュータ
10 Measuring device 12 Femtosecond fiber laser 14 Beam splitter 16 Terahertz wave generation light conduction antenna 18, 40 Terahertz lens 20 Spectral element 22 Prism 24 Quartz plate 26 Silicon wafer 28 Solution cell 30, 32, 34 Interface 42 Terahertz wave detection Photoconducting antenna 44 Delayer 46 Lock-in amplifier 48 Personal computer

Claims (9)

第1の誘電体層と、前記第1の誘電体層上に設けられた第2の誘電体層と、前記第2の誘電体層上に設けられ被測定物と接触する第3の誘電体層と、を備え、
前記第1の誘電体層に入射した電磁波が、前記第1の誘電体層と前記第2の誘電体層との界面で全反射するように、前記第1の誘電体層の第1の屈折率が前記第2の誘電体層の第2の屈折率よりも大きく、前記第2の誘電体層に生じたエバネッセント波が、前記第3の誘電体層内で多重反射するように、前記第3の誘電体層の第3の屈折率が、前記第2の屈折率よりも大きく、前記第2の誘電体層の厚みは、前記第1の誘電体層に入射する電磁波の波長よりも小さく、前記第3の誘電体層の厚みは、前記第2の誘電体層の厚みより厚い、
分光素子。
A first dielectric layer, a second dielectric layer provided on the first dielectric layer, and a third dielectric layer provided on the second dielectric layer and in contact with an object to be measured. With layers,
The first bending of the first dielectric layer so that the electromagnetic wave incident on the first dielectric layer is totally reflected at the interface between the first dielectric layer and the second dielectric layer. The second dielectric layer has a higher rate than the second refractive index of the second dielectric layer, and the evanescent wave generated in the second dielectric layer is multiple-reflected in the third dielectric layer. The third dielectric constant of the dielectric layer 3 is larger than the second refractive index, and the thickness of the second dielectric layer is smaller than the wavelength of the electromagnetic wave incident on the first dielectric layer. The thickness of the third dielectric layer is thicker than the thickness of the second dielectric layer .
Spectral element.
前記第1の誘電体層は、入射した電磁波が前記界面で全反射する条件を満たす角度で前記界面に入射するように成形されたプリズムである
請求項1記載の分光素子。
The spectroscopic element according to claim 1, wherein the first dielectric layer is a prism formed so as to enter the interface at an angle satisfying the condition that the incident electromagnetic wave is totally reflected at the interface.
前記第2の誘電体層は、石英板である
請求項1又は請求項2記載の分光素子。
The spectroscopic element according to claim 1 or 2, wherein the second dielectric layer is a quartz plate.
前記第3の誘電体層は、シリコンウェハである
請求項1~3の何れか1項に記載の分光素子。
The spectroscopic element according to any one of claims 1 to 3, wherein the third dielectric layer is a silicon wafer.
前記第3の誘電体層上に形成された側壁により、被測定物を保持する保持部
を備えた請求項1~4の何れか1項に記載の分光素子。
The spectroscopic element according to any one of claims 1 to 4, further comprising a holding portion for holding an object to be measured by a side wall formed on the third dielectric layer.
請求項1~5の何れか1項に記載の分光素子の前記第3の誘電体層上に被測定物を配置し、
前記第1の誘電体層に入射角度を固定した状態で電磁を入射し、
前記第1の誘電体層と前記第2の誘電体層の界面および前記第3の誘電体層と前記被測定物との界面にエバネッセント波を発生させ、
前記第3の誘電体層内で多重反射した波を含む、前記分光素子から出射された電磁波の強度が特徴的なスペクトル構造を有する特定周波数の強度に基づいて、被測定物の分光情報を測定する
測定方法。
An object to be measured is arranged on the third dielectric layer of the spectroscopic element according to any one of claims 1 to 5.
An electromagnetic wave is incident on the first dielectric layer with the incident angle fixed, and the electromagnetic wave is incident on the first dielectric layer.
An evanescent wave is generated at the interface between the first dielectric layer and the second dielectric layer and the interface between the third dielectric layer and the object to be measured.
The spectral information of the object to be measured is measured based on the intensity of a specific frequency having a spectral structure characterized by the intensity of the electromagnetic wave emitted from the spectroscopic element, including the wave multiple reflected in the third dielectric layer. Measurement method.
前記被測定物は溶液であり、前記特定周波数の強度に基づいて、前記溶液の濃度を前記分光情報として測定する
請求項6記載の測定方法。
The measuring method according to claim 6, wherein the object to be measured is a solution, and the concentration of the solution is measured as the spectral information based on the intensity of the specific frequency.
前記分光素子に入射される電磁波がテラヘルツ波である
請求項6又は請求項7記載の測定方法。
The measuring method according to claim 6 or 7, wherein the electromagnetic wave incident on the spectroscopic element is a terahertz wave.
請求項1~5の何れか1項に記載の分光素子と、
磁波を生成する光源と、
前記光源から出射された電磁波を、入射角度を固定した状態で前記分光素子に入射し、前記分光素子から出射された電磁波の強度が特徴的なスペクトル構造を有する特定周波数の強度に基づいて、前記第3の誘電体層上の被測定物の分光情報を測定する測定部と、
を備えた測定装置。
The spectroscopic element according to any one of claims 1 to 5.
A light source that generates electromagnetic waves and
The electromagnetic wave emitted from the light source is incident on the spectroscopic element with a fixed incident angle, and the intensity of the electromagnetic wave emitted from the spectroscopic element is based on the intensity of a specific frequency having a characteristic spectral structure. A measuring unit that measures the spectral information of the object to be measured on the third dielectric layer,
A measuring device equipped with.
JP2017135803A 2017-07-11 2017-07-11 Spectroscopic elements, measuring methods, and measuring devices Active JP6989911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017135803A JP6989911B2 (en) 2017-07-11 2017-07-11 Spectroscopic elements, measuring methods, and measuring devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017135803A JP6989911B2 (en) 2017-07-11 2017-07-11 Spectroscopic elements, measuring methods, and measuring devices

Publications (2)

Publication Number Publication Date
JP2019020147A JP2019020147A (en) 2019-02-07
JP6989911B2 true JP6989911B2 (en) 2022-01-12

Family

ID=65353824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017135803A Active JP6989911B2 (en) 2017-07-11 2017-07-11 Spectroscopic elements, measuring methods, and measuring devices

Country Status (1)

Country Link
JP (1) JP6989911B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095648B2 (en) * 2019-04-15 2022-07-05 横河電機株式会社 Measuring device and measuring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219809A1 (en) 2002-03-26 2003-11-27 U-Vision Biotech, Inc. Surface plasmon resonance shifting interferometry imaging system for biomolecular interaction analysis
JP2009229323A (en) 2008-03-24 2009-10-08 Canon Inc Specimen information obtaining apparatus and method
JP2010008263A (en) 2008-06-27 2010-01-14 Fujifilm Corp Detection method, detecting sample cell and detecting kit
JP2011163786A (en) 2010-02-05 2011-08-25 National Institute Of Advanced Industrial Science & Technology Waveguide mode sensor, and method for detecting target substance using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144694A (en) * 1997-07-29 1999-02-16 Nikon Corp Scanning near-field optical microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030219809A1 (en) 2002-03-26 2003-11-27 U-Vision Biotech, Inc. Surface plasmon resonance shifting interferometry imaging system for biomolecular interaction analysis
JP2009229323A (en) 2008-03-24 2009-10-08 Canon Inc Specimen information obtaining apparatus and method
JP2010008263A (en) 2008-06-27 2010-01-14 Fujifilm Corp Detection method, detecting sample cell and detecting kit
JP2011163786A (en) 2010-02-05 2011-08-25 National Institute Of Advanced Industrial Science & Technology Waveguide mode sensor, and method for detecting target substance using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田中耕一郎,テラヘルツ領域のエバネッセント光をもちいた水溶液の研究,表面科学,2011年,Vol.32, No. 12,(2011),Pages 785-791

Also Published As

Publication number Publication date
JP2019020147A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
US8107077B2 (en) Terahertz spectroscopic apparatus
US9625702B2 (en) Coupled cavity spectrometer with enhanced sensitivity and dynamic range
JP2015083964A (en) Information acquisition device and information acquisition method for acquiring information of analyte by using terahertz wave
RU2318192C1 (en) Plasmon-based terahertz-range spectrometer for examination of conductive surface
CN109030406B (en) Terahertz frequency spectrum calibration system and method
CN109406441B (en) Terahertz time-domain spectrometer
WO2016132452A1 (en) Terahertz wave measurement device, terahertz wave measurement method, and computer program
JP2008304444A (en) Attenuated total reflection spectrometry and device at terahertz frequency
JP2008544269A (en) Method and apparatus for measuring structural properties by wavelength effect in a photoacoustic system
WO2015079985A1 (en) Terahertz time domain spectroscopy apparatus and corresponding method
Roux et al. Principles and applications of THz time domain spectroscopy
Bernier et al. Determining the complex refractive index of materials in the far-infrared from terahertz time-domain data
JP2015161650A (en) Measuring device and measuring method
JP6415931B2 (en) Terahertz wave measuring apparatus and terahertz wave measuring method
JP2012185116A (en) Optical characteristics evaluation device and optical characteristics evaluation method
JP6989911B2 (en) Spectroscopic elements, measuring methods, and measuring devices
Li et al. Picosecond ultrasonic measurements using an optical cavity
JP2017102107A (en) Optical fiber device and sensor system
Yang et al. Uncertainty in terahertz time-domain spectroscopy measurement of liquids
JP2002277394A (en) Method for optical measurement of optical physical property constant of dielectric substance, instrument therefor, and manufacturing system with the instrument assembled therein
JP2017194361A (en) Dielectric spectroscopic device
US10145675B2 (en) Using tunable lasers in the design, manufacture, and implementation of integrated optical elements
US20160265910A1 (en) In-situ analysis of ice using surface acoustic wave spectroscopy
RU2477841C2 (en) Infrared amplitude-phase plasmon spectrometer
Sotsky et al. Sensitivity of reflecting terahertz sensors of aqueous solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211124

R150 Certificate of patent or registration of utility model

Ref document number: 6989911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150