JP6986672B2 - Manufacturing method of sealed battery - Google Patents

Manufacturing method of sealed battery Download PDF

Info

Publication number
JP6986672B2
JP6986672B2 JP2017059525A JP2017059525A JP6986672B2 JP 6986672 B2 JP6986672 B2 JP 6986672B2 JP 2017059525 A JP2017059525 A JP 2017059525A JP 2017059525 A JP2017059525 A JP 2017059525A JP 6986672 B2 JP6986672 B2 JP 6986672B2
Authority
JP
Japan
Prior art keywords
battery case
sealing plate
opening
battery
peripheral edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017059525A
Other languages
Japanese (ja)
Other versions
JP2018163765A (en
Inventor
正雄 大塚
忠義 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017059525A priority Critical patent/JP6986672B2/en
Publication of JP2018163765A publication Critical patent/JP2018163765A/en
Application granted granted Critical
Publication of JP6986672B2 publication Critical patent/JP6986672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、電池ケースの開口部を封口板で封口した密閉型電池の製造方法に関する。 The present invention relates to a method for manufacturing a sealed battery in which an opening of a battery case is sealed with a sealing plate.

電池ケースの素材として、耐食性に優れ、かつ、延性に富み、絞り加工性の良いオーステナイト系ステンレス鋼が用いられている。 As the material of the battery case, austenitic stainless steel having excellent corrosion resistance, high ductility, and good drawability is used.

しかしながら、オーステナイト系ステンレス鋼は、絞り加工により有底筒状の電池ケースに成形したときに硬化する性質を有している。また、絞り加工によって電池ケースに残留応力が存在しているため、電池ケースに時効割れが生じるおそれがある。 However, austenitic stainless steel has the property of being cured when it is formed into a bottomed cylindrical battery case by drawing. Further, since residual stress exists in the battery case due to drawing processing, there is a possibility that aging cracking may occur in the battery case.

絞り加工による硬化を取り除くために、絞り加工により成形した電池ケースを、高温で熱処理することが行われている(例えば、特許文献1等)。 In order to remove the hardening due to the drawing process, the battery case formed by the drawing process is heat-treated at a high temperature (for example, Patent Document 1 and the like).

特開昭58−78364号公報Japanese Unexamined Patent Publication No. 58-78364

しかしながら、絞り加工による硬化を取り除くために、絞り加工により有底筒状に成形した電池ケースを高温で熱処理すると、電池ケースが応力緩和または再結晶化されて変形する場合がある。もし、電池ケースの開口部の形状が変形すると、封口板の周縁部と電池ケースの開口部周縁との間に隙間が生じるおそれがある。その結果、封口板の周縁部と電池ケースの開口部周縁とをレーザ溶接する際、隙間の大きい箇所で溶接不良が発生するおそれがある。そして、このような溶接不良は、電池の高容量化を図るために、電池ケースの側部の厚みを薄くしたり、電池ケースの外径を大きくしたときに顕在化する。 However, when the battery case formed into a bottomed tubular shape by drawing is heat-treated at a high temperature in order to remove the hardening due to drawing, the battery case may be deformed by stress relaxation or recrystallization. If the shape of the opening of the battery case is deformed, a gap may be formed between the peripheral edge of the sealing plate and the peripheral edge of the opening of the battery case. As a result, when laser welding the peripheral edge of the sealing plate and the peripheral edge of the opening of the battery case, welding defects may occur at a portion having a large gap. Then, such welding defects become apparent when the thickness of the side portion of the battery case is reduced or the outer diameter of the battery case is increased in order to increase the capacity of the battery.

本発明は、上記課題に鑑みなされたもので、その主な目的は、電池ケースと封口板との溶接不良の発生を防止することができる密閉型電池の製造方法を提供することにある。 The present invention has been made in view of the above problems, and a main object thereof is to provide a method for manufacturing a sealed battery capable of preventing the occurrence of welding defects between a battery case and a sealing plate.

本発明に係る密閉型電池の製造方法は、電池ケースの開口部を封口板で封口した密閉型電池の製造方法であって、電池ケースは、オーステナイト系ステンレス鋼で構成されており、絞り加工により有底筒状に成形した電池ケースを用意する工程と、電池ケースに、加工硬化を除去する熱処理を施すことなく、電池ケースの開口部に封口板を圧入し、該封口板の周縁部と電池ケースの開口部周縁とをレーザ溶接する工程とを含むことを特徴とする。 The method for manufacturing a closed-type battery according to the present invention is a method for manufacturing a closed-type battery in which the opening of the battery case is sealed with a sealing plate. The battery case is made of austenite-based stainless steel and is drawn by drawing. The process of preparing a battery case molded into a bottomed cylinder and the sealing plate are press-fitted into the opening of the battery case without subjecting the battery case to a heat treatment for removing processing and hardening, and the peripheral edge of the sealing plate and the battery are used. It is characterized by including a step of laser welding the peripheral edge of the opening of the case.

本発明によれば、電池ケースと封口板との溶接不良の発生を防止することができる密閉型電池の製造方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for manufacturing a sealed battery capable of preventing the occurrence of welding defects between the battery case and the sealing plate.

本発明が適用される密閉型電池の構成を模式的に示した断面図である。It is sectional drawing which shows typically the structure of the closed type battery to which this invention is applied. 電池ケースの開口部周縁の近傍を拡大した部分拡大図である。It is a partially enlarged view which magnified the vicinity of the opening peripheral edge of a battery case.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments. Further, it can be appropriately changed as long as it does not deviate from the range in which the effect of the present invention is exhibited.

図1は、本発明が適用される密閉型電池の構成を模式的に示した断面図である。なお、ここでは、リチウム一次電池を例に説明するが、これに限定されない。 FIG. 1 is a cross-sectional view schematically showing the configuration of a closed-type battery to which the present invention is applied. Here, a lithium primary battery will be described as an example, but the present invention is not limited to this.

図1に示すように、リチウム一次電池は、有底筒状の電池ケース9内に、負極1及び正極2がセパレータ3を介して捲回された極板群4が、非水電解液(不図示)とともに収容されている。ここで、電池ケース9は、オーステナイト系ステンレス鋼で構成されている。負極1は、リチウム金属箔、またはリチウム合金箔からなる。また、正極2は、ステンレス等の芯材に、正極活物質を含む正極合剤が充填されている。正極活物質は、例えば、二酸化マンガンや硫化鉄などを用いることができる。 As shown in FIG. 1, in a lithium primary battery, a electrode plate group 4 in which a negative electrode 1 and a positive electrode 2 are wound via a separator 3 in a bottomed tubular battery case 9 is a non-aqueous electrolytic solution (non-aqueous electrolyte solution). (Illustrated) is housed together. Here, the battery case 9 is made of austenitic stainless steel. The negative electrode 1 is made of a lithium metal foil or a lithium alloy foil. Further, in the positive electrode 2, a core material such as stainless steel is filled with a positive electrode mixture containing a positive electrode active material. As the positive electrode active material, for example, manganese dioxide, iron sulfide, or the like can be used.

電池ケース9の開口部は、封口板10の周縁部10aと、電池ケース9の開口部周縁9aとをレーザ溶接することによって封口されている。また、封口板10の中央開口部には、ガスケット12を介して、正極端子11がかしめ固定されている。正極端子11には、正極2の芯材に接続された正極リード5が接続され、電池ケース9の底部9bには、負極1に接続された負極リード6が接続されている。ここで、電池ケース9の底部9bは、負極端子を兼ねている。また、極板群4の上部と下部には、内部短絡防止のためにそれぞれ上部絶縁板7及び下部絶縁板8が配置されている。 The opening of the battery case 9 is sealed by laser welding the peripheral edge portion 10a of the sealing plate 10 and the peripheral edge portion 9a of the opening portion of the battery case 9. Further, the positive electrode terminal 11 is caulked and fixed to the central opening of the sealing plate 10 via the gasket 12. A positive electrode lead 5 connected to the core material of the positive electrode 2 is connected to the positive electrode terminal 11, and a negative electrode lead 6 connected to the negative electrode 1 is connected to the bottom 9b of the battery case 9. Here, the bottom portion 9b of the battery case 9 also serves as a negative electrode terminal. Further, an upper insulating plate 7 and a lower insulating plate 8 are arranged on the upper part and the lower part of the electrode plate group 4 to prevent an internal short circuit, respectively.

ところで、オーステナイト系ステンレス鋼は、通常、非磁性であるが、絞り加工を行うと、硬化するとともに、磁性を帯びるようになる。 By the way, austenitic stainless steel is usually non-magnetic, but when it is drawn, it hardens and becomes magnetic.

本願発明者は、オーステナイト系ステンレス鋼を絞り加工して有底筒状の電池ケースを成形した後、電池ケースの透磁率を測定したところ、電池ケースの開口部近傍は、磁性を示す透磁率(比透磁率が1.14)が測定されたが、開口部近傍以外は、比透磁率が1.01〜1.03と低く、磁性を帯びていなかった。これは、絞り加工により成形された電池ケースにおいて、開口部近傍以外は残留応力がほとんど存在していないことを意味する。なお、このような結果は、絞り加工により電池ケースを成形するとき、電池ケースの開口部近傍にストレスが集中したことによると考えられる。 The inventor of the present application measured the magnetic permeability of the battery case after drawing the austenitic stainless steel to form a bottomed tubular battery case. The relative magnetic permeability was measured 1.14), but the relative magnetic permeability was as low as 1.01 to 1.03 except in the vicinity of the opening, and it was not magnetized. This means that in the battery case formed by drawing, there is almost no residual stress except in the vicinity of the opening. It is considered that such a result is due to the concentration of stress in the vicinity of the opening of the battery case when the battery case is formed by drawing.

本願発明者は、このような結果に着目して、絞り加工により成形した電池ケースを、加工硬化を除去する熱処理を施すことなく、電池ケースの開口部を封口板でレーザ溶接により封口すれば、電池ケースの開口部近傍に、加工硬化を除去する熱処理に相当する熱処理を施すことができると考えた。 Focusing on such a result, the inventor of the present application can seal the battery case formed by drawing with a sealing plate by laser welding without performing a heat treatment for removing work hardening. It was considered that a heat treatment equivalent to a heat treatment for removing work hardening could be applied to the vicinity of the opening of the battery case.

表1は、オーステナイト系ステンレス鋼を絞り加工して有底筒状に成形した電池ケースにおいて、3つの処理1〜3を施した後に、電池ケースの開口部近傍の比透磁率を測定した結果を示した表である。ここで、処理1は、絞り加工により電池ケースを成形した後(熱処理なし)に測定した比透磁率、処理2は、絞り加工により電池ケースを成形した後、熱処理なしに電池ケースの開口部を封口板でレーザ溶接した後に測定した比透磁率、処理3は、絞り加工により電池ケースを成形した後、熱処理をした後に測定した比透磁率を示す。なお、熱処理は、アルゴン雰囲気中において1050℃で60分間行った。 Table 1 shows the results of measuring the relative permeability near the opening of the battery case after performing three treatments 1 to 3 in the battery case formed by drawing austenitic stainless steel into a bottomed tubular shape. It is a table shown. Here, the process 1 is the specific magnetic permeability measured after the battery case is formed by drawing (without heat treatment), and the process 2 is the opening of the battery case after forming the battery case by drawing and without heat treatment. The specific magnetic permeability measured after laser welding with the sealing plate, and the treatment 3 indicate the specific magnetic permeability measured after the battery case is formed by drawing and then heat-treated. The heat treatment was performed at 1050 ° C. for 60 minutes in an argon atmosphere.

Figure 0006986672
Figure 0006986672

表1に示すように、処理1を施した後の比透磁率は1.14と高く、開口部近傍に残留応力が存在していると考えられる。一方、処理2を施した後の比透磁率は1.06まで下がっており、開口部近傍の残留応力は、かなり解消していると考えられる。さらに、処理3を施した後の比透磁率は、1.01と非常に低く、開口部近傍の残留応力は、ほぼ解消していると考えられる。 As shown in Table 1, the relative magnetic permeability after the treatment 1 is as high as 1.14, and it is considered that residual stress exists in the vicinity of the opening. On the other hand, the relative magnetic permeability after the treatment 2 has dropped to 1.06, and it is considered that the residual stress in the vicinity of the opening is considerably eliminated. Further, the relative magnetic permeability after the treatment 3 is very low at 1.01, and it is considered that the residual stress in the vicinity of the opening is almost eliminated.

このことから、絞り加工により成形した電池ケースを、加工硬化を除去する熱処理を施さなくても、電池ケースの開口部を封口板でレーザ溶接することによって、加工硬化を除去する熱処理とほぼ同等の効果が得られると言える。 From this, it is almost the same as the heat treatment for removing the work hardening by laser welding the opening of the battery case with the sealing plate without performing the heat treatment for removing the work hardening on the battery case formed by drawing. It can be said that the effect can be obtained.

すなわち、絞り加工により成形した電池ケースの開口部近傍に存在する残留応力は、レーザ溶接を行う過程で除去されることになる。一方、電池ケースの開口部近傍以外は、残留応力がほとんど存在していない。従って、レーザ溶接後の電池ケースは、残留応力がほとんど存在しないと考えられため、電池ケースに時効割れが生じるおそれはない。 That is, the residual stress existing in the vicinity of the opening of the battery case formed by drawing is removed in the process of laser welding. On the other hand, there is almost no residual stress except near the opening of the battery case. Therefore, it is considered that the battery case after laser welding has almost no residual stress, so that there is no possibility that the battery case will be cracked by aging.

ところで、上述したように、絞り加工による硬化を除去するために、絞り加工により成形した電池ケース9を高温で熱処理すると、電池ケース9が応力緩和または再結晶化されて変形する場合がある。もし、電池ケース9の開口部の形状が変形すると、封口板10の周縁部10aと電池ケース9の開口部周縁9aとの間に隙間が生じるおそれがある。その結果、封口板10の周縁部10aと電池ケース9の開口部周縁9aとをレーザ溶接する際、隙間の大きい箇所で溶接不良が発生するおそれがある。 By the way, as described above, when the battery case 9 formed by drawing is heat-treated at a high temperature in order to remove the curing due to drawing, the battery case 9 may be deformed by stress relaxation or recrystallization. If the shape of the opening of the battery case 9 is deformed, a gap may be formed between the peripheral edge 10a of the sealing plate 10 and the opening peripheral edge 9a of the battery case 9. As a result, when laser welding the peripheral edge portion 10a of the sealing plate 10 and the opening peripheral edge 9a of the battery case 9, welding defects may occur at a portion having a large gap.

そこで、オーステナイト系ステンレス鋼を絞り加工により成形した電池ケースに対して、絞り加工による硬化を除去するための熱処理を行った場合と、熱処理を行わなかった場合とで、封口板10の周縁部10aと電池ケース9の開口部周縁9aとの間に生じる隙間の差を、以下の方法により評価した。 Therefore, the peripheral portion 10a of the sealing plate 10 is subjected to a heat treatment for removing the hardening due to the drawing process and a case where the heat treatment is not performed on the battery case formed by drawing the austenitic stainless steel. The difference in the gap generated between the battery case 9 and the peripheral edge 9a of the opening of the battery case 9 was evaluated by the following method.

オーステナイト系ステンレス鋼(SUS316L)を、絞り加工により、外径17mm、側部の厚さ0.2mm、底部の厚さ0.2mm、高さ50mmの有底筒状の電池ケース9に成形した。絞り加工による硬化を除去するための熱処理は、アルゴン雰囲気中において1050℃で、60分間行った。そして、電池ケース9の開口部に、同一の封口板10を挿入して、図2に示すように、封口板10の周縁部10aと電池ケース9の開口部周縁9aとの間に生じた隙間のうち、円周上で最大の隙間Lを測定した。 Austenitic stainless steel (SUS316L) was formed into a bottomed cylindrical battery case 9 having an outer diameter of 17 mm, a side thickness of 0.2 mm, a bottom thickness of 0.2 mm, and a height of 50 mm by drawing. The heat treatment for removing the curing due to the drawing process was performed at 1050 ° C. for 60 minutes in an argon atmosphere. Then, the same sealing plate 10 is inserted into the opening of the battery case 9, and as shown in FIG. 2, a gap formed between the peripheral edge portion 10a of the sealing plate 10 and the opening peripheral edge 9a of the battery case 9 is formed. Of these, the maximum gap L on the circumference was measured.

表2は、熱処理ありの電池ケースと、熱処理なしの電池ケースについて、それぞれ20個を対象に、ケース・封口板間の最大隙間Lを測定して、その個数を示したものである。 Table 2 shows the number of battery cases with heat treatment and battery cases without heat treatment by measuring the maximum gap L between the case and the sealing plate for 20 batteries each.

Figure 0006986672
Figure 0006986672

表2に示すように、熱処理ありの電池ケースでは、最大隙間Lが0.06mm以上のものが半数以上(13個)発生していたのに対し、熱処理なしの電池ケースでは、最大隙間Lは全て0.06mm以下であった。 As shown in Table 2, in the battery case with heat treatment, more than half (13 pieces) had a maximum gap L of 0.06 mm or more, whereas in the battery case without heat treatment, the maximum gap L was All were 0.06 mm or less.

これにより、絞り加工による硬化を除去するために、絞り加工により成形した電池ケース9を高温で熱処理すると、電池ケース9の開口部の形状が変形し、これにより、封口板10の周縁部10aと電池ケース9の開口部周縁9aとの間に、大きな隙間が生じることが分かる。 As a result, when the battery case 9 formed by drawing is heat-treated at a high temperature in order to remove the curing due to drawing, the shape of the opening of the battery case 9 is deformed, which causes the peripheral portion 10a of the sealing plate 10 to be deformed. It can be seen that a large gap is formed between the battery case 9 and the peripheral edge 9a of the opening.

このように、封口板10の周縁部10aと電池ケース9の開口部周縁9aとの間に大きな隙間が生じると、封口板10の周縁部10aを電池ケース9の開口部周縁9aにレーザ溶接する際、隙間の大きい箇所で溶接不良が発生するおそれがある。 As described above, when a large gap is formed between the peripheral edge portion 10a of the sealing plate 10 and the opening peripheral edge 9a of the battery case 9, the peripheral edge portion 10a of the sealing plate 10 is laser welded to the opening peripheral edge 9a of the battery case 9. At that time, welding defects may occur in places where the gap is large.

そこで、これを検証するために、封口板10の周縁部10aと電池ケース9の開口部周縁9aとの間に生じた最大隙間Lと、レーザ溶接における溶接不良との関係を、以下の方法により評価した。 Therefore, in order to verify this, the relationship between the maximum gap L generated between the peripheral edge 10a of the sealing plate 10 and the opening peripheral edge 9a of the battery case 9 and the welding defect in laser welding is determined by the following method. evaluated.

オーステナイト系ステンレス鋼(SUS316L)からなる平板(厚さ0.2mm)を2枚用意し、その2枚をスペーサで挟み込んだ状態で、合わせ面にレーザ溶接を行い、溶接不良の有無を観察した。なお、スペーサの厚みを変えることによって、封口板10と電池ケース9との最大隙間Lを擬似的に規定した。また。レーザ溶接は以下の条件で行った。 Two flat plates (thickness 0.2 mm) made of austenitic stainless steel (SUS316L) were prepared, and laser welding was performed on the mating surfaces with the two plates sandwiched between spacers to observe the presence or absence of welding defects. By changing the thickness of the spacer, the maximum gap L between the sealing plate 10 and the battery case 9 is simulated. also. Laser welding was performed under the following conditions.

レーザ溶接は、ファイバーレーザで、連続発振動作、出力500W、照射速度200mm/sで行った。レーザの発振動作には、大きく分けてパルス発振動作と連続発振動作の2つの動作があるが、安定して均一に熱処理の効果を得るため、連続発振動作を選択した。 Laser welding was performed with a fiber laser at a continuous oscillation operation, an output of 500 W, and an irradiation speed of 200 mm / s. The laser oscillation operation is roughly divided into two operations, a pulse oscillation operation and a continuous oscillation operation. In order to obtain a stable and uniform heat treatment effect, the continuous oscillation operation was selected.

また、出力、速度に関しては、出力400W〜600W、速度100〜300mm/sの範囲が好ましい。この範囲より、出力を上げて、速度を下げると、熱量が多くなりすぎ、溶接部近傍に配置している樹脂部材の上部絶縁板7、ガスケット12の変形が起こりやすくなる。 Further, regarding the output and the speed, the range of the output of 400 W to 600 W and the speed of 100 to 300 mm / s is preferable. If the output is increased and the speed is decreased from this range, the amount of heat becomes too large, and the upper insulating plate 7 and the gasket 12 of the resin member arranged in the vicinity of the welded portion are likely to be deformed.

また、前記範囲より、出力を下げて、速度を上げると、熱量が少なくなりすぎ、ケース9、封口板10の溶融が不十分となり溶接不良が発生したり、熱処理の効果が得られにくくなる。 Further, if the output is lowered and the speed is increased from the above range, the amount of heat becomes too small, the case 9 and the sealing plate 10 are insufficiently melted, welding defects occur, and the effect of heat treatment is difficult to obtain.

表3は、電池ケース・封口板間の最大隙間L毎に、10回、レーザ溶接を行い、溶接不良の発生した件数を示した表である。なお、目視確認にて、2枚の板間に隙間が生じていたり、溶融部に穴が開いていたりするときに、溶接不良と判断した。 Table 3 is a table showing the number of cases where welding defects occurred after laser welding was performed 10 times for each maximum gap L between the battery case and the sealing plate. By visual confirmation, it was determined that welding was defective when there was a gap between the two plates or when there was a hole in the molten portion.

Figure 0006986672
Figure 0006986672

表3に示すように、封口板10の周縁部10aと電池ケース9の開口部周縁9aとの間に生じる最大隙間Lが0.08mm以上になると、溶接不良が発生することが分かる。 As shown in Table 3, it can be seen that when the maximum gap L generated between the peripheral edge portion 10a of the sealing plate 10 and the opening peripheral edge 9a of the battery case 9 is 0.08 mm or more, welding defects occur.

ところで、電池ケース9と封口板10との隙間に起因して発生する溶接不良は、電池ケースの側部の厚みを薄くしたり、電池ケースの外径を大きくしたときに、顕在化する。 By the way, welding defects caused by the gap between the battery case 9 and the sealing plate 10 become apparent when the thickness of the side portion of the battery case is reduced or the outer diameter of the battery case is increased.

そこで、これを検証するために、電池ケース9の側部の厚みを変えたときに、電池ケース9と封口板10との間に生じる最大隙間Lを測定した。測定は、以下の方法により行った。 Therefore, in order to verify this, the maximum gap L generated between the battery case 9 and the sealing plate 10 when the thickness of the side portion of the battery case 9 was changed was measured. The measurement was performed by the following method.

オーステナイト系ステンレス鋼(SUS316L)を、絞り加工により、外径を32mm、高さを50mmに固定して、側部の厚みを0.2mm〜0.6mmの範囲に変えた有底筒状の電池ケース9に成形した。底部の厚みは側部の厚みと同じになるように成形した。絞り加工による硬化を除去するための熱処理は、アルゴン雰囲気中において1050℃で、60分間行った。そして、電池ケース9の開口部に、ケース側部の厚み変化に応じて外径を変更した封口板10を挿入して、図2に示すように、封口板10の周縁部10aと電池ケース9の開口部周縁9aとの間に生じた隙間のうち、円周上で最大の隙間Lを測定した。 Austenitic stainless steel (SUS316L) is drawn to fix the outer diameter to 32 mm and the height to 50 mm, and the thickness of the side is changed to the range of 0.2 mm to 0.6 mm. It was molded into case 9. The thickness of the bottom was molded to be the same as the thickness of the sides. The heat treatment for removing the curing due to the drawing process was performed at 1050 ° C. for 60 minutes in an argon atmosphere. Then, a sealing plate 10 whose outer diameter is changed according to a change in the thickness of the case side is inserted into the opening of the battery case 9, and as shown in FIG. 2, the peripheral portion 10a of the sealing plate 10 and the battery case 9 are inserted. Of the gaps formed between the gap and the peripheral edge 9a of the opening, the largest gap L on the circumference was measured.

表4は、側部の厚みの違う電池ケースについて、それぞれ20個を対象に、ケース・封口板間の最大隙間Lを測定し、その個数を示したものである。 Table 4 shows the number of battery cases having different thicknesses on the sides by measuring the maximum gap L between the case and the sealing plate for 20 batteries each.

Figure 0006986672
Figure 0006986672

表4に示すように、電池ケース側部の厚みを0.5mm以下にすると、電池ケース9と封口板10との間に生じる最大隙間Lが、0.08mm以上になる場合があり、電池ケース9と封口板10との溶接不良が顕在化するおそれがある。そのため、電池ケース9側部の厚みを0.5mm以下にした場合、絞り加工による硬化を除去する熱処理を施すことは採用できない。 As shown in Table 4, when the thickness of the side portion of the battery case is 0.5 mm or less, the maximum gap L generated between the battery case 9 and the sealing plate 10 may be 0.08 mm or more, and the battery case Welding defects between 9 and the sealing plate 10 may become apparent. Therefore, when the thickness of the side portion of the battery case 9 is set to 0.5 mm or less, it cannot be adopted to perform a heat treatment for removing the curing due to the drawing process.

次に、電池ケース9の外径の大きさを変えたときに、電池ケース9と封口板10との間に生じる最大隙間Lを測定した。測定は、以下の方法により行った。 Next, the maximum gap L generated between the battery case 9 and the sealing plate 10 when the size of the outer diameter of the battery case 9 was changed was measured. The measurement was performed by the following method.

オーステナイト系ステンレス鋼(SUS316L)を、絞り加工により、側部の厚みを0.2mm、高さを50mmに固定して、外径の大きさを10mm〜32mmの範囲に変えた有底筒形の電池ケース9に成形した。絞り加工による硬化を取り除くための熱処理は、アルゴン雰囲気中において1050℃で、60分間行った。そして、電池ケース9の開口部に、ケース外径の大きさ変化に応じて外径を変更した封口板10を挿入して、図2に示すように、封口板10の周縁部10aと電池ケース9の開口部周縁9aとの間に生じた隙間のうち、円周上で最大の隙間Lを測定した。 Austenitic stainless steel (SUS316L) with a bottomed cylinder whose side thickness is fixed to 0.2 mm and height is fixed to 50 mm by drawing, and the outer diameter is changed to the range of 10 mm to 32 mm. It was molded into a battery case 9. The heat treatment for removing the curing due to the drawing process was performed at 1050 ° C. for 60 minutes in an argon atmosphere. Then, a sealing plate 10 whose outer diameter is changed according to a change in the size of the outer diameter of the case is inserted into the opening of the battery case 9, and as shown in FIG. 2, the peripheral portion 10a of the sealing plate 10 and the battery case are inserted. Among the gaps formed between the gap 9a and the peripheral edge 9a of the opening of 9, the maximum gap L on the circumference was measured.

表5は、外径の大きさ違う電池ケースについて、それぞれ20個を対象に、ケース・封口板間の最大隙間Lを測定し、その個数を示したものである。 Table 5 shows the number of battery cases having different outer diameters by measuring the maximum gap L between the case and the sealing plate for 20 batteries each.

Figure 0006986672
Figure 0006986672

表5に示すように、電池ケース9の外径の大きさを14mm以上にすると、電池ケース9と封口板10との間に生じる最大隙間Lが、0.08mm以上になる場合があり、電池ケース9と封口板10との溶接不良が顕在化するおそれがある。そのため、電池ケース9の外径の大きさを14mm以上にした場合、絞り加工による硬化を除去する熱処理を施すことは採用できない。 As shown in Table 5, when the size of the outer diameter of the battery case 9 is 14 mm or more, the maximum gap L generated between the battery case 9 and the sealing plate 10 may be 0.08 mm or more, and the battery Welding defects between the case 9 and the sealing plate 10 may become apparent. Therefore, when the size of the outer diameter of the battery case 9 is 14 mm or more, it cannot be adopted to perform a heat treatment for removing the curing due to the drawing process.

以上の結果から、電池ケース9を、側部の厚みが0.5mm以下になるように絞り加工した場合、若しくは、外径の大きさが14mm以上になるように絞り加工しした場合には、加工硬化を除去する熱処理を施すことなく、電池ケース9の開口部を封口板10でレーザ溶接することによって、電池ケース9と封口板10との溶接不良の発生を防止することができる。この場合、レーザ溶接によって、加工硬化を除去する熱処理とほぼ同等の効果が得られるため、電池ケースの開口部近傍に存在する残留応力を、レーザ溶接によって除去することができる。一方、電池ケースの開口部近傍以外は、残留応力がほとんど存在していないため、レーザ溶接後の電池ケースに、残留応力に起因した時効割れが生じるおそれはない。 From the above results, when the battery case 9 is drawn so that the thickness of the side portion is 0.5 mm or less, or when the outer diameter is drawn so that the size is 14 mm or more, By laser welding the opening of the battery case 9 with the sealing plate 10 without performing a heat treatment for removing work hardening, it is possible to prevent the occurrence of welding defects between the battery case 9 and the sealing plate 10. In this case, since laser welding has almost the same effect as heat treatment for removing work hardening, residual stress existing in the vicinity of the opening of the battery case can be removed by laser welding. On the other hand, since there is almost no residual stress except in the vicinity of the opening of the battery case, there is no possibility that aging cracking due to the residual stress will occur in the battery case after laser welding.

本実施形態によれば、オーステナイト系ステンレス鋼で構成され、絞り加工により成形した電池ケース9に、加工硬化を除去する熱処理を施すことなく、電池ケース9の開口部に封口板10を圧入し、封口板10の周縁部10aを、電池ケース9の開口部周縁9aにレーザ溶接することによって、電池ケース9と封口板10との溶接不良の発生を防止することができる。また、絞り加工によって生じる残留応力に起因した電池ケースの時効割れも抑制することができる。 According to the present embodiment, the sealing plate 10 is press-fitted into the opening of the battery case 9 without subjecting the battery case 9 made of austenitic stainless steel and formed by drawing to a heat treatment for removing the work hardening. By laser welding the peripheral edge portion 10a of the sealing plate 10 to the opening peripheral edge 9a of the battery case 9, it is possible to prevent the occurrence of welding defects between the battery case 9 and the sealing plate 10. In addition, aging cracking of the battery case due to residual stress generated by drawing can be suppressed.

本実施形態において、封口板10の材料は特に限定されないが、耐食性に優れたオーステナイト系ステンレス鋼を用いることが好ましい。また、図1に示したように、封口板10を、その周縁部10aに周壁が形成されるように加工することによって、封口板10の周縁部10aと電池ケース9の開口部周縁9aとのレーザ溶接を容易に行うことができる。 In the present embodiment, the material of the sealing plate 10 is not particularly limited, but it is preferable to use austenitic stainless steel having excellent corrosion resistance. Further, as shown in FIG. 1, by processing the sealing plate 10 so that a peripheral wall is formed on the peripheral edge portion 10a, the peripheral edge portion 10a of the sealing plate 10 and the opening peripheral edge 9a of the battery case 9 are formed. Laser welding can be easily performed.

ところで、電池内の圧力が異常に上昇したときに、電池ケース9が破壊されるのを防止するために、封口板10には、安全対策として、防爆弁が形成されている。この防爆弁は、封口板10をプレス加工することにより形成された薄肉部で構成され、電池内の圧力が上昇したとき、薄肉部が破断することにより、電池内のガスが外部に排出される。 By the way, in order to prevent the battery case 9 from being destroyed when the pressure in the battery rises abnormally, an explosion-proof valve is formed on the sealing plate 10 as a safety measure. This explosion-proof valve is composed of a thin-walled portion formed by pressing the sealing plate 10, and when the pressure inside the battery rises, the thin-walled portion breaks and the gas inside the battery is discharged to the outside. ..

しかしながら、防爆弁は、プレス加工によって薄肉に変形させているため、封口板10には、残留応力が発生している。そのため、残留応力に起因した封口板10の時効割れを防止するために、電池ケース9の開口部に封口板10を圧入する前に、封口板10に、応力緩和を行う熱処理を施すことが好ましい。 However, since the explosion-proof valve is deformed to a thin thickness by press working, residual stress is generated in the sealing plate 10. Therefore, in order to prevent aging cracking of the sealing plate 10 due to residual stress, it is preferable to perform stress relaxation heat treatment on the sealing plate 10 before pressing the sealing plate 10 into the opening of the battery case 9. ..

また、防爆弁は、低圧でバラツキが少なく安定して破断することが求められているが、それを実現するためには、封口板10の材料硬度は低い方が好ましい。柔らかい材料の方が、内圧が上昇した時、変形が起こりやすく、薄肉部が破断しやすいためである。そのため、薄肉部が形成された封口板10を熱処理することにより、プレス加工による加工硬化が除去されるため、防爆弁の作動圧を、低圧でバラツキのないものにすることができる。 Further, the explosion-proof valve is required to break stably at a low pressure with little variation, but in order to realize this, it is preferable that the material hardness of the sealing plate 10 is low. This is because a soft material is more likely to be deformed and the thin-walled portion is more likely to break when the internal pressure rises. Therefore, by heat-treating the sealing plate 10 on which the thin-walled portion is formed, work hardening due to press working is removed, so that the working pressure of the explosion-proof valve can be made uniform at a low pressure.

なお、封口板10の高さは、電池ケース9と比べて十分に低いため(例えば5mm以下)、熱処理を施すことによる変形がほとんど生じない。 Since the height of the sealing plate 10 is sufficiently lower than that of the battery case 9 (for example, 5 mm or less), deformation due to heat treatment hardly occurs.

表6は、加工硬化を除去する熱処理を施こしていない電池ケース9の開口部に、防爆弁が形成された封口板10を圧入して電池を作製したときの、防爆弁の作動圧を測定した結果を示した表である。ここで、実施例は、電池ケース9の開口部に封口板10を圧入する前に、封口板10に熱処理を施した場合で、比較例は、封口板10に熱処理を施さなかった場合を示す。なお、参考例として、加工硬化を除去する熱処理を施こした電池ケース9の開口部に、熱処理を施した封口板10を圧入した場合の結果も示している。なお、封口板10は、同一の条件でプレス加工により薄肉部を形成したものを使用した。また、作動圧の測定は、それぞれ、同じ条件で5個の電池を作製して、その平均値と標準偏差(σ)を求めた。 Table 6 measures the operating pressure of the explosion-proof valve when the battery is manufactured by press-fitting the sealing plate 10 having the explosion-proof valve into the opening of the battery case 9 which has not been heat-treated to remove work hardening. It is a table showing the results. Here, an embodiment shows a case where the sealing plate 10 is heat-treated before the sealing plate 10 is press-fitted into the opening of the battery case 9, and a comparative example shows a case where the sealing plate 10 is not heat-treated. .. As a reference example, the result when the heat-treated sealing plate 10 is press-fitted into the opening of the battery case 9 which has been heat-treated to remove work hardening is also shown. As the sealing plate 10, a thin-walled portion was formed by press working under the same conditions. In addition, for the measurement of the working pressure, five batteries were manufactured under the same conditions, and the average value and standard deviation (σ) were obtained.

Figure 0006986672
Figure 0006986672

表6に示すように、電池ケース9の開口部に封口板10を圧入する前に、封口板10に熱処理を施した電池(実施例)は、封口板10に熱処理を施さなかった電池(比較例)に比べて、作動圧が低く、しかもバラツキ(σ)も小さかった。なお、熱処理を施した電池ケース9の開口部に、熱処理を施した封口板10を圧入した電池(参考例)では、実施例に比べて、作動圧のバラツキ(σs)が大きかった。これは、熱処理を施された電池ケース9は、硬度が低下して、内圧が上昇した時、電池ケース9も変形が起こりやすくなり、薄肉部を破断しようとする応力が分散してしまったためと考えられる。 As shown in Table 6, a battery in which the sealing plate 10 is heat-treated before the sealing plate 10 is press-fitted into the opening of the battery case 9 (Example) is a battery in which the sealing plate 10 is not heat-treated (comparative). Compared to the example), the working pressure was low and the variation (σ) was small. In the battery (reference example) in which the heat-treated sealing plate 10 was press-fitted into the opening of the heat-treated battery case 9, the variation in operating pressure (σs) was larger than that in the example. This is because the heat-treated battery case 9 is likely to be deformed when the hardness is lowered and the internal pressure is increased, and the stress for breaking the thin portion is dispersed. Conceivable.

よって、電池ケース9には熱処理を施さず、封口板10には熱処理を施すことで、低磁性率で時効割れが発生しにくく、且つ、低作動圧でバラツキが少なく安定した防爆弁を得ることができ、安全性の高い電池が得られる。 Therefore, by not heat-treating the battery case 9 and heat-treating the sealing plate 10, it is possible to obtain a stable explosion-proof valve with a low magnetic susceptibility, less aging cracking, and a low magnetic susceptibility with little variation. And a highly safe battery can be obtained.

また、電池の高容量化を図るために、電池ケース9を、電池ケース9の側部の厚みが、底部9bの厚みよりも薄くなるように絞り加工してもよい。 Further, in order to increase the capacity of the battery, the battery case 9 may be drawn so that the thickness of the side portion of the battery case 9 is thinner than the thickness of the bottom portion 9b.

表7は、側部の厚みをt1、底部の厚みをt2としたとき、外径17mm、高さ50mmの条件を固定し、底部と側部の厚み比t1/t2、レーザ溶接後(熱処理後)の比透磁率、及び時効割れとの関係を示したものである。なお、時効割れは、JIS G 0576−2001「ステンレス鋼の応力腐食割れ試験方法」に準じて、各5サンプルで試験を行った。 In Table 7, when the thickness of the side portion is t1 and the thickness of the bottom portion is t2, the conditions of the outer diameter of 17 mm and the height of 50 mm are fixed, the thickness ratio of the bottom portion and the side portion is t1 / t2, and after laser welding (after heat treatment). ) Shows the relationship between the relative permeability and aging cracking. The aging cracking was tested with 5 samples each according to JIS G 0576-2001 “Stress corrosion cracking test method for stainless steel”.

Figure 0006986672
Figure 0006986672

表7に示すように、t1/t2の値が0.7以上であれば、時効割れが発生せず、0.7≦t1/t2≦1になるように絞り加工することが好ましい。より好ましくは、0.8≦t1/t2≦1、さらに好ましくは、0.9≦t1/t2≦1である。なお、t1/t2が0.7未満になると、側部の厚み変化量が大きくなり、結果、ケース側部の残留応力が大きくなって、時効割れが発生しやすいため、好ましくない。 As shown in Table 7, when the value of t1 / t2 is 0.7 or more, it is preferable to perform drawing so that aging cracking does not occur and 0.7 ≦ t1 / t2 ≦ 1. More preferably, 0.8 ≦ t1 / t2 ≦ 1, and even more preferably 0.9 ≦ t1 / t2 ≦ 1. If t1 / t2 is less than 0.7, the amount of change in the thickness of the side portion becomes large, and as a result, the residual stress on the side portion of the case becomes large, and aging cracking is likely to occur, which is not preferable.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、上記実施形態では、密閉型電池として、リチウム一次電池を例に説明したが、これに限定されず、例えば、乾電池、ニッケル水素電池、リチウムイオン電池などにも適用することができる。 Although the present invention has been described above in terms of preferred embodiments, such a description is not a limitation, and of course, various modifications can be made. For example, in the above embodiment, the lithium primary battery has been described as an example as the sealed battery, but the present invention is not limited to this, and for example, it can be applied to a dry battery, a nickel hydrogen battery, a lithium ion battery, and the like.

また、上記実施形態では、オーステナイト系ステンレス鋼として、SUS316Lを例に説明したが、これに限定されず、例えば、SUS304、SUS304L、SUS305等を用いることができる。 Further, in the above embodiment, SUS316L has been described as an example of the austenitic stainless steel, but the present invention is not limited to this, and for example, SUS304, SUS304L, SUS305 and the like can be used.

1 負極
2 正極
3 セパレータ
4 極板群
5 正極リード
6 負極リード
7 上部絶縁板
8 下部絶縁板
9 電池ケース
9a 電池ケースの開口部周縁
9b 電池ケースの底部
10 封口板
10a 封口板の周縁部
11 正極端子
12 ガスケット
1 Negative electrode
2 Positive electrode
3 Separator
4 electrode plate group
5 Positive electrode lead
6 Negative electrode lead
7 Upper insulation plate
8 Lower insulation plate
9 Battery case
9a Battery case opening margin
9b Bottom of battery case
10 Seal plate
10a Peripheral part of sealing plate
11 Positive electrode terminal
12 Gasket

Claims (4)

電池ケースの開口部を封口板で封口した密閉型電池の製造方法であって、
前記電池ケースは、SUS316Lからなるオーステナイト系ステンレス鋼で構成されており、
絞り加工により有底筒状に成形した前記電池ケースを用意する工程と、
前記電池ケースに、加工硬化を除去する熱処理を施すことなく、前記電池ケースの開口部に前記封口板を圧入し、該封口板の周縁部に形成された周壁と前記電池ケースの開口部周縁とをレーザ溶接する工程と
を含み、
前記電池ケースは、側部の厚みが0.5mm以下になるように、かつ、側部の厚みをt1、底部の厚みをt2としたとき、0.7≦t1/t2≦1になるように絞り加工されている、密閉型電池の製造方法。
It is a method of manufacturing a sealed battery in which the opening of the battery case is sealed with a sealing plate.
The battery case is made of austenitic stainless steel made of SUS316L.
The process of preparing the battery case molded into a bottomed cylinder by drawing, and
The sealing plate is press-fitted into the opening of the battery case without subjecting the battery case to a heat treatment for removing work hardening, and the peripheral wall formed on the peripheral edge of the sealing plate and the peripheral edge of the opening of the battery case Including the process of laser welding
The battery case has a side thickness of 0.5 mm or less, and 0.7 ≦ t1 / t2 ≦ 1 when the side thickness is t1 and the bottom thickness is t2. A method for manufacturing a sealed battery that has been drawn.
前記封口板は、SUS316Lからなるオーステナイト系ステンレス鋼で構成されており、
前記電池ケースの開口部に前記封口板を圧入する前に、該封口板は、加工硬化を除去する熱処理が施されている、請求項1に記載の密閉型電池の製造方法。
The sealing plate is made of austenitic stainless steel made of SUS316L.
The method for manufacturing a sealed battery according to claim 1, wherein the sealing plate is subjected to a heat treatment for removing work hardening before the sealing plate is press-fitted into the opening of the battery case.
前記電池ケースは、外径が14mm以上になるように絞り加工されている、請求項1に記載の密閉型電池の製造方法。 The method for manufacturing a sealed battery according to claim 1, wherein the battery case is drawn so that the outer diameter is 14 mm or more. 前記レーザ溶接する工程において、レーザ溶接後の前記電池ケースの比透磁率が1.06〜1.08である、請求項1〜3のいずれかに記載の密閉型電池の製造方法。 The method for manufacturing a sealed battery according to any one of claims 1 to 3, wherein in the laser welding step, the relative magnetic permeability of the battery case after laser welding is 1.06 to 1.08.
JP2017059525A 2017-03-24 2017-03-24 Manufacturing method of sealed battery Active JP6986672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017059525A JP6986672B2 (en) 2017-03-24 2017-03-24 Manufacturing method of sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017059525A JP6986672B2 (en) 2017-03-24 2017-03-24 Manufacturing method of sealed battery

Publications (2)

Publication Number Publication Date
JP2018163765A JP2018163765A (en) 2018-10-18
JP6986672B2 true JP6986672B2 (en) 2021-12-22

Family

ID=63861042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017059525A Active JP6986672B2 (en) 2017-03-24 2017-03-24 Manufacturing method of sealed battery

Country Status (1)

Country Link
JP (1) JP6986672B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112970140A (en) * 2018-11-07 2021-06-15 松下知识产权经营株式会社 Lithium primary battery
CN109848422A (en) * 2019-02-25 2019-06-07 南昌航空大学 The heat treatment method of precinct laser fusion forming GH4169 alloy
JPWO2021132215A1 (en) * 2019-12-27 2021-07-01

Also Published As

Publication number Publication date
JP2018163765A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6986672B2 (en) Manufacturing method of sealed battery
JP2009069004A (en) Device and method for evaluating hydrogen embrittlement of thin steel sheet
JP2010153275A (en) Method for deciding quality of secondary battery, and method for manufacturing secondary battery
CN101847738A (en) Secondary cell
KR101556000B1 (en) Cap assembly and battery cell having the same
JP6874135B2 (en) Manufacturing method of cylindrical battery and manufacturing method of battery case for cylindrical battery
JP5110958B2 (en) Sealed battery
KR20170110331A (en) Method of Inspecting Welding State Using Pressure Gauge
JP2009031148A (en) Method and device for testing fuel-cladding tube
JP6523722B2 (en) Sealing plate of cylindrical battery and cylindrical battery
EP1992707B1 (en) Material of case for storage cell
Hornus et al. Effect of temperature on the crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers of nuclear repositories
Araújo et al. CTOD‐R curves of the metal‐clad interface of API X52 pipes cladded with an Inconel 625 alloy by welding overlay
Wiersma et al. Fatigue and fracture in materials used for micro-scale biomedical components
RU2582626C1 (en) Method of making welded composite column type sample for testing crack resistance of irradiated metal
JP2000003698A (en) Gasket, forming method for gasket and cylindrical alkaline battery using gasket
JP2015133180A (en) Method of manufacturing sealed power storage device and welding state inspection apparatus of case of sealed power storage device
CN109115635B (en) Method and device for estimating service life of high-temperature thick-wall pipeline
JPH0845541A (en) Sealing degree deciding method of sealed battery
JP2005293922A (en) Battery and its manufacturing method
JP5851177B2 (en) Positive electrode can for lithium battery, lithium battery and method for producing the same
JP2017195165A (en) Lithium primary battery
CN107275909B (en) A kind of elimination hermetically sealed connector electrode guide post gas leakage method
KR20140084475A (en) Stress corrosion evaluation method for stainless steel by electrochemical technique
Åman The influence of interacting small defects on the fatigue limit of steels-Vuorovaikuttavien pienten vikojen vaikutus terästen väsymisrajaan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211110

R151 Written notification of patent or utility model registration

Ref document number: 6986672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151