JP6986650B1 - Method for predicting the risk of complications in Kawasaki disease or IgA vasculitis, trained model and its generation method - Google Patents

Method for predicting the risk of complications in Kawasaki disease or IgA vasculitis, trained model and its generation method Download PDF

Info

Publication number
JP6986650B1
JP6986650B1 JP2021118250A JP2021118250A JP6986650B1 JP 6986650 B1 JP6986650 B1 JP 6986650B1 JP 2021118250 A JP2021118250 A JP 2021118250A JP 2021118250 A JP2021118250 A JP 2021118250A JP 6986650 B1 JP6986650 B1 JP 6986650B1
Authority
JP
Japan
Prior art keywords
subjects
time point
value
data
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021118250A
Other languages
Japanese (ja)
Other versions
JP2022019701A (en
Inventor
威久 山本
Original Assignee
威久 山本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威久 山本 filed Critical 威久 山本
Application granted granted Critical
Publication of JP6986650B1 publication Critical patent/JP6986650B1/en
Publication of JP2022019701A publication Critical patent/JP2022019701A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

【課題】川崎病又はIgA血管炎での合併症発生リスク予測方法、学習済みモデル及びその生成方法を提供する。【解決手段】学習済みモデルに臨床情報を入力してサンプルスコアの予測値を出力させるステップを含み、学習済みモデルは冠動脈拡大病変(CAL)の有無を判定された被験者の臨床情報とサンプルスコアの計算値との関係を機械学習しており、臨床情報は、性別、月齢、冠動脈径、血管炎マーカー、高サイトカイン血症マーカー、及び静注用免疫グロブリン不応予測スコアの得点等の3種以上の臨床データを含み、サンプルスコアの計算値は、3種以上の臨床データとCAL発生の判定結果とを含む4種以上の観測変数で共分散構造分析を行い、判定結果に直接的に有意な因果関係を持つ潜在変数の因子得点である、川崎病でのCAL発生リスク予測方法である。IgA血管炎で腎炎か又は腎炎で高度蛋白尿を伴う症例かの発生リスク予測方法である。【選択図】図6PROBLEM TO BE SOLVED: To provide a method for predicting the risk of complications in Kawasaki disease or IgA vasculitis, a trained model and a method for generating the same. SOLUTION: The trained model includes a step of inputting clinical information into a trained model and outputting a predicted value of a sample score, and the trained model contains clinical information and a sample score of a subject determined to have a coronary artery dilated lesion (CAL). The relationship with the calculated value is machine-learned, and clinical information includes three or more types such as gender, age, coronary artery diameter, vasculitis marker, hypercytomicemia marker, and score of immunoglobulin refractory prediction score for intravenous injection. The calculated value of the sample score is directly significant to the judgment result by performing the covariance structure analysis with 4 or more observation variables including 3 or more kinds of clinical data and the judgment result of CAL occurrence. It is a method for predicting the risk of CAL occurrence in Kawasaki disease, which is a factor score of a latent variable having a causal relationship. It is a method for predicting the risk of occurrence of IgA vasculitis with nephritis or nephritis with high proteinuria. [Selection diagram] FIG. 6

Description

本発明は、川崎病(Kawasaki disease:以下「KD」ともいう)患者またはIgA血管炎(IgA vasculitis:以下「IgAV」ともいう)患者での合併症の発生リスクを予測するための予測方法、前記予測のための学習済みモデル及びその生成方法に関する。 The present invention is a predictive method for predicting the risk of complications in Kawasaki disease (hereinafter also referred to as "KD") patients or IgA vasculitis (hereinafter also referred to as "IgAV") patients. It relates to a trained model for prediction and a method for generating the trained model.

川崎病(KD)は、別名で小児急性熱性皮膚粘膜リンパ節症候群(MCLS)ともいう。IgA血管炎(IgAV)は、別名でヘノッホ・シェーンライン紫斑病(HSP)、アナフィラクトイド紫斑病、アレルギー性紫斑病、又は血管性紫斑病ともいう。KDとIgAVとは、それぞれ血管炎の一種であり、小児で好発し、明確な病因が未だ不明という点では共通している。血管炎は、血管炎症候群または全身性血管炎ともいい、血管そのものに炎症を認める疾患の総称である。また、急性期は、病気になり始めて症状が急激に現れる時期である。合併症は、ある病気が原因となって起こる他の病気である。例えば、IgAVの急性期には、血管内皮にIgA型免疫複合体が沈着して、小型動脈炎や糸球体腎炎が惹起される。IgAVの30%から50%の症例では、IgAV発症より約30日目頃から、合併症である紫斑病性腎炎(purpura nephritis:以下「PN」ともいう)が発生する。PNは、IgAV合併症として単に「腎炎」という場合もあれば(非特許文献9参照)、ヘノッホ・シェーンライン紫斑病性腎炎(HSPN)という場合もある。PNは、小児の二次性糸球体腎炎で最も症例が多いといわれ、発症すると血尿を伴う。PNで血尿に高度蛋白尿を伴う症例では、更にネフローゼ症候群を呈して重症化し、腎不全に至る場合がある。 Kawasaki disease (KD) is also known as pediatric acute febrile mucocutaneous lymph node syndrome (MCLS). IgA vasculitis (IgAV) is also known as Henoch-Schoenlein purpura (HSP), anaphylactoid purpura, allergic purpura, or vascular purpura. KD and IgAV are types of vasculitis, respectively, and they are common in children because they are common in children and the clear cause is still unknown. Vasculitis is also called vasculitis syndrome or systemic vasculitis, and is a general term for diseases in which inflammation is observed in the blood vessels themselves. In addition, the acute phase is the time when symptoms begin to appear rapidly after becoming ill. Complications are other illnesses caused by one illness. For example, in the acute phase of IgAV, IgA-type immune complexes are deposited on the vascular endothelium, causing small arteritis and glomerulonephritis. In 30% to 50% of cases of IgAV, the complication purpura nephritis (hereinafter also referred to as "PN") develops from about 30 days after the onset of IgAV. PN may be simply referred to as "nephritis" as an IgAV complication (see Non-Patent Document 9), or it may be referred to as Henoch-Schoenline purpura nephritis (HSPN). PN is said to be the most common case of secondary glomerulonephritis in children, and when it develops, it is accompanied by hematuria. In cases of PN with highly proteinuria in hematuria, nephrotic syndrome may be further present and become severe, leading to renal failure.

また、KDの急性期では、KD発症より7日目頃から、心臓の冠動脈で血管炎(中動脈血管炎)が惹起される場合がある。さらに、KD発症より10日目頃から、中動脈血管炎に起因して、冠動脈径が拡大する病変(冠動脈拡大病変、coronary artery lesion:以下「CAL」ともいう)発生に至る場合がある。冠動脈径の拡大の程度が大きいCALは、冠動脈瘤(coronary artery aneurysm:以下「CAA」)ともいい、心筋梗塞による死亡の原因になり得る。心筋梗塞に至らなかったとしても、CAL発生による心臓血管後遺症と診断された小児らの大半は、その後の人生で何らかの冠動脈イベントリスクを抱え続けることになる。このため、KDは、小児後天性心臓病の最大の原因といわれている。KDまたはIgAVの急性期医療を行う担当医には、合併症の発生を抑える観点から、血管炎を早期に終息させることが求められている。 In the acute phase of KD, vasculitis (middle arterial vasculitis) may be induced in the coronary arteries of the heart from about 7 days after the onset of KD. Furthermore, from about 10 days after the onset of KD, a lesion in which the coronary artery diameter is enlarged (coronary artery lesion: hereinafter also referred to as “CAL”) may occur due to middle arterial vasculitis. CAL with a large degree of expansion of coronary artery diameter is also called coronary artery aneurysm (hereinafter referred to as "CAA") and can cause death due to myocardial infarction. Even if they do not lead to myocardial infarction, most children diagnosed with cardiovascular sequelae due to CAL development will continue to be at risk of some coronary event for the rest of their lives. For this reason, KD is said to be the leading cause of acquired pediatric heart disease. Doctors in charge of acute care for KD or IgAV are required to end vasculitis at an early stage from the viewpoint of suppressing the occurrence of complications.

図31に、従来のKD急性期医療S20のアルゴリズムを示す。担当医は、KDと診断S21した患者を入院させ、患者で発熱持続しているか判断する(S22)。既に解熱していると判断した場合には、患者にアセチルサリチル酸(acetylsalicylic acid:以下「ASA」ともいう)を投与して経過観察する(S23)。発熱持続している場合には、担当医は、患者が後述するIVIG不応例に該当するリスクが低リスクであるか否かを判断する(S24)。低リスクと判断した場合には、標準的に確立された一次治療S30として、中等量のASA投与と共に、静注用免疫グロブリン(Intravenous immunoglobulin:以下「IVIG」ともいう)を大量に投与するIVIG療法を行い、この際、更に他の抗炎症薬を投与する併用治療を行わない(S31)。または、高リスクと判断した場合、担当医は、一次治療S30でIVIG及びASAの投与だけでなく、CAL発生を避けるために、更に他の抗炎症薬を投与する併用治療を行っても良い(S32乃至S35)。一次治療S30後、担当医は、IVIG投与終了から24時間以上36時間以内に、患者が37.5℃以下に解熱して再燃しない症例である「IVIG反応例」に該当するか否かを判断する(S36)。IVIG反応例の患者には、更にASA投与して経過観察する(S23)。 FIG. 31 shows the algorithm of the conventional KD acute care S20. The doctor in charge admits a patient diagnosed with KD S21 and determines whether the patient has a persistent fever (S22). If it is determined that the fever has already disappeared, the patient is administered with acetylsalicylic acid (hereinafter, also referred to as "ASA") and followed up (S23). If the fever persists, the attending physician determines whether the patient is at low risk for the IVIG refractory case described below (S24). If it is judged to be low risk, as standard established first-line treatment S30, IVIG therapy in which a large amount of intravenous immunoglobulin (hereinafter also referred to as "IVIG") is administered together with moderate dose of ASA administration. At this time, the combination therapy of administering another anti-inflammatory drug is not performed (S31). Alternatively, if determined to be at high risk, the attending physician may administer IVIG and ASA as first-line treatment S30, as well as concomitant therapy with other anti-inflammatory agents to avoid CALs (). S32 to S35). After the first-line treatment S30, the doctor in charge determines whether or not the patient falls under the category of "IVIG reaction example", which is a case in which the patient has a fever of 37.5 ° C or lower and does not relapse within 24 hours or more and 36 hours after the end of IVIG administration. (S36). Patients with IVIG reaction will be further administered with ASA and followed up (S23).

一方、KD急性期の一部の症例は、一次治療S30後に解熱しないか又は再燃し、「IVIG不応例」といわれる。担当医は、IVIG不応例の患者に、二次治療S40や更に必要に応じて三次治療以降S50を行う。それでも、IVIG不応例のうち一部の症例では、CAL発生に至る。KD急性期のIVIG不応例は、その標準的な治療方法が未だ確立されていない。このため、担当医には、二次治療S40や三次治療以降S50で採り得る治療方法の選択肢として、IVIG再投与(S41、S51)だけでなく、より抗炎症効果に優れた他の抗炎症療法もある(S42乃至S44、S52乃至S56)。担当医は、IVIG不応例の患者ごとに異なる臨床情報に基づき、非特許文献1やKD急性期医療の研究論文など(いわゆるエビデンス)を判断の根拠にして、患者ごとに適すると判断した任意の抗炎症療法を選択し実施してきた。 On the other hand, some cases in the acute phase of KD do not resolve or relapse after first-line treatment S30 and are referred to as "IVIG refractory cases". The attending physician will administer the second-line treatment S40 and, if necessary, the third-line treatment and subsequent S50 to patients refractory to IVIG. Nevertheless, some of the IVIG refractory cases lead to the development of CAL. For IVIG refractory cases in the acute phase of KD, the standard treatment method has not yet been established. Therefore, for the doctor in charge, not only IVIG re-administration (S41, S51) but also other anti-inflammatory therapies with more excellent anti-inflammatory effect are available as treatment options that can be taken in S40 after the second-line treatment and S50 after the third-line treatment. There are also (S42 to S44, S52 to S56). The doctor in charge has decided that it is suitable for each patient based on the clinical information that differs for each patient who is refractory to IVIG, and based on the non-patent document 1 and research papers on KD acute care (so-called evidence). We have selected and implemented anti-inflammatory therapy.

担当医が一次治療S30前に判断する(S24)時点で、患者がIVIG不応例であるか否かを予測するためのリスクスコア(以下「IVIG不応予測スコア」ともいう)として、小林スコア(非特許文献3)、江上スコア(非特許文献4)、及び佐野スコア(非特許文献5)が提唱された(非特許文献1及び2参照)。一部の医師らは、一次治療S30前に判断する(S24)時点でIVIG不応予測スコアの得点から高リスクと判断された患者に対して、その後の一次治療S30で、IVIG及びASAの投与だけでなく、静注用メチルプレドニゾロンパルス(intravenous methylprednisolone:以下「IVMP」という。)投与の併用S34を推奨している(非特許文献6参照)。 Kobayashi score as a risk score (hereinafter also referred to as "IVIG refractory prediction score") for predicting whether or not a patient is IVIG refractory at the time when the doctor in charge determines before the first treatment S30 (S24). (Non-Patent Document 3), Egami Score (Non-Patent Document 4), and Sano Score (Non-Patent Document 5) were proposed (see Non-Patent Documents 1 and 2). Some doctors administer IVIG and ASA in subsequent first-line treatment S30 to patients judged to be at high risk based on the IVIG refractory prediction score score at the time of judgment (S24) prior to first-line treatment S30. Not only that, we recommend the combined use of S34 for intravenous methylprednisolone (hereinafter referred to as “IVMP”) administration (see Non-Patent Document 6).

特許第6703412号公報Japanese Patent No. 6703421

三浦大、他14名、「日本小児循環器学会 川崎病急性期治療のガイドライン(2020年改訂版)」、Pediatric Cardiology and Cardiac Surgery、2020年、第36巻、Supplement 1Dai Miura, 14 others, "Guidelines for Acute Treatment of Kawasaki Disease of the Japanese Society of Pediatric Cardiology (2020 Revised Edition)", Pediatric Cardiology and Cardiac Surgery, 2020, Vol. 36, Supplement 1. 日本循環器学会、「2020年改訂版 川崎病心臓血管後遺症の診断と治療に関するガイドライン」、[online]、2020年3月、[令和2年7月8日検索]、インターネット、<URL: https://www.j-circ.or.jp/old/guideline/pdf/JCS2020_Fukazawa_Kobayashi.pdf >Japanese Circulation Society, "2020 Revised Guidelines for Diagnosis and Treatment of Kawasaki Disease Cardiovascular Sequelae", [online], March 2020, [Search on July 8, 2020], Internet, <URL: https //www.j-circ.or.jp/old/guideline/pdf/JCS2020_Fukazawa_Kobayashi.pdf> Tohru Kobayashi、他7名、「Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease」、Circulation、2006年6月、第113巻、第22号、2606頁から2612頁までTohru Kobayashi, 7 others, "Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease", Circulation, June 2006, Vol. 113, No. 22, pp. 2606 to 2612 Kimiyasu Egami、他6名、「Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease」、The Journal of Pediatrics、2006年8月、第149巻、第2号、237頁から240頁までKimiyasu Egami, 6 others, "Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease", The Journal of Pediatrics, August 2006, Vol. 149, No. 2, pp. 237-240 Tetsuya Sano、他7名、「Prediction of non-responsiveness to standard high-dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment」、European Journal of Pediatrics、2007年2月、第166巻、第2号、131頁から137頁までTetsuya Sano, 7 others, "Prediction of non-responsiveness to standard high-dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment", European Journal of Pediatrics, February 2007, Vol. 166, No. 2. No., pages 131 to 137 Keiko Okada、他9名、「Pulse methylprednisolone with gammaglobulin as an initial treatment for acute Kawasaki disease」、European Journal of Pediatrics、2009年2月、第168巻、第2号、181頁から185頁までKeiko Okada, 9 others, "Pulse methylprednisolone with gammaglobulin as an initial treatment for acute Kawasaki disease", European Journal of Pediatrics, February 2009, Vol. 168, No. 2, pp. 181-185 日本川崎病学会、特定非営利活動法人日本川崎病研究センター、厚生労働科学研究 難治性血管炎に関する調査研究班、「川崎病診断の手引き 改訂第6版」、[online]、2019年6月、[令和2年6月25日検索]、インターネット、<URL: http://www.jskd.jp/info/pdf/tebiki201906.pdf >Japan Kawasaki Disease Society, Japan Kawasaki Disease Research Center, Health and Labor Sciences Research Group on Intractable Vasculitis, "Kawasaki Disease Diagnosis Guide Revised 6th Edition", [online], June 2019, [Search on June 25, 2nd year of Reiwa], Internet, <URL: http://www.jskd.jp/info/pdf/tebiki201906.pdf> Tohru Kobayashi、他17名、「A New Z Score Curve of the Coronary Arterial Internal Diameter Using the Lambda-Mu-Sigma Method in a Pediatric Population.」、Journal of the American Society of Echocardiography、2016年8月、第29巻、第8号、794頁から801頁まで、e29Tohru Kobayashi, 17 others, "A New Z Score Curve of the Coronary Arterial Internal Diameter Using the Lambda-Mu-Sigma Method in a Pediatric Population.", Journal of the American Society of Echocardiography, August 2016, Volume 29. , No. 8, pp. 794-801, e29 磯部光章、他49名、「血管炎症候群の診療ガイドライン(2017年改訂版)」、[online]、2018年6月、[令和3年7月12日検索]、インターネット、<URL: https://www.j-circ.or.jp/cms/wp-content/uploads/2020/02/JCS2017_isobe_h.pdf >Mitsuaki Isobe, 49 others, "Clinical Guidelines for Vasculitis Syndrome (2017 Revised Edition)", [online], June 2018, [Search on July 12, 2018], Internet, <URL: https //www.j-circ.or.jp/cms/wp-content/uploads/2020/02/JCS2017_isobe_h.pdf>

しかし、従来、IVIG不応予測スコアの感度と特異度とからすれば、担当医にとっては、患者が一次治療S30後にCAL発生に至ることを、一次治療S30前に判断する(S24)時点で高精度に予測するのは、難しかった。例えば、従来、担当医が、一次治療S30前に判断する(S24)時点でIVIG不応予測スコアの得点から「低リスクの患者である」と予測し、それでも念のためにこの患者に対して一次治療S30でIVIGとASAとIVMPとを併用して投与(S34)したとしても、この患者が一次治療S30後に解熱せずIVIG不応例であると明らかになってCAL発生に至る場合が幾らかあった。このため、仮に、担当医が一次治療S30前に判断する(S24)時点において「一次治療S30でIVMPを併用S34してもCAL発生に至る」旨を高精度に予測できていれば、例えば、一次治療S30で別の抗炎症療法を併用(S32、S33、S35)するように治療方針の変更を検討する余地があったかもしれないと、本願発明者は考えた。 However, conventionally, in view of the sensitivity and specificity of the IVIG refractory prediction score, it is high for the patient in charge at the time of determining (S24) that the patient will develop CAL after the first-line treatment S30 before the first-line treatment S30. It was difficult to predict with accuracy. For example, conventionally, the doctor in charge predicts that he / she is a “low-risk patient” from the score of the IVIG refractory prediction score at the time of judgment (S24) before the first-line treatment S30, but still for this patient just in case. Even if IVIG, ASA and IVMP are administered in combination (S34) in the first-line treatment S30, it may become clear that this patient is refractory to IVIG after the first-line treatment S30 and leads to the occurrence of CAL. There was. For this reason, if the doctor in charge can predict with high accuracy that "even if IVMP is used in combination with S34 in the first treatment S30, CAL will occur" at the time of judgment (S24) before the first treatment S30, for example. The inventor of the present application considered that there may have been room to consider changing the treatment policy so that the first-line treatment S30 is combined with another anti-inflammatory therapy (S32, S33, S35).

一方、IVIG投与(S31、S41、S51)と比べて他の抗炎症療法(S32乃至S35、S42乃至S44、S52乃至S56)では、より抗炎症効果に優れるという利点がある反面、副作用があるか又は実施の手間や費用負担が大きいという欠点もある。このため、従来、KD急性期医療S20を行う担当医は、一般的に、まず併用治療なしS31の一次治療S30を行い、その後にIVIG不応例であると明らかになった患者に対して、二次治療S40以降で初めて他の抗炎症療法(S42乃至S44、S52乃至S56)を試すのが通例であった。例えば、担当医が上司や患者の保護者に対して、一次治療S30でのIVMP併用(S34)を提案したとしても、上司や保護者が、ステロイド薬の一種であるIVMPの副作用を懸念したり、IVMP併用(S34)は保険適応の対象外であること憂慮したりして、提案を拒む場合が多くあった。従来、併用療法を行えば高確率でCAL発生を抑制できる根拠は十分になかったから、担当医は併用療法を実施する方針で関係者らを説得することができず、実際には一次治療S30や二次治療S40でIVIG及びASAの投与を行うに留めた(S31、S41)ところ、結局、その後に患者が解熱せずCAL発生に至る場合があったと考えられる。 On the other hand, other anti-inflammatory therapies (S32 to S35, S42 to S44, S52 to S56) have the advantage of being more excellent in anti-inflammatory effect than IVIG administration (S31, S41, S51), but have side effects? Alternatively, there is a drawback that the labor and cost burden for implementation are large. For this reason, conventionally, the doctor in charge of performing KD acute care S20 generally first performs first-line treatment S30 of S31 without combination treatment, and then for patients who are found to be IVIG refractory. It was customary to try other anti-inflammatory therapies (S42-S44, S52-S56) for the first time after the second-line treatment S40. For example, even if the attending physician proposes to the boss or the guardian of the patient the combined use of IVMP (S34) in the first-line treatment S30, the boss or the guardian may be concerned about the side effects of IVMP, which is a type of steroid drug. In many cases, the proposal was rejected due to concerns that the combined use of IVMP (S34) was not covered by insurance. In the past, there was not enough evidence that combination therapy could suppress the occurrence of CAL with a high probability, so the doctor in charge could not persuade the people concerned with the policy of implementing combination therapy, and in fact, first-line treatment S30 and It is considered that the administration of IVIG and ASA was limited to the second-line treatment S40 (S31, S41), but in the end, the patient did not resolve the fever and developed CAL.

このため、従来、KD急性期医療S20の担当医にとって、初期の治療方針を決定する過程で、IVIG投与(S31、S41、S51)よりも抗炎症効果に優れる他の抗炎症療法(S3乃至S35、S42乃至S44、S52乃至S56)を選択し早期実施する方針で診断するのは難しい場合が多く、その結果、患者でCAL発生に至る場合があり得ると本願発明者は考えた。IgAV急性期医療で初期の治療方針を決定する過程でも、同様の問題があり、患者が高度蛋白尿をきたす場合があり得ると考えた。
Therefore, conventionally, for the doctor in charge of KD acute care S20, in the process of determining the initial treatment policy, other anti-inflammatory therapies (S3 2 to S51) having a better anti-inflammatory effect than IVIG administration (S31, S41, S51). The inventor of the present application considered that it is often difficult to make a diagnosis by selecting S35, S42 to S44, S52 to S56) and implementing it at an early stage, and as a result, CAL may occur in the patient. In the process of deciding the initial treatment policy in IgAV acute care, there is a similar problem, and it is considered that the patient may develop highly proteinuria.

上記した問題を鑑みて本発明の課題は、川崎病またはIgA血管炎における急性期医療の担当医が合併症の発生を抑える治療方針を早期決定する診断をしやすいように支援する観点から、患者ごとでの合併症の発生リスクをなるべく高精度に予測可能な予測方法と、この予測を行うための学習済みモデル及びその生成方法と、を提供することにある。 In view of the above-mentioned problems, an object of the present invention is to assist a doctor in charge of acute care in Kawasaki disease or IgA vasculitis to easily make a diagnosis to make an early decision on a treatment policy to suppress the occurrence of complications. It is an object of the present invention to provide a predictive method capable of predicting the occurrence risk of complications in each case with as high accuracy as possible, a trained model for making this prediction, and a method for generating the same.

上記した課題を解決するために、本発明の一実施形態に係る予測方法は、川崎病の患者で合併症の発生リスクを予測するための予測方法であって、前記予測方法は、学習済みモデルを有する情報処理装置に、前記患者の臨床情報を入力して、前記合併症の発生リスクに関するサンプルスコアについて前記患者での予測値を出力する処理を実行させるステップを含み、前記合併症は、冠動脈拡大病変であり、前記学習済みモデルは、既に前記合併症の発生の有無を判定された被験者らにおける各々の被験者の臨床情報と、前記サンプルスコアについて前記各々の被験者での計算値との関係を機械学習させたものであり、前記各々の被験者の臨床情報は、性別、川崎病の急性期であり且つ抗炎症療法を受けていない時点での月齢、前記時点での冠動脈径、前記時点での全身性血管炎マーカー検査値、前記時点での高サイトカイン血症マーカー検査値、前記時点での静注用免疫グロブリン(IVIG)不応予測スコアの得点、前記時点の後に前記抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた3種以上の被験者臨床データを含み、前記サンプルスコアについて前記各々の被験者での計算値は、前記3種以上の被験者臨床データと、前記各々の被験者での前記合併症の発生の有無に関する判定結果と、を含む4種以上の観測変数が設けられて共分散構造分析が行われる場合に、前記判定結果に係る観測変数に対して直接的に有意な因果関係が認められる潜在変数の因子得点に関するデータであり、前記患者の臨床情報は、性別、前記時点での月齢、前記時点での冠動脈径、前記時点での全身性血管炎マーカー検査値、前記時点での高サイトカイン血症マーカー検査値、前記時点でのIVIG不応予測スコアの得点、前記時点の後に前記抗炎症療法を受ける予定回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた3種以上の患者臨床データを含む、予測方法である。 In order to solve the above-mentioned problems, the prediction method according to the embodiment of the present invention is a prediction method for predicting the risk of complications in a patient with Kawasaki disease, and the prediction method is a trained model. The complication comprises a step of inputting clinical information of the patient into an information processing apparatus having the above-mentioned, and executing a process of outputting a predicted value in the patient for a sample score regarding the risk of occurrence of the complication. The trained model is an enlarged lesion, and the trained model shows the relationship between the clinical information of each subject in the subjects whose presence or absence of the complication has already been determined and the calculated value of the sample score in each subject. The clinical information of each of the subjects was machine-learned, and the clinical information of each subject was gender, age at the time of acute stage of Kawasaki disease and not receiving anti-inflammatory therapy, coronary artery diameter at the time, and coronary artery diameter at the time. Systemic vasculitis marker test value, hypercytomicemia marker test value at the time point, score of intravenous immunoglobulin (IVIG) refractory prediction score at the time point, received the anti-inflammatory therapy after the time point. Includes clinical data of 3 or more subjects selected from the group consisting of the number of times and data indirectly indicating any of these, and the calculated value of the sample score in each of the subjects is the subject of 3 or more. Observations related to the determination results when covariance structure analysis is performed with four or more observation variables including clinical data and determination results regarding the presence or absence of the complications in each of the subjects. It is data on the factor score of the latent variable which has a direct significant causal relationship with the variable, and the clinical information of the patient is the sex, the age at the time point, the coronary artery diameter at the time point, and the coronary artery diameter at the time point. Systemic vasculitis marker test value, hypercytomicemia marker test value at the time point, score of IVIG refractory prediction score at the time point, number of times to receive the anti-inflammatory therapy after the time point, and any of these It is a prediction method including three or more kinds of patient clinical data selected from the group consisting of data indirectly showing.

斯かる構成の予測方法によれば、3種以上の被験者臨床データと、共分散構造分析により算出されるサンプルスコアの計算値との関係を機械学習して生成された学習済みモデルを用いることにより、KD患者についてCAL発生に至るか否かの指標となるサンプルスコアの予測値を従来よりも高精度に得ることが可能となる。このため、例えば、KD急性期医療でKD患者に一次治療を行う前の時点でも、担当医がCAL発生を抑える治療方針を早期決定する診断をしやすいように、診断の際に判断材料となる予測結果(サンプルスコアの予測値)の情報を出力する形で、この担当医を支援可能である。 According to the method of predicting such a configuration, by using a trained model generated by machine learning the relationship between the clinical data of three or more kinds of subjects and the calculated value of the sample score calculated by the covariance structure analysis. , It becomes possible to obtain a predicted value of a sample score, which is an index of whether or not CAL occurs in a KD patient, with higher accuracy than before. Therefore, for example, even before the first-line treatment of a KD patient in KD acute care, it can be used as a judgment material at the time of diagnosis so that the attending physician can easily make a diagnosis to determine a treatment policy for suppressing the occurrence of CAL at an early stage. It is possible to support this doctor by outputting information on the prediction result (predicted value of the sample score).

本発明の他の実施形態に係る予測方法は、IgA血管炎の患者で合併症の発生リスクを予測するための予測方法であって、前記予測方法は、学習済みモデルを有する情報処理装置に、前記患者の臨床情報を入力して、前記合併症の発生リスクに関するサンプルスコアについて前記患者での予測値を出力する処理を実行させるステップを含み、前記合併症は、紫斑病性腎炎か又は前記紫斑病性腎炎で蛋白尿を伴う症例かであり、前記学習済みモデルは、既に前記合併症の発生の有無を判定された被験者らにおける各々の被験者の臨床情報と、前記サンプルスコアについて前記各々の被験者での計算値との関係を機械学習させたものであり、前記各々の被験者の臨床情報は、性別、IgA血管炎の急性期であり且つ抗炎症療法を受けていない時点での月齢、前記時点での全身性血管炎マーカー検査値、前記時点での腹痛の有無、前記時点での即時型アレルギー疾患の有無、前記時点での血中IgA検査値、前記時点での血中IgE検査値、前記時点の後に前記抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた4種以上の被験者臨床データを含み、前記サンプルスコアについて前記各々の被験者での計算値は、前記4種以上の被験者臨床データと、前記各々の被験者での前記合併症の発生の有無に関する判定結果と、を含む5種以上の観測変数が設けられて共分散構造分析が行われる場合に、前記判定結果に係る観測変数に対して直接的に有意な因果関係が認められる潜在変数の因子得点に関するデータであり、前記患者の臨床情報は、性別、前記時点での月齢、前記時点での全身性血管炎マーカー検査値、前記時点での腹痛の有無、前記時点での即時型アレルギー疾患の有無、前記時点での血中IgA検査値、前記時点での血中IgE検査値、前記時点の後に前記抗炎症療法を受ける予定回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた4種以上の患者臨床データを含む、予測方法である。 The prediction method according to another embodiment of the present invention is a prediction method for predicting the risk of complications in a patient with IgA vasculitis, and the prediction method is a prediction method for an information processing apparatus having a trained model. It comprises the step of inputting clinical information of the patient and performing a process of outputting a predicted value in the patient for a sample score regarding the risk of developing the complication, and the complication is purpura vasculitis or the purpura. It is a case of pathogenic nephritis accompanied by proteinuria, and the learned model is the clinical information of each subject among the subjects whose presence or absence of the complication has already been determined, and the sample score of each subject. The relationship with the calculated value in the above was machine-learned, and the clinical information of each of the above subjects was the sex, the age at the time of acute stage of IgA vasculitis and not receiving anti-inflammatory therapy, and the above-mentioned time point. Systemic vasculitis marker test value at the time point, presence or absence of abdominal pain at the time point, presence or absence of immediate allergic disease at the time point, blood IgA test value at the time point, blood IgE test value at the time point, said Includes clinical data of four or more subjects selected from the group consisting of the number of times the anti-inflammatory therapy was received after the time point and data indirectly indicating any of these, and the sample score was given in each of the subjects. The calculated values are provided with five or more observation variables including the clinical data of the four or more subjects and the judgment result regarding the presence or absence of the complication in each of the subjects, and the co-dispersion structure analysis is performed. In this case, it is data on the factor score of the latent variable in which a directly significant causal relationship is recognized with respect to the observed variable related to the determination result, and the clinical information of the patient is the sex, the age at the time, and the above. Systemic vasculitis marker test value at the time point, presence or absence of abdominal pain at the time point, presence or absence of immediate allergic disease at the time point, blood IgA test value at the time point, blood IgE test value at the time point, A predictive method comprising 4 or more patient clinical data selected from the group consisting of the number of times the anti-inflammatory therapy is scheduled to be received after the time point and data indirectly indicating any of these.

斯かる構成の予測方法によれば、4種以上の被験者臨床データと、共分散構造分析により算出されるサンプルスコアの計算値との関係を機械学習して生成された学習済みモデルを用いることにより、IgAV患者について、PN発生か又はPNで蛋白尿を伴う症例発生に至るか否かの指標となるサンプルスコアの予測値を、従来よりも高精度に得ることが可能となる。このため、例えばIgAV急性期医療でIgAV患者に初回治療を行う前の時点でも、担当医がPN発生か又はPNで蛋白尿を伴う症例発生かを抑える治療方針を早期決定する診断をしやすいように、診断の際に判断材料となる予測結果(サンプルスコアの予測値)の情報を出力する形で、この担当医を支援可能である。 According to the method of predicting such a configuration, by using a trained model generated by machine learning the relationship between the clinical data of four or more kinds of subjects and the calculated value of the sample score calculated by the covariance structure analysis. For IgAV patients, it is possible to obtain a predicted value of a sample score, which is an index of whether or not PN occurs or a case with proteinuria occurs in PN, with higher accuracy than before. Therefore, for example, even before the initial treatment of IgAV patients in IgAV acute care, it is easy for the doctor in charge to make an early diagnosis to determine the treatment policy to suppress the occurrence of PN or the occurrence of cases with proteinuria in PN. In addition, it is possible to support this doctor in charge by outputting information on the prediction result (predicted value of the sample score) that is used as a judgment material at the time of diagnosis.

本発明に係る予測方法での前記抗炎症療法が、アセチルサリチル酸および/またはその塩の投与、IVIG投与、静注用メチルプレドニゾロンパルス投与、プレドニゾロン投与、インフリキシマブ投与、ウリナスタチン投与、シクロスポリンA投与、並びに血漿交換からなる群より選ばれた1種以上の治療方法であり得る。斯かる構成の予測方法によれば、ここで挙げた抗炎症療法の実施予定回数に応じて、患者での合併症発生リスクの予測結果(サンプルスコアの予測値)が異なる可能性がある。このため、例えば、急性期医療の担当医は、合併症発生を抑える治療方針を早期決定する診断をしやすいように、診断の際に判断材料として予測結果(サンプルスコアの予測値)を参考にしやすい。 The anti-inflammatory therapy according to the predictive method according to the present invention includes administration of acetylsalicylic acid and / or a salt thereof, IVIG administration, intravenous methylprednisolone pulse administration, prednisolone administration, infliximab administration, ulinastatin administration, cyclosporin A administration, and plasma. It can be one or more treatment methods selected from the group consisting of exchanges. According to the prediction method of such a configuration, the prediction result (prediction value of the sample score) of the risk of complications in the patient may differ depending on the number of scheduled anti-inflammatory treatments listed here. For this reason, for example, the doctor in charge of acute care refers to the prediction result (predicted value of the sample score) as a judgment material at the time of diagnosis so that the diagnosis for early determination of the treatment policy for suppressing the occurrence of complications can be easily performed. Cheap.

本発明に係る予測方法では、前記サンプルスコアについて前記患者での予測値が所定のカットオフ値以上である場合に、前記患者で前記合併症の発生に至る予測結果を出力する処理を実行するように前記情報処理装置を機能させ得る。斯かる構成の予測方法によれば、予測方法を実施する者にとっては、サンプルスコアの予測値の数値データそのものよりも、患者が合併症発生に至るか否か分かりやすい形で予測結果を得ることができる。 In the prediction method according to the present invention, when the predicted value of the sample score in the patient is equal to or higher than a predetermined cutoff value, a process of outputting the predicted result leading to the occurrence of the complication in the patient is executed. The information processing apparatus can be made to function. According to the prediction method of such a configuration, for the person who implements the prediction method, the prediction result is obtained in a form that makes it easy for the person who implements the prediction method to understand whether or not the patient will develop complications, rather than the numerical data itself of the predicted value of the sample score. Can be done.

本発明の一実施形態に係る生成方法は、川崎病の患者で合併症の発生リスクを予測するための学習済みモデルの生成方法であって、前記生成方法は、既に前記合併症の発生の有無を判定された被験者らにおける各々の被験者の臨床情報が入力層に入力されると、出力層が前記合併症の発生リスクに関するサンプルスコアについて前記各々の被験者での計算値を出力するように機械学習させて、前記学習済みモデルを生成するステップを含み、前記合併症は、冠動脈拡大病変であり、前記各々の被験者の臨床情報は、性別、川崎病の急性期であり且つ抗炎症療法を受けていない時点での月齢、前記時点での冠動脈径、前記時点での全身性血管炎マーカー検査値、前記時点での高サイトカイン血症マーカー検査値、前記時点でのIVIG不応予測スコアの得点、前記時点の後に前記抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた3種以上の被験者臨床データを含み、前記サンプルスコアについて前記各々の被験者での計算値は、前記3種以上の被験者臨床データと、前記各々の被験者での前記合併症の発生の有無に関する判定結果と、を含む4種以上の観測変数が設けられて共分散構造分析が行われる場合に、前記判定結果に係る観測変数に対して直接的に有意な因果関係が認められる潜在変数の因子得点に関するデータである、学習済みモデルの生成方法である。斯かる構成の学習済みモデルの生成方法によれば、ここで例として挙げた被験者臨床データはいずれも、例えばKD急性期医療の担当医が入手可能な情報である。また、サンプルスコアの計算値は、3種以上の被験者臨床データと、CAL発生の有無に関する判定結果とから、共分散構造分析により算出可能である。このため、CAL発生リスクを従来よりも高精度で予測可能な学習済みモデルを、例えば従来の一般病院の小児科でも生成可能である。
Generating method according to an embodiment of the present invention, there is provided a method of generating a learned model for predicting the risk of complications in patients with Kawasaki disease, the generation method, already the occurrence of the complications When the clinical information of each subject in the subjects judged to be present or absent is input to the input layer, the output layer outputs the calculated value for each subject regarding the sample score regarding the risk of developing the complication. The complications include a step of training to generate the trained model, the complications are coronary dilated lesions, and the clinical information of each of the subjects is gender, acute phase of Kawasaki disease and receiving anti-inflammatory therapy. Age at no time, coronary artery diameter at the time point, systemic vasculitis marker test value at the time point, hypercytomicemia marker test value at the time point, score of IVIG refractory prediction score at the time point, Includes clinical data of three or more subjects selected from the group consisting of the number of times the anti-inflammatory therapy was received after the time point and data indirectly indicating any of these, and the sample score was given in each of the subjects. The calculated value of is provided with four or more observation variables including the clinical data of the three or more subjects and the judgment result regarding the presence or absence of the complication in each of the subjects, and the co-dispersion structure analysis is performed. This is a method for generating a trained model, which is data on factor scores of latent variables in which a directly significant causal relationship is recognized with respect to the observed variables related to the determination result. According to the method for generating a trained model having such a configuration, all of the subject clinical data given here as examples are information available to, for example, a doctor in charge of KD acute care. In addition, the calculated value of the sample score can be calculated by covariance structure analysis from the clinical data of three or more kinds of subjects and the determination result regarding the presence or absence of CAL. Therefore, it is possible to generate a trained model in which the risk of CAL occurrence can be predicted with higher accuracy than before, for example, in the pediatrics department of a conventional general hospital.

本発明の他の実施形態に係る学習済みモデルの生成方法は、IgA血管炎の患者で合併症の発生リスクを予測するための学習済みモデルの生成方法であって、前記生成方法は、既に前記合併症の発生の有無を判定された被験者らにおける各々の被験者の臨床情報が入力層に入力されると、出力層が前記合併症の発生リスクに関するサンプルスコアについて前記各々の被験者での計算値を出力するように機械学習させて、前記学習済みモデルを生成するステップを含み、前記合併症は、紫斑病性腎炎か又は前記紫斑病性腎炎で蛋白尿を伴う症例かであり、前記各々の被験者の臨床情報は、性別、IgA血管炎の急性期であり且つ抗炎症療法を受けていない時点での月齢、前記時点での全身性血管炎マーカー検査値、前記時点での腹痛の有無、前記時点での即時型アレルギー疾患の有無、前記時点での血中IgA検査値、前記時点での血中IgE検査値、前記時点の後に前記抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた4種以上の被験者臨床データを含み、前記サンプルスコアについて前記各々の被験者での計算値は、前記4種以上の被験者臨床データと、前記各々の被験者での前記合併症の発生の有無に関する判定結果と、を含む5種以上の観測変数が設けられて共分散構造分析が行われる場合に、前記判定結果に係る観測変数に対して直接的に有意な因果関係が認められる潜在変数の因子得点に関するデータである、学習済みモデルの生成方法である。斯かる構成の学習済みモデルの生成方法によれば、ここで例として挙げた被験者臨床データは、いずれも例えばIgAV急性期医療の担当医が入手可能な情報である。また、サンプルスコアの計算値は、4種以上の被験者臨床データと、PN発生の有無に関する判定結果か又はPNで蛋白尿を伴う症例発生の有無に関する判定結果とから、共分散構造分析により算出可能である。このため、PN発生リスクか又はPNで蛋白尿を伴う症例発生リスクを従来よりも高精度で予測可能な学習済みモデルを、例えば従来の一般病院の小児科でも生成可能である。 The method for generating a trained model according to another embodiment of the present invention is a method for generating a trained model for predicting the risk of complications in a patient with IgA vasculitis, and the method for generating the trained model has already been described above. When the clinical information of each subject in the subjects who were judged to have complications was input to the input layer, the output layer calculated the sample score for the risk of complications in each subject. The complications include purpura nephritis or a case of purpura nephritis with proteinuria, each of which comprises a step of machine training to output to generate the trained model. Clinical information includes gender, age at the time of acute IgA vasculitis and no anti-inflammatory therapy, systemic vasculitis marker test values at the time point, presence or absence of abdominal pain at the time point, said time point. The presence or absence of immediate allergic disease in, the blood IgA test value at the time point, the blood IgE test value at the time point, the number of times the anti-inflammatory therapy was received after the time point, and any of these indirectly. Includes clinical data of 4 or more subjects selected from the group consisting of the data shown in the above, and the calculated values for the sample score in each of the subjects are the clinical data of the four or more subjects and the clinical data of each of the subjects. When a covariance structure analysis is performed with 5 or more types of observation variables including the judgment result regarding the presence or absence of the complication, a directly significant cause and effect with respect to the observation variable related to the judgment result. It is a method of generating a trained model, which is data on factor scores of latent variables for which relationships are recognized. According to the method for generating a trained model having such a configuration, the subject clinical data given here as an example are all information available to, for example, a doctor in charge of IgAV acute care. In addition, the calculated value of the sample score can be calculated by covariance structure analysis from the clinical data of four or more subjects and the judgment result regarding the presence or absence of PN occurrence or the judgment result regarding the presence or absence of case occurrence with proteinuria in PN. Is. Therefore, it is possible to generate a trained model that can predict the risk of PN occurrence or the risk of case occurrence with proteinuria in PN with higher accuracy than before, for example, in the pediatrics department of a conventional general hospital.

本発明の一実施形態に係る学習済みモデルは、川崎病の患者で合併症の発生リスクを予測するための学習済みモデルであって、前記学習済みモデルは、既に前記合併症の発生の有無を判定された被験者らにおける各々の被験者の臨床情報が入力層に入力され、出力層が前記合併症の発生リスクに関するサンプルスコアについて前記各々の被験者での計算値を出力するように重み付け値が機械学習されたものであり、且つ、前記入力層に前記患者の臨床情報が入力される場合には、入力される前記患者の臨床情報に対して前記重み付け値に基づく演算を行い、前記出力層から前記サンプルスコアについて前記患者での予測値を出力するように情報処理装置を機能させるためのものであり、前記合併症は、冠動脈拡大病変であり、前記各々の被験者の臨床情報は、性別、川崎病の急性期であり且つ抗炎症療法を受けていない時点での月齢、前記時点での冠動脈径、前記時点での全身性血管炎マーカー検査値、前記時点での高サイトカイン血症マーカー検査値、前記時点でのIVIG不応予測スコアの得点、前記時点の後に前記抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた3種以上の被験者臨床データを含み、
前記サンプルスコアについて前記各々の被験者での計算値は、前記3種以上の被験者臨床データと、前記各々の被験者での前記合併症の発生の有無に関する判定結果と、を含む4種以上の観測変数が設けられて共分散構造分析が行われる場合に、前記判定結果に係る観測変数に対して直接的に有意な因果関係が認められる潜在変数の因子得点に関するデータであり、前記患者の臨床情報は、性別、前記時点での月齢、前記時点での冠動脈径、前記時点での全身性血管炎マーカー検査値、前記時点での高サイトカイン血症マーカー検査値、前記時点でのIVIG不応予測スコアの得点、前記時点の後に前記抗炎症療法を受ける予定回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた3種以上の患者臨床データを含む、学習済みモデルである。斯かる構成の学習済みモデルによれば、既に述べた理由により、CAL発生リスクを従来よりも高精度で予測可能な学習済みモデルを、例えば従来の一般病院の小児科でも生成可能である。
The trained model according to the embodiment of the present invention is a trained model for predicting the risk of complications in a patient with Kawasaki disease, and the trained model already determines the presence or absence of the complications. The weighted values are machine-learned so that the clinical information of each subject in the determined subjects is input to the input layer and the output layer outputs the calculated value for each subject for the sample score regarding the risk of developing the complication. When the clinical information of the patient is input to the input layer, an operation based on the weighted value is performed on the input clinical information of the patient, and the output layer is used to perform the calculation. The purpose is to make the information processing device function so as to output the predicted value of the sample score in the patient, the complication is coronary artery dilated lesion, and the clinical information of each subject is gender and Kawasaki disease. Age at the time of acute phase and not receiving anti-inflammatory therapy, coronary artery diameter at the time point, systemic vasculitis marker test value at the time point, hypercytostatic marker test value at the time point, said Clinical data of three or more subjects selected from the group consisting of the score of the IVIG refractory prediction score at the time point, the number of times the anti-inflammatory therapy was received after the time point, and the data indirectly indicating any of these. Including,
Regarding the sample score, the calculated value in each of the subjects includes four or more observation variables including the clinical data of the three or more subjects and the judgment result regarding the presence or absence of the complication in each of the subjects. This is data on the factor scores of latent variables for which a directly significant causal relationship is observed with respect to the observed variables related to the determination result when the covariance structure analysis is performed. , Gender, age at the time point, coronary artery diameter at the time point, systemic vasculitis marker test value at the time point, hypercytomicemia marker test value at the time point, IVIG refractory prediction score at the time point. A trained model that includes three or more patient clinical data selected from the group consisting of scores, the number of times the anti-inflammatory therapy is scheduled to be received after the time point, and data indirectly indicating any of these. According to the trained model having such a configuration, for the reason already described, it is possible to generate a trained model in which the risk of CAL occurrence can be predicted with higher accuracy than before, for example, in the pediatrics department of a conventional general hospital.

本発明の他の実施形態に係る学習済みモデルは、IgA血管炎の患者で合併症の発生リスクを予測するための学習済みモデルであって、前記学習済みモデルは、既に前記合併症の発生の有無を判定された被験者らにおける各々の被験者の臨床情報が入力層に入力され、出力層が前記合併症の発生リスクに関するサンプルスコアについて前記各々の被験者での計算値を出力するように重み付け値が機械学習されたものであり、且つ、前記入力層に前記患者の臨床情報が入力されるときには、入力される前記患者の臨床情報に対して前記重み付け値に基づく演算を行い、前記出力層から前記サンプルスコアについて前記患者での予測値を出力するように情報処理装置を機能させるためのものであり、前記合併症は、紫斑病性腎炎か又は前記紫斑病性腎炎で蛋白尿を伴う症例かであり、前記各々の被験者の臨床情報は、性別、IgA血管炎の急性期であり且つ抗炎症療法を受けていない時点での月齢、前記時点での全身性血管炎マーカー検査値、前記時点での腹痛の有無、前記時点での即時型アレルギー疾患の有無、前記時点での血中IgA検査値、前記時点での血中IgE検査値、前記時点の後に抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた4種以上の被験者臨床データを含み、前記サンプルスコアについて前記各々の被験者での計算値は、前記4種以上の被験者臨床データと、前記各々の被験者での前記合併症の発生の有無に関する判定結果と、を含む5種以上の観測変数が設けられて共分散構造分析が行われる場合に、前記判定結果に係る観測変数に対して直接的に有意な因果関係が認められる潜在変数の因子得点に関するデータであり、前記患者の臨床情報は、性別、前記時点での月齢、前記時点での全身性血管炎マーカー検査値、前記時点での腹痛の有無、前記時点での即時型アレルギー疾患の有無、前記時点での血中IgA検査値、前記時点での血中IgE検査値、前記時点の後に前記抗炎症療法を受ける予定回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた4種以上の患者臨床データを含む、学習済みモデルである。斯かる構成の学習済みモデルによれば、PN発生リスクか又はPNで蛋白尿を伴う症例発生リスクを従来よりも高精度で予測可能な学習済みモデルを、例えば従来の一般病院の小児科でも生成可能である。 The trained model according to another embodiment of the present invention is a trained model for predicting the risk of developing complications in a patient with IgA vasculitis, and the trained model already has the occurrence of the complications. The clinical information of each subject in the subjects judged to be present is input to the input layer, and the weighted value is set so that the output layer outputs the calculated value for each subject regarding the sample score regarding the risk of developing the complication. When the clinical information of the patient is input to the input layer, which is machine-learned, the input clinical information of the patient is calculated based on the weighted value, and the output layer is used to perform the calculation. The purpose is to make the information processing device function so as to output the predicted value of the sample score in the patient, and whether the complication is purpura nephritis or the case of purpura nephritis accompanied by proteinuria. The clinical information of each of the above subjects includes gender, age at the time of acute IgA vasculitis and no anti-inflammatory therapy, systemic vasculitis marker test value at the time, and at the time. Presence or absence of abdominal pain, presence or absence of immediate allergic disease at the time point, blood IgA test value at the time point, blood IgE test value at the time point, number of times of receiving anti-inflammatory therapy after the time point, and these The calculated values of each of the four or more subjects selected from the group consisting of data indirectly indicating any of them are included, and the calculated values for the sample scores are the four or more subjects clinical data and the above. When a covariance structure analysis is performed with five or more types of observation variables including the judgment result regarding the presence or absence of the complication in each subject, the observation variable related to the judgment result is directly used. It is data on the factor score of the latent variable which has a significant causal relationship, and the clinical information of the patient includes sex, age at the time point, systemic vasculitis marker test value at the time point, and time point. Presence or absence of abdominal pain, presence or absence of immediate allergic disease at the time point, blood IgA test value at the time point, blood IgE test value at the time point, number of times to receive the anti-inflammatory therapy after the time point, and these It is a trained model containing 4 or more patient clinical data selected from the group consisting of data indirectly indicating any of the above. According to the trained model having such a configuration, it is possible to generate a trained model that can predict the risk of PN occurrence or the risk of case occurrence with proteinuria in PN with higher accuracy than before, for example, in the pediatric department of a conventional general hospital. Is.

本発明の実施形態に係る学習済みモデルを有する情報処理装置は、前記学習済みモデルが記憶される記憶部と、前記患者の臨床情報が入力された場合に、入力された前記患者の臨床情報を前記学習済みモデルに適用して、前記サンプルスコアについて前記患者での予測値を出力する処理を実行する処理部と、を備えたものであり得る。斯かる構成の学習済みモデルを有する情報処理装置によれば、例えば、従来の一般病院の小児科で急性期医療の担当医が、合併症発生を抑える治療方針を早期決定する診断をしやすいように、診断の際に判断材料となる予測結果(サンプルスコアの予測値)の情報を出力する形で、この担当医を支援可能である。 The information processing apparatus having the trained model according to the embodiment of the present invention has a storage unit in which the trained model is stored and, when the clinical information of the patient is input, the input clinical information of the patient is input. It may be provided with a processing unit that is applied to the trained model and executes a process of outputting a predicted value in the patient for the sample score. According to an information processing device having a trained model with such a configuration, for example, in the pediatric department of a conventional general hospital, it is easy for a doctor in charge of acute care to make a diagnosis to make an early decision on a treatment policy to suppress the occurrence of complications. , It is possible to support this doctor in charge by outputting information on the prediction result (predicted value of the sample score) that will be the judgment material at the time of diagnosis.

以上に説明したように本発明によれば、患者ごとでの合併症の発生リスクをなるべく高精度に予測可能な予測方法と、この予測を行うための学習済みモデル及びその生成方法と、を提供することができる。 As described above, the present invention provides a predictive method capable of predicting the risk of complications for each patient with as high accuracy as possible, a trained model for making this prediction, and a method for generating the same. can do.

本発明の一実施形態に係る学習済みモデルの生成方法の例を示すフローチャート。The flowchart which shows the example of the generation method of the trained model which concerns on one Embodiment of this invention. 構造方程式モデリング(SEM)で共分散構造分析を行う場合に作成し得る、探索的因子分析モデルのパスモデルの例を示すパス図。A path diagram showing an example of a path model of an exploratory factor analysis model that can be created when performing covariance structure analysis in structural equation modeling (SEM). SEMで共分散構造分析を行う場合に作成し得る、確認的因子分析モデルのパスモデルの例を示すパス図。A path diagram showing an example of a path model of a confirmatory factor analysis model that can be created when performing covariance structure analysis with SEM. SEMで共分散構造分析を行う場合に作成し得る、2つの探索的因子分析モデルを含む2次因子モデルのパスモデルの例を示すパス図。A path diagram showing an example of a path model of a quadratic factor model including two exploratory factor analysis models that can be created when performing covariance structure analysis with SEM. 本発明の一実施形態に係る学習済みモデルの生成方法で用い得る人工ニューラルネットワーク(ANN)における構成の一例を示す模式図。The schematic diagram which shows an example of the structure in the artificial neural network (ANN) which can be used in the generation method of the trained model which concerns on one Embodiment of this invention. 本発明の一実施形態に係る予測方法の第一例を示すフローチャート。The flowchart which shows the first example of the prediction method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る予測方法の第二例を示すフローチャート。The flowchart which shows the 2nd example of the prediction method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る学習済みモデルを有する情報処理装置の一例について、機能構成を示すブロック図。The block diagram which shows the functional structure about the example of the information processing apparatus which has the trained model which concerns on one Embodiment of this invention. CAL発生リスクの予測について、第1期研究から第3期研究で被験者らの処理を説明する図。The figure explaining the processing of the subjects in the 1st stage study to the 3rd stage study about the prediction of the risk of occurrence of CAL. CAL発生リスク予測に関する第1期研究で、6種の被験者臨床データと、CAL発生の有無に関する判定結果と、それぞれ観測変数としてSEMで共分散構造分析を行い、確定したパスモデルを示すモデル図。図10乃至図12、図20、図21、図25、図26、及び図30の各々で、長方形は観測変数を、eは誤差変数を、細い実線で描かれた矢印は因果関係が存在するパスを意味する。図10乃至図12、図21、及び図26で、楕円は潜在変数を意味する。太い破線で描かれた矢印は、因果関係が存在するパスを意味するが、図11や図12とは異なる。A model diagram showing a confirmed path model by performing covariance structure analysis with SEM as an observation variable, with clinical data of 6 types of subjects and judgment results regarding the presence or absence of CAL occurrence in the first phase study on CAL occurrence risk prediction. In each of FIGS. 10 to 12, FIG. 20, FIG. 21, FIG. 25, FIG. 26, and FIG. 30, a rectangle has an observation variable, e has an error variable, and an arrow drawn with a thin solid line has a causal relationship. Means a path. In FIGS. 10-12, 21 and 26, the ellipse means a latent variable. The arrow drawn by the thick broken line means the path where the causal relationship exists, but it is different from FIGS. 11 and 12. CAL発生リスク予測に関する第2期研究で、6種の被験者臨床データと、CAL発生の有無に関する判定結果と、をそれぞれ観測変数としてSEMで共分散構造分析を行い、確定したパスモデルを示すモデル図。太い実線で描かれた矢印は、因果関係が存在するパスを意味するが、図10や図12とは異なる。A model diagram showing a confirmed path model by performing covariance structure analysis with SEM using 6 types of subject clinical data and judgment results regarding the presence or absence of CAL as observation variables in the second phase study on CAL occurrence risk prediction. .. The arrow drawn by the thick solid line means the path where the causal relationship exists, but it is different from FIGS. 10 and 12. CAL発生リスク予測に関する第3期研究で、6種の被験者臨床データと、CAL発生の有無に関する判定結果と、をそれぞれ観測変数としてSEMで共分散構造分析を行い、確定したパスモデルを示すモデル図。A model diagram showing a confirmed path model by performing covariance structure analysis with SEM using 6 types of subject clinical data and judgment results regarding the presence or absence of CAL as observation variables in the 3rd phase study on CAL occurrence risk prediction. .. 第1期研究の被験者ら106名について、判定時での冠動脈径最大値のZスコアが3.0SD以上でCAL発生ありと判定する場合に、CAL発生ありと判定された被験者らと、CAL発生なしと判定された被験者らとで、CAL発生リスクに関するサンプルスコアの計算値を比較するグラフ。図13乃至図17の各々で、グラフ縦軸はCAL発生リスクに関するサンプルスコア計算値の大きさを示す。For 106 subjects in the first phase study, when it was judged that CAL had occurred when the Z score of the maximum coronary artery diameter at the time of judgment was 3.0 SD or more, CAL occurred with the subjects judged to have CAL. A graph comparing the calculated values of the sample scores for the risk of CAL occurrence with the subjects judged to be none. In each of FIGS. 13 to 17, the vertical axis of the graph indicates the magnitude of the sample score calculation value for the risk of CAL occurrence. 第2期研究の被験者ら208名について、判定時での冠動脈径最大値のZスコアが3.0SD以上でCAL発生ありと判定する場合に、CAL発生ありと判定された被験者らと、CAL発生なしと判定された被験者らとで、CAL発生リスクに関するサンプルスコア計算値を比較するグラフ。For 208 subjects in the second phase study, when it was judged that CAL had occurred when the Z score of the maximum coronary artery diameter at the time of judgment was 3.0 SD or more, CAL occurred with the subjects judged to have CAL. A graph comparing the sample score calculation values related to the risk of CAL occurrence with the subjects judged to be none. 第3期研究の被験者ら314名について、判定時での冠動脈径最大値のZスコアが3.0SD以上でCAL発生ありと判定する場合に、CAL発生ありと判定された被験者らと、CAL発生なしと判定された被験者らとで、CAL発生リスクに関するサンプルスコア計算値を比較するグラフ。For 314 subjects in the 3rd phase study, when it was judged that CAL had occurred when the Z score of the maximum coronary artery diameter at the time of judgment was 3.0 SD or more, CAL occurred with the subjects who were judged to have CAL. A graph comparing the sample score calculation values related to the risk of CAL occurrence with the subjects judged to be none. 第3期研究の被験者ら314名について、判定時での冠動脈径最大値のZスコアが2.5SD以上でCAL発生ありと判定する場合に、CAL発生ありと判定された被験者らと、CAL発生なしと判定された被験者らとで、CAL発生リスクに関するサンプルスコア計算値を比較するグラフ。For 314 subjects in the 3rd phase study, when it was judged that CAL had occurred when the Z score of the maximum coronary artery diameter at the time of judgment was 2.5 SD or more, CAL occurred with the subjects who were judged to have CAL. A graph comparing the sample score calculation values related to the risk of CAL occurrence with the subjects judged to be none. 第3期研究の被験者ら314名について、判定時での冠動脈径最大値のZスコアが2.0SD以上でCAL発生ありと判定する場合に、CAL発生ありと判定された被験者らと、CAL発生なしと判定された被験者らとで、CAL発生リスクに関するサンプルスコア計算値を比較するグラフ。For 314 subjects in the 3rd phase study, when it was judged that CAL had occurred when the Z score of the maximum coronary artery diameter at the time of judgment was 2.0 SD or more, CAL occurred with the subjects who were judged to have CAL. A graph comparing the sample score calculation values related to the risk of CAL occurrence with the subjects judged to be none. CAL発生リスク予測について、実施例1−1で機械学習させたANNの構成を説明する模式図。FIG. 6 is a schematic diagram illustrating the configuration of ANN machine-learned in Example 1-1 for CAL occurrence risk prediction. 第3期研究の被験者ら314名について、平均共分散構造分析で算出されたサンプルスコア計算値と、実施例1−1に係る学習済みモデルから出力されたサンプルスコア予測値との関連性を示すグラフ。矢印は外れ値のプロットを示す。図19、図24、及び図29で、グラフ縦軸はサンプルスコア計算値の大きさを、グラフ横軸はサンプルスコア予測値の大きさを示す。For 314 subjects in the 3rd phase study, the relationship between the sample score calculation value calculated by the mean covariance structure analysis and the sample score prediction value output from the trained model according to Example 1-1 is shown. graph. Arrows indicate outlier plots. In FIGS. 19, 24, and 29, the vertical axis of the graph shows the size of the calculated sample score, and the horizontal axis of the graph shows the size of the predicted sample score. 比較例1−1に係るパスモデルを示すモデル図。The model figure which shows the path model which concerns on the comparative example 1-1. PNで高度蛋白尿を伴う症例発生リスク予測について、6種の被験者臨床データと、PNで高度蛋白尿を伴う症例発生の有無に関する判定結果と、をそれぞれ観測変数としてSEMで共分散構造分析を行い、確定したパスモデルを示すモデル図。Regarding the prediction of the risk of occurrence of cases with high proteinuria in PN, covariance structure analysis was performed by SEM using the clinical data of 6 subjects and the judgment results regarding the presence or absence of cases with high proteinuria in PN as observation variables. , A model diagram showing a confirmed path model. IgAVを発症した被験者ら93名について、PNで高度蛋白尿を伴う症例発生ありと判定された被験者らと、この症例発生なしと判定された被験者らとで、サンプルスコア計算値を比較するグラフ。グラフ縦軸は、PNで高度蛋白尿を伴う症例発生リスクに関するサンプルスコア計算値の大きさを示す。A graph comparing the sample score calculation values of 93 subjects who developed IgAV between the subjects who were determined to have a case with severe proteinuria by PN and the subjects who were determined not to have this case. The vertical axis of the graph shows the magnitude of the sample score calculation value for the risk of developing a case with high proteinuria in PN. PNで高度蛋白尿を伴う症例発生リスク予測について、実施例2−1で機械学習させたANNの構成を説明する模式図。The schematic diagram explaining the composition of ANN which was machine-learned in Example 2-1 about the risk prediction of the case occurrence with high proteinuria by PN. PNで高度蛋白尿を伴う症例発生リスク予測に関する被験者ら93名について、平均共分散構造分析で算出されたサンプルスコア計算値と、実施例2−1に係る学習済みモデルから出力されたサンプルスコア予測値との関連性を示すグラフ。Sample score calculation values calculated by mean covariance structure analysis and sample score prediction output from the trained model according to Example 2-1 for 93 subjects related to the prediction of the risk of occurrence of cases with high proteinuria in PN. A graph showing the relevance to the value. 比較例2−1に係るパスモデルを示すモデル図。The model figure which shows the path model which concerns on the comparative example 2-1. PN発生リスク予測について、5種の被験者臨床データと、PN発生の有無に関する判定結果と、をそれぞれ観測変数としてSEMで共分散構造分析を行い、確定したパスモデルを示すモデル図。A model diagram showing a confirmed path model by performing covariance structure analysis with SEM using 5 types of subject clinical data and judgment results regarding the presence or absence of PN occurrence as observation variables for PN occurrence risk prediction. IgAVを発症した被験者ら93名について、PN発生ありと判定された被験者らと、PN発生なしと判定された被験者らとで、サンプルスコア計算値を比較するグラフ。グラフ縦軸は、PN発生リスクに関するサンプルスコア計算値の大きさを示す。A graph comparing the sample score calculation values between the subjects determined to have PN and the subjects determined not to have PN for 93 subjects who developed IgAV. The vertical axis of the graph shows the size of the sample score calculation value for the risk of PN occurrence. PN発生リスク予測について、実施例3−1で機械学習させたANNの構成を説明する模式図。The schematic diagram explaining the structure of the ANN which was machine-learned in Example 3-1 about the PN occurrence risk prediction. PN発生リスク予測に関する被験者ら93名について、平均共分散構造分析で算出されたサンプルスコア計算値と、実施例3−1に係る学習済みモデルから出力されたサンプルスコア予測値との関連性を示すグラフ。For 93 subjects related to PN occurrence risk prediction, the relationship between the sample score calculation value calculated by the mean covariance structure analysis and the sample score prediction value output from the trained model according to Example 3-1 is shown. graph. 比較例3−1に係るパスモデルを示すモデル図。The model figure which shows the path model which concerns on the comparative example 3-1. KD急性期医療のアルゴリズムを説明するフロー図。非特許文献1参照。A flow diagram illustrating an algorithm for KD acute care. See Non-Patent Document 1.

[KDでのCAL発生リスク予測用の学習済みモデル生成方法]
本願発明者は、本発明を完成させるまでの過程で、次のように考えた。従来、KD急性期患者がCAL発生に至るリスクを、図31における一次治療S30前に判断する(S24)時点で高精度に予測するのは難しかった。その原因は、患者ごとにCAL発生と関連性がある未知の因子が隠れているため、つまり、患者ごとに異なる体質(遺伝的素因や環境要因)が潜在しているためと考えた。この考えに基づき、本願発明者は、共分散構造分析に着目した。従来、共分散構造分析は、社会学、心理学、又はマーケティング等の分野で、幾つかの未知の因子が含まれる複雑な問題を分析するのに活用されていた(例えば特許文献1参照)が、本願発明者が知り得る限り、臨床医学分野で潜在変数と体質との因果関係を説明するために活用した前例は皆無であった。小児の臨床医学では、複数の臨床的指標の間に複雑な関連性が存在すると考えられる場合がある。このため、例えば、小児科医が日常診療の現場で取得可能な、KD急性期患者の検査値などの臨床情報に基づいて、共分散構造分析により、一次治療S30後のCAL発生を一次治療S30前に予測するという複雑な問題を解明できる可能性があると考えた。
[Learned model generation method for CAL occurrence risk prediction in KD]
The inventor of the present application considered as follows in the process of completing the present invention. Conventionally, it has been difficult to accurately predict the risk of KD acute phase patients leading to CAL development at the time of determination (S24) before the first-line treatment S30 in FIG. 31. It was considered that the cause was that unknown factors related to the occurrence of CAL were hidden in each patient, that is, different predispositions (genetic predisposition and environmental factors) were latent in each patient. Based on this idea, the inventor of the present application focused on covariance structure analysis. Conventionally, covariance structure analysis has been utilized in fields such as sociology, psychology, or marketing to analyze complex problems containing several unknown factors (see, for example, Patent Document 1). As far as the inventor of the present application can know, there is no precedent used in the field of clinical medicine to explain the causal relationship between latent variables and constitution. In pediatric clinical medicine, complex associations may exist between multiple clinical indicators. Therefore, for example, based on clinical information such as test values of KD acute phase patients that can be obtained by a pediatrician in the field of daily medical care, CAL occurrence after the first-line treatment S30 is detected by the covariance structure analysis before the first-line treatment S30. I thought that it might be possible to solve the complicated problem of predicting.

そこで、当初、本願発明者は、過去にKD急性期医療S20を行ってCAL発生の有無を評価した被験者らについて、KD急性期医療S20を行った当時に得られた臨床情報を用いて、共分散構造分析を行った。共分散構造分析には、CAL発生に対して因果関係を有するであろう変数(臨床データ)を臨床情報から任意に抽出して、この因果関係を検証可能という利点がある。しかし、共分散構造分析により作成した統計モデルには、新規KD患者の臨床データをこの統計モデルに適用して新規KD患者がCAL発生に至るか否かの予測値を算出することが、できないという欠点があった。ここで、本願発明者が試験的に、既にCAL発生の有無を評価された被験者らの臨床情報と、この臨床情報を用いて共分散構造分析により算出したサンプルスコア(sample score:以下「SS」ともいう)の計算値とを、学習用データとして人工ニューラルネットワーク(artificial neural network:以下「ANN」ともいう)に機械学習させた。つまり、本願発明者は、共分散構造分析とANN解析とを組み合わせて試行した。その結果、生成された学習済みモデルにより、意外にも、CAL発生との間で高い相関関係を有するSSの予測値を得ることができた。このため、本願発明者は、患者ごとでの合併症の発生リスクをなるべく高精度に予測可能な予測方法と、この予測を行うための学習済みモデル及びその生成方法とを提供可能なことを見出し、本発明を創作するに至った。以下、図面を用いて本発明の実施形態を説明する。 Therefore, initially, the inventor of the present application used the clinical information obtained at the time of performing the KD acute phase medical treatment S20 for the subjects who had performed the KD acute phase medical treatment S20 in the past and evaluated the presence or absence of CAL. A distributed structure analysis was performed. The covariance structure analysis has an advantage that variables (clinical data) that may have a causal relationship with the occurrence of CAL can be arbitrarily extracted from clinical information and this causal relationship can be verified. However, in the statistical model created by covariance structure analysis, it is not possible to apply the clinical data of new KD patients to this statistical model to calculate the predicted value of whether or not new KD patients will develop CAL. There were drawbacks. Here, the clinical information of the subjects whose presence or absence of CAL has already been evaluated by the inventor of the present application on a trial basis and the sample score calculated by covariance structure analysis using this clinical information (sample score: hereinafter "SS"". The calculated values (also referred to as) were machine-learned by an artificial neural network (hereinafter also referred to as “ANN”) as training data. That is, the inventor of the present application tried a combination of covariance structure analysis and ANN analysis. As a result, the generated trained model was able to unexpectedly obtain a predicted value of SS having a high correlation with the occurrence of CAL. Therefore, the inventor of the present application has found that it is possible to provide a predictive method capable of predicting the risk of complications for each patient with as high accuracy as possible, a trained model for making this prediction, and a method for generating the same. , Has led to the creation of the present invention. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示す、本発明の一実施形態に係る学習済みモデル生成方法S1aは、被験者らの臨床情報取得ステップS2aと、学習前の正規化ステップS3aと、共分散構造分析ステップS4aと、学習ステップS6aと、選別ステップS7aとを含む。 The trained model generation method S1a according to the embodiment of the present invention shown in FIG. 1 includes a clinical information acquisition step S2a of the subjects, a pre-learning normalization step S3a, a covariance structure analysis step S4a, and a learning step. Includes S6a and sorting step S7a.

被験者らの臨床情報取得ステップS2aでは、学習用データを作成するために、例えば図31に示すKD急性期医療S20で既に少なくとも一次治療S30を受けた後にCAL発生の有無を判定された被験者らについて、この被験者らに含まれる各々の被験者の臨床情報と、各々の被験者でのCAL発生の有無に関する判定結果と、を取得する。一次治療S30は、first lineともいわれる。図1に示すステップS2aで取得する臨床情報や判定結果は、以下に説明するように医師(医師から指示を受けた者を含む。以下同じ。)が各々の被験者について診断や治療を行った結果、既に生成された情報である。この情報が生成されるまでの過程で医師が行った診断や治療の工程は、本発明やステップS2aに含まれない。 In the clinical information acquisition step S2a of the subjects, for example, for the subjects whose presence or absence of CAL was determined after receiving at least the first-line treatment S30 in the KD acute care S20 shown in FIG. 31 in order to create learning data. , The clinical information of each subject included in these subjects and the determination result regarding the presence or absence of CAL in each subject are acquired. The first-line treatment S30 is also referred to as the first line. The clinical information and judgment results acquired in step S2a shown in FIG. 1 are the results of diagnosis and treatment of each subject by a doctor (including a person who has been instructed by a doctor; the same applies hereinafter) as described below. , Information that has already been generated. The steps of diagnosis and treatment performed by the doctor in the process until this information is generated are not included in the present invention or step S2a.

ANNの機械学習に適したデータを選定する観点から、生成方法S1aにおける各々の被験者は、定型例KDか又は不全型KD(KD類例)と医師に診断された患者でも良く、好ましくは定型例KDと医師に診断された患者である。なお、非特許文献7に記載されたKD診断基準では、以下に説明するKDの6種の主要症状のうち、5種以上の症状を呈する受診者は定型例KDと診断され、4種の症状を呈する受診者は定型例KD又は不全型KDと診断される。3種の症状を呈する受診者は、他の疾患が否定され「症候または所見」からKDが最も考えられる場合、不全型KDと診断される。KDの6種の主要症状は、(1)発熱、(2)両側眼球結膜の充血、(3)口唇または口腔所見:口唇の紅潮、いちご舌、又は口腔咽頭粘膜のびまん性発赤、(4)発疹(BCG接種痕の発赤を含む)、(5)四肢末端の変化:急性期での手足の硬性浮腫または掌蹠もしくは指趾先端の紅斑、並びに(6)急性期での非化膿性頸部リンパ節腫脹である。ここでの「症候または所見」は、例えば、病初期のトランスアミナーゼ値の上昇、乳児の尿中白血球数増加、脳性ナトリウム利尿ホルモン(以下「BNP」ともいう)またはNT−proBNPの上昇、心臓超音波検査での僧帽弁閉鎖不全または心膜液貯留、胆嚢腫大、および、低アルブミン血症又は低ナトリウム血症、からなる群より選ばれた1種以上の症候または所見である。 From the viewpoint of selecting data suitable for machine learning of ANN, each subject in the generation method S1a may be a patient diagnosed as a typical example KD or an incomplete type KD (KD type example), and is preferably a typical example KD. The patient was diagnosed by a doctor. According to the KD diagnostic criteria described in Non-Patent Document 7, a examinee who presents with 5 or more of the 6 main symptoms of KD described below is diagnosed as a typical KD and has 4 types of symptoms. Those who present with the above are diagnosed with typical KD or incomplete KD. A examinee who presents with three types of symptoms is diagnosed with incomplete KD when other diseases are denied and KD is most likely based on "symptoms or findings". The six major symptoms of KD are (1) fever, (2) bilateral ocular conjunctival swelling, (3) lip or oral findings: flushing of the lips, strawberry tongue, or diffuse redness of the oropharyngeal mucosa, (4). Rash (including redness of BCG inoculation scars), (5) Changes in extremities: rigid edema of limbs or erythema of palm or fingertips in the acute phase, and (6) non-purulent cervical region in the acute phase Lymph node swelling. The "symptoms or findings" here are, for example, an increase in transaminase level in the early stage of the disease, an increase in the urinary leukocyte count in an infant, an increase in brain natriuretic hormone (hereinafter also referred to as "BNP") or NT-proBNP, and cardiac ultrasound. One or more symptoms or findings selected from the group consisting of mitral regurgitation or pericardial effusion, pericardial swelling, and hypoalbuminemia or hyponatriemia on examination.

被験者らの人数は、学習用データを充実させて予測精度を高める観点から、例えば30名以上、好ましくは50名以上、更に好ましくは100名以上であり、100名を超えて人数が多いほど更により好ましい。同様の観点から、被験者らには、二次治療や三次治療を受けてCAL発生に至らなかったIVIG不応例の被験者や、二次治療や三次治療を受けたがCAL発生に至ったIVIG不応例の被験者のみならず、主にIVIG療法による一次治療で解熱してCAL発生に至らなかったIVIG反応例の被験者も、それぞれなるべく多くの人数を含めるのが好ましい。 The number of subjects is, for example, 30 or more, preferably 50 or more, more preferably 100 or more, and the larger the number is, the more the number of subjects is, from the viewpoint of enriching the learning data and improving the prediction accuracy. More preferred. From the same point of view, the subjects included IVIG refractory subjects who did not develop CAL after receiving second-line or third-line treatment, and IVIG-impaired who received second-line or third-line treatment but did not develop CAL. It is preferable to include as many subjects as possible not only for the response subjects but also for the subjects with IVIG reaction who did not develop CAL due to the primary treatment mainly by IVIG therapy.

生成方法S1aでの各々の被験者の臨床情報は、CAL発生との間に直接的または間接的な因果関係を有しやすい臨床データである観点から、性別、KD急性期であり且つ抗炎症療法を受けていない時点(以下「一次治療前時点」ともいう)での月齢、一次治療前時点での冠動脈径、一次治療前時点での全身性血管炎マーカー検査値、一次治療前時点での高サイトカイン血症マーカー検査値、一次治療前時点でのIVIG不応予測スコアの得点、一次治療前時点の後に抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた3種以上の被験者臨床データ、例えば4種以上でも良く、好ましくは5種以上、更に好ましくは6種以上の被験者臨床データを含む。ここでの「間接的に示すデータ」とは、当業者であれば目的のデータを概ね推定可能なデータ、又は、何らかの変換を行えば目的のデータを概算可能なデータである。例えば、各々の被験者の年齢(例えば1.5歳)は、数値を12倍する変換を行えば月齢(例えば18ヵ月齢)を概算可能なため、月齢を間接的に示すデータに該当する。このように、目的のデータと相関するデータは、目的のデータを間接的に示すデータの一種といえる。 From the viewpoint that the clinical information of each subject in the generation method S1a is clinical data that tends to have a direct or indirect causal relationship with the occurrence of CAL, gender, KD acute phase, and anti-inflammatory therapy. Age at the time of not receiving (hereinafter also referred to as "pre-first-line treatment"), coronary artery diameter at the time before the first-line treatment, systemic vasculitis marker test value at the time before the first-line treatment, high cytokines at the time before the first-line treatment Select from a group consisting of blood marker test values, IVIG refractory prediction score score before first-line treatment, number of times anti-inflammatory therapy was received before first-line treatment, and data that indirectly indicate any of these. 3 or more types of subject clinical data, for example, 4 or more types may be used, preferably 5 or more types, and more preferably 6 or more types of subject clinical data are included. The "indirectly shown data" here is data that can be roughly estimated by a person skilled in the art, or data that can be estimated by performing some conversion. For example, the age of each subject (for example, 1.5 years) can be estimated to be the age of the moon (for example, 18 months) by multiplying the numerical value by 12, and therefore corresponds to the data indirectly indicating the age of the moon. In this way, the data that correlates with the target data can be said to be a kind of data that indirectly indicates the target data.

上記した一次治療前時点は、予測精度を高める観点から、例えば、KDを発症した日(KD発症日)を0日目としてKD発症日から実質的に7日以内であり、且つ、一次治療を受けていない時点である。本明細書で「実質的に」とは、例外が存在しても、内容や本質において本発明の目的や作用効果の妨げにならない程度に過ぎなければ許容されることを意味する。例えば、小児がKD発症から数日後に保護者に連れられて初回受診した場合、保護者が症状の発症日を覚えていなければ、医師は正確なKD発症日を特定できないが、この様な場合でも例えば小児の症候または所見から「おそらくKD発症から7日以内であろう」と医師が判断可能な時点は「KD発症から実質的に7日以内」に該当する。初回受診時にKDの主要症状が十分に現れておらずKDと診断されなかったが、数日後の再受診時にKDと診断された場合、KD以外の疾患が否定されれば、KD発症日は初回受診の原因となった症状の発症日である。 From the viewpoint of improving the prediction accuracy, the time point before the first-line treatment described above is, for example, substantially within 7 days from the day of KD onset, with the day of onset of KD (the day of onset of KD) as the 0th day, and the first-line treatment is performed. It is a time when I have not received it. As used herein, the term "substantially" means that an exception is allowed as long as it does not interfere with the object or action of the present invention in terms of content or essence. For example, if a child is taken to a guardian for the first time a few days after the onset of KD, the doctor cannot determine the exact date of onset of KD unless the guardian remembers the date of onset of symptoms. However, for example, a time when a doctor can determine that "probably within 7 days from the onset of KD" from the symptoms or findings of a child corresponds to "substantially within 7 days from the onset of KD". The main symptoms of KD did not appear sufficiently at the first visit, and KD was not diagnosed. The date of onset of the symptoms that caused the diagnosis.

被験者臨床データの一例として挙げた性別は、例えば出生時の身体的構造または性染色体などから判断可能な、生物学的な性別を示すデータである。例えば、各々の被験者での血中性ホルモン濃度の検査値は、当業者であればこの検査値に基づき各々の被験者の性別を概ね推定可能であるため、性別を間接的に示すデータに該当する。 The sex given as an example of the subject clinical data is data indicating a biological sex that can be determined from, for example, the physical structure at birth or the sex chromosome. For example, the test value of the blood sex hormone concentration in each subject corresponds to the data indirectly indicating the sex because a person skilled in the art can roughly estimate the sex of each subject based on this test value. ..

被験者臨床データの一例として挙げた冠動脈径は、例えば、径拡大が疑われる複数箇所で冠動脈直径(冠動脈内径)を測定して得られた平均値、中央値、最大値、又はこれらのいずれかを間接的に示すデータでも良いが、予測精度を高める観点から、冠動脈の直径を測定して得られた最大値が好ましい。冠動脈径を間接的に示すデータとして例えば、冠動脈半径の測定値が挙げられる。なお、従来、小児科の日常診療の現場で担当医(小児科医)は、KDと診断する際、断層心エコー法で検査機器のズーム機能を活用して冠動脈径を実測してきた。冠動脈径のデータは、現場の担当医にとって簡便な観点では断層心エコー法による実測値であるのが好ましく、または、更に正確に測定可能な観点では、心臓カテーテル検査による冠動脈造影、造影CT検査、もしくはMRIを用いた検査での測定値であるのも好ましい。 The coronary artery diameter given as an example of the subject clinical data is, for example, the average value, the median value, the maximum value, or any of these obtained by measuring the coronary artery diameter (coronary artery inner diameter) at multiple points where diameter expansion is suspected. Although the data may be indirectly shown, the maximum value obtained by measuring the diameter of the coronary artery is preferable from the viewpoint of improving the prediction accuracy. As data indirectly indicating the coronary artery diameter, for example, a measured value of the coronary artery radius can be mentioned. Conventionally, in the field of daily medical care in pediatrics, the doctor in charge (pediatrician) has measured the coronary artery diameter by utilizing the zoom function of the inspection device by the tomographic echocardiography method when diagnosing KD. The coronary artery diameter data is preferably measured by tomographic echocardiography from the viewpoint of convenience for the doctor in charge at the site, or from the viewpoint of more accurate measurement, coronary angiography by cardiac catheterization, contrast CT examination, etc. Alternatively, it is also preferable that it is a measured value in an inspection using MRI.

CAL発生しやすい部位である観点から、径を測定する冠動脈の部位は、左冠動脈主幹部(left main coronary trunk artery:以下「LMT」という)、左冠動脈前下行枝(left anterior descending coronary artery:以下「LAD」という)近位部、左冠動脈回旋枝、及び右冠動脈(right coronary artery:以下「RCA」という)近位部、からなる群より選ばれた1種以上の部位であるのが好ましい。冠動脈径のデータは、後の予測精度を高める観点では、ここで挙げた冠動脈の部位の全てのうち又は1種以上の部位のうちでの最大値のデータであるのが好ましい。あるいは、冠動脈の部位別にCAL発生の危険性を予測可能にする観点では、各々の被験者について、ここで挙げた部位ごとの冠動脈径の最大値のデータを取得しても良い。 From the viewpoint of the site where CAL is likely to occur, the sites of the coronary artery whose diameter is measured are the left main coronary trunk artery (hereinafter referred to as "LMT") and the left anterior descending coronary artery (hereinafter referred to as "LMT"). It is preferably one or more sites selected from the group consisting of a proximal region (referred to as "LAD"), a left coronary artery circumflex artery, and a proximal region of the right coronary artery (hereinafter referred to as "RCA"). The data of the coronary artery diameter is preferably the maximum value data among all the sites of the coronary arteries listed here or one or more of the sites of the coronary arteries, from the viewpoint of improving the prediction accuracy later. Alternatively, from the viewpoint of making it possible to predict the risk of CAL for each site of the coronary artery, data on the maximum value of the coronary artery diameter for each site mentioned here may be acquired for each subject.

冠動脈径の計測値データを、例えば次の数式1により、仮説母集団での冠動脈径の平均値(研究論文に記載された日本の小児における冠動脈径の推定平均値)が0となり、仮説母集団での冠動脈径の標準偏差(SD)が1.0となるように、Zスコアに変換しても良い。冠動脈の部位別に冠動脈径の計測値データを取得した場合、部位別にZスコアに変換しても良い。 For example, the average value of the coronary artery diameter in the hypothetical population (estimated average value of the coronary artery diameter in Japanese children described in the research paper) becomes 0 by the following formula 1 for the measured value data of the coronary artery diameter, and the hypothetical population. It may be converted into a Z score so that the standard deviation (SD) of the coronary artery diameter in is 1.0. When the measured value data of the coronary artery diameter is acquired for each site of the coronary artery, it may be converted into a Z score for each site.

Figure 0006986650
Figure 0006986650

小児は、齢を重ねて体格成長し、身長と体重とから算出される体表面積を増すほど、健常時の冠動脈径も増す。このため、例えば、1歳児と5歳児とで同じ冠動脈径が計測されても、1歳児でCAL発生ありと判定され、5歳児でCAL発生なしと判定される場合があり得る。齢や体表面積が各々異なる被験者らについて、体格成長に伴って冠動脈径が拡大する要素を考慮して修正されたZスコアを取得可能な観点から、冠動脈径の計測値を、次の数式2に示すLMS法でZスコアに変換するのが好ましい。LMS法は、体表面積ごとの冠動脈径の計測値の分布をひとつひとつ正規分布化させて、歪度(λ,L)、中央値(M)、及び変動係数(S)(SD/M)により分布を変化させる統計学的手法である。 As a child grows older and grows in size and increases the body surface area calculated from height and weight, the diameter of the coronary artery in a healthy state also increases. Therefore, for example, even if the same coronary artery diameter is measured in a 1-year-old child and a 5-year-old child, it may be determined that the 1-year-old child has CAL and that the 5-year-old child does not have CAL. For subjects of different ages and body surface areas, the measured value of the coronary artery diameter is calculated in the following formula 2 from the viewpoint that a corrected Z score can be obtained in consideration of the factor that the coronary artery diameter expands with the growth of the physique. It is preferable to convert to a Z score by the LMS method shown. In the LMS method, the distribution of the measured values of the coronary artery diameter for each body surface area is normally distributed one by one, and is distributed by the skewness (λ, L), the median (M), and the coefficient of variation (S) (SD / M). It is a statistical method to change.

Figure 0006986650
Figure 0006986650

標本数と研究手法の観点から従来、小児科の日常臨床の現場で高い信用度で汎用されている観点から、Z score project(例えば非特許文献8)又はその2nd stageの研究成果として作成された冠動脈内径の標準曲線を考慮したLMS法の計算式に基づき、各々の被験者での冠動脈径をZスコアに変換するのが更に好ましい。本願出願当時では例えばインターネットで、小児冠動脈内径Z Score計算アプリを利用可能なウェブサイト(https://kwsd.info/)、または、Coronary Z Score Calculatorをダウンロード可能なウェブサイト(例えばhttp://raise.umin.jp/zsp2/data/zsp_calculator_version4_full.xlsx若しくはhttp://raise.umin.jp/zsp2/data/zsp_calculator_version4_light.xlsx)にアクセスし、各々の被験者の性別、身長、体重、及び冠動脈の各部の計測値のデータを入力すれば、冠動脈の各部それぞれのZスコアを算出可能である。同様の観点から、本願の出願後にCoronary Z Score Calculatorのversion5以降が公開されるか、又はZ score project 2nd stageを発展させた研究成果として作成された冠動脈径の計算式が公開される等した場合、日本川崎病学会で推奨などされている最新の計算方法により、各々の被験者の冠動脈径をZスコアに変換するのが好ましい。 From the viewpoint of the number of samples and research method, the inner diameter of the coronary artery created as a research result of the Z score project (for example, Non-Patent Document 8) or its 2nd stage from the viewpoint of being widely used in the daily clinical practice of pediatrics with high reliability. It is more preferable to convert the coronary artery diameter in each subject into a Z score based on the calculation formula of the LMS method considering the standard curve of. At the time of filing the application, for example, a website (https://kwsd.info/) where the pediatric coronary artery inner diameter Z Score calculation application can be used, or a website where the Coronary Z Score Calculator can be downloaded (for example, http: //). Go to raise.umin.jp/zsp2/data/zsp_calculator_version4_full.xlsx or http://raise.umin.jp/zsp2/data/zsp_calculator_version4_light.xlsx) and access each subject's gender, height, weight, and coronary artery parts. By inputting the data of the measured values of, the Z score of each part of the coronary artery can be calculated. From the same point of view, if version 5 or later of the Coronary Z Score Calculator is published after the application of this application, or if the formula for calculating the coronary artery diameter created as a research result of developing the Z score project 2nd stage is published, etc. , It is preferable to convert the coronary artery diameter of each subject into a Z score by the latest calculation method recommended by the Kawasaki Disease Society of Japan.

被験者臨床データの一例として挙げた全身性血管炎マーカー検査値は、全身性の血管炎やこれに伴う組織(例えば血管内皮)破壊の指標となる検査値である。全身性血管炎マーカーとして例えば、赤血球沈降速度、血清補体価、または、血中もしくは血清中の、ペントラキシンスーパーファミリー濃度、免疫複合体濃度、プロカルシトニン濃度、フィブリン分解産物濃度、及びこれらのいずれかに代用可能なマーカー検査値が挙げられる。ペントラキシンスーパーファミリーとして例えば、ペントラキシン−3、アミロイドP、又はC反応性蛋白(C-reactive protein:以下「CRP」ともいう)等が挙げられる。小児科臨床の現場で簡便に広く活用されてきた検査値であり臨床応用しやすい観点から、全身性血管炎マーカー検査値は、血球沈降速度か又は血液中もしくは血清中のCRP濃度であるのが好ましく、血清中CRP濃度であるのが更に好ましい。 The systemic vasculitis marker test value given as an example of the subject clinical data is a test value that is an index of systemic vasculitis and associated tissue (for example, vascular endothelium) destruction. As systemic vasculitis markers, for example, erythrocyte sedimentation rate, serum complement titer, or blood or serum, pentraxin superfamily concentration, immune complex concentration, procalcitonin concentration, fibrin degradation product concentration, and these. One of them is a marker test value that can be substituted. Examples of the pentraxin superfamily include pentraxin-3, amyloid P, C-reactive protein (hereinafter, also referred to as “CRP”) and the like. From the viewpoint of easy and widespread use in pediatric clinical practice and easy clinical application, the systemic vasculitis marker test value is preferably the blood cell sedimentation rate or the CRP concentration in blood or serum. , The serum CRP concentration is more preferable.

被験者臨床データの一例として挙げた高サイトカイン血症マーカー検査値は、いわゆるサイトカインストーム、又はサイトカイン放出症候群の指標となる検査値である。高サイトカイン血症マーカー検査値として例えば、血中または血清中における、TNF−α、インターフェロン、IL−1β、MCP−1、又はIL−6などの抗炎症性サイトカインの濃度の検査値が挙げられる。予測精度を高める観点から、高サイトカイン血症マーカー検査値としては、血中もしくは血清中のIL−6濃度、または、尿中β2マイクログロブリン濃度が好ましい。高サイトカイン血症マーカー検査値は、従来から一般病院(入院治療可能な二次医療機関)の小児科臨床の現場において一般検査で簡便に広く活用されているから、検査費用が安価で済み、また、患者がKDと診断され入院してから一次治療を受けるまでの例えば3日以内でも一般病院で検査結果を得やすいため、臨床応用しやすい観点から、尿中におけるβ2マイクログロブリンのクレアチニンに対する濃度比(以下「尿中β2MG/Cr」ともいう)であるのが更に好ましい。 The hypercytokineemia marker test value given as an example of the subject clinical data is a test value that is an index of so-called cytokine storm or cytokine release syndrome. Examples of the hypercytokineemia marker test value include a test value for the concentration of anti-inflammatory cytokines such as TNF-α, interferon, IL-1β, MCP-1, or IL-6 in blood or serum. From the viewpoint of improving the prediction accuracy, the IL-6 concentration in blood or serum or the β2 microglobulin concentration in urine is preferable as the test value for the hypercytokine storm marker. Since the hypercytosanemia marker test value has been easily and widely used in general tests in the field of pediatric clinical practice in general hospitals (secondary medical institutions that can be hospitalized and treated), the test cost is low and the test value is low. The ratio of β2 microglobulin to creatinine in urine from the viewpoint of clinical application because it is easy to obtain test results in general hospitals, for example, within 3 days from the time a patient is diagnosed with KD and hospitalized to the first-line treatment. Hereinafter, it is more preferably referred to as “urinary β2MG / Cr”).

被験者臨床データの一例として挙げたIVIG不応予測スコアの得点として、例えば、岩佐スコアまたは原田スコア等のIVIG不応例を予測するためのリスクスコアにより算出された得点のデータが挙げられる(非特許文献2参照)。IVIG不応予測スコアの得点は、従来の小児科の日常診療の現場で活用されている観点から、小林スコア(非特許文献1及び3と次の表1)、江上スコア(非特許文献1及び4と次の表2)、又は佐野スコア(非特許文献1及び5と次の表3)により算出される得点のデータであるのが好ましく、更に好ましくは佐野スコアにより算出される得点のデータである。IVIG不応予測スコアの得点を間接的に示すデータとして、この得点に基づいてIVIG不応に該当するリスクが高リスクか否かの判定結果が挙げられる。例えば、一次治療前時点で佐野スコアの得点が2点以上である被験者は、一次治療後にIVIG不応に該当するリスクが高い(高リスク)と判定され、または、2点未満である被験者は一次治療後にIVIG不応に該当するリスクが低い(低リスク)と判定される。次の表1から表3に関して「病日」は、KDを発症した日(KD発症日)を0日目として、このKD発症日から何日目であるか示す単位である。「感度」は、検査で検出したい疾患を有するもののうち、検査で正しく陽性と判定されたものが占める割合である。「特異度」は、検査で検出したい疾患を有さないもののうち、検査で正しく陰性と判定されたものが占める割合である。 As an example of the subject clinical data, the score of the IVIG refractory prediction score includes, for example, the score data calculated by the risk score for predicting the IVIG refractory case such as the Iwasa score or the Harada score (non-patentable). See Document 2). The scores of the IVIG refractory prediction score are the Kobayashi score (Non-Patent Documents 1 and 3 and Table 1 below) and the Egami score (Non-Patent Documents 1 and 4) from the viewpoint of being utilized in the field of daily medical care in pediatrics. The score data is preferably calculated from the following Table 2) or the Sano score (Non-Patent Documents 1 and 5 and the following Table 3), and more preferably the score data calculated from the Sano score. .. As data that indirectly indicates the score of the IVIG refractory prediction score, there is a determination result of whether or not the risk corresponding to IVIG refractory is high risk based on this score. For example, a subject with a Sano score of 2 or more before the first-line treatment is determined to be at high risk of being immune to IVIG after the first-line treatment (high risk), or a subject with less than 2 points is the primary. It is determined that the risk of refractory to IVIG after treatment is low (low risk). Regarding Tables 1 to 3 below, the "disease day" is a unit indicating how many days from the onset date of KD, with the day on which KD develops (KD onset date) as the 0th day. "Sensitivity" is the ratio of those having a disease to be detected by the test that are correctly determined to be positive by the test. "Specificity" is the ratio of those who do not have the disease to be detected by the test and those who are correctly judged to be negative by the test.

Figure 0006986650
Figure 0006986650

Figure 0006986650
Figure 0006986650

Figure 0006986650
Figure 0006986650

本明細書での抗炎症療法は、疾患の医療に関するガイドライン(例えば非特許文献1)又は研究論文(いわゆるエビデンス)で抗炎症効果が報告された治療方法である。被験者臨床データの一例として挙げた、一次治療前時点の後に抗炎症療法を受けた回数は、患者が一次治療からCAL発生の有無を判定した時点までの間に抗炎症療法を受けた回数のデータである。抗炎症療法を受けた回数を間接的に示すデータとして、例えば、抗炎症療法の実施の有無のデータが挙げられる。抗炎症療法として、例えば図31で例示されているように、アセチルサリチル酸(ASA)及び/又はその塩の投与、IVIG投与、IVMP投与、プレドニゾロン(prednisolone:以下「PSL」ともいう)投与、インフリキシマブ(Infliximab:以下「IFX」ともいう)投与、ウリナスタチン(ulinastatin:以下「UTI」ともいう)投与、シクロスポリンA(Cyclosporine A:以下「CsA」ともいう)投与、及び血漿交換からなる群より選ばれた1種以上の治療方法が挙げられる(非特許文献1参照)。ASAは、アスピリン(登録商標)ともいわれる。ASAの塩は、薬理学的に許容可能な塩であれば良く、好ましくはナトリウム塩またはカリウム塩である。IVIG不応と予測される患者で一次治療後にCAL発生に至るか否かを予測可能にする観点から、ここでの抗炎症療法は、IVMP投与、CsA投与、及び血漿交換からなる群より選ばれた1種以上の治療方法であるのが更に好ましく、この1種以上の治療法とIVIG投与および/又はASA投与との併用であるのも更に好ましい。 The anti-inflammatory therapy herein is a therapeutic method for which an anti-inflammatory effect has been reported in guidelines for medical treatment of diseases (for example, Non-Patent Document 1) or research papers (so-called evidence). As an example of subject clinical data, the number of times the patient received anti-inflammatory therapy after the time before the first-line treatment is the data on the number of times the patient received the anti-inflammatory therapy from the first-line treatment to the time when the presence or absence of CAL was determined. Is. As data indirectly indicating the number of times of receiving anti-inflammatory therapy, for example, data on whether or not anti-inflammatory therapy is performed can be mentioned. As anti-inflammatory therapy, for example, as illustrated in FIG. 31, administration of acetylsalicylic acid (ASA) and / or a salt thereof, IVIG administration, IVMP administration, prednisolone (hereinafter also referred to as “PSL”) administration, infliximab ( 1 selected from the group consisting of Infliximab (hereinafter also referred to as "IFX") administration, ulinastatin (hereinafter also referred to as "UTI") administration, cyclosporine A (hereinafter also referred to as "CsA") administration, and plasma exchange 1 There are more than one type of treatment method (see Non-Patent Document 1). ASA is also known as aspirin®. The salt of ASA may be any pharmacologically acceptable salt, preferably a sodium salt or a potassium salt. Anti-inflammatory therapy here is selected from the group consisting of IVMP, CsA, and plasmapheresis from the perspective of making it predictable whether CAL will occur after first-line treatment in patients predicted to be refractory to IVIG. It is more preferable that one or more therapeutic methods are used, and it is further preferable that the one or more therapeutic methods are used in combination with IVIG administration and / or ASA administration.

ASA及び/又はその塩の投与、IVIG投与、IVMP投与、IFX投与、UTI投与、及びCsA投与の各々では、通常、実施時に被験者は薬物を血管内投与されるため、抗炎症療法を受けた回数を数えやすい。血漿交換では、通常、実施時に被験者は所定量の血液製剤を血管内投与されるため、抗炎症療法を受けた回数を数えやすい。一方、例えばPSLのように患者に抗炎症薬を経口投与する抗炎症療法では、患者に抗炎症薬が一定期間にわたり経口投与される場合に患者が抗炎症療法を1回受けたものとして数え、その後、一旦、投薬が中断されてから、抗炎症療法が再開されて改めて抗炎症薬が一定期間にわたり経口投与される場合に患者が2回目の抗炎症療法を受けたものとして数える。また、KD急性期医療で担当医がいずれの抗炎症療法を選択するかに応じてCAL発生リスクがどのように変化するか検証可能にする観点では、各々の被験者が複数種類の抗炎症療法を受けた場合、抗炎症療法を受けた回数のデータでは、被験者が受けた抗炎症療法の種類ごとに複数項目を設けても良い。例えば、ある被験者について、IVIG投与を受けた回数が1回、ASA投与を受けた回数が1回、IVMP投与を受けた回数が2回などという様に被験者臨床データを取得しても良い。 In each of ASA and / or its salt administration, IVIG administration, IVMP administration, IFX administration, UTI administration, and CsA administration, the number of times the subject received anti-inflammatory therapy because the subject is usually administered intravascularly at the time of administration. Easy to count. In plasma exchange, the subject is usually given a predetermined amount of blood product intravascularly at the time of implementation, so that it is easy to count the number of times of receiving anti-inflammatory therapy. On the other hand, in anti-inflammatory therapy in which an anti-inflammatory drug is orally administered to a patient, such as PSL, when the anti-inflammatory drug is orally administered to the patient for a certain period of time, the patient is counted as having received one anti-inflammatory therapy. Then, once the medication is discontinued, the patient is counted as having received a second anti-inflammatory therapy when the anti-inflammatory therapy is resumed and the anti-inflammatory drug is orally administered again for a certain period of time. In addition, from the viewpoint of making it possible to verify how the risk of CAL development changes depending on which anti-inflammatory therapy the doctor in charge selects in KD acute care, each subject receives multiple types of anti-inflammatory therapy. When receiving, in the data of the number of times the subject received the anti-inflammatory therapy, a plurality of items may be provided for each type of the anti-inflammatory therapy received by the subject. For example, subject clinical data may be obtained for a subject, such as once receiving IVIG, once receiving ASA, twice receiving IVMP, and so on.

各々の被験者の臨床情報には、「性別、一次治療前時点での月齢、一次治療前時点での冠動脈径、一次治療前時点での全身性血管炎マーカー検査値、一次治療前時点での高サイトカイン血症マーカー検査値、IVIG不応予測スコアの得点、一次治療前時点の後に抗炎症療法を受けた回数、及びこれらを間接的に示すデータからなる群より選ばれた3種以上の被験者臨床データ」の他にも、KD急性期に各々の被験者から取得可能な臨床データであり、且つ、KD急性期におけるCAL発生との間で直接的または間接的な因果関係を有する臨床データであれば、予測精度の向上に貢献し得るため、臨床情報に含める形で取得しても良い。この様な臨床データとして、例えば、一次治療前時点での心不全マーカー検査値、又はこの検査値を間接的に示すデータ等が挙げられる。心不全マーカー検査値として例えば、心臓性トロポニン、心房性ナトリウム利尿ぺプチド(ANP)、N末端(NT)−proANP、proANP、BNP、proBNP、NT−proBNP、トロポニン、及び血中尿素窒素(BUN)からなる群より選ばれた1種以上のバイオマーカーの検査値が挙げられる。本明細書で既に述べた全身性血管炎マーカー(例えばCRP)や高サイトカイン血症マーカーは、心不全マーカーに含まれない。ここで挙げた心不全マーカーは、従来、小児科臨床の現場で馴染みのない特殊検査の検査値であり、一般病院(二次医療機関)では外注を要して費用が高額となり、また、被験者がKDと診断され入院してから一次治療を受けるまで例えば3日以内では外注先から検査結果を得るのが間に合わない場合が多いため、生成方法S1aの臨床応用を容易にする観点では、各々の被験者の臨床情報に心不全マーカー検査値またはこれを間接的に示すデータを含まないのが好ましい。 The clinical information of each subject included "gender, age before first-line treatment, coronary artery diameter before first-line treatment, systemic vasculitis marker test values before first-line treatment, and high before first-line treatment. Three or more subjects selected from the group consisting of cytokineemia marker test values, IVIG refractory prediction score scores, number of times anti-inflammatory therapy was received before and after first-line treatment, and data indirectly indicating these. In addition to "data", clinical data that can be obtained from each subject during the acute phase of KD and that has a direct or indirect causal relationship with the occurrence of CAL in the acute phase of KD. , Since it can contribute to the improvement of prediction accuracy, it may be acquired in the form of being included in clinical information. Examples of such clinical data include heart failure marker test values at the time before the first-line treatment, data indirectly indicating the test values, and the like. From heart failure marker test values, for example, from cardiac troponin, atrial natriuretic peptide (ANP), N-terminal (NT) -proANP, proANP, BNP, proBNP, NT-proBNP, troponin, and blood urea nitrogen (BUN). Examples include test values for one or more biomarkers selected from the group. The systemic vasculitis markers (eg, CRP) and hypercytokinemia markers already mentioned herein are not included in the heart failure markers. The heart failure markers listed here are the test values of special tests that are not familiar in the field of pediatric clinical practice, and they require outsourcing at general hospitals (secondary medical institutions), which is expensive and the subject is KD. From the point of view of facilitating the clinical application of the production method S1a, since it is often too late to obtain the test results from the subcontractor within, for example, within 3 days from the diagnosis of hospitalization to receiving the first-line treatment, each subject It is preferable that the clinical information does not include heart failure marker test values or data that indirectly indicate this.

CAL発生の有無に関する判定結果は、各々の被験者で一次治療後の所定期間内(例えば一次治療後かつKD発症から90日以内)に、CALが形成されているか否かを医師が検査し判定した結果のデータである。CAL発生に至る症例ではKD発症から30日以内にCALが形成される場合が多い観点から、ここでの「一次治療後の所定期間内」は、一次治療後かつKD発症から30日以内であるのが好ましい。判定結果は、前述した「一次治療前時点での冠動脈径」と対応する部位での判定結果であるのが好ましい。例えば、各々の被験者で、一次治療前時点で複数箇所の冠動脈で径を測定して最大値のデータを1つのみ取得した場合、CAL発生の有無の判定結果でも同様に幾つかの部位のうちで径の最大値を1つのみ取得して判定された結果であるのが良い。あるいは、各々の被験者で、一次治療前時点で冠動脈の部位別に径の最大値を取得した場合、CAL発生の有無の判定結果でも同様に幾つかの部位別に径の最大値を取得して判定された結果であるのが良い。 The judgment result regarding the presence or absence of CAL was determined by a doctor inspecting whether or not CAL was formed in each subject within a predetermined period after the first treatment (for example, after the first treatment and within 90 days from the onset of KD). The resulting data. From the viewpoint that CAL is often formed within 30 days from the onset of KD in cases leading to the onset of CAL, "within a predetermined period after the first-line treatment" here is after the first-line treatment and within 30 days from the onset of KD. Is preferable. The determination result is preferably the determination result at the site corresponding to the above-mentioned "coronary artery diameter at the time before the first-line treatment". For example, in each subject, when the diameter was measured at multiple coronary arteries before the first-line treatment and only one maximum value data was obtained, the judgment result of the presence or absence of CAL was also found among several sites. It is good that the result is determined by acquiring only one maximum diameter value in. Alternatively, in each subject, when the maximum value of the diameter is obtained for each site of the coronary artery before the first-line treatment, the maximum value of the diameter is also obtained for each site in the judgment result of the presence or absence of CAL. The result is good.

CAL発生の有無に関する判定結果は、例えば各々の被験者の体表面積が同程度であれば、判定時に冠動脈直径の最大値が所定の閾値(例えば2mm)以上である場合にCAL陽性(CAL発生あり)と判定し、または、最大値が所定の閾値未満である場合にCAL陰性(CAL発生なし)と判定したデータでも良い。体格成長に伴い冠動脈径が拡大する要素を考慮してCAL発生の有無を判定する観点から、判定結果は、前述したLMS法またはZ score project等の研究成果である計算式に基づいて、各々の被験者での判定時の冠動脈径をZスコアに変換し、Zスコアの値が所定値以上である場合にCAL陽性と判定され、又は所定値未満である場合にCAL陰性と判定された結果であるのが好ましい。冠動脈瘤(CAA)に至らないCALでも発生リスクを予測する観点では、例えば、Zスコアが1.5SD以上である場合にCAL陽性と判定されても良いし、米国と同様Zスコアが2.0SD以上である場合にCAL陽性と判定されるも好ましい。予測精度を更に高める観点では、好ましくはZスコアが2.5SD以上である場合に、更に好ましくはZスコアが3.0SD以上である場合に、それぞれCAL陽性と判定されるのが望ましい。CAA発生リスクを予測する場合、判定基準は5.0SD以上が好ましい。CAAのうち巨大瘤の発生リスクを予測する場合、判定基準は10.0SD以上が好ましい。 The judgment result regarding the presence or absence of CAL is, for example, if the body surface area of each subject is about the same, and if the maximum value of the coronary artery diameter at the time of judgment is equal to or more than a predetermined threshold value (for example, 2 mm), CAL is positive (with CAL). The data may be determined to be CAL negative (no CAL occurrence) when the maximum value is less than a predetermined threshold value. From the viewpoint of determining the presence or absence of CAL in consideration of the factor that the coronary artery diameter expands with the growth of the physique, the determination result is based on the above-mentioned LMS method or the calculation formula which is the research result such as the Z score project. This is the result of converting the coronary artery diameter at the time of judgment by the subject into a Z score, and determining that the Z score is CAL positive when the value is equal to or more than the predetermined value, or CAL negative when the value is less than the predetermined value. Is preferable. From the viewpoint of predicting the risk of developing even a CAL that does not lead to a coronary aneurysm (CAA), for example, if the Z score is 1.5 SD or more, it may be determined to be CAL positive, and the Z score is 2.0 SD as in the United States. If it is the above, it is also preferable that it is determined to be CAL positive. From the viewpoint of further improving the prediction accuracy, it is desirable to determine CAL positive when the Z score is preferably 2.5 SD or more, and more preferably when the Z score is 3.0 SD or more. When predicting the risk of CAA occurrence, the criterion is preferably 5.0 SD or more. When predicting the risk of developing a giant aneurysm in CAA, the criterion is preferably 10.0 SD or more.

学習前の正規化ステップS3aでは、後で共分散構造分析や機械学習を効率良く行うために、先のステップS2aで得た臨床情報に含まれる3種以上の被験者臨床データと、CAL発生の有無に関する判定結果とを、それぞれ情報処理装置で演算しやすいように正規化する。正規化とは、データを一定の規則に基づいて利用しやすいように変形する処理である。正規化後データは、正規化前データを概ね再現可能であるため、正規化前データを間接的に示すデータに該当する。例えば、性別などの数値でないデータは、例えば男性を1に変換し、女性を0に変換する等して正規化するのが好ましい。例えば、月齢などの数値データは、次の数式3により0以上1.0以下の範囲内に含まれるように正規化するのが好ましい。 In the pre-learning normalization step S3a, in order to efficiently perform covariance structure analysis and machine learning later, three or more types of subject clinical data included in the clinical information obtained in the previous step S2a and the presence or absence of CAL have occurred. The judgment results related to the above are normalized so that they can be easily calculated by the information processing device. Normalization is the process of transforming data to make it easier to use based on certain rules. Since the post-normalized data can generally reproduce the pre-normalized data, it corresponds to the data indirectly indicating the pre-normalized data. For example, it is preferable to normalize non-numeric data such as gender by, for example, converting males to 1 and females to 0. For example, it is preferable that the numerical data such as the age of the moon is normalized so as to be included in the range of 0 or more and 1.0 or less by the following mathematical formula 3.

Figure 0006986650
Figure 0006986650

後に機械学習を行う際、入力変数に0又は1.0の近似値が含まれていなければ演算しやすい観点から、各々の被験者の臨床情報に含まれる3種以上の被験者臨床データを、0.10以上0.90以下の範囲内に含まれるように正規化するのが更に好ましい。例えば性別のように数値でないデータは、男性を0.90に変換し、女性を0.10に変換する等して正規化すれば良い。同様の観点から、臨床情報に含まれる例えば月齢などの数値データは、次の数式4により0.10以上0.90以下の範囲内に含まれるように正規化するのが更に好ましい。 When machine learning is performed later, from the viewpoint that it is easy to calculate if the input variable does not include an approximate value of 0 or 1.0, three or more types of subject clinical data included in the clinical information of each subject are obtained as 0. It is more preferable to normalize it so that it is included in the range of 10 or more and 0.90 or less. For example, non-numerical data such as gender may be normalized by converting males to 0.90 and females to 0.10. From the same viewpoint, it is more preferable that the numerical data such as the age of the moon included in the clinical information is normalized so as to be included in the range of 0.10 or more and 0.90 or less by the following mathematical formula 4.

Figure 0006986650
Figure 0006986650

各々の被験者でのCAL発生の有無に関する判定結果は、後の共分散構造分析ステップでは用いられるが、更にその後の機械学習では特に用いられない。このため、この判定結果は例えば、CAL陽性とCAL陰性とのいずれか一方を0に変換するように正規化し、残る他方を1.0に変換するように正規化するのが好ましい。各々の被験者で冠動脈の部位別にCAL発生の有無の判定結果を取得した場合、部位別にCAL陽性か又はCAL陰性かに応じて、部位別に0又は1.0に正規化するのが好ましい。 The determination result regarding the presence or absence of CAL in each subject is used in the later covariance structure analysis step, but is not particularly used in the subsequent machine learning. Therefore, for example, it is preferable to normalize the determination result so that either one of CAL positive and CAL negative is converted to 0, and the remaining one is converted to 1.0. When the determination result of the presence or absence of CAL generation is obtained for each site of the coronary artery in each subject, it is preferable to normalize to 0 or 1.0 for each site depending on whether the site is CAL positive or CAL negative.

各々の被験者の臨床情報に含まれる3種以上の被験者臨床データと、各々の被験者でのCAL発生の有無の判定結果とについて、先のステップS2aでいきなり正規化後データを取得可能な場合には、学習前の正規化ステップS3aを省略可能である。例えば、先のステップS2aで取得した時点で、CAL発生の有無に関する判定結果のデータが既に0又は1.0であった場合、このデータを更に正規化することを特に要しない。 If it is possible to suddenly obtain the normalized data of three or more types of subject clinical data included in the clinical information of each subject and the determination result of the presence or absence of CAL in each subject in the previous step S2a. , The normalization step S3a before learning can be omitted. For example, if the data of the determination result regarding the presence / absence of CAL is already 0 or 1.0 at the time of acquisition in the previous step S2a, it is not particularly necessary to further normalize this data.

共分散構造分析は、複数の変数(複数種のデータ)間の関係を検討可能な統計分析手法の一つである。共分散構造分析ステップS4aでは、各々の被験者についてCAL発生との間で高い相関関係を有するSS計算値を算出するために、情報処理装置を用いて共分散構造分析を行う。このためには、各々の被験者について4種以上の観測変数を設ける。観測変数とは、実際に観測(計測)されたデータ又はその正規化後データである。ここで4種以上の観測変数の内訳は、各々の被験者の臨床情報に含まれる3種以上の被験者臨床データと、各々の被験者での「CAL発生の有無に関する判定結果」との組み合わせである。共分散構造分析で各々の観測変数として用いるデータは、数値データであれば良く、必ずしも0以上1.0以下の範囲内にある数値データでなくても良い。また、共分散構造分析を行うために、各々の被験者での「CAL発生の有無に関する判定結果」に係る観測変数に対して、直接的な因果関係を有すると仮定される潜在変数を設ける。潜在変数とは、実際には観測されていない仮説的なデータである。4種以上の観測変数と、潜在変数と、を設けた上で、情報処理装置に共分散構造分析を行うよう演算処理を実行させ、「CAL発生の有無に関する判定結果」に係る観測変数に対して、直接的な統計学的に有意な因果関係が認められた潜在変数について、因子得点のデータを算出させる。ここでの有意とは、例えばp<0.05、好ましくはp<0.001である。ここで算出された因子得点の数値データそのものか、又はこの数値データそのものを再現可能な範囲内で正規化させたデータを、各々の被験者でのCAL発生リスクに関するSS計算値とする。 Covariance structure analysis is one of the statistical analysis methods that can examine the relationship between multiple variables (multiple types of data). In the covariance structure analysis step S4a, a covariance structure analysis is performed using an information processing device in order to calculate an SS calculated value having a high correlation with the occurrence of CAL for each subject. For this purpose, four or more kinds of observation variables are provided for each subject. The observed variable is the data actually observed (measured) or the normalized data thereof. Here, the breakdown of the four or more types of observation variables is a combination of the clinical data of three or more types of subjects included in the clinical information of each subject and the "judgment result regarding the presence or absence of CAL occurrence" in each subject. The data used as each observed variable in the covariance structure analysis may be numerical data, and may not necessarily be numerical data in the range of 0 or more and 1.0 or less. In addition, in order to perform covariance structure analysis, latent variables that are assumed to have a direct causal relationship with the observation variables related to the "judgment result regarding the presence or absence of CAL occurrence" in each subject are provided. Latent variables are hypothetical data that have not actually been observed. After providing four or more types of observed variables and latent variables, the information processing device is made to execute arithmetic processing so as to perform covariance structure analysis, and the observed variables related to the "judgment result regarding the presence or absence of CAL occurrence" are Then, the factor score data is calculated for the latent variables for which a direct statistically significant causal relationship is found. Significance here is, for example, p <0.05, preferably p <0.001. The numerical data of the factor score calculated here, or the data obtained by normalizing the numerical data itself within a reproducible range, is used as the SS calculated value regarding the risk of CAL occurrence in each subject.

共分散構造分析に用いる情報処理装置は、共分散構造分析の演算処理が可能であれば特に限定されない。例えば、市販のパーソナルコンピュータで、AMOS(Analysis of Moment Structure)、SAS(Statistical Analysis System)、LISREL(Linear Structure Relations)、又はEQS(Structural Equation Modeling Software)等の統計解析用ソフトウェアを用いて共分散構造分析を行うことができる。後の予測精度を高める観点では、共分散構造分析ステップS4aで、平均共分散構造分析を行うのが好ましい。平均共分散構造分析は、ある変数の平均値と他の変数の平均値との差である切片を変数間の関係に導入して、推定すべきパス係数や分散にこの切片を含める共分散構造分析である。また、パスモデルを用いて直感的に統計解析を行うことが可能な観点では、構造方程式モデリング(Structural Equation Modeling:以下「SEM」ともいう)により共分散構造分析を行うのが好ましく、SEMにより平均共分散構造分析を行うのが更に好ましい。例えばAMOSを用いれば、SEMにより平均共分散構造分析を行うことができる。 The information processing apparatus used for the covariance structure analysis is not particularly limited as long as the arithmetic processing of the covariance structure analysis is possible. For example, in a commercially available personal computer, a covariance structure using statistical analysis software such as AMOS (Analysis of Moment Structure), SAS (Statistical Analysis System), LISREL (Linear Structure Relations), or EQS (Structural Equation Modeling Software). Can perform analysis. From the viewpoint of improving the prediction accuracy later, it is preferable to perform the average covariance structure analysis in the covariance structure analysis step S4a. The mean covariance structure analysis introduces an intercept, which is the difference between the mean of one variable and the mean of another variable, into the relationship between the variables and includes this intercept in the path coefficients and variances to be estimated. It is an analysis. From the viewpoint that statistical analysis can be performed intuitively using a path model, it is preferable to perform covariance structure analysis by structural equation modeling (hereinafter also referred to as “SEM”), and average by SEM. It is more preferable to perform covariance structure analysis. For example, if AMOS is used, the average covariance structure analysis can be performed by SEM.

SEMのパスモデルとして例えば、図2に例示するように複数の観測変数に対して1つの潜在変数が直接的な因果関係を有する探索的因子分析モデルか、図3に例示するように各々の観測変数に対して2つ以上の潜在変数が直接的な因果関係を有し且つ潜在変数間に相関関係を有する確認的因子分析モデルか、図4に例示するように探索的因子分析モデルを複数含んで成る二次因子モデルか、又はこれらのモデルで少なくとも一部の観測変数間に有意と認められる因果関係が規定されるように変形させたモデル等が挙げられる。パスモデルにおいて、単方向矢印は因果関係を表し、矢印の元にある変数が、矢印の先にある変数に対して影響を及ぼすことを仮定する。図2から図4では省略しているが、パスモデルにおける単方向矢印にはいずれもパス係数が与えられており、潜在変数から各々の観測変数へ単方向矢印に与えられるパス係数はいずれも意味のあるもの(統計学的に有意なもの)と仮定する。つまり、パスモデルにおいて、潜在変数から各々の観測変数に対する因果関係は、いずれも有意なものである。また、パスモデルにおいて双方向矢印は相関関係を表す。図2から図4では省略しているが、パスモデルにおける双方向矢印にはいずれも相関係数が与えられており、各相関関係の大小を判別可能になっている。識別問題(パスモデルにより定まる観測変数と潜在変数との関係を規定する関係式が数学的な解を有するか否かの問題)を解きやすい観点から、パスモデルは、図2に示す探索的因子分析モデルか、又はこのモデルで一部の観測変数間に因果関係の存在が仮定されるように変形させたモデルであるのが好ましい。 As an SEM path model, for example, an exploratory factor analysis model in which one latent variable has a direct causal relationship with a plurality of observed variables as illustrated in FIG. 2, or each observation as illustrated in FIG. A confirmatory factor analysis model in which two or more latent variables have a direct causal relationship to a variable and a correlation between the latent variables, or an exploratory factor analysis model as illustrated in FIG. 4 is included. Examples include a secondary factor model consisting of two, or a model modified so that a causal relationship recognized as significant between at least some of the observed variables is defined in these models. In the path model, the unidirectional arrow represents a causal relationship, and it is assumed that the variable at the source of the arrow affects the variable at the tip of the arrow. Although omitted in FIGS. 2 to 4, each unidirectional arrow in the path model is given a path coefficient, and the path coefficient given to each observed variable from the latent variable to the unidirectional arrow means any of them. It is assumed that there is something (statistically significant). That is, in the path model, the causal relationship from the latent variable to each observed variable is significant. Also, in the path model, the double-headed arrow represents the correlation. Although omitted in FIGS. 2 to 4, each of the bidirectional arrows in the path model is given a correlation coefficient, so that the magnitude of each correlation can be discriminated. From the viewpoint of easily solving the discrimination problem (whether or not the relational expression that defines the relationship between the observed variable and the latent variable determined by the path model has a mathematical solution), the path model is an exploratory factor shown in FIG. It is preferable to use an analytical model or a model modified so that the existence of a causal relationship between some observed variables is assumed in this model.

図1に示す共分散構造分析ステップS4aで、共分散構造分析の計算結果の妥当性や、パスモデルがデータに適合しているかを評価するには、例えば、カイ二乗(以下「χ」という。)統計量、残差平方平均平方根(Root Mean square Residual:以下「RMR」という。)、適合度指標(Goodness of Fit Index:以下「GFI」という。)、修正適合度指標(Adjusted Goodness of Fit Index:AGFI)、赤池情報量基準(Akaike's Information Criterion:以下「AIC」という。)、又はRoot Mean Square Error of Approximation(以下「RMSEA」という。)等の指標を用いれば良い。一般的には例えば、χ統計量から「パスモデルがデータに適合している」との仮説が棄却されず、GFI値やAGFI値が所定の閾値(例えば0.9)以上であり、又はRMSEA値が所定の閾値(例えば0.080)未満である等の条件を数多く満たすほど、共分散構造分析の計算結果やパスモデルについて信頼性が高い。パスモデルに含まれるパス係数の信頼性を評価するには、例えばt検定、又はワルド検定などを行えば良い。例えばAMOSを用いてSEMにより共分散構造分析を行う場合、ここで例示した指標や方法により、共分散構造分析の計算結果やパスモデルについて信頼性を検討可能である。 In the covariance structure analysis step S4a shown in FIG. 1, in order to evaluate the validity of the calculation result of the covariance structure analysis and whether the path model fits the data, for example, it is referred to as chi-square (hereinafter referred to as “χ 2 ”). .) Statistics, Root Mean square Residual (hereinafter referred to as "RMR"), Goodness of Fit Index (hereinafter referred to as "GFI"), Adjusted Goodness of Fit Index: AGFI), Akaike's Information Criterion (hereinafter referred to as "AIC"), or Root Mean Square Error of Approximation (hereinafter referred to as "RMSEA") may be used. In general, for example, the hypothesis that "the path model fits the data" is not rejected from the χ 2 statistic, and the GFI or AGFI values are greater than or equal to a predetermined threshold (eg 0.9), or The more conditions such as the RMSEA value being less than a predetermined threshold value (for example, 0.080) are satisfied, the more reliable the calculation result and path model of the covariance structure analysis are. In order to evaluate the reliability of the path coefficient included in the path model, for example, a t-test or a Wald test may be performed. For example, when covariance structure analysis is performed by SEM using AMOS, the reliability of the calculation results and path model of covariance structure analysis can be examined by the indexes and methods exemplified here.

共分散構造分析ステップS4aでは、作成したパスモデルでのRMSEA値が、例えば0.080未満である場合に、好ましくは0.050未満である場合に、信頼できる統計モデルとして共分散構造分析に用いるのが良い。RMSEA値が0.080以上になった場合、そのままではパスモデルを信頼できないため、RMSEA値が0.080未満になるように、例えば観測変数として用いる3種以上の被験者臨床データの組み合わせを再考してパスモデルを修正するのが良い。同様の観点から、RMSEA値が0.080以上になった場合の3種以上の被験者臨床データの組み合わせは、後の機械学習で3種以上の入力変数の組み合わせとして用いないのが好ましい。例えば、本願発明者が試行したところ、各々の被験者について、一次治療前時点での総ビルビリン量と、一次治療前時点での白血球数と、一次治療後でのKD再燃の有無とについては、観測変数として用いてSEMで平均共分散構造分析を行っても潜在変数との間で有意な因果関係が認められなかったため、データを観測変数として用いないのが好ましく、後の機械学習でも入力変数として用いないのが好ましい。ステップS2a、S3a、及びS4の組み合わせは、機械学習用データを生成するステップS5aとして機能し得る。
In the covariance structure analysis step S4a, when the RMSEA value in the created path model is, for example, less than 0.080, preferably less than 0.050, it is used for covariance structure analysis as a reliable statistical model. Is good. If the RMSEA value is 0.080 or higher, the path model cannot be trusted as it is. Therefore, reconsider the combination of clinical data of three or more subjects used as observation variables so that the RMSEA value is less than 0.080. It is better to modify the path model. From the same viewpoint, it is preferable that the combination of three or more types of subject clinical data when the RMSEA value becomes 0.080 or more is not used as a combination of three or more types of input variables in later machine learning. For example, when the inventor of the present application tried, for each subject, the total amount of bilbilin before the first treatment, the number of leukocytes before the first treatment, and the presence or absence of KD relapse after the first treatment were observed. Even if the mean covariance structure analysis was performed by SEM using it as a variable, no significant causal relationship was found with the latent variable, so it is preferable not to use the data as an observation variable, and it is preferable to use it as an input variable in later machine learning. It is preferable not to use it. Step S2a, S3a, and S4 a combination of can function as a step S5a to produce a machine learning data.

学習ステップS6aでは、各々の被験者の臨床情報に含まれる3種以上の被験者臨床データを入力変数(独立変数)とし、各々の被験者について先の共分散構造分析ステップS4aで得られたSS計算値を出力変数(従属変数)として、入力変数と出力変数の関係をANNに機械学習させる。ANNは、ヒト脳での神経学的処理を模した計算技術に基づく情報処理システムであり、入力変数と出力変数が存在するシステムのモデル化に用いられている。学習ステップS6aで活用可能なANNとして、例えばパーセプトロンが層状につなぎ合わされた多層パーセプトロンが挙げられる。多層パーセプトロンとして図5に例示するように、入力層2と、一層の中間層5と、出力層8とを有する三層型ANN1が挙げられる。これらの層(2、5、8)各々に人工ニューロン(artificial neuron:以下「AN」という)が幾つか設けられている。ANはノードともいわれる。入力層2に設けられた各々のAN(3aから3d)は、ネットワーク4を介して中間層5に設けられた各々のAN(6aから6c)に接続されている。中間層5に設けられた各々のAN(6aから6c)は、ネットワーク7を介して、出力層8に設けられたAN9に接続されている。 In the learning step S6a, three or more types of subject clinical data included in the clinical information of each subject are used as input variables (independent variables), and the SS calculated value obtained in the previous covariance structure analysis step S4a is used for each subject. As an output variable (dependent variable), let ANN machine learn the relationship between the input variable and the output variable. ANN is an information processing system based on a computational technique that imitates neurological processing in the human brain, and is used for modeling a system in which input variables and output variables exist. Examples of the ANN that can be utilized in the learning step S6a include a multi-layer perceptron in which perceptrons are connected in layers. As an example of the multilayer perceptron in FIG. 5, a three-layer type ANN1 having an input layer 2, an intermediate layer 5 of one layer, and an output layer 8 can be mentioned. Each of these layers (2, 5, 8) is provided with some artificial neurons (hereinafter referred to as "AN"). AN is also called a node. Each AN (3a to 3d) provided in the input layer 2 is connected to each AN (6a to 6c) provided in the intermediate layer 5 via the network 4. Each AN (6a to 6c) provided in the intermediate layer 5 is connected to the AN9 provided in the output layer 8 via the network 7.

ANN1に機械学習させる際、例えば入力層2に設けられた各々のAN(3aから3d)に、入力変数として用いるいずれか1種の被験者臨床データを入力する。また、例えば出力層8に設けられたAN9に、出力変数として用いるSS計算値を入力する。その上で情報処理装置に演算させると、入力層2に設けられた各々のAN(3aから3d)に入力された入力変数が、中間層5へ向けて出力される。各々のネットワーク(4、7)は、重み付け値Wijを有する。中間層5に設けられたAN(6aから6c)と出力層8に設けられたAN9では、次の数式5で例示するように、前層からの入力値Sと重み付け値Wijの積和計算と、シグモイド関数を用いた変数変換がされ、出力層8で計算式が出力される。次いで、この計算式により算出される数値と、正解(事前に出力層8に入力された出力変数)との間の誤差が計算され、この誤差がゼロになるように、しきい値hと重みWijが修正される。機械学習させたANNでは、入力変数(独立変数)と出力変数(従属変数)との間に存在する関係が見出されている。このため、学習ステップS6aでは、学習済みモデルを生成させることができる。 When the ANN1 is machine-learned, for example, one of the subject clinical data to be used as an input variable is input to each AN (3a to 3d) provided in the input layer 2. Further, for example, the SS calculated value used as an output variable is input to AN9 provided in the output layer 8. Then, when the information processing apparatus is made to perform an operation, the input variables input to each AN (3a to 3d) provided in the input layer 2 are output toward the intermediate layer 5. Each network (4, 7) has a weighted value Wij . In (from 6a 6c) AN provided in the intermediate layer 5 and provided at the output layer 8 AN9, as exemplified by the following equation 5, the product-sum of the weighting values W ij and the input value S i from the previous layer The calculation and the variable transformation using the sigmoid function are performed, and the calculation formula is output in the output layer 8. Then, a value calculated by this formula, correct the error between the (output variable which is input to the output layer 8 in advance) is calculated, so the error is zero, and the threshold h i The weight Wij is modified. In the machine-learned ANN, the relationship that exists between the input variable (independent variable) and the output variable (dependent variable) has been found. Therefore, in the learning step S6a, the trained model can be generated.

Figure 0006986650
Pi ANが発火する確率
Wij 前層のANと次層のAN間の重み付け値(シナプス結合計数)
Si 前層のANからの入力値
hi しきい値
T シグモイド関数の傾き
Figure 0006986650
Probability of firing P i AN
W ij Weighted value between AN in the previous layer and AN in the next layer (synaptic bond count)
Input value from AN in the front layer of S i
h i threshold
Slope of T sigmoid function

図5に例示するANN1に限らず、図1に示す学習ステップS6aでは例えば、入力層と、一層以上の中間層と、出力層とを有するANNに機械学習させれば良い。機械学習させるANNとして、入力層と中間層の二層から成る単純パーセプトロンのみを採用するのは、予測精度の大幅な悪化を招くため避けるべきである。過学習を避ける観点から、ANNにおける中間層の数は、四層以下または三層以下でも良く、好ましくは二層以下である。本発明の目的に反しない限り、入力層、一層以上の中間層、及び出力層を有する階層型ANNを2つ以上組み合わせた状態で機械学習させても良い。ANNで用いられる動作関数は、例えば動径基底関数またはヘビ関数でも良いが、信頼性が高い観点から、前述した数式のようなシグモイド関数が好ましい。機械学習の方法は例えば、共役勾配降下法、準ニュートン法、又はレーベンバーグ・マーカート法などでも良いが、初学者でも市販の統計解析用ソフトウェアを用いて実施しやすい観点では、正則化させて行ったり又は誤差逆伝搬法を行ったりするのが好ましく、加えて学習時間を短縮させる観点から誤差伝搬法と補修学習法を併用するのが更に好ましい。学習用データに隠れた法則性を抽出しやすい観点では、誤差伝搬法と成長抑制学習法を併用するのが更に好ましい。
Not limited to ANN1 illustrated in FIG. 5, in the learning step S6a shown in FIG. 1, for example, an ANN having an input layer, one or more intermediate layers, and an output layer may be machine-learned. Adopting only a simple perceptron consisting of two layers, an input layer and an intermediate layer, as the machine learning ANN should be avoided because it causes a significant deterioration in prediction accuracy. From the viewpoint of avoiding overfitting, the number of intermediate layers in ANN may be 4 layers or less or 3 layers or less, preferably 2 layers or less. Unless contrary to the object of the present invention, machine learning may be performed in a state where two or more hierarchical ANNs having an input layer, one or more intermediate layers, and an output layer are combined. The operation function used in ANN may be, for example, a radial basis function or a snake function, but from the viewpoint of high reliability, a sigmoid function such as the above-mentioned equation 5 is preferable. The machine learning method may be, for example, a conjugated gradient descent method, a quasi-Newton method, a Levenberg-Marquardt method, etc. It is preferable to use the error propagation method or the error back propagation method, and it is more preferable to use the error propagation method and the repair learning method together from the viewpoint of shortening the learning time. From the viewpoint of easily extracting the rules hidden in the learning data, it is more preferable to use the error propagation method and the growth suppression learning method together.

後に予測精度を向上させる観点では、機械学習で入力変数として、各々の被験者の臨床情報に含まれる例えば4種以上の被験者臨床データを、好ましくは5種以上の被験者臨床データを、更に好ましくは6種以上の被験者臨床データを用いるのが更に好ましい。学習効率の悪化を避ける観点では入力変数として用いる被験者臨床データは、例えば20種以下、好ましくは15種以下、更に好ましくは10種以下である。予測精度が更に高い学習済みモデルを得るためには、入力変数と出力変数とを入力してから誤差修正までの演算処理を情報処理装置に繰り返し(例えば50回以上)実行させ、見出された入力変数と出力変数との関係が各々異なっている、複数の学習済みモデルを生成させるのが好ましい。 From the viewpoint of improving the prediction accuracy later, for example, 4 or more types of subject clinical data included in the clinical information of each subject, preferably 5 or more types of subject clinical data, more preferably 6 as input variables in machine learning. It is more preferred to use subject clinical data of more than one species. From the viewpoint of avoiding deterioration of learning efficiency, the subject clinical data used as an input variable is, for example, 20 types or less, preferably 15 types or less, and more preferably 10 types or less. In order to obtain a trained model with even higher prediction accuracy, it was found by having an information processing device repeatedly (for example, 50 times or more) execute arithmetic processing from input variables and output variables to error correction. It is preferable to generate a plurality of trained models in which the relationship between the input variable and the output variable is different.

選別ステップS7aは、先の学習ステップSaで複数の学習済みモデルを生成させた場合に、予測精度を更に高めるために、学習済みモデルごとに予測精度の高さを検証して、比較的に予測精度が高い学習済みモデルを選定する。例えば、市販の統計解析ソフトウェアを用いて、学習済みモデルごとに単純交差検証法またはK分割交差検証法(例えば五分割交差検証法)を行い、学習済みモデルごとに決定係数Rを算出して、最もR値が大きい1つの学習済みモデルを選定するのが好ましい。選別ステップS7aでのR値は、入力変数が出力変数をどの程度に説明可能か表す指標であり、0に近い値ほど説明できず、1.0に近い値ほど説明できることを意味する。構造が単純で出力誤差が小さい学習済みモデルを選出する観点から、学習済みモデルごとに、AICや、シュワルツのベイジアン情報量基準(Schwartz's Bayesian information criterion:以下「BIC」という)を検証し、AIC値またはBIC値で比較的に高値を示した学習済みモデルを選出の候補から外すのが好ましい。市販の統計ソフトウェアを用いればAICやBICを検証可能である。AIC値とBIC値が低値な学習済みモデルほど、予測精度が高くて統計モデルとして好ましい。先の学習ステップS6aで1つの学習済みモデルのみを生成させた場合や、後の予測精度がある程度に高ければ充分な場合は、選別ステップS7aを省略しても良い。
Sorting step S7a, when to produce a plurality of the learned model in the previous learning step S 6 a, in order to further improve the prediction accuracy, to verify the height of the prediction accuracy for each trained model, relatively Select a trained model with high prediction accuracy. For example, using a commercially available statistical analysis software performs simple cross-validation or K-fold cross-validation for each trained model (e.g. five-fold cross-validation), to calculate the coefficient of determination R 2 for each learned model , preferably selected the most R 2 value is one of the learned model large. R 2 value in selecting the step S7a is an index input variables representing the availability described how the output variables can not be explained as a value close to 0, it means that can be described as the value close to 1.0. From the viewpoint of selecting trained models with a simple structure and small output error, AIC and Schwartz's Bayesian information criterion (hereinafter referred to as "BIC") are verified for each trained model, and the AIC value is verified. Alternatively, it is preferable to exclude the trained model showing a relatively high BIC value from the selection candidates. AIC and BIC can be verified using commercially available statistical software. A trained model with lower AIC and BIC values has higher prediction accuracy and is preferable as a statistical model. If only one trained model is generated in the previous learning step S6a, or if the later prediction accuracy is sufficient to some extent, the selection step S7a may be omitted.

以上に説明した生成方法S1aによれば、3種以上の被験者臨床データの例として挙げた性別、月齢、冠動脈径、全身性血管炎マーカー検査値、高サイトカイン血症マーカー検査値、及びIVIG不応予測スコアの得点はいずれも、KD急性期医療の担当医(例えば病院勤務の小児科医)が一次治療前時点で問診または検査などにより入手可能な情報である。冠動脈径は、例えば担当医がKDと診断する際、従来から小児科の日常診療の現場に広く普及している断層心エコー等の検査方法や検査機器を用いて、入手可能な情報である(非特許文献1と非特許文献2参照)。各々の被験者は、既に一次治療を受けてCAL発生の有無を判定された者であるため、一次治療前時点の後に受けた抗炎症療法の回数や、CAL発生の有無の判定結果も、KD急性期医療の担当医が病院の小児科で入手可能な情報である。各々の被験者でのCAL発生リスクに関するSS計算値は、3種以上の被験者臨床データと、CAL発生の有無の判定結果とから、共分散構造分析により算出可能である。このため、生成方法S1aによれば、従来の小児科の日常診療の現場で馴染みのある検査値などの情報を用いて、学習済みモデルを生成可能である。この学習済みモデルを以下に説明するように活用すれば、予測対象者であるKD急性期患者でCAL発生に至るか否かを、一次治療前時点でなるべく高精度に予測可能となる。 According to the generation method S1a described above, the sex, age, coronary artery diameter, systemic vasculitis marker test value, hypercytokinemia marker test value, and IVIG refractory given as examples of clinical data of three or more subjects. All the scores of the predicted scores are information that can be obtained by a doctor in charge of KD acute care (for example, a pediatrician working in a hospital) by interview or examination before the first treatment. The coronary artery diameter is information that can be obtained, for example, when a doctor in charge diagnoses KD by using a test method or test device such as tomographic echocardiography, which has been widely used in the field of daily medical care in pediatrics. See Patent Document 1 and Non-Patent Document 2). Since each subject has already received the first-line treatment and the presence or absence of CAL has been determined, the number of anti-inflammatory treatments received before and after the first-line treatment and the determination result of the presence or absence of CAL are also KD acute. Information available to the doctor in charge of acute care in the pediatrics department of the hospital. The SS calculated value regarding the risk of CAL occurrence in each subject can be calculated by covariance structure analysis from the clinical data of three or more kinds of subjects and the determination result of the presence or absence of CAL occurrence. Therefore, according to the generation method S1a, it is possible to generate a trained model by using information such as test values that are familiar in the field of daily medical care in conventional pediatrics. By utilizing this trained model as described below, it is possible to predict with as high accuracy as possible whether or not CAL will occur in the KD acute phase patient who is the prediction target before the first-line treatment.

[KDでのCAL発生リスク予測方法]
図6に示す本発明の一実施形態に係る予測方法S10aは、学習済みモデルを有する情報処理装置を用いて、KD急性期患者でのCAL発生リスクを予測するための予測方法である。予測方法S10aは、被験者らの臨床情報取得ステップS2aと、学習前の正規化ステップS3aと、共分散構造分析ステップS4aと、学習ステップS6aと、選別ステップS7aと、患者の臨床情報取得ステップS12aと、予測前の正規化ステップS13aと、予測ステップS14aとを含み得る。ステップS2aからS7aは、前述した生成方法S1aと同様に行えば良い。
[CAL occurrence risk prediction method in KD]
The prediction method S10a according to the embodiment of the present invention shown in FIG. 6 is a prediction method for predicting the risk of CAL occurrence in a KD acute phase patient by using an information processing apparatus having a learned model. The prediction method S10a includes a clinical information acquisition step S2a of the subjects, a normalization step S3a before learning, a covariance structure analysis step S4a, a learning step S6a, a selection step S7a, and a patient clinical information acquisition step S12a. , The pre-prediction normalization step S13a and the prediction step S14a may be included. Steps S2a to S7a may be performed in the same manner as in the generation method S1a described above.

患者の臨床情報取得ステップS12aでは、例えば一次治療後にCAL発生に至るか否かを予測したいKD急性期患者について、一次治療前時点で入手可能な患者の臨床情報を入手する。ここで入手する患者の臨床情報は、性別、一次治療前時点での月齢、一次治療前時点での冠動脈径、一次治療前時点での全身性血管炎マーカー検査値、一次治療前時点での高サイトカイン血症マーカー検査値、一次治療前時点でのIVIG不応予測スコアの得点、一次治療前時点の後(一次治療以降)での抗炎症療法の実施予定回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた3種以上の患者臨床データである。予測精度を高める観点から、ここで例示した患者の臨床情報のうち、例えば4種以上、好ましくは5種以上、更に好ましくは6種以上の患者臨床データを取得するのが望ましい。この臨床情報が生成されるまでの過程で医師が行った診断の工程は、本発明やステップS12aに含まれない。 In the patient clinical information acquisition step S12a, for example, for a KD acute phase patient who wants to predict whether or not CAL will occur after the first-line treatment, clinical information of the patient available before the first-line treatment is obtained. The patient clinical information obtained here includes gender, age before first-line treatment, coronary artery diameter before first-line treatment, systemic vasculitis marker test values before first-line treatment, and high levels before first-line treatment. Indirectly, the cytokineemia marker test value, the score of the IVIG refractory prediction score before the first-line treatment, the number of scheduled anti-inflammatory therapy after the time before the first-line treatment (after the first-line treatment), and any of these. 3 or more patient clinical data selected from the group consisting of the data shown in. From the viewpoint of improving the prediction accuracy, it is desirable to acquire patient clinical data of, for example, 4 or more, preferably 5 or more, and more preferably 6 or more of the clinical information of the patients exemplified here. The step of diagnosis performed by a doctor in the process until this clinical information is generated is not included in the present invention or step S12a.

予測精度を高める観点から、患者の臨床情報取得ステップS12aで入手する3種以上の患者臨床データは、先のステップS2aで取得した各々の被験者の3種以上の被験者臨床データと比べて、概ね同種のデータであるのが好ましい。患者臨床データの一例である「抗炎症療法の実施予定回数」は、被験者臨床データの一例である「抗炎症療法を実施した回数」と概ね同種のデータといえる。一般的にKD急性期医療の担当医は、患者についてKDと診断してから一次治療に至るまでに、少なくとも2回は診断する。例えば、一次治療前の最終診断よりも前の診断で医師が既に作成した治療計画、処方計画、又はその案に基づいて、ステップS12aでは抗炎症療法の実施予定回数の患者臨床データを取得すれば良い。医師が治療計画、処方計画、又はその案を作成した工程は、本発明やステップS12aに含まれない。また、KD急性期医療に関するいわゆるエビデンスで、KD急性期患者の一次治療前時点での検査値などに基づいて抗炎症療法について特定の回数を実施することが推奨されている場合、その推奨されている基準に従って医師の判断を介さず自動的に「抗炎症療法の実施予定回数」が定まるように設定しても良い。その他、患者の臨床情報取得ステップS12aは、先のステップS2aについて既に説明したことと同様である。ただし、先のステップS2aとは異なり、患者の臨床情報取得ステップS12aでは、患者でのCAL発生の有無の判定結果を取得することを要しない。
From the viewpoint of improving the prediction accuracy, the clinical data of 3 or more types of patients obtained in the clinical information acquisition step S12a of the patient is almost the same as the clinical data of 3 or more types of each subject acquired in the previous step S2a. It is preferable that the data is. It can be said that the “scheduled number of anti-inflammatory therapy”, which is an example of patient clinical data, is almost the same as the “number of anti-inflammatory therapy”, which is an example of subject clinical data. Generally, the doctor in charge of acute care for KD diagnoses a patient at least twice from the diagnosis of KD to the first-line treatment. For example, in step S12a, if the patient clinical data of the planned number of times of anti-inflammatory therapy is to be performed is acquired based on the treatment plan, the prescription plan, or the draft thereof already prepared by the doctor in the diagnosis before the final diagnosis before the first treatment. good. The process in which a doctor prepares a treatment plan, a prescription plan, or a draft thereof is not included in the present invention or step S12a. In addition, if the so-called evidence regarding KD acute care recommends a specific number of anti-inflammatory therapies based on the test values before the first-line treatment of KD acute care patients, it is recommended. It may be set so that the "scheduled number of times of anti-inflammatory therapy" is automatically determined according to the standard set without the judgment of a doctor. Other than that, the patient's clinical information acquisition step S12a is the same as that already described in the previous step S2a. However, unlike the previous step S2a, in the patient clinical information acquisition step S12a, it is not necessary to acquire the determination result of the presence or absence of CAL in the patient.

予測前の正規化ステップS13aでは、効率良く予測するために、先の患者の臨床情報取得ステップS12aで得た3種以上の患者臨床データを、情報処理装置で演算しやすいように正規化する。同じ理由で、先の学習前の正規化ステップS3aで3種以上の被験者臨床データを正規化したのと概ね同様にして、予測前の正規化ステップS13aでは3種以上の患者臨床データを正規化するのが好ましい。なお、先の学習前の正規化ステップS3aとは異なり、予測前の正規化ステップS13aでは、患者でのCAL発生の有無についての判定結果の正規化を特に要しない。先の患者の臨床情報取得ステップS12aでいきなり正規化された3種以上の患者臨床データを取得できた場合、予測前の正規化ステップS13aを省略可能である。
In the pre-prediction normalization step S13a, in order to make an efficient prediction, three or more types of patient clinical data obtained in the previous patient clinical information acquisition step S12a are normalized so that they can be easily calculated by the information processing apparatus. For the same reason, the pre-prediction normalization step S13a normalizes the clinical data of three or more patients in much the same way as the previous pre-learning normalization step S3a normalized the clinical data of three or more subjects. It is preferable to do. Unlike the previous pre-learning normalization step S3a, the pre-prediction normalization step S13a does not particularly require normalization of the determination result regarding the presence or absence of CAL in the patient. If three or more types of patient clinical data suddenly normalized in the previous patient clinical information acquisition step S12a can be acquired, the pre-prediction normalization step S13a can be omitted.

予測ステップS14aでは、学習済みモデルを有する情報処理装置に、KD急性期患者の臨床情報に含まれる3種以上の患者臨床データを入力して、CAL発生リスクに関するSSについてKD急性期患者での予測値を出力する処理を実行させる。例えば、学習済みモデルの入力層に設けられたANごとに1種の患者臨床データ又はその正規化データ(入力変数)を入力し、学習済みモデルを有する情報処理装置に演算を実行させ、出力層に設けられたANにおいて、KD急性期患者でのCAL発生リスクに関するSS予測値(出力変数)を出力させる。 In the prediction step S14a, three or more types of patient clinical data included in the clinical information of the KD acute phase patient are input to the information processing apparatus having the trained model, and the SS regarding the CAL occurrence risk is predicted in the KD acute phase patient. Execute the process to output the value. For example, one type of patient clinical data or its normalized data (input variable) is input for each AN provided in the input layer of the trained model, and an information processing device having the trained model is made to execute an operation, and the output layer is used. In the AN provided in the KD acute phase patient, the SS predicted value (output variable) regarding the risk of CAL occurrence is output.

予測ステップS14aで出力されるKD急性期患者でのSS予測値は、この患者が一次治療後にCAL発生に至るか否かを予測する指標となる数値データである。SS予測値が所定のカットオフ値以上である場合には予測結果としてCAL陽性(一次治療後にCAL発生に至る)であり、または、所定のカットオフ値未満である場合には予測結果としてCAL陰性(一次治療後にCAL発生に至らない)である。ただし、このカットオフ値の所定値は、各々の被験者でのCAL発生の有無の判定結果を定めた際の基準値に応じて変動する。例えば、各々の被験者で少なくとも一次治療を受けた後での冠動脈径について、Zスコアの値が3.0SD以上である場合にCAL陽性と判定したのか、2.5SD以上である場合にCAL陽性と判定したのか、それとも、2.0SD以上である場合にCAL陽性と判定したのか、という基準値に応じてカットオフ値の所定値は変動する。基準値が高ければカットオフ値の所定値も高くなる。このため、さらに、予測ステップS14aでは、KD急性期患者でのSS予測値が所定のカットオフ値以上である場合に、この患者でCAL発生に至ることを示す予測結果を出力する処理を実行するように、学習済みモデルを有する情報処理装置を機能させるのが好ましい。このように機能させた場合、例えば予測方法S10aの実施者が統計処理に慣れていなくても、高精度の予測結果を容易に入手可能となり得る。 The SS prediction value in the KD acute phase patient output in the prediction step S14a is numerical data that is an index for predicting whether or not this patient will develop CAL after the first-line treatment. If the SS predicted value is equal to or more than the predetermined cutoff value, the predicted result is CAL positive (to lead to the occurrence of CAL after the first-line treatment), or if it is less than the predetermined cutoff value, the predicted result is CAL negative. (CAL does not occur after first-line treatment). However, the predetermined value of this cutoff value fluctuates according to the reference value when the determination result of the presence or absence of CAL occurrence in each subject is determined. For example, regarding the coronary artery diameter after receiving at least the first-line treatment in each subject, if the Z score value is 3.0 SD or more, it is determined to be CAL positive, or if it is 2.5 SD or more, it is determined to be CAL positive. The predetermined value of the cutoff value fluctuates according to the reference value of whether it is determined or whether it is determined to be CAL positive when it is 2.0 SD or more. The higher the reference value, the higher the predetermined cutoff value. Therefore, further, in the prediction step S14a, when the SS prediction value in the KD acute phase patient is equal to or higher than the predetermined cutoff value, a process of outputting a prediction result indicating that CAL occurs in this patient is executed. As such, it is preferable to operate an information processing device having a trained model. When it is made to function in this way, for example, even if the practitioner of the prediction method S10a is not accustomed to statistical processing, highly accurate prediction results can be easily obtained.

以上に説明した予測方法S10aによれば、各々の被験者の臨床情報に含まれる3種以上の被験者臨床データと、共分散構造分析ステップS4aで出力された各々の被験者でのSS計算値と、を用いた機械学習で生成された学習済みモデルを用いることにより、予測対象者であるKD急性期患者について、一次治療後にCAL発生に至るか否かの指標値となるSS予測値を、一次治療前時点で高精度に得ることが可能となる。このため、例えばKD急性期医療の担当医がCAL発生を抑える治療方針を早期決定する診断をしやすいように、支援可能である。つまり、予測方法S10aは、例えば、KD急性期医療の担当医にとって、初期の治療方針を決定する診断をする際の判断材料となる情報の一つとして、予測結果(SS予測値)という情報を、一次治療前時点で入手するのに適した方法ともいえる。担当医は、KD急性期患者が一次治療後にCAL発生に至る旨の予測結果を一次治療前に得られた場合には、既に作成した治療計画、処方計画、又はこれら計画の案の変更を検討すること、つまり、一次治療で実施する予定であった抗炎症療法の種類や実施予定回数の変更を検討することが可能となる。変更後の計画またはその案に基づいて、変更された「抗炎症療法を受ける予定回数」の患者臨床データを取得して、改めて予測方法S10aを実施することも可能である。一次治療後にCAL陰性との予測結果が得られるまで、計画またはその案を変更しては改めて予測方法S10aを実施することも可能である。 According to the prediction method S10a described above, the clinical data of three or more kinds of subjects included in the clinical information of each subject and the SS calculated value in each subject output in the covariance structure analysis step S4a are obtained. By using the trained model generated by the machine learning used, the SS predicted value, which is an index value of whether or not CAL occurs after the first treatment, is obtained for the KD acute phase patient who is the prediction target before the first treatment. It is possible to obtain high accuracy at that point. Therefore, for example, it is possible to support a doctor in charge of KD acute care so that it is easy to make a diagnosis for early determination of a treatment policy for suppressing the occurrence of CAL. That is, the prediction method S10a, for example, provides information called a prediction result (SS prediction value) as one of the information that can be used as a judgment material when making a diagnosis to determine an initial treatment policy for a doctor in charge of KD acute care. , It can be said that it is a suitable method to obtain before the first-line treatment. If the doctor in charge obtains a prediction result that KD acute phase patients will develop CAL after the first treatment before the first treatment, the doctor in charge will consider changing the treatment plan, prescription plan, or the draft of these plans that have already been prepared. In other words, it will be possible to consider changes in the type of anti-inflammatory therapy that was planned to be given as the first-line treatment and the number of times that it will be given. It is also possible to acquire the patient clinical data of the changed "planned number of times to receive anti-inflammatory therapy" based on the changed plan or the plan thereof, and to carry out the prediction method S10a again. It is also possible to change the plan or its proposal and implement the prediction method S10a again until the prediction result of CAL negative is obtained after the first-line treatment.

簡便に実施可能にする観点では、予測方法S10aでのステップS2aからS7aに代えて、図7に示すように、あらかじめ生成された学習済みモデルを準備するステップS1bを含む予測方法S10bであるのが好ましい。 From the viewpoint of making it easily feasible, the prediction method S10b including the step S1b for preparing the pre-generated trained model is, as shown in FIG. 7, instead of the steps S2a to S7a in the prediction method S10a. preferable.

[KDでのCAL発生リスク予測用の学習済みモデル]
本発明の一実施形態に係る学習済みモデルは、KD患者でCAL発生に至るか否かを予測するための学習済みモデルである。既に説明したように、この学習済みモデルは、既にKD急性期医療における少なくとも一次治療を受けた後にCAL発生の有無を判定された被験者らについて、各々の被験者の臨床情報が図5に示すANN1の入力層2に入力され、出力層8がCAL発生リスクに関するSSについて各々の被験者での計算値を出力するように、前述した数式で示した重み付け値Wijが機械学習されたものである。また、この学習済みモデルは、入力層にKD急性期患者の臨床情報が入力される場合には、入力されるKD急性期患者の臨床情報に対して重み付け値Wijに基づく演算を行い、出力層からKD急性期患者でのSS予測値を出力するように、情報処理装置を機能させるためのものである。
[Trained model for predicting CAL occurrence risk in KD]
The trained model according to the embodiment of the present invention is a trained model for predicting whether or not CAL occurs in a KD patient. As described above, this trained model is based on ANN1 whose clinical information is shown in FIG. 5 for subjects who have already been determined to have CAL after receiving at least first-line treatment in KD acute care. The weighted value Wij shown in the above-mentioned equation 5 is machine-learned so that the input layer 2 is input to the input layer 2 and the output layer 8 outputs the calculated value for each subject for the SS related to the CAL occurrence risk. Further, when the clinical information of the KD acute phase patient is input to the input layer, this trained model performs a calculation based on the weighted value Wij on the input clinical information of the KD acute phase patient and outputs it. The purpose is to make the information processing device function so as to output the SS predicted value in the KD acute phase patient from the layer.

図7の予測方法S10bを実施するユーザ(例えば、KD急性期医療の担当医、又はこの担当医を補助する医療従事者など)は、図8に例示するように、上記した学習済みモデル67を有する情報処理装置60を使用しても良い。情報処理装置60は、種々の情報処理や、情報の送受信が可能な情報処理装置であり、例えばパーソナルコンピュータ、又はサーバコンピュータ等である。情報処理装置60は、例えば、制御部61と、表示部62と、入力部63と、記憶部65とを備える。 A user who implements the prediction method S10b of FIG. 7 (for example, a doctor in charge of KD acute care, or a medical worker who assists the doctor in charge of KD) uses the above-mentioned trained model 67 as illustrated in FIG. You may use the information processing apparatus 60 which has. The information processing device 60 is an information processing device capable of various information processing and information transmission / reception, and is, for example, a personal computer, a server computer, or the like. The information processing device 60 includes, for example, a control unit 61, a display unit 62, an input unit 63, and a storage unit 65.

制御部61は、記憶部65に記憶されたプログラム66を読み出して実行することにより、情報処理装置60に係る種々の演算処理、制御処理などを行うプロセッサであり、例えば、一又は複数のCPU(Central Processing Unit)等を有する。記憶部65は、各種データを記憶するメモリである。メモリには、RAM(Random Access Memory)と不揮発性メモリとが含まれる。RAMは、制御部61が演算処理を実行するために必要なデータを一時的に記憶する。不揮発性メモリは、例えばハードディスクドライブを含み、制御部61が処理を実行するためのプログラム66と学習済みモデル67とを記憶保持する。不揮発性メモリは、学習済みモデル67の生成時に学習用データとして用いられた、被験者らの臨床情報データベース68を、更に記憶保持しても良い。表示部62は、例えば液晶ディスプレイ又は有機ELディスプレイ等の表示装置であり、制御部61から与えられた画像を表示する。入力部63は、例えばキーボード又はタッチパネル等の入力インターフェイスであり、ユーザからの操作入力を受け付ける。制御部61は、ユーザにより入力部63を介して情報処理装置60にKD急性期患者の臨床情報が入力された場合に、入力された臨床情報を学習済みモデル67に適用して、CAL発生の有無に関するSSについてKD急性期患者での予測値を出力する処理を実行する処理部として機能する。出力されたSS予測値は、そのまま数値データとして表示部62に表示されても良い。ユーザに分かりやすい観点から、出力されたSS予測値の数値データが所定のカットオフ値以上である場合にKD急性期患者で一次治療後にCAL発生に至ることを示す予測結果が表示部62に表示され、または、所定のカットオフ値未満である場合にCAL発生に至らないことを示す予測結果が表示されるように、情報処理装置60が機能するのが好ましい。 The control unit 61 is a processor that performs various arithmetic processing, control processing, and the like related to the information processing apparatus 60 by reading and executing the program 66 stored in the storage unit 65, and is, for example, one or a plurality of CPUs ( Central Processing Unit) etc. The storage unit 65 is a memory for storing various data. The memory includes a RAM (Random Access Memory) and a non-volatile memory. The RAM temporarily stores data necessary for the control unit 61 to execute arithmetic processing. The non-volatile memory includes, for example, a hard disk drive, and stores and holds a program 66 and a trained model 67 for the control unit 61 to execute processing. The non-volatile memory may further store the clinical information database 68 of the subjects, which was used as training data when the trained model 67 was generated. The display unit 62 is a display device such as a liquid crystal display or an organic EL display, and displays an image given by the control unit 61. The input unit 63 is an input interface such as a keyboard or a touch panel, and receives an operation input from a user. When the user inputs the clinical information of the KD acute phase patient to the information processing apparatus 60 via the input unit 63, the control unit 61 applies the input clinical information to the trained model 67 to generate CAL. It functions as a processing unit that executes a process of outputting a predicted value in a KD acute phase patient regarding SS related to the presence or absence. The output SS predicted value may be displayed as it is on the display unit 62 as numerical data. From a user-friendly point of view, the display unit 62 displays a prediction result indicating that CAL occurs after the first-line treatment in a KD acute phase patient when the output numerical data of the SS prediction value is equal to or more than a predetermined cutoff value. It is preferable that the information processing apparatus 60 functions so that a prediction result indicating that CAL does not occur when the cutoff value is less than a predetermined cutoff value is displayed.

情報処理装置60は、通信部64を備えるのが好ましい。通信部64は、通信に関する処理を行うための処理回路等を含み、少なくとも一つのユーザ端末71との間で例えばインターネット又は病院内イントラネット等の通信ネットワーク70を介して情報の送受信を行う。通信部64は、この送受信のためのアンテナを含んでも良い。ユーザ端末71は、例えば、小児科医が所持しているスマートフォン、又は病院の診察室に設けられたパーソナルコンピュータ等である。ユーザがKD急性期患者の臨床情報をユーザ端末71に入力した場合に、入力された臨床情報がユーザ端末71から送信されて通信ネットワーク70と通信部64とを介して情報処理装置60で受信され、制御部61は受信した臨床情報を学習済みモデル67に適用してCAL発生の有無に関するSSについてKD急性期患者での予測値を出力する処理を実行し、出力されたSS予測値は通信部64から送信され通信ネットワーク70を介してユーザ端末71で受信され、ユーザ端末71のディスプレイにSS予測値に基づくCAL発生リスクの予測結果が表示されるのが好ましい。 The information processing device 60 preferably includes a communication unit 64. The communication unit 64 includes a processing circuit for performing processing related to communication, and transmits / receives information to / from at least one user terminal 71 via a communication network 70 such as the Internet or an intranet in a hospital. The communication unit 64 may include an antenna for this transmission / reception. The user terminal 71 is, for example, a smartphone owned by a pediatrician, a personal computer provided in a doctor's office of a hospital, or the like. When the user inputs clinical information of a KD acute phase patient to the user terminal 71, the input clinical information is transmitted from the user terminal 71 and received by the information processing device 60 via the communication network 70 and the communication unit 64. , The control unit 61 applies the received clinical information to the trained model 67 to execute a process of outputting the predicted value in the KD acute phase patient for the SS regarding the presence or absence of CAL, and the output SS predicted value is the communication unit. It is preferable that the information is transmitted from 64 and received by the user terminal 71 via the communication network 70, and the prediction result of the CAL occurrence risk based on the SS prediction value is displayed on the display of the user terminal 71.

[IgAVでPN又はPNで蛋白尿を伴う症例発生予測用の学習済みモデル生成方法]
以下に図1を用いて、本発明の他の実施形態に係る学習済みモデルの生成方法S1eを説明するにあたり、前述した生成方法S1aとの共通事項について適宜説明を省略し、生成方法S1aと異なる事項を主に説明する。生成方法S1eは、IgA血管炎(IgAV)患者での紫斑病性腎炎(PN)発生リスクを予測するためか又はPNで蛋白尿を伴う症例発生リスクを予測するための学習済みモデルを生成させるにあたり、被験者らの臨床情報取得ステップS2eと、学習前の正規化ステップS3eと、共分散構造分析ステップS4eと、学習ステップS6eと、選別ステップS7eとを含み得る。
[Learned model generation method for predicting the occurrence of PN with IgAV or proteinuria with PN]
In explaining the trained model generation method S1e according to another embodiment of the present invention with reference to FIG. 1, the common matters with the above-mentioned generation method S1a are appropriately omitted, and the method is different from the generation method S1a. I will mainly explain the matters. Generation method S1e is used to generate a trained model for predicting the risk of developing purpura nephritis (PN) in patients with IgA vasculitis (IgAV) or for predicting the risk of developing cases with proteinuria in PN. The subjects may include clinical information acquisition step S2e, pre-learning normalization step S3e, covariance structure analysis step S4e, learning step S6e, and selection step S7e.

被験者らの臨床情報取得ステップS2eでは、学習用データを作成するために、既にIgAV発症から30日以上経過してPN又はPNで蛋白尿を伴う症例発生の有無を判定された被験者らについて、各々の被験者の臨床情報と、各々の被験者でのPN又はPNで蛋白尿を伴う症例発生の有無に関する判定結果とを取得する。この臨床情報と判定結果とが生成されるまでの過程で医師が行った診断や治療の工程は、本発明やステップS2eに含まれない。なお、慢性腎炎の一種であるIgA腎症ではIgAを含む免疫複合体が主に腎臓に沈着するのに対して、IgAV合併症である紫斑病性腎炎(PN)ではIgAを含む免疫複合体が腎臓を含めて全身組織に沈着し得るという違いがある。 In the clinical information acquisition step S2e of the subjects, in order to create learning data, for each of the subjects who have already been determined to have a case with proteinuria in PN or PN 30 days or more after the onset of IgAV. The clinical information of each subject and the judgment result regarding the presence or absence of the occurrence of a case with proteinuria in PN or PN in each subject are acquired. The process of diagnosis and treatment performed by a doctor in the process until the clinical information and the determination result are generated is not included in the present invention or step S2e. In IgA nephropathy, which is a type of chronic nephritis, the immune complex containing IgA is mainly deposited in the kidney, whereas in purpura nephritis (PN), which is an IgAV complication, the immune complex containing IgA is present. The difference is that it can deposit on systemic tissues, including the kidneys.

PNの様々な症例について発生リスクを予測可能にする観点から、生成方法S1eの被験者らには、それぞれIgAV発症後にPNによる重症化の程度が異なる被験者を数多く含むほど好ましい。一般的にPNでは血尿を伴い、尿蛋白量が多いほど重症化しやすい。尿蛋白量0.5g/1.73m/day未満か、又は、早朝尿の蛋白/クレアチニン(Cr)比が0.5未満である場合、PNで軽度蛋白尿を伴う症例と診断される。尿蛋白量0.5g/1.73m/day以上1.0g/1.73m/day未満か、又は、早朝尿の蛋白/Cr比が0.5以上1.0以下である場合、PNで中等度蛋白尿を伴う症例と診断される。尿蛋白量1.0g/1.73m/day以上か、又は、早朝尿の蛋白/Cr比が1.0よりも大きい場合、PNで高度蛋白尿を伴う症例と診断される(非特許文献9参照)。特に、PNで尿蛋白量3.0g/1.73m/day以上の症例は、ネフローゼ症候群を呈しやすく重症化しやすい。生成方法S1eの被験者らには、PN陰性の被験者、PN陽性で尿蛋白量に異常ない被験者、PN陽性で軽度蛋白尿を伴う被験者、PN陽性で中等度蛋白尿を伴う被験者、PN陽性で高度蛋白尿を伴う被験者、PN陽性で尿蛋白量2.0g/1.73m/day以上の被験者、及びPN陽性で尿蛋白量3.0g/1.73m/day以上の被験者の各々を、なるべく多い人数で含むのが好ましい。被験者らの好ましい人数は、前述した生成方法S1aと同様である。 From the viewpoint of making it possible to predict the risk of occurrence of various cases of PN, it is preferable that the subjects of the generation method S1e include a large number of subjects having different degrees of aggravation due to PN after the onset of IgAV. Generally, PN is accompanied by hematuria, and the higher the amount of urinary protein, the more likely it is to become severe. If the amount of urinary protein is less than 0.5 g / 1.73 m 2 / day or the protein / creatinine (Cr) ratio in early morning urine is less than 0.5, PN is diagnosed as a case with mild proteinuria. If the amount of urinary protein is 0.5 g / 1.73 m 2 / day or more and 1.0 g / 1.73 m 2 / day or less, or if the protein / Cr ratio of early morning urine is 0.5 or more and 1.0 or less, PN The patient is diagnosed with moderate proteinuria. If the amount of urinary protein is 1.0 g / 1.73 m 2 / day or more, or if the protein / Cr ratio of early morning urine is larger than 1.0, it is diagnosed as a case with high proteinuria by PN (Non-Patent Document). 9). In particular, cases with PN having a urinary protein amount of 3.0 g / 1.73 m 2 / day or more are likely to exhibit nephrotic syndrome and become severe. Generation method S1e subjects include PN-negative subjects, PN-positive subjects with no abnormal urinary protein content, PN-positive subjects with mild proteinuria, PN-positive subjects with moderate proteinuria, and PN-positive subjects with severe proteinuria. Subjects with proteinuria, PN-positive subjects with urinary protein content of 2.0 g / 1.73 m 2 / day or more, and PN-positive subjects with urinary protein content of 3.0 g / 1.73 m 2 / day or more, respectively. It is preferable to include as many people as possible. The preferred number of subjects is the same as that of the generation method S1a described above.

生成方法S1eでの各々の被験者の臨床情報は、PN発生か又はPNで蛋白尿を伴う症例発生との間に因果関係を有しやすい臨床データである観点から、性別、IgAV急性期であり且つ抗炎症療法を受けていない時点(以下「初回治療前時点」ともいう)での月齢、初回治療前時点での全身性血管炎マーカー検査値、初回治療前時点での腹痛の有無、初回治療前時点での即時型アレルギー疾患の有無、初回治療前時点での血中IgA検査値、初回治療前時点での血中IgE検査値、初回治療前時点の後に抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた4種以上の被験者臨床データである。性別、月齢、及び間接的に示すデータについては、前述したステップS1aと同様である。 The clinical information of each subject in the generation method S1e is gender, IgAV acute phase, and from the viewpoint of clinical data that tends to have a causal relationship with the occurrence of PN or the occurrence of cases with proteinuria in PN. Age at the time of not receiving anti-inflammatory therapy (hereinafter also referred to as "before the first treatment"), systemic vasculitis marker test value before the first treatment, presence or absence of abdominal pain before the first treatment, before the first treatment Presence or absence of immediate allergic disease at the time point, blood IgA test value before the first treatment, blood IgE test value before the first treatment, number of times of receiving anti-inflammatory therapy after the time before the first treatment, and these It is the clinical data of 4 or more kinds of subjects selected from the group consisting of the data which indirectly shows any of. Gender, age, and indirect data are the same as in step S1a described above.

生成方法S1eでの全身性血管炎マーカー検査値については、生成方法S1aでの説明と概ね同様であるが、PN発生か又はPNで蛋白尿を伴う症例発生との間で因果関係を持ちやすい臨床データである観点と、小児科臨床の現場で簡便に広く活用されてきた検査値であり臨床応用しやすい観点とから、フィブリン分解産物であるDダイマー(以下「FDP・Dダイマー」ともいう)濃度の検査値が好ましい。一般的に血中FDP・Dダイマー濃度は、血栓症の判定に用いられている。初回治療前時点での腹痛の有無と、初回治療前時点での即時型アレルギー疾患の有無とは、それぞれ例えば、既に医師が各々の被験者についてIgAVと診断した際の病状の所見に基づいて、取得可能な情報である。なお、IgAV急性期に、50%の症例で急性腹痛を伴うといわれている。即時型アレルギー疾患として例えば、アナフィラキシーショック、アレルギー性鼻炎、結膜炎、気管支喘息、蕁麻疹、又はアトピー性皮膚炎などの疾患が挙げられる。血中IgA検査値と血中IgE検査値とは、それぞれ血中または血清中の濃度データである。各々の被験者が初回治療前時点の後に受けた抗炎症療法として、例えば、PSL投与、IVMP投与、シクロホスファミド投与、アザチオプリン投与、ミコフェノール酸モフェチル投与、CsA投与、及び血漿交換からなる群より選ばれた1種以上の抗炎症療法が挙げられる(非特許文献9参照)。 The test values for systemic vasculitis markers in the production method S1e are almost the same as those described in the generation method S1a, but clinical studies that tend to have a causal relationship with the occurrence of PN or the occurrence of cases with proteinuria in PN. The concentration of D-dimer (hereinafter also referred to as "FDP / D-dimer"), which is a decomposition product of fibrin, from the viewpoint of data and the viewpoint of test values that have been easily and widely used in pediatric clinical practice and are easy to apply clinically. The test value is preferable. Generally, the blood FDP / D-dimer concentration is used for determining thrombosis. The presence or absence of abdominal pain before the first treatment and the presence or absence of immediate allergic disease before the first treatment are obtained, for example, based on the findings of the medical condition when the doctor has already diagnosed IgAV for each subject. Possible information. It is said that 50% of cases are accompanied by acute abdominal pain during the acute phase of IgAV. Immediate allergic diseases include, for example, diseases such as anaphylactic shock, allergic rhinitis, conjunctivitis, bronchial asthma, urticaria, or atopic dermatitis. The blood IgA test value and the blood IgE test value are concentration data in blood or serum, respectively. The anti-inflammatory therapy received by each subject before and after the initial treatment was, for example, from the group consisting of PSL administration, IVMP administration, cyclophosphamide administration, azathioprine administration, mycophenolate mofetil administration, CsA administration, and plasma exchange. One or more selected anti-inflammatory therapies can be mentioned (see Non-Patent Document 9).

PN又はPNで蛋白尿を伴う症例発生の有無に関する判定結果は、各々の被験者で初回治療後の所定期間内(例えば、初回治療後かつIgAV発症から30日以上90日以内)に、PN発生またはPNで蛋白尿を伴う症例発生に至ったか否かを医師が既に判定した結果に関するデータである。通常、この所定期間内に血尿を伴った場合、PN発生と判定される。PNで蛋白尿を伴う症例発生に関する判定結果は、重症化しやすいPN症例の発生リスクを予測可能とすることでIgAV急性期医療の担当医が重症化を避けるための治療方針を早期決定する診断をしやすいように支援する観点から、例えば、PNで中等度以上の蛋白尿を伴う症例発生に至ったか否かの判定結果でも良く、好ましくはPNで高度蛋白尿を伴う症例発生に至ったか否かの判定結果であり、更に好ましくはPNで尿蛋白量2.0g/1.73m/day以上の症例発生に至ったか否かの判定結果であり、更により好ましくはPNで尿蛋白量3.0g/1.73m/day以上の症例発生に至ったか否かの判定結果であるのが望ましい。その他、被験者らの臨床情報取得ステップS2eの詳細は、冠動脈径に関する事項を除いて、既に説明したステップS2aと同様である。 Judgment results regarding the presence or absence of cases with proteinuria in PN or PN are determined in each subject within a predetermined period after the initial treatment (for example, after the initial treatment and within 30 to 90 days after the onset of IgAV). It is the data about the result which the doctor has already judged whether or not the case with proteinuria was caused by PN. Usually, if hematuria is accompanied within this predetermined period, it is determined that PN has occurred. Judgment results regarding the occurrence of cases with proteinuria in PN make it possible to predict the risk of occurrence of PN cases that are likely to become severe, so that the doctor in charge of acute phase IgAV medical care can make a diagnosis to determine the treatment policy to avoid the aggravation at an early stage. From the viewpoint of assisting in facilitation, for example, it may be a judgment result as to whether or not PN has led to the occurrence of cases with moderate or higher proteinuria, and preferably whether or not PN has led to the occurrence of cases with high proteinuria. This is the judgment result of whether or not a case with a urinary protein amount of 2.0 g / 1.73 m 2 / day or more was reached with PN, and more preferably with PN. It is desirable that it is a judgment result as to whether or not a case of 0 g / 1.73 m 2 / day or more has occurred. In addition, the details of the clinical information acquisition step S2e of the subjects are the same as those of step S2a already described, except for the matters relating to the coronary artery diameter.

学習前の正規化ステップS3eでは、各々の被験者の臨床情報に含まれる4種以上の被験者臨床データと、PN発生またはPNで蛋白尿を伴う症例発生の有無に関する判定結果とを、情報処理装置で演算しやすいように正規化する。判定結果を正規化する際、例えば、「PN発生あり(PN陽性)」と「PN発生なし(PN陰性)」とのいずれか一方を0に変換し、残る他方を1.0に変換するように正規化しても良い。前述したように重症化しやすいPN症例の発生リスクを予測可能とする観点では、判定結果を正規化する際、例えば「PNで中等度以上の蛋白尿を伴う症例陽性」と「PNで中等度以上の蛋白尿を伴う症例陰性」とで、好ましくは「PNで高度蛋白尿を伴う症例陽性」と「PNで高度蛋白尿を伴う症例陰性」とで、更に好ましくは「PNで尿蛋白量2.0g/1.73m/day以上の症例陽性」と「PNで尿蛋白量2.0g/1.73m/day以上の症例陰性」とで、更により好ましくは「PNで尿蛋白量3.0g/1.73m/day以上の症例陽性」と「PNで尿蛋白量3.0g/1.73m/day以上の症例陰性」とで、いずれか一方を0に変換して残る他方を1.0に変換するのが望ましい。その他、学習前の正規化ステップS3eの詳細は、既に説明したステップS3aと同様である。 In the pre-learning normalization step S3e, four or more types of subject clinical data included in the clinical information of each subject and the determination result regarding the occurrence of PN or the occurrence of a case with proteinuria in PN are processed by an information processing apparatus. Normalize to make it easier to calculate. When normalizing the judgment result, for example, one of "with PN (PN positive)" and "without PN (PN negative)" is converted to 0, and the remaining one is converted to 1.0. May be normalized to. As mentioned above, from the viewpoint of predicting the risk of developing PN cases that tend to become severe, when normalizing the judgment results, for example, "positive cases with moderate or higher proteinuria in PN" and "moderate or higher in PN". "Negative case with proteinuria", preferably "Positive case with high proteinuria in PN" and "Negative case with high proteinuria in PN", and more preferably "Amount of urinary protein in PN 2. "Positive cases of 0 g / 1.73 m 2 / day or more" and " Negative cases of 2.0 g / 1.73 m 2 / day or more of PN", and even more preferably "3. "Positive case of 0 g / 1.73 m 2 / day or more" and "Negative case of urinary protein amount 3.0 g / 1.73 m 2 / day or more with PN", one of which is converted to 0 and the remaining one It is desirable to convert to 1.0. Other details of the pre-learning normalization step S3e are the same as those of step S3a already described.

共分散構造分析ステップS4eでは、各々の被験者についてPN発生またはPNで蛋白尿を伴う症例発生との間で高い相関関係を有するSS計算値を算出するために、各々の被験者について、5種以上の観測変数と、潜在変数とを設ける。ここで5種以上の観測変数の内訳は、各々の被験者について、4種以上の被験者臨床データと、PN発生またはPNで蛋白尿を伴う症例発生の有無に関する判定結果と、である。また、「PN発生またはPNで蛋白尿を伴う症例発生の有無に関する判定結果」に係る観測変数に対して、直接的な因果関係を有すると仮定する1つ以上の潜在変数を設ける。その上で、情報処理装置に共分散構造分析を行うように演算処理を実行させ、「PN発生の有無に関する判定結果」か又は「PNで蛋白尿を伴う症例発生の有無に関する判定結果」に対して直接的な有意な因果関係が認められた潜在変数について、因子得点のデータを算出させる。この因子得点の数値データそのものか、又はこの数値データそのものを再現可能な範囲内で正規化させたデータを、各々の被験者でのPN発生リスクに関するSS計算値とする。 In the covariance structure analysis step S4e, in order to calculate the SS calculated value having a high correlation with the occurrence of PN or the occurrence of a case with proteinuria in PN for each subject, five or more kinds are calculated for each subject. An observed variable and a latent variable are provided. Here, the breakdown of the five or more observation variables is, for each subject, the clinical data of four or more subjects and the judgment result regarding the occurrence of PN or the occurrence of a case with proteinuria in PN. In addition, one or more latent variables that are assumed to have a direct causal relationship are provided for the observation variables related to "determination results regarding the occurrence of PN or the occurrence of cases with proteinuria in PN". After that, the information processing device is made to execute arithmetic processing so as to perform covariance structure analysis, and the "judgment result regarding the presence or absence of PN occurrence" or the "judgment result regarding the presence or absence of case occurrence with proteinuria in PN" is For latent variables that have a direct and significant causal relationship, factor score data is calculated. The numerical data of this factor score itself, or the data obtained by normalizing the numerical data itself within a reproducible range, is used as the SS calculated value regarding the risk of PN occurrence in each subject.

共分散構造分析ステップS4eで用いる5種以上の観測変数について、好ましい事項は先の学習前の正規化ステップS3eと同様である。2つ以上の潜在変数を設けて共分散構造分析を行う場合、PNの重症化の程度を段階別に予測可能にする観点から、PN陽性か陰性かの判定結果、PNで蛋白尿を伴う症例陽性か陰性かの判定結果、PNで中等度以上の蛋白尿を伴う症例陽性か陰性かの判定結果、PNで高度蛋白尿を伴う症例陽性か陰性かの判定結果、PNで尿蛋白量2.0g/1.73m/day以上の症例陽性か陰性かの判定結果、および、PNで尿蛋白量3.0g/1.73m/day以上の症例陽性か陰性かの判定結果、からなる群より選ばれた2種以上の判定結果をそれぞれ潜在変数として用いるのが好ましく、この場合に潜在変数として用いる判定結果の種類を多くするほど、観測変数の種類を6種以上から多く設けて共分散構造分析を行うのが好ましい。その他、共分散構造分析ステップS4eの詳細は、既に説明したステップS4aと同様である。ステップS2e、S3e、及びS4eの組み合わせは、機械学習用データを生成するステップS5eとして機能し得る。 For the five or more observation variables used in the covariance structure analysis step S4e, the preferred items are the same as in the previous normalization step S3e before learning. When covariance structure analysis is performed with two or more latent variables, the judgment result of PN positive or negative is positive for cases with proteinuria from the viewpoint of making it possible to predict the degree of PN aggravation step by step. Judgment result of negative or negative, judgment result of positive or negative in case with moderate or higher proteinuria in PN, judgment result of positive or negative in case with high proteinuria in PN, urinary protein amount 2.0 g in PN 1.73 m 2 / day or more cases positive or negative or determination results, and, PN in urine protein amount 3.0g / 1.73m 2 / day or more cases positive or negative of the determination result, from the group consisting of It is preferable to use two or more selected judgment results as latent variables, and in this case, the more types of judgment results used as latent variables, the more types of observation variables are provided from six or more, and a covariance structure. It is preferable to perform an analysis. Other details of the covariance structure analysis step S4e are the same as those of step S4a already described. The combination of steps S2e, S3e, and S4e can function as step S5e to generate machine learning data.

学習ステップS6eでは、各々の被験者の臨床情報に含まれる4種以上の被験者臨床データを入力変数としてANNの入力層に入力し、各々の被験者について先の共分散構造分析ステップS4eで得られたSS計算値を出力変数として出力層から出力するように、入力変数と出力変数との関係をANNに機械学習させて、学習済みモデルを生成する。その他、学習ステップS6eの詳細は、既に説明したステップS6aと同様である。複数の学習済みモデルを生成させた場合、予測精度を更に高める観点から、学習済みモデルごとに予測精度の高さを検証して、比較的に予測精度が高い学習済みモデルを選定する選別ステップS7eを行うのが良い。その他、選別ステップS7eの詳細は、既に説明したステップS7aと同様である。 In the learning step S6e, four or more kinds of subject clinical data included in the clinical information of each subject are input to the input layer of ANN as input variables, and the SS obtained in the previous covariance structure analysis step S4e for each subject is obtained. ANN is machine-learned about the relationship between the input variable and the output variable so that the calculated value is output from the output layer as an output variable, and a trained model is generated. Other details of the learning step S6e are the same as those of the already described step S6a. When a plurality of trained models are generated, from the viewpoint of further improving the prediction accuracy, the high prediction accuracy is verified for each trained model, and the trained model having a relatively high prediction accuracy is selected in the selection step S7e. Is good to do. Other details of the sorting step S7e are the same as those of step S7a already described.

以上に説明した生成方法S1eによれば、4種以上の被験者臨床データの例として挙げた性別、月齢、全身性血管炎マーカー検査値、腹痛の有無、即時型アレルギー疾患の有無、血中IgA検査値、及び血中IgE検査値はいずれも、IgAV急性期医療の担当医(例えば病院勤務の小児科医)が初回治療前時点で問診または検査などにより入手可能な情報である。各々の被験者は、既に初回治療を受けてPN又はPNで蛋白尿を伴う症例発生の有無を判定された者であるため、初回治療前時点の後に受けた抗炎症療法の回数や、PN又はPNで蛋白尿を伴う症例発生の有無に関する判定結果も、IgAV急性期医療の担当医が病院の小児科で入手可能な情報である。各々の被験者でのPN又はPNで蛋白尿を伴う症例発生リスクに関するSS計算値は、4種以上の被験者臨床データと、PN又はPNのうち蛋白尿を伴う症例発生の有無の判定結果とから、共分散構造分析により算出可能である。このため、生成方法S1eによれば、従来の小児科の日常診療の現場で馴染みのある検査値などの情報を用いて、学習済みモデルを生成可能である。この学習済みモデルを以下に説明するように活用すれば、予測対象者であるIgAV急性期患者でPN又はPNで蛋白尿を伴う症例発生に至るか否かを、初回治療前時点でなるべく高精度に予測可能となる。 According to the generation method S1e described above, sex, age, systemic vasculitis marker test value, presence / absence of abdominal pain, presence / absence of immediate allergic disease, blood IgA test given as examples of clinical data of four or more subjects. Both the value and the blood IgE test value are information that can be obtained by a doctor in charge of IgAV acute care (for example, a pediatrician working at a hospital) by interview or test before the first treatment. Since each subject had already received the initial treatment and was determined to have a case with proteinuria in PN or PN, the number of anti-inflammatory treatments received before and after the initial treatment and PN or PN The determination result regarding the presence or absence of a case with proteinuria is also information available to the doctor in charge of IgAV acute care in the pediatric department of the hospital. The SS calculated value regarding the risk of occurrence of proteinuria in PN or PN in each subject is determined from the clinical data of 4 or more subjects and the judgment result of the presence or absence of the occurrence of proteinuria in PN or PN. It can be calculated by covariance structure analysis. Therefore, according to the generation method S1e, it is possible to generate a trained model by using information such as test values that are familiar in the field of daily medical care in conventional pediatrics. By utilizing this trained model as described below, it is possible to determine whether or not PN or PN will lead to the occurrence of proteinuria in patients in the acute phase of IgAV, who are the predictors, with the highest possible accuracy before the initial treatment. It becomes predictable.

[IgAVでPN又はPNで蛋白尿を伴う症例発生リスク予測方法]
図6に示す本発明の他の実施形態に係る予測方法S10eは、学習済みモデルを有する情報処理装置を用いて、IgAV急性期患者でのPN発生リスクか又はPNで蛋白尿を伴う症例発生リスクを予測するための予測方法である。予測方法S10eは、被験者らの臨床情報取得ステップS2eと、学習前の正規化ステップS3eと、共分散構造分析ステップS4eと、学習ステップS6eと、選別ステップS7eと、患者の臨床情報取得ステップS12eと、予測前の正規化ステップS13eと、予測ステップS14eとを含み得る。ステップS2eからS7eは、前述した生成方法S1eと同様に行えば良い。
[Method for predicting the risk of occurrence of PN in IgAV or proteinuria in PN]
In the prediction method S10e according to another embodiment of the present invention shown in FIG. 6, the risk of PN occurrence in IgAV acute phase patients or the risk of PN accompanied by proteinuria by using an information processing apparatus having a trained model is used. It is a prediction method for predicting. The prediction method S10e includes a clinical information acquisition step S2e of the subjects, a normalization step S3e before learning, a covariance structure analysis step S4e, a learning step S6e, a selection step S7e, and a patient clinical information acquisition step S12e. , The pre-prediction normalization step S13e and the prediction step S14e may be included. Steps S2e to S7e may be performed in the same manner as in the generation method S1e described above.

患者の臨床情報取得ステップS12eでは、例えば初回治療後の所定期間内にPN発生か又はPNで蛋白尿を伴う症例発生に至るか否かを予測したいIgAV急性期患者について、初回治療前時点で入手可能な患者の臨床情報を取得する。ここで取得する患者の臨床情報は、性別、初回治療前時点での月齢、初回治療前時点での全身性血管炎マーカー検査値、初回治療前時点での腹痛の有無、初回治療前時点での血中IgA検査値、初回治療前時点での血中IgE検査値、初回治療前時点での即時型アレルギー疾患の有無、初回治療前時点の後(初回治療以降)での抗炎症療法の実施予定回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた4種以上の患者臨床データである。この臨床情報が生成されるまでの過程で医師が行った診断の工程は、本発明やステップS12eに含まれない。
In the patient clinical information acquisition step S12e, for example, an IgAV acute phase patient who wants to predict whether PN will occur within a predetermined period after the initial treatment or whether PN will lead to the occurrence of a case with proteinuria will be obtained before the initial treatment. Obtain clinical information on possible patients. The clinical information of the patients obtained here is gender, age before the first treatment, systemic vasculitis marker test value before the first treatment, presence or absence of abdominal pain before the first treatment, and before the first treatment. blood IgA test values, blood IgE test values in the first pre-treatment time, the presence or absence of immediate allergic diseases in the initial pre-treatment time, execution scheduled anti-inflammatory therapy after the initial treatment before point (first treatment later) 4 or more patient clinical data selected from the group consisting of data indicating the number of times and any of these indirectly. The step of diagnosis performed by a doctor in the process until this clinical information is generated is not included in the present invention or step S12e.

予測精度を高める観点から、患者の臨床情報取得ステップS12eで取得する4種以上の患者臨床データは、先のステップS2aで取得した4種以上の被験者臨床データと比べて、概ね同種のデータであるのが好ましい。「抗炎症療法の実施予定回数」については、初回治療前の診断で医師が既に作成した治療計画、処方計画、又はその案に基づいてデータ取得すれば良い。IgAV急性期医療に関するいわゆるエビデンスで、IgAV急性期患者の初回治療前時点での検査値などに基づいて抗炎症療法について特定の回数を実施することが推奨されている場合、その推奨されている基準に従って医師の判断を介さず自動的に「抗炎症療法の実施予定回数」が定まるように設定しても良い。その他、患者の臨床情報取得ステップS12eは、ステップS12aや先のステップS2eについて既に説明したことと同様である。ただし、先のステップS2eとは異なり、患者の臨床情報取得ステップS12eでは、患者でのPN発生またはPNで蛋白尿を伴う症例発生の有無に関する判定結果を取得することを要しない。
From the viewpoint of improving the prediction accuracy, the four or more types of patient clinical data acquired in the patient clinical information acquisition step S12e are substantially the same type of data as compared with the four or more types of subject clinical data acquired in the previous step S2a. Is preferable. Regarding the "scheduled number of times of anti-inflammatory therapy", data may be acquired based on the treatment plan, prescription plan, or the plan already prepared by the doctor in the diagnosis before the initial treatment. If the so-called evidence for IgAV acute care recommends a specific number of anti-inflammatory therapies based on pre-first treatment test values for IgAV acute care patients, the recommended criteria. Therefore, the "scheduled number of times of anti-inflammatory therapy" may be automatically determined without the judgment of a doctor. In addition, the patient's clinical information acquisition step S12e is the same as that described above for step S12a and the previous step S2e. However, unlike the previous step S2e, in the patient clinical information acquisition step S12e, it is not necessary to acquire the determination result regarding the occurrence of PN in the patient or the occurrence of a case with proteinuria in PN.

予測前の正規化ステップS13eでは、効率良く予測するために、先の患者の臨床情報取得ステップS12eで得た4種以上の患者臨床データを、情報処理装置で演算しやすいように正規化する。その他、予測前の正規化ステップS13eは、ステップS13aについて既に説明したことと同様である。 In the pre-prediction normalization step S13e, in order to make an efficient prediction, four or more types of patient clinical data obtained in the previous patient clinical information acquisition step S12e are normalized so that they can be easily calculated by the information processing apparatus. Other than that, the normalization step S13e before prediction is the same as that already described for step S13a.

予測ステップS14eでは、学習済みモデルを有する情報処理装置に、IgAV急性期患者の臨床情報に含まれる4種以上の患者臨床データを入力して、PN発生リスクか又はPNで蛋白尿を伴う症例発生リスクに関するSSについてIgAV急性期患者での予測値を出力する処理を実行させる。例えば、学習済みモデルの入力層に設けられたANごとに1種の患者臨床データ又はその正規化データ(入力変数)を入力し、学習済みモデルを有する情報処理装置に演算を実行させ、出力層に設けられたANにおいて、IgAV急性期患者でのPN発生リスクか又はPNで蛋白尿を伴う症例発生リスクに関するSS予測値(出力変数)を出力させる。 In the prediction step S14e, four or more types of patient clinical data included in the clinical information of IgAV acute phase patients are input to an information processing apparatus having a trained model, and a PN development risk or a case occurrence with proteinuria in PN occurs. For SS related to risk, the process of outputting the predicted value in IgAV acute phase patients is executed. For example, one type of patient clinical data or its normalized data (input variable) is input for each AN provided in the input layer of the trained model, and an information processing device having the trained model is made to execute an operation, and the output layer is used. In the AN provided in, the SS prediction value (output variable) regarding the risk of PN development in IgAV acute phase patients or the risk of case occurrence with proteinuria in PN is output.

重症化しやすいPN症例の発生リスクを予測可能とすることによりIgAV急性期医療の担当医が重症化を避けるための治療方針を早期決定する診断をしやすいように支援する観点から、PNで蛋白尿を伴う症例発生リスクに関するSS予測値は、例えば、PNで中等度以上の蛋白尿を伴う症例発生リスクに関するものでも良く、好ましくはPNで高度蛋白尿を伴う症例発生リスクに関するものであり、更に好ましくはPNで尿蛋白量2.0g/1.73m/day以上の症例発生のリスクに関するものであり、更により好ましくはPNで尿蛋白量3.0g/1.73m/day以上の症例発生リスクに関するものであるのが望ましい。SS予測値がここで挙げたいずれのリスクに関するかに応じて、IgAV急性期患者が陽性(発生に至る)か陰性(発生に至らない)かの判別基準であるカットオフ値の所定値が異なる。このため、さらに、予測ステップS14eでは、IgAV急性期患者でのSS予測値が所定のカットオフ値以上である場合に、この患者で予測したいPN症例の発生に至ることを示す予測結果を出力する処理を実行するように、学習済みモデルを有する情報処理装置を機能させるのが好ましい。その他、予測ステップS14eは、ステップS14aについて既に説明したことと同様である。 Proteinuria with PN from the viewpoint of helping doctors in charge of acute IgAV medical care to make early decisions on treatment policies to avoid aggravation by making it possible to predict the risk of developing PN cases that are likely to become severe. The SS predicted value regarding the risk of occurrence of a case with PN may be, for example, the risk of occurrence of a case with moderate or higher proteinuria in PN, preferably the risk of occurrence of a case with high proteinuria in PN, and more preferably. Is related to the risk of developing a case with a urinary protein content of 2.0 g / 1.73 m 2 / day or more in PN, and more preferably, a case occurrence with a urinary protein content of 3.0 g / 1.73 m 2 / day or more in PN. It should be about risk. Depending on which risk the SS prediction value relates to, the predetermined value of the cutoff value, which is a criterion for determining whether the IgAV acute phase patient is positive (leading to development) or negative (not leading to development), differs. .. Therefore, in the prediction step S14e, when the SS prediction value in the IgAV acute phase patient is equal to or higher than the predetermined cutoff value, the prediction result indicating that the PN case to be predicted in this patient is generated is output. It is preferable to operate the information processing apparatus having the trained model so as to execute the processing. Other than that, the prediction step S14e is the same as that already described for step S14a.

以上に説明した予測方法S10eによれば、各々の被験者の臨床情報に含まれる4種以上の被験者臨床データと、共分散構造分析ステップS4eで出力された各々の被験者でのSS計算値と、を用いた機械学習で生成された学習済みモデルを用いることにより、予測対象者であるIgAV急性期患者について、初回治療後にPN発生に至るか否かの指標値となるSS予測値を、初回治療前時点で高精度に得ることが可能となる。このため、例えばIgAV急性期医療の担当医がPN発生か又はPNで蛋白尿を伴う症例発生を抑える治療方針を早期決定する診断をしやすいように、支援可能である。簡便に実施可能にする観点では、予測方法S10eでのステップS2eからS7eに代えて、図7に示すように、あらかじめ生成された学習済みモデルを準備するステップS1fを含む予測方法S10であるのが好ましい。
According to the prediction method S10e described above, the clinical data of four or more kinds of subjects included in the clinical information of each subject and the SS calculated value in each subject output in the covariance structure analysis step S4e are obtained. By using the trained model generated by the machine learning used, the SS predicted value, which is an index value of whether or not PN occurs after the initial treatment, is obtained for the IgAV acute phase patient who is the prediction target before the first treatment. It is possible to obtain high accuracy at that point. Therefore, for example, it is possible to support a doctor in charge of IgAV acute care so that it is easy to make a diagnosis for early determination of a treatment policy for suppressing the occurrence of PN or the occurrence of cases with proteinuria in PN. From the viewpoint of making it easily feasible, the prediction method S10 f includes the step S1f for preparing a pre-generated trained model as shown in FIG. 7, instead of the steps S2e to S7e in the prediction method S10e. Is preferable.

[IgAVでPN発生又はPNで蛋白尿を伴う症例発生リスク予測用学習済みモデル]
本発明の他の実施形態に係る学習済みモデルは、IgAV患者でのPN発生リスクか又はPNで蛋白尿を伴う症例発生リスクを予測するための学習済みモデルである。この学習済みモデルは、既にIgAV急性期医療における初回治療後の所定期間内にPN発生か又はPNで蛋白尿を伴う症例発生の有無を判定された被験者らについて、各々の被験者の臨床情報が図に示すANN1の入力層2に入力され、出力層8がPN発生リスクに関するSSについて各々の被験者での計算値を出力するように、前述した数式で示した重み付け値Wijが機械学習されたものである。この学習済みモデルは、入力層にIgAV急性期患者の臨床情報が入力される場合には、入力されるIgAV急性期患者の臨床情報に対して重み付け値Wijに基づく演算を行い、出力層からIgAV急性期患者でのSS予測値を出力するように、情報処理装置を機能させるためのものである。例えば図6に示す予測方法S10e又は図7に示す予測方法S10fを実施する者は、この学習済みモデルを有する情報処理装置を使用することとなる。この情報処理装置は、図8を用いて既に説明した情報処理装置60と同様に構成しても良い。
[Learned model for predicting the risk of PN development in IgAV or proteinuria in PN]
The trained model according to another embodiment of the present invention is a trained model for predicting the risk of developing PN in IgAV patients or the risk of developing a case with proteinuria in PN. This trained model shows the clinical information of each subject who has already been determined to have PN or a case with proteinuria in PN within a predetermined period after the initial treatment in IgAV acute care. 5 is input to the input layer 2 of ANN1 shown in the output layer 8 so as to output the calculated value in each subject for SS relates PN risk weighting value W ij indicated by equation 5 described above are machine learning It is a thing. The learned model, if the clinical information of IgAV acute patients to the input layer is inputted, performs a calculation based on the weighting value W ij relative to the clinical information IgAV acute patient input, from the output layer The purpose is to make the information processing apparatus function so as to output the SS predicted value in the IgAV acute phase patient. For example, a person who implements the prediction method S10e shown in FIG. 6 or the prediction method S10f shown in FIG. 7 will use an information processing apparatus having this trained model. This information processing device may be configured in the same manner as the information processing device 60 already described with reference to FIG.

本発明は、その趣旨を逸脱しない範囲で当業者の知識に基づいて種々なる改良、修正、又は変形を加えた態様でも実施できる。また、同一の作用または効果が生じる範囲内で、いずれかの発明特定事項を他の技術に置換した形態で実施しても良い。 The present invention can also be carried out in a mode in which various improvements, modifications, or modifications are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention. Further, within the range in which the same action or effect is produced, any of the invention-specific matters may be replaced with another technique.

以下に本発明の実施例などを説明するが、本発明は以下の実施例に限定されない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.

[KDでのCAL発生予測:第1期研究および第2期研究]
本願発明者は、箕面市立病院でオプトアウトを用いて、後ろ向き研究を行うこととした。後ろ向き研究は、疾病の要因と発症との関連を調べる研究手法の一種である。研究開始時点から過去にふり返って、CAL発生に至った被験者らと、CAL発生に至らなかった被験者らとについて、臨床データを比較し、CAL発生に至った要因を検証することとした。箕面市立病院の倫理審査委員会は、この研究を承認し、インフォームドコンセントの必要性を断念することも承認した。全ての方法は、ヘルシンキ宣言と関連性がある指針に従って実施した。
[Prediction of CAL occurrence in KD: Phase 1 and Phase 2 studies]
The inventor of the present application decided to conduct a retrospective study using opt-out at Minoh City Hospital. Retrospective studies are a type of research method that investigates the relationship between disease factors and onset. Looking back from the start of the study to the past, we decided to compare clinical data between subjects who developed CAL and those who did not develop CAL, and to verify the factors that led to the occurrence of CAL. The Minoh City Hospital Institutional Review Board approved the study and also abandoned the need for informed consent. All methods were carried out according to the guidelines relevant to the Declaration of Helsinki.

図9に示すように、第1期研究では2002年3月から2005年の間と2008年7月から2012年4月の間に、第2期研究では2014年7月から2018年12月の間に、箕面市立病院でKDと臨床的に診断され入院した375名の小児らについて、被験者として適しているか検討した。KD診断基準で6項目の主要症状のうち3項目以下を満たした患者29名と、三次医療機関に転院した患者16名と、アナフィラキシーや薬剤性過敏症症候群などの深刻な合併症を伴った患者16名とを、除外した。残る314名の小児ら(少年185名と少女129名)を被験者らとした。この被験者らを、一次治療を受けた時期別に分けて、第1期研究の被験者ら106名と、第2期研究の被験者ら208名とに分類した。また、総合研究として、第1期研究と第2期研究との被験者を合わせて、314名を後述する第3期研究での被験者らとした。 As shown in FIG. 9, the first study was conducted between March 2002 and 2005 and the period between July 2008 and April 2012, and the second study was conducted between July 2014 and December 2018. In the meantime, we examined whether 375 children who were clinically diagnosed with KD and admitted to Minoh City Hospital were suitable as subjects. 29 patients who met 3 or less of the 6 major symptoms in the KD diagnostic criteria, 16 patients who were transferred to a tertiary care institution, and patients with serious complications such as anaphylaxis and drug-induced hypersensitivity syndrome. 16 people were excluded. The remaining 314 children (185 boys and 129 girls) were the subjects. These subjects were divided into 106 subjects from the first stage study and 208 subjects from the second stage study, according to the time of the first-line treatment. In addition, as a comprehensive study, the subjects of the 1st and 2nd phase studies were combined, and 314 subjects were selected as the subjects of the 3rd phase study, which will be described later.

前述の表3に示した佐野スコアに従い、3項目のうち2項目以上を満たす被験者らを、IVIG不応高リスクに分類した。残りの被験者らは、佐野スコアに従ってIVIG不応低リスクに分類した。図9に示すように、第1期研究では2002年3月から2005年の間、高リスクの被験者ら13名にはIVIG療法(体重1kgあたり2g/日のIVIG投与および中等量ASA投与)と1回のIVMP(30mg/kg)投与との併用療法を行い、低リスクの被験者ら34名にはIVIG療法のみを行っていた。一方、第1期研究で2008年7月から2012年4月の間、高リスクの被験者ら17名にはIVIG療法と2回のIVMP投与との併用療法を行い、低リスクの被験者ら42名にはIVIG療法と1回のIVMP投与の併用療法を行っていた。第2期研究では、高リスクの被験者ら20名にIVIG療法と2回のIVMP投与との併用療法を行ったのに対して、一次治療前時点で血清中CRP濃度が7mg/dL以上であった被験者ら113名にはIVIG療法と1回のIVMP投与との併用療法を行い、低リスクで一次治療前時点での血清中CRP濃度が7mg/dL未満であった被験者ら75名にはIVIG療法のみを行っていた。 According to the Sano score shown in Table 3 above, subjects who met 2 or more of the 3 items were classified as high risk of IVIG refractory. The remaining subjects were classified as IVIG refractory low risk according to the Sano score. As shown in FIG. 9, in the first phase study, between March 2002 and 2005, 13 high-risk subjects received IVIG therapy (2 g / day of IVIG and moderate dose of ASA per kg of body weight). Combination therapy with a single dose of IVMP (30 mg / kg) was given, and 34 low-risk subjects received only IVIG therapy. On the other hand, in the first phase study, between July 2008 and April 2012, 17 high-risk subjects received IVIG therapy and two IVMP doses in combination, and 42 low-risk subjects. Was given a combination therapy of IVIG therapy and a single dose of IVMP. In the second phase study, 20 high-risk subjects received IVIG therapy and two IVMP doses in combination, whereas serum CRP concentration was 7 mg / dL or higher before the first-line treatment. The 113 subjects received IVIG therapy in combination with a single IVMP administration, and the 75 subjects with low-risk serum CRP concentration of less than 7 mg / dL before the first-line treatment were treated with IVIG. I was only on therapy.

被験者らにKD急性期医療を行っていた当時、各々の被験者について冠動脈の拡張を評価するために、一次治療前時点と、一次治療直後と、退院時(一次治療後かつKD発症から30日以内)との3つの時点で、断層心エコー測定により、左冠動脈主幹部(LMT)の直径と、左前下行枝(LAD)近位部の直径と、右冠動脈(RCA)近位部の直径とを測定していた。各々の被験者の冠動脈直径を、前述したCoronary Z Score Calculatorにデータ入力し、LMS法により算出されたZスコアに変換した。LMT、LAD、又はRCAでZスコア最大値が3.0SD以上である場合に、CAL発生と定義した。また、上記した3つの時点で臨床試験を行い、箕面市立病院で行われている標準的な方法で血清成分を測定していた。尿中β2MG/Crは、富士フイルム和光純薬株式会社製のラテックス免疫測定キットを用いて測定していた。 At the time of KD acute care for the subjects, in order to evaluate the dilation of the coronary arteries for each subject, before the first treatment, immediately after the first treatment, and at the time of discharge (after the first treatment and within 30 days from the onset of KD) ), The diameter of the left anterior descending artery (LAD), and the diameter of the proximal right coronary artery (RCA) are determined by tomographic echocardiography. I was measuring. The coronary artery diameter of each subject was input into the above-mentioned Coronary Z Score Calculator and converted into a Z score calculated by the LMS method. When the maximum value of Z score is 3.0SD or more in LMT, LAD, or RCA, it is defined as CAL occurrence. In addition, clinical trials were conducted at the above three time points, and serum components were measured by the standard method used at Minoh City Hospital. Urinary β2MG / Cr was measured using a latex immunoassay kit manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.

以下、統計分析において、p<0.05である場合に統計的に有意と認め、0.05<p<0.10である場合に傾向があると認めるものとする。以下、スチューデントt検定、又はχ検定を行った際は、JMPバージョン8.0ソフトウェア(SAS社製)を用いた。以下、線形混合モデルにより解析を行う際は、SPSSバージョン23.0(IBM−SPSS社製)を用いた。また、第1期研究と第2期研究との被験者らのプロフィールを、次の表4に示す。第1期研究の被験者らでは、一次治療前時点の尿中β2MG/Cr対数値(Log尿中β2MG/Cr)と、一次治療前時点のIVIG不応予測スコア(佐野スコア)得点とが、高値であった。第2期研究の被験者らでは、一次治療前時点の月齢と、一次治療前時点の冠動脈直径最大値とが、高値であった。 Hereinafter, in the statistical analysis, when p <0.05, it is recognized as statistically significant, and when 0.05 <p <0.10, it is recognized that there is a tendency. Hereinafter, when the Student's t-test or the χ 2 test was performed, JMP version 8.0 software (manufactured by SAS) was used. Hereinafter, SPSS version 23.0 (manufactured by IBM-SPSS) was used when performing analysis using a linear mixed model. The profiles of the subjects in the first and second phase studies are shown in Table 4 below. In the subjects of the first phase study, the urinary β2MG / Cr logarithmic value (Log urinary β2MG / Cr) before the first treatment and the IVIG refractory prediction score (Sano score) before the first treatment were high. Met. In the subjects of the second stage study, the age at the time before the first treatment and the maximum value of the coronary artery diameter at the time before the first treatment were high.

Figure 0006986650
Figure 0006986650

第1期研究では、数名の医師により冠動脈径を測定していたため、測定値の変動があり、性別など幾つか臨床上のデータ欠損があった。このため、第1期研究では線形混合モデルを用いて解析した。一方、第2期研究では、一名の医師が冠動脈径のデータをほとんど欠失させず冠動脈直径を測定していたため、スチューデントt検定とχ検定とを行った。統計的有意性の観点とCALに共通する特徴の傾向の観点とにより、第1期研究と第2期研究とからCAL発生に至った危険因子を特定する変数を選定することとした。なお、予備的に、ロジスチック回帰分析により、好中球数、血中ナトリウム濃度、アルブミン等の検査値データが役立つ可能性を調査したが、CAL発生の予測に顕著な効果を見出せなかった。ヘマトクリット値については、PubMed Central(登録商標)で検索したが、CAL発生の予測因子としての有用性を見出せなかった。 In the first phase study, the coronary artery diameter was measured by several doctors, so the measured values fluctuated and there were some clinical data deficiencies such as gender. Therefore, in the first phase of the study, analysis was performed using a linear mixed model. On the other hand, in the second phase study, one doctor measured the coronary artery diameter with almost no deletion of the coronary artery diameter data, so the Student's t-test and the χ 2 test were performed. From the viewpoint of statistical significance and the viewpoint of the tendency of characteristics common to CAL, we decided to select variables that identify the risk factors that led to the occurrence of CAL from the first and second phase studies. Preliminarily, we investigated the possibility that test value data such as neutrophil count, blood sodium concentration, and albumin would be useful by logistic regression analysis, but we could not find any significant effect in predicting the occurrence of CAL. The hematocrit value was searched in PubMed Central®, but no usefulness as a predictor of CAL occurrence was found.

線形混合モデルを用いた解析の結果、第1期研究で、CAL発生と関係がある変数はなかった。しかし、線形混合モデルで、Log尿中β2MG/Crの平均値はCAL発生と統計的に有意な正の関連性を示し(p=0.034)、血清中CRP濃度の偏差値もCAL発生と統計的に有意な正の関連性を示した(p=0.002)。さらに、アスパラギン酸アミノトランスフェラーゼ(AST)濃度の平均値もCAL発生と統計的に有意な正の関連性を示した(p=0.064)。第2期研究で、一次治療前時点でのLog尿中β2MG/Cの最大値がCAL発生と統計的に有意な正の関連性を示し(p=0.0175)、CAL発生と顕著に関係ある疾患の再燃はCAL発生と統計的に有意な正の関連性を示し(p=0.0175)、一次治療前時点での血清中CRP濃度の最大値もCAL発生と統計的に有意な正の関連性を示した(p=0.0855)。第1期研究と第2期研究とで共通する特徴に基づき、CAL発生と関係ある危険因子の候補として、一次治療前時点での尿中β2MG/Crの最大値と、一次治療前時点での血中CRP濃度とが選定された。多変量ロジスチック回帰分析において、それぞれ、尿中β2MG/Crの最大値はCAL発生と統計的に有意な正の関連性を示す因子であり(p=0.063)、一次治療前時点での冠動脈直径の最大値はCAL発生と統計的に著しく有意な正の関連性を示す因子であること(p<0.0001)が示唆された。
As a result of analysis using a linear mixed model, there were no variables related to CAL generation in the first phase study. However, in the linear mixed model, the mean value of β2MG / Cr in Log urine showed a statistically significant positive association with the occurrence of CAL (p = 0.034), and the deviation value of the serum CRP concentration was also the occurrence of CAL. A statistically significant positive association was shown (p = 0.002). In addition, the mean aspartate aminotransferase (AST) concentration also showed a statistically significant positive association with CAL development (p = 0.064). In the second phase study, showed a statistically significant positive association maximum value of Log urine 32MG / C r of the primary pre-treatment time point and CAL generation (p = 0.0175), CAL generating a significantly Relapse of related disease showed a statistically significant positive association with CAL development (p = 0.0175), and the maximum serum CRP concentration before first-line treatment was also statistically significant with CAL development. It showed a positive association (p = 0.0855). Based on the characteristics common to both the 1st and 2nd studies, the maximum value of urinary β2MG / Cr before the first-line treatment and the maximum value of β2MG / Cr at the time before the first-line treatment are candidates for risk factors related to the occurrence of CAL. The blood CRP concentration was selected. In multivariate logistic regression analysis, the maximum value of β2MG / Cr in urine is a factor showing a statistically significant positive association with CAL development (p = 0.063), respectively, and the coronary arteries at the time before first-line treatment. It was suggested that the maximum diameter is a factor showing a statistically significant positive association with CAL development (p <0.0001).

SEMによる平均共分散構造分析を行うために、AMOS23.0(IBM−SPSS社製)を用いてパスモデルを作成した。作成の際、各々の被験者の臨床的背景として、性別と、一次治療前時点での月齢とを選んだ。KDと関係ある因子として、一次治療前時点でのIVIG不応予測スコア(佐野スコア)の得点に基づくIVIG不応高リスク該当の有無と、一次治療でIVMP投与を受けた回数とを選んだ。説明因子として、一次治療前時点でのLog尿中β2MG/Crの最大値と、一次治療前時点での血清中CRP濃度とを選んだ。ここで選んだ6種の被験者臨床データと、各々の被験者で一次治療直後または退院時(一次治療後かつKD発症から30日以内)に冠動脈径を測定してZスコアの値が3.0SD以上である場合にCAL発生に至ったとの基準で判定した結果とを、それぞれ観測変数としてパスモデルを作成し、平均共分散構造分析を行い、潜在変数の因子得点に関するデータであるSS計算値を算出させた。 A path model was created using AMOS23.0 (manufactured by IBM-SPSS) in order to perform mean covariance structure analysis by SEM. At the time of preparation, gender and age at the time before first-line treatment were selected as the clinical background of each subject. As factors related to KD, the presence or absence of high risk of IVIG refractory based on the score of the IVIG refractory prediction score (Sano score) at the time before the first-line treatment and the number of times of receiving IVMP in the first-line treatment were selected. As explanatory factors, the maximum value of Log urinary β2MG / Cr at the time before the first-line treatment and the serum CRP concentration at the time before the first-line treatment were selected. The clinical data of the 6 subjects selected here and the coronary artery diameter measured immediately after the first treatment or at the time of discharge (after the first treatment and within 30 days from the onset of KD) in each subject, the Z score value is 3.0 SD or more. A path model is created as an observation variable based on the result of judgment based on the criteria that CAL has occurred in the case of I let you.

スチューデントt検定を用いて、CAL発生の有無に関する判定結果と、SS計算値との間で、統計的有意性を分析した。図10に示す第1期研究のパスモデルでは、0.3を上回る相関係数とp<0.002という有意なp値とを示した複数の変数について、これらの変数間に複数のパスを選定した。図11に示す第2期研究のパスモデルでは、0.3を上回る相関係数とp<0.0001という有意なp値とに基づいて、潜在変数とCAL発生判定結果との間の標準化されたパスで最大の係数値を示した複数のパスを選定した。 Using the Student's t-test, the statistical significance was analyzed between the judgment result regarding the presence or absence of CAL occurrence and the SS calculated value. In the path model of the first study shown in FIG. 10, for a plurality of variables showing a correlation coefficient of more than 0.3 and a significant p-value of p <0.002, a plurality of paths were set between these variables. Selected. In the path model of the second study shown in FIG. 11, the latent variable and the CAL occurrence determination result are standardized based on the correlation coefficient exceeding 0.3 and the significant p-value of p <0.0001. Multiple paths showing the maximum coefficient value were selected.

以下、本願発明者が行った後ろ向き研究での平均共分散構造分析では、RMSEA値が0.080未満、且つ、パスモデルの適合に関するR値が0.95を上回る場合に、統計学的有意性があり信頼できる統計モデルとして扱うこととした。また、RMSEA値が0.050未満で、AIC値が70未満で、CFI(comparative fit index)値が0.95よりも大きく、及びパスモデルの適合に関するR値が1.000である場合に、更に統計的有意性があり信頼できる統計モデルと判断した。図10に示す第1期研究のパスモデルと、図11に示す第2期研究のパスモデルとで、次の値に基づき優れた適合(統計的有意性)が示された。RMSEA値は、第1期研究と第2期研究とで各々p<0.0001であった。AICは、第1期研究で65、第2期研究で61であった。CFIは、第1期研究と第2期研究とで各々1.000であった。7種の観測変数と1つの潜在変数とを用いたパスモデルの適合に関するR値は、第1期研究と第2期研究とで各々1.000であった。標準化直接効果として、潜在変数と「CAL発生の有無に関する判定結果」に係る観測変数との標準化パス係数は、第1期研究で0.80(p<0.001)、第2期研究で0.76(p<0.001)であった。これらの結果から、図10に示す第1期研究のパスモデルで設けた潜在変数と、図11に示す第2期研究のパスモデルで設けた潜在変数との各々で、「CAL発生の有無に関する判定結果」に係る観測変数に対して直接的な有意な因果関係が認められた。 Hereinafter, when the average covariance structure analysis in retrospective studies by the present inventors has performed less than RMSEA value 0.080 and, where R 2 values for adaptation of the path model exceeds 0.95, statistically significant We decided to treat it as a sexual and reliable statistical model. Further, in RMSEA value is less than 0.050, in AIC value is less than 70, CFI (comparative fit index) value is greater than 0.95, and to fit the path model when R 2 value is 1.000 , Furthermore, it was judged to be a statistically significant and reliable statistical model. The path model of the first phase study shown in FIG. 10 and the path model of the second phase study shown in FIG. 11 showed excellent conformity (statistical significance) based on the following values. The RMSEA value was p <0.0001 in the first and second phase studies, respectively. The AIC was 65 in the first study and 61 in the second study. The CFI was 1.000 for each of the first and second phase studies. R 2 values for adaptation of the path model using a seven observed variables and one latent variables were respectively 1.000 in the first phase studies and Phase 2 study. As a direct effect of standardization, the standardized path coefficient between the latent variable and the observed variable related to the "judgment result regarding the presence or absence of CAL occurrence" is 0.80 (p <0.001) in the first phase study and 0 in the second phase study. It was .76 (p <0.001). From these results, the latent variables provided in the path model of the first phase study shown in FIG. 10 and the latent variables provided in the path model of the second phase study shown in FIG. 11 were described as "presence or absence of CAL occurrence". A direct and significant causal relationship was found with respect to the observed variables related to "judgment results".

図13に示すように、第1期研究で、冠動脈径のZスコアが3.0SD以上であるためCAL発生ありと判定された被験者らのSS計算値は、このZスコアが3.0SD未満であるためCAL発生なしと判定された被験者らのSS計算値と比べて、著しく高値であった(p<0.0001)。第2期研究でも、図14に示すように、Zスコアが3.0SD以上でCAL発生ありと判定された被験者らのSS計算値は、Zスコアが3.0SD未満でCAL発生なしと判定された被験者らのSS計算値と比べて、著しく高値であった(p<0.0001)。このため、SS計算値の値から、CAL発生の有無に関する判定結果を推測可能であることが示唆された。SS計算値の値に基づいて、CAL陽性か又はCAL陰性かを判別するカットオフ値を決定するために、受信者動作特性(以下「ROC」という)解析を行った。ROC解析では、各々の被験者のSS計算値を用いて「(潜在変数の感度)+(潜在変数の特異度)−1」を計算して被験者らでの最大値が算出された場合に、その最大値の元になった被験者のSS計算値が、被験者らのSS計算値のカットオフ値となる。カットオフ値は、第1期研究(図13)で2.0、第2期研究(図14)で2.1であった。第1期研究と第2期研究とでカットオフ値が異なるため、臨床応用を図るにあたり、パスモデルについて、有意なp値を得ることよりも、0.30以上の相関係数を得ること方が重要と考えられる。 As shown in FIG. 13, the SS calculated values of the subjects who were judged to have CAL because the Z score of the coronary artery diameter was 3.0 SD or more in the first stage study showed that the Z score was less than 3.0 SD. Therefore, it was significantly higher than the SS calculated value of the subjects who were judged not to have CAL (p <0.0001). In the second phase study, as shown in FIG. 14, the SS calculated values of the subjects who were judged to have CAL when the Z score was 3.0 SD or more were judged to have no CAL when the Z score was less than 3.0 SD. Compared with the SS calculated values of the subjects, the values were significantly higher (p <0.0001). Therefore, it was suggested that the determination result regarding the presence or absence of CAL occurrence can be inferred from the value of the SS calculated value. A receiver operating characteristic (hereinafter referred to as “ROC”) analysis was performed to determine a cutoff value for determining whether the value is CAL positive or CAL negative based on the value of the SS calculated value. In the ROC analysis, when "(sensitivity of latent variable) + (specificity of latent variable) -1" is calculated using the SS calculated value of each subject and the maximum value among the subjects is calculated, the maximum value is calculated. The SS calculated value of the subject, which is the source of the maximum value, becomes the cutoff value of the SS calculated value of the subjects. The cutoff value was 2.0 in the first phase study (Fig. 13) and 2.1 in the second phase study (Fig. 14). Since the cutoff value differs between the 1st and 2nd phase studies, it is better to obtain a correlation coefficient of 0.30 or more for the path model rather than obtaining a significant p-value for clinical application. Is considered important.

[第3期研究(実施例1−1)]
SS計算値にCAL発生か否かを正確に判別可能な潜在的価値があるか検証するため、第3期研究では、第1期研究と第2期研究との全データを一体化させ、平均共分散構造分析によりCAL発生リスクの予測可能性を改めて検討した。図12に示す第3期研究のパスモデルでは、p<0.0001との有意なp値と、0.33以上の相関係数とを基準に用いた。このパスモデルで、RMSEA値は0.032、AIC値は65、CFI値は0.98、7種の観測変数と1つの潜在変数とを用いたパスモデル適合に関するR値は1.000であった。標準化直接効果として潜在変数と「CAL発生の有無に関する判定結果」に係る観測変数との標準化パス係数は1.47(p<0.001)であり、標準化総合効果として標準化パス係数が0.741(p<0.001)であった。これらの結果から、第3期研究のパスモデルで設けた潜在変数で、「CAL発生の有無に関する判定結果」に係る観測変数に対して直接的な有意な因果関係が認められた。第3期研究では、図15に示すように、SS計算値を用いたCAL発生の判別に優れており(p<0.0001)、ROC解析によるSS計算値のカットオフ値は2.0であった。
[Phase 3 study (Example 1-1)]
In order to verify whether the SS calculated value has a potential value that can accurately determine whether or not CAL has occurred, in the 3rd phase study, all the data from the 1st phase study and the 2nd phase study are integrated and averaged. The predictability of CAL occurrence risk was reexamined by covariance structure analysis. In the path model of the third phase study shown in FIG. 12, a significant p-value of p <0.0001 and a correlation coefficient of 0.33 or more were used as a reference. In this path model, RMSEA value 0.032, AIC value 65, CFI value R 2 values for path model adaptation using the 0.98,7 or observed variables and one latent variables in 1.000 there were. As a direct standardization effect, the standardized path coefficient between the latent variable and the observed variable related to the "judgment result regarding the presence or absence of CAL occurrence" is 1.47 (p <0.001), and the standardized path coefficient is 0.741 as the overall standardization effect. It was (p <0.001). From these results, it was found that the latent variables provided in the path model of the 3rd phase study had a direct and significant causal relationship with the observed variables related to the "judgment result regarding the presence or absence of CAL occurrence". In the third phase study, as shown in FIG. 15, it is excellent in discriminating the occurrence of CAL using the SS calculated value (p <0.0001), and the cutoff value of the SS calculated value by ROC analysis is 2.0. there were.

また、図12に示す第3期研究のパスモデルで、「CAL発生の有無に関する判定結果」として冠動脈径のZスコアが2.5SD以上か否かでCAL陽性かCAL陰性かを判別するように変更して、平均共分散構造分析を行ってSS計算値を算出した。その結果、図16に示すように、Zスコアが2.5SD以上でCAL発生ありと判定された被験者らのSS計算値は、Zスコアが2.5SD未満でCAL発生なしと判定された被験者らのSS計算値と比べて、著しく高値であり(p<0.0001)、ROC解析によるSS計算値のカットオフ値は1.3であった。同様に、図12に示すパスモデルで、「CAL発生の有無に関する判定結果」としてZスコアが2.0SD以上か否かでCAL陽性かCAL陰性かを判別するように変更し、平均共分散構造分析でSS計算値を算出した。その結果、図17に示すように、Zスコアが2.0SD以上でCAL発生ありと判定された被験者らのSS計算値は、Zスコアが2.0SD未満でCAL発生なしと判定された被験者らのSS計算値と比べて、著しく高値であり(p<0.0001)、ROC解析によるSS計算値のカットオフ値は0.38であった。このように、CAL発生の定義を3.0SD以上(図15)から2.5SD以上(図16)又は2.0SD以上(図17)へ減少させるほど、SS計算値の値も減少したため、CAL発生の有無の判別に関してSS計算値の潜在能力も幾らかは減少したと考えられる。なお、潜在因子(潜在変数)が一次治療前時点での冠動脈直径最大値と関係するか否かを説明するため、入院時(一次治療前時点)での冠動脈直径最大値を含む別のSEM解析を試行したが、潜在変数と入院時での冠動脈直径最大値との直接的な関係は認められなかった(標準化パス係数0.095、p=0.25)。 In addition, in the path model of the third stage study shown in FIG. 12, it is determined whether the coronary artery diameter is CAL positive or CAL negative depending on whether the Z score of the coronary artery diameter is 2.5 SD or more as the "judgment result regarding the presence or absence of CAL occurrence". After changing, the mean covariance structure analysis was performed to calculate the SS calculated value. As a result, as shown in FIG. 16, the SS calculated values of the subjects who were determined to have CAL when the Z score was 2.5 SD or more were the subjects who were determined to have no CAL when the Z score was less than 2.5 SD. It was significantly higher than the SS calculated value of (p <0.0001), and the cutoff value of the SS calculated value by ROC analysis was 1.3. Similarly, in the path model shown in FIG. 12, the "judgment result regarding the presence or absence of CAL occurrence" is changed so as to determine whether the Z score is CAL positive or CAL negative depending on whether the Z score is 2.0 SD or more, and the average covariance structure is changed. The SS calculated value was calculated by the analysis. As a result, as shown in FIG. 17, the SS calculated values of the subjects who were determined to have CAL when the Z score was 2.0 SD or more were the subjects who were determined to have no CAL when the Z score was less than 2.0 SD. It was significantly higher than the SS calculated value of (p <0.0001), and the cutoff value of the SS calculated value by ROC analysis was 0.38. In this way, as the definition of CAL generation was reduced from 3.0 SD or more (FIG. 15) to 2.5 SD or more (FIG. 16) or 2.0 SD or more (FIG. 17), the value of the SS calculated value also decreased, and thus CAL. It is considered that the potential of the SS calculated value with respect to the determination of the presence or absence of occurrence has also decreased to some extent. In addition, in order to explain whether the latent factor (latent variable) is related to the maximum value of the coronary artery diameter at the time before the first treatment, another SEM analysis including the maximum value of the coronary artery diameter at the time of admission (before the first treatment). However, no direct relationship between the latent variable and the maximum coronary artery diameter at admission was found (standardized path coefficient 0.095, p = 0.25).

ANN解析では、図12に示す第3期研究のパスモデルで平均共分散構造分析に用いた7種の観測変数のうちから、「CAL発生の有無に関する判定結果」を除いて、残る6種の観測変数を図18に示すように6種の入力変数として選定した。また、一次治療前時点での冠動脈径の最大値も、1種の入力変数として選定した。この冠動脈径の最大値は、前述したCoronary Z Score Calculatorにデータ入力してLMS法によりZスコアに変換し、入力変数とした。残る6種の観測変数の各々は、前述した数式4で正規化させて6種の入力変数とした。出力変数は、Zスコアが3.0SD以上である場合にCAL発生と定義した場合に、SEMによる平均共分散構造分析で算出されたSS計算値とした。中間層に4つのANを有する三層型ANNにおいて、入力層に7種の入力変数を入力し、出力層で出力変数(SS計算値)を出力するように機械学習させて、統計学的モデル(学習済みモデル)を生成させた。この機械学習を繰り返して複数の学習済みモデルを生成させる際、0.01、0.02、及び0.04のオーバーフィットペナルティにより、中間層で2つから4つのノードが選定された。複数の学習済みモデルで、0.81以上のR値(r=0.9)と、五分割交差検証法のR値0.64(r=0.8)とが測定された。選定した最良の統計モデルを、実施例1−1に係る学習済みモデルとした。この学習済みモデルにおいて、図18に示す媒介変数(中間変数)H1で規定された数式6を、次に例示する。
In the ANN analysis, of the 7 observation variables used in the mean covariance structure analysis in the path model of the 3rd phase study shown in FIG. 12, the remaining 6 types are excluded except for the "judgment result regarding the presence or absence of CAL occurrence". The observed variables were selected as 6 types of input variables as shown in FIG. In addition, the maximum value of the coronary artery diameter at the time before the first-line treatment was also selected as one type of input variable. The maximum value of this coronary artery diameter was input into the above-mentioned Coronary Z Score Calculator and converted into a Z score by the LMS method, and used as an input variable. Each of the remaining 6 observation variables was normalized by the above-mentioned equation 4 to obtain 6 input variables. The output variable was the SS calculated value calculated by the average covariance structure analysis by SEM when the Z score was defined as CAL occurrence when the Z score was 3.0 SD or more. In a three-layer ANN with four ANs in the middle layer, seven types of input variables are input to the input layer, and machine learning is performed so that the output variables (SS calculated values) are output in the output layer, and a statistical model is used. (Trained model) was generated. When this machine learning was repeated to generate multiple trained models, the overfit penalties of 0.01, 0.02, and 0.04 selected two to four nodes in the middle layer. A plurality of the learned model, 0.81 or more R 2 values (r = 0.9), and were measured five-fold cross-validation of the R 2 value 0.64 (r = 0.8). The best statistical model selected was the trained model according to Example 1-1. In this trained model, the mathematical formula 6 defined by the parameter (intermediate variable) H1 shown in FIG. 18 is illustrated below.

Figure 0006986650
Figure 0006986650

実施例1−1に係る学習済みモデルで、オーバーフィットペナルティは0.02、五分割交差検証法によるR値は0.64であった。この学習済みモデルの入力層に、機械学習の際に用いた入力変数を入力し、第3期研究の各々の被験者について「CAL発生リスクに関するSS予測値」を出力させた。図19に示すように、平均共分散構造分析で算出されたSS計算値と、このSS計算値を含む学習用データで機械学習して生成された学習済みモデルから出力されたSS予測値とで、関連性の強さとしてR=0.89という高値が示された。このSS予測値により各々の被験者でCAL発生の有無を判別したところ、次の表5に示すように、C統計量(c index)0.860、感度72.7%(8/11)、及び特異度99.1%(232/234)であった。なお、一部の被験者らでは、例えば尿中β2MG/Crの臨床データが欠けていた。また、学習済みモデルは、予測に用いる複数の入力変数が一部でも欠けている被験者(例えば尿中β2MG/Crの臨床データが欠けている被験者)についてSS計算値を出力できない。このため、次の表5に示す感度と特異度との数値は、予測に用いた6種の臨床データに欠損がない被験者らに関しての結果である。 In the learned model according to Example 1-1, overfitting penalty 0.02, R 2 value by five-fold cross-validation was 0.64. The input variables used in the machine learning were input to the input layer of this trained model, and the "SS predicted value regarding the risk of CAL occurrence" was output for each subject in the third phase study. As shown in FIG. 19, the SS calculated value calculated by the mean covariance structure analysis and the SS predicted value output from the trained model generated by machine learning with the training data including this SS calculated value are used. , The high value of R 2 = 0.89 was shown as the strength of the relevance. When the presence or absence of CAL was determined in each subject based on this SS predicted value, as shown in Table 5 below, the C statistic (c index) was 0.860, the sensitivity was 72.7% (8/11), and the sensitivity was 7/11. The specificity was 99.1% (232/234). In addition, some subjects lacked clinical data of, for example, urinary β2MG / Cr. In addition, the trained model cannot output SS calculated values for subjects lacking even a part of a plurality of input variables used for prediction (for example, subjects lacking clinical data of urinary β2MG / Cr). Therefore, the numerical values of sensitivity and specificity shown in Table 5 below are the results for the subjects who have no defects in the 6 types of clinical data used for the prediction.

Figure 0006986650
Figure 0006986650

第3期研究(実施例1−1)の結果から、本願発明者は、CAL発生リスクを高精度に判別可能なSS計算値の重要性と、CAL発生リスクを高精度に予測可能な学習済みモデルの有用性とを見出した。実施例1−1の学習済みモデルを用いた予測精度は、従来のIVIG不応予測スコア(前述した表1から表3)よりも優れていると考えられる。ただし、図19で外れ値が幾らかあったため、改良の余地はある。もし将来的に、更に予測に適した観測変数や入力変数を発見できれば、更に感度を高めるように改良可能と考えられる。本願発明者が生成した学習済みモデルを活用するCAL発生リスク予測方法は、例えば、図31に示すKD急性期医療S20で、一次治療前時点での判断(S24)の際、一次治療後の判断(S36)の際、及び二次治療後の判断(S45)の際、通例であるIVIG療法(S31、S41、S51)よりも抗炎症効果に優れる他の抗炎症療法(S32からS35、S42からS44、S52からS56)を行う治療方針を早期決定する診断に貢献可能と期待される。 From the results of the third phase study (Example 1-1), the inventor of the present application has learned the importance of the SS calculated value that can discriminate the CAL occurrence risk with high accuracy and the CAL occurrence risk can be predicted with high accuracy. We found the usefulness of the model. The prediction accuracy using the trained model of Example 1-1 is considered to be superior to the conventional IVIG refractory prediction score (Tables 1 to 3 described above). However, there is room for improvement because there were some outliers in FIG. If observation variables and input variables that are more suitable for prediction can be found in the future, it will be possible to improve the sensitivity. The CAL occurrence risk prediction method utilizing the trained model generated by the inventor of the present application is, for example, in the KD acute phase medical treatment S20 shown in FIG. From (S32 to S35, S42) other anti-inflammatory therapies (S32 to S35, S42) that are superior in anti-inflammatory effect to the usual IVIG therapy (S31, S41, S51) at the time of (S36) and at the time of judgment (S45) after the second treatment. It is expected that it can contribute to the diagnosis of early determination of the treatment policy for performing S44, S52 to S56).

実施例1−1に係る学習済みモデルを臨床応用可能か検討するために、新たなデータセットで検証した。新たなデータセットには、箕面市立病院で2019年から2020年の期間内に一次治療を受けた38名のKD急性期患者の臨床データを含めた。ただ、この38名には、CAL発生に至った患者が含まれていなかった。このため、新たなデータセットには、CAL発生に至ったが除外基準に該当して除外され解析されず三次医療機関に転院したKD急性期患者2名を含めた。そのうち一名のKD急性期患者(少年)は、箕面市立病院でIVIG療法と2回のIVMP投与とで治療を受けたが、一次治療後に発熱が続いた。本願発明者はその患者(少年)を三次医療機関に転院させ、その患者は三次医療機関で血漿交換療法を受けた。残る一名のKD急性期患者(少女)は、箕面市立病院でIVIG療法とIVMP投与との併用療法を受けたが、一次治療後にもKDの主要症状が5つ持続したため、本発明者はその患者(少女)を三次医療機関に転院させ、その患者は三次医療機関でCsA経口投与と更なるIVIG療法とを受けた。実施例1−1に係る学習済みモデルに40名分の新たなデータセットを入力し、出力されたSS予測値によりCAL発生に至ったか否か判別したところ、感度50%(1/2)、及び特異度100%(38/38)であった。この調査結果は、新たなデータセットに含まれるKD急性期患者が40名という少人数であることを考慮すると、表5で前述した結果と矛盾していない。 In order to examine whether the trained model according to Example 1-1 is clinically applicable, it was verified with a new data set. The new dataset includes clinical data from 38 KD acute care patients who received first-line treatment at Minoh City Hospital between 2019 and 2020. However, these 38 patients did not include patients who developed CAL. For this reason, the new data set included two KD acute care patients who had CALs but were excluded due to the exclusion criteria and were not analyzed and were transferred to a tertiary care institution. One KD acute phase patient (boy) was treated at Minoh City Hospital with IVIG therapy and two IVMP doses, but fever continued after the first-line treatment. The inventor of the present application transferred the patient (boy) to a tertiary medical institution, and the patient received plasma exchange therapy at the tertiary medical institution. The remaining one KD acute phase patient (girl) received a combination therapy of IVIG therapy and IVMP administration at Minoh City Hospital, but the five main symptoms of KD persisted even after the first-line treatment. The patient (girl) was transferred to a tertiary care center where she received oral CsA and further IVIG therapy. When a new data set for 40 people was input to the trained model according to Example 1-1 and it was determined from the output SS predicted value whether or not CAL occurred, the sensitivity was 50% (1/2). And the specificity was 100% (38/38). The findings are consistent with the results described above in Table 5, given the small number of KD acute care patients included in the new dataset, 40.

[比較例1−1]
従来、疾病の要因と発症との関連を調べる研究では、多変量ロジスチック回帰分析が試行されており、この解析で潜在変数を設けることはできなかった。このことを考慮し、図12に示す第3期研究のパスモデルと比べて、図20に示すように潜在変数を除いた比較例1−1に係るパスモデルを作成した。このパスモデルにより平均共分散構造分析を試行したが、前述の表5に示したように全く適合していない悪い統計モデルであったため、CAL発生リスクを予測できる見込みが全くなかった。
[Comparative Example 1-1]
In the past, studies investigating the relationship between disease factors and onset have attempted multivariate logistic regression analysis, and it was not possible to set latent variables in this analysis. In consideration of this, a path model according to Comparative Example 1-1 excluding latent variables was created as shown in FIG. 20 as compared with the path model of the third stage study shown in FIG. An average covariance structure analysis was attempted using this path model, but as shown in Table 5 above, it was a bad statistical model that did not fit at all, so there was no possibility that the risk of CAL occurrence could be predicted.

[比較例1−2]
比較例1−2では、従来どおり多変量ロジスチック回帰分析でCAL発生リスクを予測しようとした。このためには、第3期研究の被験者らの臨床情報から、性別、一次治療前時点での月齢、一次治療前時点での血清中CRP濃度、一次治療前時点でのLog尿中β2MG/Cr、一次治療前時点での佐野スコアによるIVIG不応高リスク該当の有無、一次治療前時点での冠動脈直径最大値、及び一次治療でIVMP投与を受けた回数という7種の被験者臨床データをそれぞれ独立変数として抽出し、並びにCAL発生の有無に関する判定結果を目的変数として抽出して、多変量ロジスチック回帰分析を試行した。しかし、前述の表5に示したように、R=0.0615という低値で、C統計量は0.80未満であったため、従来どおりCAL発生リスクの予測精度が低かった。
[Comparative Example 1-2]
In Comparative Example 1-2, the risk of CAL occurrence was predicted by multivariate logistic regression analysis as before. To do this, based on the clinical information of the subjects in the Phase 3 study, gender, age before first-line treatment, serum CRP concentration before first-line treatment, and Log urinary β2MG / Cr before first-line treatment. Independent clinical data of 7 subjects, including the presence or absence of IVIG refractory high risk based on the Sano score before the first-line treatment, the maximum coronary artery diameter before the first-line treatment, and the number of times IVMP was administered in the first-line treatment. Multivariate logistic regression analysis was tried by extracting as a variable and extracting the judgment result regarding the presence or absence of CAL occurrence as an objective variable. However, as shown in Table 5 above, since R 2 = 0.0615 and the C statistic was less than 0.80, the prediction accuracy of the CAL occurrence risk was low as before.

[実施例1−2から実施例1−6]
前述した実施例1−1では、平均共分散構造分析で「CAL発生の有無に関する判定結果」以外に6種の被験者臨床データを観測変数とした。実施例1−2から1−6では、この6種の観測変数のうち1種を削減してもCAL発生リスクを予測可能か否か、検証した。その結果、次の表6に示すように、ある程度に高精度で予測可能なことが示唆された。
[Examples 1-2 to 1-6]
In Example 1-1 described above, six types of subject clinical data were used as observation variables in addition to the “judgment result regarding the presence or absence of CAL” in the mean covariance structure analysis. In Examples 1-2 to 1-6, it was verified whether or not the risk of CAL occurrence could be predicted even if one of the six observation variables was reduced. As a result, as shown in Table 6 below, it was suggested that the prediction could be made with a certain degree of high accuracy.

Figure 0006986650
Figure 0006986650

[実施例1−7から実施例1−15]
実施例1−1での「CAL発生の有無に関する判定結果」を除く6種の観測変数のうち2種又は3種を削減した場合に、平均共分散構造分析で統計モデルが適合するか検証した。その結果、次の表7と表8とに示すように、ある程度は適合したため、更に機械学習と組み合わせることにより、CAL発生リスクをある程度に精度良く予測可能と考えられる。
[Examples 1-7 to 1-15]
It was verified by the mean covariance structure analysis whether the statistical model fits when 2 or 3 of the 6 observation variables excluding the "judgment result regarding the presence or absence of CAL occurrence" in Example 1-1 are reduced. .. As a result, as shown in Tables 7 and 8 below, they are compatible to some extent, and it is considered that the risk of CAL occurrence can be predicted with some accuracy by further combining with machine learning.

Figure 0006986650
Figure 0006986650

Figure 0006986650
Figure 0006986650

表8に示す実施例1−13について検証したところ、標準化直接効果として潜在変数と「CAL発生の有無に関する判定結果」に係る観測変数との標準化パス係数は1.413(p<0.001)であり、標準化総合効果として標準化パス係数が0.768(p<0.001)であった。つまり、観測変数として用いる被験者臨床データの種類を、実施例1−1の6種から実施例1−13の3種に減らしても、潜在変数で「CAL発生の有無に関する判定結果」に係る観測変数に対して直接的な有意な因果関係が認められた。このため、表6から表8で挙げた他の実施例についても、標準化パス係数を検討すれば同様に、潜在変数で「CAL発生の有無に関する判定結果」に係る観測変数に対して直接的な有意な因果関係が認められるであろうと考えられる。一方、データは示さないが、6種の観測変数のうち4種以上を削減した場合、平均共分散構造分析で収束しなかった。このため、CAL発生リスク予測には、3種以上の臨床データを要すると考えられる。 When Examples 1-13 shown in Table 8 were verified, the standardized path coefficient between the latent variable and the observed variable related to the “judgment result regarding the presence or absence of CAL generation” as a direct standardization effect was 1.413 (p <0.001). As a total standardization effect, the standardization path coefficient was 0.768 (p <0.001). That is, even if the types of subject clinical data used as observation variables are reduced from 6 types in Example 1-1 to 3 types in Examples 1-13, observations related to "judgment results regarding the presence or absence of CAL occurrence" are observed with latent variables. A direct and significant causal relationship was found for the variables. Therefore, in the other examples listed in Tables 6 to 8, if the standardized path coefficient is examined, the latent variable is directly related to the observation variable related to the “judgment result regarding the presence or absence of CAL occurrence”. It is considered that a significant causal relationship will be observed. On the other hand, although no data are shown, when 4 or more of the 6 observation variables were reduced, the mean covariance structure analysis did not converge. Therefore, it is considered that three or more types of clinical data are required to predict the risk of CAL occurrence.

[IgAVにおいてPNで高度蛋白尿を伴う症例発生予測:実施例2−1]
本願発明者は、IgAV急性期患者においてPNで高度蛋白尿を伴う症例発生リスクも高精度に予測可能か検証するために、前述した第3期研究と同様にして後ろ向き研究を行った。被験者らは、1995年5月から2015年10月の間に箕面市立病院で受診し、IgAVと診断され入院治療を受けた93名の小児ら(男性:女性=43:50)であった。この小児らは、入院時(初回治療前時点)に6.2±2.2歳(平均値±SD)、入院時での即時型アレルギー疾患既往有25%、及び入院時での腹痛有60%であった。また、初回治療でPSL投与有30%、つまり、初回治療で一定期間にわたりPSL経口投与を受けた場合に1回と数えて、PSL投与を受けた回数0回が70%で、回数1回が30%であった。初回治療後かつIgAV発症から30日経過頃に診断したところ、PN発症26名(28%)であった。この26名の被験者らで尿化学検査を行い、尿蛋白/Cr比が1.0以上である場合に、PNで高度蛋白尿を伴う症例発生と判定したところ、この症例発生ありと判定されたもの10名(93名の小児らのうち11%)であった。
[Prediction of occurrence of cases with high proteinuria in PN in IgAV: Example 2-1]
The inventor of the present application conducted a retrospective study in the same manner as the above-mentioned third phase study in order to verify whether the risk of developing a case with high proteinuria in PN can be predicted with high accuracy in patients in the acute phase of IgAV. The subjects were 93 children (male: female = 43:50) who visited Minoh City Hospital between May 1995 and October 2015 and were diagnosed with IgAV and received inpatient treatment. These children were 6.2 ± 2.2 years old (mean ± SD) at admission (before initial treatment), had a history of immediate allergic disease at admission 25%, and had abdominal pain at admission 60. %Met. In addition, 30% of patients received PSL in the initial treatment, that is, 70% of the patients received PSL orally for a certain period of time, and 70% of the patients received PSL orally. It was 30%. When the diagnosis was made after the initial treatment and about 30 days after the onset of IgAV, 26 patients (28%) had PN onset. A urinary chemistry test was performed on these 26 subjects, and when the urinary protein / Cr ratio was 1.0 or higher, it was determined that a case with severe proteinuria was generated by PN, and it was determined that this case occurred. There were 10 (11% of 93 children).

単変量解析により、入院時(初回治療前時点)での末梢血液、血液生化学、及びFDP・Dダイマー値と、PNで高度蛋白尿を伴う症例で有意差(p<0.05)を示した項目と、既報での報告とから、図21に示すパスモデルを作成した際、各々の観測変数として、性別と、初回治療前時点での月齢と、初回治療前時点での血中FDP・Dダイマー濃度と、初回治療前時点での即時型アレルギー疾患の有無と、初回治療前時点での腹痛の有無と、初回治療でのPSL投与の有無と、初回治療後でのPNで高度蛋白尿を伴う症例発生の有無に関する判定結果と、を選定した。このパスモデルを用いてSEMによる平均共分散構造分析を行い、潜在変数の因子得点であるSS計算値を算出させた。なお、一部の被験者らでは、判定結果を除く6種の観測変数のうち一部の臨床データ(例えば血中FDP・Dダイマー濃度)が欠けていた。 Univariate analysis showed significant differences (p <0.05) between peripheral blood, blood biochemistry, and FDP / D dimer values at admission (before initial treatment) and cases with severe proteinuria in PN. When the path model shown in FIG. 21 was created from the above items and the reports reported in the previous report, the observed variables were gender, age at the time before the first treatment, and blood FDP at the time before the first treatment. D-dimer concentration, presence or absence of immediate allergic disease before initial treatment, presence or absence of abdominal pain before initial treatment, presence or absence of PSL administration in initial treatment, and high proteinuria in PN after initial treatment The judgment result regarding the presence or absence of the occurrence of cases accompanied by was selected. The mean covariance structure analysis by SEM was performed using this path model, and the SS calculated value which is the factor score of the latent variable was calculated. In addition, some of the subjects lacked some clinical data (for example, blood FDP / D-dimer concentration) among the 6 types of observation variables excluding the judgment result.

図21に示すパスモデルの信頼性を検討したところ、AIC値が67、CFI値が0.986、潜在変数のC統計量が0.958、RMSEA値が0.052、7種の観測変数と1つの潜在変数とを用いたパスモデル適合に関するR値が1.000であったため、信頼できる統計モデルであることが示唆された。標準化直接効果として潜在変数と「PNで高度蛋白尿を伴う症例発生の有無に関する判定結果」に係る観測変数との標準化パス係数は1.37(p<0.001)であり、標準化総合効果として標準化パス係数が0.583(p<0.001)であった。これらの結果から、パスモデルで設けた潜在変数で「PNで高度蛋白尿を伴う症例発生の有無に関する判定結果」に係る観測変数に対して直接的な有意な因果関係が認められた。平均共分散構造分析で直接的な因果関係が認められた潜在変数に係る因子得点であるSS計算値は、図22に示すように、PNで高度蛋白尿を伴う症例発生の判別に優れており(p<0.0001)、ROC解析によるSS計算値のカットオフ値は1.36であった。 When the reliability of the path model shown in FIG. 21 was examined, the AIC value was 67, the CFI value was 0.986, the C statistic of the latent variable was 0.958, the RMSEA value was 0.052, and 7 kinds of observed variables. since R 2 value on path model fit using a one latent variables were 1.000, suggesting that a reliable statistical model. As a direct standardization effect, the standardization path coefficient between the latent variable and the observation variable related to "judgment result regarding the presence or absence of cases with high proteinuria in PN" is 1.37 (p <0.001), and the standardization total effect is as follows. The standardized path coefficient was 0.583 (p <0.001). From these results, a direct and significant causal relationship was found with the latent variables provided in the path model for the observation variables related to "judgment results regarding the presence or absence of cases with high proteinuria in PN". As shown in FIG. 22, the SS calculated value, which is the factor score for the latent variable for which a direct causal relationship was found in the mean covariance structure analysis, is excellent in discriminating the occurrence of cases with high proteinuria in PN. (P <0.0001), the cutoff value of the SS calculated value by ROC analysis was 1.36.

「PNで高度蛋白尿を伴う症例発生の有無に関する判定結果」を除く6種の観測変数を、図23に示すように6種の入力変数とし、SS計算値を出力変数として、JMPバージョン8.0を用いて三層型ANNに機械学習させて、実施例2−1に係る学習済みモデルを生成させた。この学習済みモデルの入力層に、機械学習で用いた6種の入力変数を入力し、各々の被験者について「PNで高度蛋白尿を伴う症例発生リスクに関するSS予測値」を出力させた。図24に示すように、平均共分散構造分析で算出されたSS計算値と、このSS計算値を含む学習用データで機械学習して生成された学習済みモデルから出力されたSS予測値とで、関連性の強さとしてR=0.92という高値が示された。交差検証法R値は0.47であった。このSS予測値により、各々の被験者でのPNで高度蛋白尿を伴う症例発生の有無を判別したところ、次の表9に示すように、C統計量0.90、感度87.5%(7/8)、及び特異度98%(49/50)であった。 As shown in FIG. 23, 6 types of observation variables excluding "judgment result regarding the presence or absence of cases with high proteinuria in PN" are used as 6 types of input variables, and SS calculated values are used as output variables, and JMP version 8. Using 0, a three-layer ANN was machine-learned to generate a trained model according to Example 2-1. Six types of input variables used in machine learning were input to the input layer of this trained model, and "SS predicted value regarding the risk of developing a case with high proteinuria in PN" was output for each subject. As shown in FIG. 24, the SS calculated value calculated by the mean covariance structure analysis and the SS predicted value output from the trained model generated by machine learning with the training data including this SS calculated value are used. , The high value of R 2 = 0.92 was shown as the strength of the relevance. Cross-validation R 2 value was 0.47. Based on this SS prediction value, the presence or absence of cases with high proteinuria in PN in each subject was determined. As shown in Table 9 below, the C statistic was 0.90 and the sensitivity was 87.5% (7). / 8), and the specificity was 98% (49/50).

Figure 0006986650
Figure 0006986650

上記した検証の後、本願発明者は、2019年前後に箕面市立病院でIgAVと診断され入院治療を受けた7名の小児らについて、臨床データを実施例2−1に係る学習済みモデルに入力し、SS予測値を出力させた。出力されたSS予測値により、小児ら7名でのPNで高度蛋白尿を伴う症例発生リスクを予測させたところ、C統計量1.00、感度100%(1/1)、特異度80%(4/5)、C統計量1.00であった。症例数が少なく予備的な研究結果であるが、実施例2−1に係る学習済みモデルは、IgAV急性期患者でのPNで高度蛋白尿を伴う症例発生予測に使用可能であることが示唆された。この学習済みモデルは、IgAV急性期患者の初診時に、その30日ほど後の近い将来に高度蛋白尿をきたし腎機能低下に至るリスク評価の予測診断に活用できるものと期待される。 After the above verification, the inventor of the present application inputs clinical data into the trained model according to Example 2-1 for seven children who were diagnosed with IgAV at Minoh City Hospital and received inpatient treatment around 2019. Then, the SS predicted value was output. Based on the output SS prediction values, the risk of developing cases with advanced proteinuria was predicted by PN in 7 children, and the C statistic was 1.00, the sensitivity was 100% (1/1), and the specificity was 80%. (4/5), the C statistic was 1.00. Although the number of cases is small and it is a preliminary study result, it is suggested that the trained model according to Example 2-1 can be used for predicting the occurrence of cases with severe proteinuria in PN in patients in the acute phase of IgAV. rice field. It is expected that this trained model can be used for predictive diagnosis of risk assessment that causes severe proteinuria and renal dysfunction in the near future about 30 days after the initial diagnosis of patients in the acute phase of IgAV.

[比較例2−1]
図21に示す実施例2−1に係るパスモデルと比べて、図25に示すように潜在変数を除いた比較例2−1に係るパスモデルを作成した。このパスモデルにより平均共分散構造分析を試行したが、表9で前述したように適合していない悪い統計モデルであったため、PNで高度蛋白尿を伴う症例発生リスクを予測できる見込みが全くなかった。
[Comparative Example 2-1]
Compared with the path model according to Example 2-1 shown in FIG. 21, the path model according to Comparative Example 2-1 excluding the latent variable was created as shown in FIG. 25. An attempt was made to analyze the mean covariance structure using this path model, but since it was a poor statistical model that did not fit as described above in Table 9, there was no possibility that PN could predict the risk of developing cases with high proteinuria. ..

[比較例−2]
比較例−2では、従来どおり多変量ロジスチック回帰分析により、PNで高度蛋白尿を伴う症例発生リスクを予測しようとした。このためには、93名の被験者らの臨床情報から、性別、初回治療前時点での月齢、初回治療前時点での血中FDP・Dダイマー濃度、初回治療前時点での即時型アレルギー疾患の有無、初回治療前時点での腹痛の有無、及び治療でのPSL投与の有無という6種の被験者臨床データをそれぞれ独立変数として抽出し、並びに「治療後でのPNで高度蛋白尿を伴う症例発生の有無に関する判定結果」を目的変数として抽出して、多変量ロジスチック回帰分析を試行した。しかし、表9で前述したように、R=0.492という低値であったため、PNで高度蛋白尿を伴う症例発生リスクの予測精度が低かった。
[Comparative Example 2-2]
In Comparative Example 2-2, the conventionally Multivariate logistic regression analysis was attempted to predict the patients risk with high proteinuria in PN. For this purpose, from the clinical information of 93 subjects, gender, age before the first treatment, blood FDP / D-dimer concentration before the first treatment, and immediate allergic disease before the first treatment. Six types of subject clinical data, such as the presence or absence, the presence or absence of abdominal pain before the initial treatment, and the presence or absence of PSL administration in the treatment, were extracted as independent variables, and "Case occurrence with severe proteinuria in PN after treatment". The multivariate logistic regression analysis was tried by extracting "judgment result regarding the presence or absence of" as the objective variable. However, as described above in Table 9, since R 2 = 0.492, the accuracy of predicting the risk of developing a case with high proteinuria in PN was low.

[実施例2−2から実施例2−5、及び参考例2−6
実施例2−1での「PNで高度蛋白尿を伴う症例発生の有無に関する判定結果」を除く6種の観測変数のうち1種または2種を削減した場合に、平均共分散構造分析で統計モデルが適合するか検証した。その結果、次の表10に示すように、ある程度は適合したため、更に機械学習と組み合わせることにより、PNで高度蛋白尿を伴う症例発生リスクを、ある程度に精度良く予測可能と考えられる。
[Examples 2-2 to 2-5 and Reference Example 2-6 ]
Statistical by mean covariance structure analysis when one or two of the six observation variables except "judgment result regarding the presence or absence of cases with high proteinuria in PN" in Example 2-1 are reduced. We verified that the model fits. As a result, as shown in Table 10 below, it was suitable to some extent, and it is considered that the risk of occurrence of cases with high proteinuria in PN can be predicted with some accuracy by further combining with machine learning.

Figure 0006986650
Figure 0006986650

表10に示す実施例2−4について検証したところ、標準化直接効果として潜在変数と「PNで高度蛋白尿を伴う症例発生の有無に関する判定結果」に係る観測変数との標準化パス係数は1.099(p<0.001)であり、標準化総合効果として標準化パス係数が0.671(p<0.001)であった。同様に実施例2−5で検証すると、標準化直接効果として潜在変数と「PNで高度蛋白尿を伴う症例発生の有無に関する判定結果」に係る観測変数との標準化パス係数は1.352(p<0.001)であり、標準化総合効果として標準化パス係数が0.700(p<0.001)であった。つまり、観測変数として用いる被験者臨床データの種類を、実施例2−1の6種から実施例2−4や2−5の4種に減らしても、潜在変数で「PNで高度蛋白尿を伴う症例発生の有無に関する判定結果」に係る観測変数に対して直接的な有意な因果関係が認められた。このため、表10で挙げた他の実施例についても、標準化パス係数を検討すれば同様に、潜在変数で「CAL発生の有無に関する判定結果」に係る観測変数に対して直接的な有意な因果関係が認められるであろうと考えられる。一方、データは示さないが、6種の観測変数のうち3種以上を削減した場合、平均共分散構造分析で収束しなかった。このため、CAL発生リスク予測には、4種以上の臨床データを要すると考えられる。 When Examples 2-4 shown in Table 10 were verified, the standardized path coefficient between the latent variable and the observed variable related to "judgment result regarding the presence or absence of the occurrence of a case with high proteinuria in PN" as a direct standardization effect was 1.099. It was (p <0.001), and the standardized path coefficient was 0.671 (p <0.001) as a total standardization effect. Similarly, when verified in Example 2-5, the standardized path coefficient between the latent variable as a direct standardization effect and the observation variable related to "judgment result regarding the presence or absence of cases with high proteinuria in PN" is 1.352 (p <. It was 0.001), and the standardized path coefficient was 0.700 (p <0.001) as a total standardization effect. In other words, even if the types of subject clinical data used as observation variables are reduced from 6 types in Example 2-1 to 4 types in Examples 2-4 and 2-5, the latent variable is "with high proteinuria in PN." A direct and significant causal relationship was found with respect to the observation variables related to "judgment results regarding the presence or absence of cases". Therefore, in the other examples listed in Table 10, if the standardized path coefficient is examined, the latent variable is also a direct and significant causal effect with respect to the observation variable related to the "judgment result regarding the presence or absence of CAL occurrence". It is believed that the relationship will be recognized. On the other hand, although no data are shown, when 3 or more of the 6 observation variables were reduced, the mean covariance structure analysis did not converge. Therefore, it is considered that four or more kinds of clinical data are required to predict the risk of CAL occurrence.

[IgAVでのPN発生予測:実施例3−1]
本願発明者は、IgAV急性期患者でPN発生リスクも高精度に予測可能か検証するために、前述した実施例2−1と同じ被験者らの臨床情報から一部別の臨床データを抽出し、同様に後ろ向き研究を行った。図26に示すパスモデルを作成した際、各々の観測変数として、性別と、初回治療前時点での月齢と、初回治療前時点での血中IgA濃度と、初回治療前時点での血中IgE濃度と、初回治療でのPSL投与の有無と、初回治療後でのPN発生の有無に関する判定結果と、を選定した。このパスモデルを用いてSEMによる平均共分散構造分析を行い、潜在変数の因子得点であるSS計算値を算出させた。なお、PN発生の有無は、市販の尿蛋白試験紙を尿に浸して+(タンパク質濃度約30mg/dL以上)呈色が3日以上継続した場合、または、市販の尿潜血試験紙を尿に浸して+(ヘモグロビン濃度約0.06mg/dL以上もしくは赤血球濃度約20個/μL以上)呈色か++(ヘモグロビン濃度約0.15mg/dL以上もしくは赤血球濃度約50個/μL以上)呈色かが2日以上継続した場合、または、市販の尿潜血試験紙を尿に浸して+++(ヘモグロビン濃度約0.75mg/dL以上もしくは赤血球濃度約250個/μL以上)呈色が2日以上継続した場合に、PN発生ありと判定した。また、多くの被験者らで、判定結果を除く5種の観測変数のうち、血中IgA濃度および/または血中IgE濃度の臨床データが欠けていた。判定結果を除く5種の観測変数について、臨床データに欠けのない被験者らは32名であった。
[Prediction of PN generation in IgAV: Example 3-1]
In order to verify whether the risk of PN development can be predicted with high accuracy in IgAV acute phase patients, the inventor of the present application extracted some different clinical data from the clinical information of the same subjects as in Example 2-1 described above. Similarly, a retrospective study was conducted. When the path model shown in FIG. 26 was created, the observation variables were gender, age at the time before the first treatment, blood IgA concentration at the time before the first treatment, and blood IgE at the time before the first treatment. The concentration, the presence or absence of PSL administration in the initial treatment, and the judgment result regarding the presence or absence of PN generation after the initial treatment were selected. The mean covariance structure analysis by SEM was performed using this path model, and the SS calculated value which is the factor score of the latent variable was calculated. The presence or absence of PN is determined when a commercially available urinary protein test paper is immersed in urine and + (protein concentration of about 30 mg / dL or more) continues to develop for 3 days or more, or when a commercially available urinary occult blood test paper is used in urine. Soaked + (hemoglobin concentration about 0.06 mg / dL or more or red blood cell concentration about 20 / μL or more) or ++ (hemoglobin concentration about 0.15 mg / dL or more or red blood cell concentration about 50 / μL or more) Or if the urinary occult blood test paper on the market was soaked in urine for 2 days or more, +++ (hemoglobin concentration of about 0.75 mg / dL or more or red blood cell concentration of about 250 cells / μL or more) continued for 2 days or more. In that case, it was determined that PN had occurred. In addition, many subjects lacked clinical data on blood IgA concentration and / or blood IgE concentration among the five observation variables excluding the determination results. There were 32 subjects with no lack of clinical data for the 5 types of observation variables excluding the judgment results.

図26に示すパスモデルの信頼性を検討したところ、CFI値が0.979、潜在変数のC統計量が0.808、RMSEA値が0.039、6種の観測変数と1つの潜在変数とを用いたパスモデル適合に関するR値が1.000であったため、信頼できる統計モデルであることが示唆された。標準化直接効果として潜在変数と「PN発生の有無に関する判定結果」に係る観測変数との標準化パス係数は2.97(p<0.001)であり、標準化総合効果として標準化パス係数が0.426(p<0.001)であった。これらの結果から、パスモデルで設けた潜在変数で「PN発生の有無に関する判定結果」に係る観測変数に対して直接的な有意な因果関係が認められた。平均共分散構造分析で直接的な因果関係が認められたSS計算値は、図27に示すように、PN発生の判別に優れており(p<0.0001)、ROC解析によるSS計算値のカットオフ値は−0.26であった。 When the reliability of the path model shown in FIG. 26 was examined, the CFI value was 0.979, the C statistic of the latent variable was 0.808, the RMSEA value was 0.039, 6 kinds of observed variables and one latent variable. since R 2 value was 1.000 regarding path model adapted with, it was suggested that a reliable statistical model. As a direct standardization effect, the standardized path coefficient between the latent variable and the observed variable related to the "judgment result regarding the presence or absence of PN generation" is 2.97 (p <0.001), and the standardized path coefficient is 0.426 as the overall standardization effect. It was (p <0.001). From these results, it was found that the latent variables provided in the path model had a direct and significant causal relationship with the observed variables related to the "judgment result regarding the presence or absence of PN generation". As shown in FIG. 27, the SS calculated values for which a direct causal relationship was found in the mean covariance structure analysis are excellent in discriminating the occurrence of PN (p <0.0001), and the SS calculated values by ROC analysis are excellent. The cutoff value was −0.26.

「PN発生の有無に関する判定結果」を除く5種の観測変数を、図28に示すように5種の入力変数とし、SS計算値を出力変数として、JMPバージョン8.0を用いて三層型ANNに機械学習させて、実施例3−1に係る学習済みモデルを生成させた。この学習済みモデルの入力層に、機械学習で用いた5種の入力変数を入力し、各々の被験者について「PN発生リスクに関するSS予測値」を出力させた。図29に示すように、平均共分散構造分析で算出されたSS計算値と、このSS計算値を含む学習用データで機械学習して生成された学習済みモデルから出力されたSS予測値とで、関連性の強さとしてR=0.99という高値が示された。交差検証法R値は0.92であった。このSS予測値により、各々の被験者でPN発生の有無を判別したところ、次の表11に示すように、C統計量0.725、感度66.7%(6/9)、及び特異度78.3%(18/23)であった。C統計量は0.80未満であるが0.70よりは大きいため、許容範囲内にあると考えられる。 Five types of observation variables excluding "judgment result regarding the presence or absence of PN generation" are used as five types of input variables as shown in FIG. 28, and SS calculated values are used as output variables, and a three-layer type is used using JMP version 8.0. ANN was machine-learned to generate a trained model according to Example 3-1. Five types of input variables used in machine learning were input to the input layer of this trained model, and "SS predicted value regarding PN occurrence risk" was output for each subject. As shown in FIG. 29, the SS calculated value calculated by the mean covariance structure analysis and the SS predicted value output from the trained model generated by machine learning with the training data including this SS calculated value are used. , The high value of R 2 = 0.99 was shown as the strength of the relevance. Cross-validation R 2 value was 0.92. When the presence or absence of PN was determined in each subject based on this SS predicted value, as shown in Table 11 below, the C statistic was 0.725, the sensitivity was 66.7% (6/9), and the specificity was 78. It was 0.3% (18/23). The C statistic is less than 0.80 but greater than 0.70, so it is considered to be within the permissible range.

Figure 0006986650
Figure 0006986650

上記した検証の後、被験者らとは別のIgAV患者ら28名について、患者臨床データを実施例3−1に係る学習済みモデルに入力し、SS予測値を出力させたところ、感度75%(3/4)、特異度50%(12/24)であった。症例数が少なく予備的な研究結果であるが、実施例3−1に係る学習済みモデルは、IgAV急性期患者でのPN発生予測に使用可能であることが示唆された。この学習済みモデルは、IgAV急性期患者の初診時に、その30日ほど後の近い将来にPN発生に至るリスク評価の予測診断に活用できるものと期待される。 After the above verification, for 28 IgAV patients different from the subjects, the patient clinical data was input to the trained model according to Example 3-1 and the SS predicted value was output, and the sensitivity was 75% (sensitivity 75% (). It was 3/4) and had a specificity of 50% (12/24). Although the number of cases is small and it is a preliminary study result, it is suggested that the trained model according to Example 3-1 can be used for predicting the occurrence of PN in patients in the acute phase of IgAV. It is expected that this trained model can be used for predictive diagnosis of risk assessment leading to PN development in the near future, about 30 days after the initial diagnosis of patients in the acute phase of IgAV.

[比較例3−1]
図26に示す実施例3−1に係るパスモデルと比べて、図30に示すように潜在変数を除いた比較例3−1に係るパスモデルを作成した。このパスモデルにより平均共分散構造分析を試行したが、表11に示すように全く適合していない悪い統計モデルであったため、PN発生リスクを予測できる見込みが全くなかった。
[Comparative Example 3-1]
Compared with the path model according to Example 3-1 shown in FIG. 26, the path model according to Comparative Example 3-1 excluding the latent variable was created as shown in FIG. Attempted to mean covariance structure analysis by the path model, because it was bad statistical model which is not at all adapted as shown in Table 11, expected had no predictive of P N onset raw risk.

[比較例3−2]
比較例3−2では、従来どおり多変量ロジスチック回帰分析でPN発生リスクを予測しようとした。このためには、93名の被験者らの臨床情報から、性別、初回治療前時点での月齢、初回治療前時点での血中IgA濃度、初回治療前時点での血中IgE濃度、及び治療でのPSL投与の有無という5種の被験者臨床データをそれぞれ独立変数として抽出し、並びに「治療後でのPN発生の有無に関する判定結果」を目的変数として抽出して、多変量ロジスチック回帰分析を試行した。しかし、表11に示すようにR=0.122という低値で、特異度が4.3%と低すぎるため、PN発生リスクの予測精度が低かった。
[Comparative Example 3-2]
In Comparative Example 3-2, we tried to predict the risk of PN generation by multivariate logistic regression analysis as before. For this purpose, from the clinical information of 93 subjects, the sex, the age at the time before the first treatment, the blood IgA concentration at the time before the first treatment, the blood IgE concentration at the time before the first treatment, and the treatment. Multivariate logistic regression analysis was tried by extracting the clinical data of 5 types of subjects, that is, the presence or absence of PSL administration, as independent variables, and the "judgment result regarding the presence or absence of PN generation after treatment" as the objective variable. .. However, as shown in Table 11, the low value of R 2 = 0.122 and the specificity of 4.3% were too low, so that the accuracy of predicting the risk of PN occurrence was low.

Claims (9)

川崎病の患者で合併症の発生リスクを予測するための予測方法であって、
前記予測方法は、学習済みモデルを有する情報処理装置に、前記患者の臨床情報を入力して、前記合併症の発生リスクに関するサンプルスコアについて前記患者での予測値を出力する処理を実行させるステップを含み、
前記合併症は、冠動脈拡大病変であり、
前記学習済みモデルは、既に前記合併症の発生の有無を判定された被験者らにおける各々の被験者の臨床情報と、前記サンプルスコアについて前記各々の被験者での計算値との関係を機械学習させたものであり、
前記各々の被験者の臨床情報は、性別、川崎病の急性期であり且つ抗炎症療法を受けていない時点での月齢、前記時点での冠動脈径、前記時点での全身性血管炎マーカー検査値、前記時点での高サイトカイン血症マーカー検査値、前記時点での静注用免疫グロブリン(IVIG)不応予測スコアの得点、前記時点の後に前記抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた3種以上の被験者臨床データを含み、
前記サンプルスコアについて前記各々の被験者での計算値は、前記3種以上の被験者臨床データと、前記各々の被験者での前記合併症の発生の有無に関する判定結果と、を含む4種以上の観測変数が設けられて共分散構造分析が行われる場合に、前記判定結果に係る観測変数に対して直接的に有意な因果関係が認められる潜在変数の因子得点に関するデータであり、
前記患者の臨床情報は、性別、前記時点での月齢、前記時点での冠動脈径、前記時点での全身性血管炎マーカー検査値、前記時点での高サイトカイン血症マーカー検査値、前記時点でのIVIG不応予測スコアの得点、前記時点の後に前記抗炎症療法を受ける予定回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた3種以上の患者臨床データを含む、予測方法。
It is a predictive method for predicting the risk of complications in patients with Kawasaki disease.
The prediction method includes a step of inputting clinical information of the patient into an information processing apparatus having a trained model and executing a process of outputting a predicted value in the patient for a sample score regarding the risk of developing the complication. Including,
The complication is a dilated coronary artery lesion
In the trained model, the relationship between the clinical information of each subject in the subjects whose presence or absence of the complication has already been determined and the calculated value of the sample score in each subject is machine-learned. And
The clinical information of each subject is gender, age at the time of acute stage of Kawasaki disease and not receiving anti-inflammatory therapy, coronary artery diameter at the time, systemic vasculitis marker test value at the time, Hypercytokine morbidity marker test value at the time point, score of intravenous immunoglobulin (IVIG) refractory prediction score at the time point, number of times the anti-inflammatory therapy was received after the time point, and any of these. Includes clinical data of 3 or more subjects selected from the group consisting of indirectly shown data
Regarding the sample score, the calculated value in each of the subjects includes four or more observation variables including the clinical data of the three or more subjects and the judgment result regarding the presence or absence of the complication in each of the subjects. This is data on the factor scores of latent variables for which a directly significant causal relationship is observed with respect to the observed variables related to the above-mentioned determination results when the covariance structure analysis is performed.
The clinical information of the patient includes sex, age at the time point, coronary artery diameter at the time point, systemic vasculitis marker test value at the time point, hypercytokinemia marker test value at the time point, and hypercytokinemia marker test value at the time point. Prediction, including three or more patient clinical data selected from the group consisting of IVIG refractory prediction score scores, the number of times the anti-inflammatory therapy is scheduled to be received after the time point, and data indirectly indicating any of these. Method.
IgA血管炎の患者で合併症の発生リスクを予測するための予測方法であって、
前記予測方法は、学習済みモデルを有する情報処理装置に、前記患者の臨床情報を入力して、前記合併症の発生リスクに関するサンプルスコアについて前記患者での予測値を出力する処理を実行させるステップを含み、
前記合併症は、紫斑病性腎炎か又は前記紫斑病性腎炎で蛋白尿を伴う症例かであり、
前記学習済みモデルは、既に前記合併症の発生の有無を判定された被験者らにおける各々の被験者の臨床情報と、前記サンプルスコアについて前記各々の被験者での計算値との関係を機械学習させたものであり、
前記各々の被験者の臨床情報は、性別、IgA血管炎の急性期であり且つ抗炎症療法を受けていない時点での月齢、前記時点での全身性血管炎マーカー検査値、前記時点での腹痛の有無、前記時点での即時型アレルギー疾患の有無、前記時点での血中IgA検査値、前記時点での血中IgE検査値、前記時点の後に前記抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた4種以上の被験者臨床データを含み、
前記サンプルスコアについて前記各々の被験者での計算値は、前記4種以上の被験者臨床データと、前記各々の被験者での前記合併症の発生の有無に関する判定結果と、を含む5種以上の観測変数が設けられて共分散構造分析が行われる場合に、前記判定結果に係る観測変数に対して直接的に有意な因果関係が認められる潜在変数の因子得点に関するデータであり、
前記患者の臨床情報は、性別、前記時点での月齢、前記時点での全身性血管炎マーカー検査値、前記時点での腹痛の有無、前記時点での即時型アレルギー疾患の有無、前記時点での血中IgA検査値、前記時点での血中IgE検査値、前記時点の後に前記抗炎症療法を受ける予定回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた4種以上の患者臨床データを含む、予測方法。
It is a predictive method for predicting the risk of complications in patients with IgA vasculitis.
The prediction method includes a step of inputting clinical information of the patient into an information processing apparatus having a trained model and executing a process of outputting a predicted value in the patient for a sample score regarding the risk of developing the complication. Including,
The complication is purpura nephritis or the case of purpura nephritis with proteinuria.
In the trained model, the relationship between the clinical information of each subject in the subjects whose presence or absence of the complication has already been determined and the calculated value of the sample score in each subject is machine-learned. And
The clinical information of each of the above subjects includes gender, age at the time of acute IgA vasculitis and no anti-inflammatory therapy, systemic vasculitis marker test value at the time, and abdominal pain at the time. Presence / absence, presence / absence of immediate allergic disease at the time point, blood IgA test value at the time point, blood IgE test value at the time point, number of times of receiving the anti-inflammatory therapy after the time point, and any of these Includes clinical data from 4 or more subjects selected from the group consisting of data that indirectly indicate
Regarding the sample score, the calculated value in each of the subjects includes five or more observation variables including the clinical data of the four or more subjects and the judgment result regarding the presence or absence of the complication in each of the subjects. This is data on the factor scores of latent variables for which a directly significant causal relationship is observed with respect to the observed variables related to the above-mentioned determination results when the covariance structure analysis is performed.
The clinical information of the patient includes gender, age at the time point, systemic vasculitis marker test value at the time point, presence or absence of abdominal pain at the time point, presence or absence of immediate allergic disease at the time point, and time point. 4 or more selected from the group consisting of blood IgA test values, blood IgE test values at the time point, the number of times the anti-inflammatory therapy is scheduled to be received after the time point, and data indirectly indicating any of these. Prediction method, including patient clinical data.
前記抗炎症療法が、アセチルサリチル酸および/またはその塩の投与、IVIG投与、静注用メチルプレドニゾロンパルス投与、プレドニゾロン投与、インフリキシマブ投与、ウリナスタチン投与、シクロスポリンA投与、並びに血漿交換からなる群より選ばれた1種以上の治療方法である、請求項1又は請求項2に記載された予測方法。 The anti-inflammatory therapy was selected from the group consisting of administration of acetylsalicylic acid and / or a salt thereof, IVIG administration, intravenous methylprednisolone pulse administration, prednisolone administration, infliximab administration, ulinastatin administration, cyclosporine A administration, and plasma exchange. The prediction method according to claim 1 or 2, which is one or more therapeutic methods. 前記サンプルスコアについて前記患者での予測値が所定のカットオフ値以上である場合に、前記患者で前記合併症の発生に至る予測結果を出力する処理を実行するように前記情報処理装置を機能させる、請求項1から請求項3までのいずれか一項に記載された予測方法。 When the predicted value of the sample score in the patient is equal to or higher than a predetermined cutoff value, the information processing apparatus is made to function so as to execute a process of outputting the predicted result leading to the occurrence of the complication in the patient. , The prediction method according to any one of claims 1 to 3. 川崎病の患者で合併症の発生リスクを予測するための学習済みモデルの生成方法であって、
前記生成方法は、既に前記合併症の発生の有無を判定された被験者らにおける各々の被験者の臨床情報が入力層に入力されると、出力層が前記合併症の発生リスクに関するサンプルスコアについて前記各々の被験者での計算値を出力するように機械学習させて、前記学習済みモデルを生成するステップを含み、
前記合併症は、冠動脈拡大病変であり、
前記各々の被験者の臨床情報は、性別、川崎病の急性期であり且つ抗炎症療法を受けていない時点での月齢、前記時点での冠動脈径、前記時点での全身性血管炎マーカー検査値、前記時点での高サイトカイン血症マーカー検査値、前記時点でのIVIG不応予測スコアの得点、前記時点の後に前記抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた3種以上の被験者臨床データを含み、
前記サンプルスコアについて前記各々の被験者での計算値は、前記3種以上の被験者臨床データと、前記各々の被験者での前記合併症の発生の有無に関する判定結果と、を含む4種以上の観測変数が設けられて共分散構造分析が行われる場合に、前記判定結果に係る観測変数に対して直接的に有意な因果関係が認められる潜在変数の因子得点に関するデータである、学習済みモデルの生成方法。
A method for generating a trained model for predicting the risk of complications in patients with Kawasaki disease.
In the generation method, when the clinical information of each subject in the subjects whose presence or absence of the complication has already been determined is input to the input layer, the output layer describes the sample score regarding the risk of the occurrence of the complication. Including the step of generating the trained model by machine learning to output the calculated value in the subject.
The complication is a dilated coronary artery lesion
The clinical information of each subject is gender, age at the time of acute stage of Kawasaki disease and not receiving anti-inflammatory therapy, coronary artery diameter at the time, systemic vasculitis marker test value at the time, It consists of data that indirectly indicate the hypercytokinemia marker test value at the time point, the score of the IVIG refractory prediction score at the time point, the number of times the anti-inflammatory therapy was received after the time point, and any of these. Includes clinical data from 3 or more subjects selected from the group
Regarding the sample score, the calculated value in each of the subjects includes four or more observation variables including the clinical data of the three or more subjects and the judgment result regarding the presence or absence of the complication in each of the subjects. A method for generating a trained model, which is data on factor scores of latent variables for which a directly significant causal relationship is recognized with respect to the observed variables related to the above-mentioned judgment results when the covariance structure analysis is performed. ..
IgA血管炎の患者で合併症の発生リスクを予測するための学習済みモデルの生成方法であって、
前記生成方法は、既に前記合併症の発生の有無を判定された被験者らにおける各々の被験者の臨床情報が入力層に入力されると、出力層が前記合併症の発生リスクに関するサンプルスコアについて前記各々の被験者での計算値を出力するように機械学習させて、前記学習済みモデルを生成するステップを含み、
前記合併症は、紫斑病性腎炎か又は前記紫斑病性腎炎で蛋白尿を伴う症例かであり、
前記各々の被験者の臨床情報は、性別、IgA血管炎の急性期であり且つ抗炎症療法を受けていない時点での月齢、前記時点での全身性血管炎マーカー検査値、前記時点での腹痛の有無、前記時点での即時型アレルギー疾患の有無、前記時点での血中IgA検査値、前記時点での血中IgE検査値、前記時点の後に前記抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた4種以上の被験者臨床データを含み、
前記サンプルスコアについて前記各々の被験者での計算値は、前記4種以上の被験者臨床データと、前記各々の被験者での前記合併症の発生の有無に関する判定結果と、を含む5種以上の観測変数が設けられて共分散構造分析が行われる場合に、前記判定結果に係る観測変数に対して直接的に有意な因果関係が認められる潜在変数の因子得点に関するデータである、学習済みモデルの生成方法。
A method for generating a trained model for predicting the risk of complications in patients with IgA vasculitis.
In the generation method, when the clinical information of each subject in the subjects whose presence or absence of the complication has already been determined is input to the input layer, the output layer describes the sample score regarding the risk of the occurrence of the complication. Including the step of generating the trained model by machine learning to output the calculated value in the subject.
The complication is purpura nephritis or the case of purpura nephritis with proteinuria.
The clinical information of each of the above subjects includes gender, age at the time of acute IgA vasculitis and no anti-inflammatory therapy, systemic vasculitis marker test value at the time, and abdominal pain at the time. Presence / absence, presence / absence of immediate allergic disease at the time point, blood IgA test value at the time point, blood IgE test value at the time point, number of times of receiving the anti-inflammatory therapy after the time point, and any of these Includes clinical data from 4 or more subjects selected from the group consisting of data that indirectly indicate
Regarding the sample score, the calculated value in each of the subjects includes five or more observation variables including the clinical data of the four or more subjects and the judgment result regarding the presence or absence of the complication in each of the subjects. A method for generating a trained model, which is data on factor scores of latent variables for which a directly significant causal relationship is recognized with respect to the observed variables related to the above-mentioned judgment results when the covariance structure analysis is performed. ..
川崎病の患者で合併症の発生リスクを予測するための学習済みモデルであって、
前記学習済みモデルは、既に前記合併症の発生の有無を判定された被験者らにおける各々の被験者の臨床情報が入力層に入力され、出力層が前記合併症の発生リスクに関するサンプルスコアについて前記各々の被験者での計算値を出力するように重み付け値が機械学習されたものであり、且つ、前記入力層に前記患者の臨床情報が入力される場合には、入力される前記患者の臨床情報に対して前記重み付け値に基づく演算を行い、前記出力層から前記サンプルスコアについて前記患者での予測値を出力するように情報処理装置を機能させるためのものであり、
前記合併症は、冠動脈拡大病変であり、
前記各々の被験者の臨床情報は、性別、川崎病の急性期であり且つ抗炎症療法を受けていない時点での月齢、前記時点での冠動脈径、前記時点での全身性血管炎マーカー検査値、前記時点での高サイトカイン血症マーカー検査値、前記時点でのIVIG不応予測スコアの得点、前記時点の後に前記抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた3種以上の被験者臨床データを含み、
前記サンプルスコアについて前記各々の被験者での計算値は、前記3種以上の被験者臨床データと、前記各々の被験者での前記合併症の発生の有無に関する判定結果と、を含む4種以上の観測変数が設けられて共分散構造分析が行われる場合に、前記判定結果に係る観測変数に対して直接的に有意な因果関係が認められる潜在変数の因子得点に関するデータであり、
前記患者の臨床情報は、性別、前記時点での月齢、前記時点での冠動脈径、前記時点での全身性血管炎マーカー検査値、前記時点での高サイトカイン血症マーカー検査値、前記時点でのIVIG不応予測スコアの得点、前記時点の後に前記抗炎症療法を受ける予定回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた3種以上の患者臨床データを含む、学習済みモデル。
A trained model for predicting the risk of complications in patients with Kawasaki disease
In the trained model, the clinical information of each subject in the subjects whose presence or absence of the complication has already been determined is input to the input layer, and the output layer is the sample score regarding the risk of the complication. When the weighted value is machine-learned so as to output the calculated value in the subject and the clinical information of the patient is input to the input layer, the input clinical information of the patient is obtained. The purpose is to make the information processing device function so as to perform an operation based on the weighted value and output a predicted value of the sample score in the patient from the output layer.
The complication is a dilated coronary artery lesion
The clinical information of each subject is gender, age at the time of acute stage of Kawasaki disease and not receiving anti-inflammatory therapy, coronary artery diameter at the time, systemic vasculitis marker test value at the time, It consists of data that indirectly indicate the hypercytokinemia marker test value at the time point, the score of the IVIG refractory prediction score at the time point, the number of times the anti-inflammatory therapy was received after the time point, and any of these. Includes clinical data from 3 or more subjects selected from the group
Regarding the sample score, the calculated value in each of the subjects includes four or more observation variables including the clinical data of the three or more subjects and the judgment result regarding the presence or absence of the complication in each of the subjects. This is data on the factor scores of latent variables for which a directly significant causal relationship is observed with respect to the observed variables related to the above-mentioned determination results when the covariance structure analysis is performed.
The clinical information of the patient includes sex, age at the time point, coronary artery diameter at the time point, systemic vasculitis marker test value at the time point, hypercytokinemia marker test value at the time point, and hypercytokinemia marker test value at the time point. Learning, including three or more patient clinical data selected from the group consisting of IVIG refractory prediction score scores, the number of times the anti-inflammatory therapy is scheduled to be received after the time point, and data indirectly indicating any of these. Finished model.
IgA血管炎の患者で合併症の発生リスクを予測するための学習済みモデルであって、
前記学習済みモデルは、既に前記合併症の発生の有無を判定された被験者らにおける各々の被験者の臨床情報が入力層に入力され、出力層が前記合併症の発生リスクに関するサンプルスコアについて前記各々の被験者での計算値を出力するように重み付け値が機械学習されたものであり、且つ、前記入力層に前記患者の臨床情報が入力されるときには、入力される前記患者の臨床情報に対して前記重み付け値に基づく演算を行い、前記出力層から前記サンプルスコアについて前記患者での予測値を出力するように情報処理装置を機能させるためのものであり、
前記合併症は、紫斑病性腎炎か又は前記紫斑病性腎炎で蛋白尿を伴う症例かであり、
前記各々の被験者の臨床情報は、性別、IgA血管炎の急性期であり且つ抗炎症療法を受けていない時点での月齢、前記時点での全身性血管炎マーカー検査値、前記時点での腹痛の有無、前記時点での即時型アレルギー疾患の有無、前記時点での血中IgA検査値、前記時点での血中IgE検査値、前記時点の後に抗炎症療法を受けた回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた4種以上の被験者臨床データを含み、
前記サンプルスコアについて前記各々の被験者での計算値は、前記4種以上の被験者臨床データと、前記各々の被験者での前記合併症の発生の有無に関する判定結果と、を含む5種以上の観測変数が設けられて共分散構造分析が行われる場合に、前記判定結果に係る観測変数に対して直接的に有意な因果関係が認められる潜在変数の因子得点に関するデータであり、
前記患者の臨床情報は、性別、前記時点での月齢、前記時点での全身性血管炎マーカー検査値、前記時点での腹痛の有無、前記時点での即時型アレルギー疾患の有無、前記時点での血中IgA検査値、前記時点での血中IgE検査値、前記時点の後に前記抗炎症療法を受ける予定回数、及びこれらのいずれかを間接的に示すデータからなる群より選ばれた4種以上の患者臨床データを含む、学習済みモデル。
A trained model for predicting the risk of complications in patients with IgA vasculitis.
In the trained model, the clinical information of each subject in the subjects whose presence or absence of the complication has already been determined is input to the input layer, and the output layer is the sample score regarding the risk of the complication. When the weighted value is machine-learned so as to output the calculated value in the subject and the clinical information of the patient is input to the input layer, the input clinical information of the patient is described as described above. The purpose is to make the information processing device function so as to perform an operation based on the weighted value and output the predicted value of the patient for the sample score from the output layer.
The complication is purpura nephritis or the case of purpura nephritis with proteinuria.
The clinical information of each of the above subjects includes gender, age at the time of acute IgA vasculitis and no anti-inflammatory therapy, systemic vasculitis marker test value at the time, and abdominal pain at the time. Presence or absence, presence or absence of immediate allergic disease at the time point, blood IgA test value at the time point, blood IgE test value at the time point, number of times of receiving anti-inflammatory therapy after the time point, and any of these Includes clinical data of 4 or more subjects selected from the group consisting of data indirectly indicating
Regarding the sample score, the calculated value in each of the subjects includes five or more observation variables including the clinical data of the four or more subjects and the judgment result regarding the presence or absence of the complication in each of the subjects. This is data on the factor scores of latent variables for which a directly significant causal relationship is observed with respect to the observed variables related to the above-mentioned determination results when the covariance structure analysis is performed.
The clinical information of the patient includes gender, age at the time point, systemic vasculitis marker test value at the time point, presence or absence of abdominal pain at the time point, presence or absence of immediate allergic disease at the time point, and time point. 4 or more selected from the group consisting of blood IgA test values, blood IgE test values at the time point, the number of times the anti-inflammatory therapy is scheduled to be received after the time point, and data indirectly indicating any of these. Trained model containing patient clinical data from.
前記学習済みモデルが記憶される記憶部と、
前記患者の臨床情報が入力された場合に、入力された前記患者の臨床情報を前記学習済みモデルに適用して、前記サンプルスコアについて前記患者での予測値を出力する処理を実行する処理部と、
を備える、請求項7又は請求項8に記載された学習済みモデルを有する情報処理装置。
A storage unit in which the trained model is stored and
When the clinical information of the patient is input, the processing unit that applies the input clinical information of the patient to the trained model and outputs the predicted value of the sample score in the patient. ,
The information processing apparatus having the trained model according to claim 7 or 8.
JP2021118250A 2020-07-16 2021-07-16 Method for predicting the risk of complications in Kawasaki disease or IgA vasculitis, trained model and its generation method Active JP6986650B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020122464 2020-07-16
JP2020122464 2020-07-16

Publications (2)

Publication Number Publication Date
JP6986650B1 true JP6986650B1 (en) 2021-12-22
JP2022019701A JP2022019701A (en) 2022-01-27

Family

ID=79193188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021118250A Active JP6986650B1 (en) 2020-07-16 2021-07-16 Method for predicting the risk of complications in Kawasaki disease or IgA vasculitis, trained model and its generation method

Country Status (1)

Country Link
JP (1) JP6986650B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114881124A (en) * 2022-04-21 2022-08-09 北京百度网讯科技有限公司 Method and device for constructing cause-and-effect relationship diagram, electronic equipment and medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408000B1 (en) 2022-06-20 2024-01-04 威久 山本 At least one method for estimating and predicting fractures due to osteoporosis, fracture score output method, learning model generation method, learning model, method for estimating risk factors for osteoporosis fractures, graph creation method, program, information processing device, and learning data set How to make

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099482A (en) * 2004-09-29 2006-04-13 Toshiba Corp Analysis support system and analysis support program
US10634687B2 (en) * 2012-07-16 2020-04-28 The Board Of Regents Of The University Of Texas System Serum biomarker screen for the diagnosis of clinical and preclinical alzheimer's disease
JP6703412B2 (en) * 2016-02-04 2020-06-03 花王株式会社 Aroma creation support method
JP6533930B1 (en) * 2018-08-23 2019-06-26 一般社団法人日本農業フロンティア開発機構 Method of calculating disease evaluation index, apparatus, system, program, and model creation method for calculating disease evaluation index

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114881124A (en) * 2022-04-21 2022-08-09 北京百度网讯科技有限公司 Method and device for constructing cause-and-effect relationship diagram, electronic equipment and medium

Also Published As

Publication number Publication date
JP2022019701A (en) 2022-01-27

Similar Documents

Publication Publication Date Title
Ahmadi et al. Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review
Brady et al. The HEART score: A guide to its application in the emergency department
Miranda et al. Detection of cardiovascular disease risk's level for adults using naive Bayes classifier
US20110202486A1 (en) Healthcare Information Technology System for Predicting Development of Cardiovascular Conditions
Gautier et al. Artificial intelligence and diabetes technology: a review
Miller et al. Stress CMR reduces revascularization, hospital readmission, and recurrent cardiac testing in intermediate-risk patients with acute chest pain
JP6986650B1 (en) Method for predicting the risk of complications in Kawasaki disease or IgA vasculitis, trained model and its generation method
JP2023062032A (en) Decision tree based systems and methods for estimating risk of acute coronary syndrome
Oh et al. Reinforcement learning-based expanded personalized diabetes treatment recommendation using South Korean electronic health records
Suzan et al. A Fuzzy Dematel Method to evaluate the most common diseases in internal medicine
Hsu A decision-making mechanism for assessing risk factor significance in cardiovascular diseases
Kocks et al. Diagnostic performance of a machine learning algorithm (Asthma/Chronic Obstructive Pulmonary Disease [COPD] Differentiation Classification) tool versus primary care physicians and pulmonologists in asthma, COPD, and asthma/COPD overlap
Herrgårdh et al. Digital twins and hybrid modelling for simulation of physiological variables and stroke risk
Gholami et al. Self-supervised learning for improved optical coherence tomography detection of macular telangiectasia type 2
Choi et al. Pre-test probability for coronary artery disease in patients with chest pain based on machine learning techniques
Yun et al. Construction of Risk Prediction Model of Type 2 Diabetic Kidney Disease Based on Deep Learning
Moualla et al. Artificial intelligence-enabled predictive model of progression from moderate to severe aortic stenosis
Shickel et al. DeepSOFA: a real-time continuous acuity score framework using deep learning
Chan et al. Investigation of diabetic microvascular complications using data mining techniques
Ramanathan et al. Prediction of coronary artery disease using artificial intelligence–a systematic literature review
Wang et al. Prediction of target range of intact parathyroid hormone in hemodialysis patients with artificial neural network
Tiwari et al. Machine Learning Classification of Alzheimer's Disease Stages Using Cerebrospinal Fluid Biomarkers Alone
JP7408000B1 (en) At least one method for estimating and predicting fractures due to osteoporosis, fracture score output method, learning model generation method, learning model, method for estimating risk factors for osteoporosis fractures, graph creation method, program, information processing device, and learning data set How to make
Alskaf et al. Hybrid artificial intelligence outcome prediction using features extraction from stress perfusion cardiac magnetic resonance images and electronic health records
Aideyan Machine Learning Classification of Retinal Imaging of Neuropsychiatric and Healthy Cases in a Subset of the UK Biobank Cohort

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R150 Certificate of patent or registration of utility model

Ref document number: 6986650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150