JP6986364B2 - Water surface distance measuring machine - Google Patents

Water surface distance measuring machine Download PDF

Info

Publication number
JP6986364B2
JP6986364B2 JP2017103590A JP2017103590A JP6986364B2 JP 6986364 B2 JP6986364 B2 JP 6986364B2 JP 2017103590 A JP2017103590 A JP 2017103590A JP 2017103590 A JP2017103590 A JP 2017103590A JP 6986364 B2 JP6986364 B2 JP 6986364B2
Authority
JP
Japan
Prior art keywords
tubular body
main body
water surface
water
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017103590A
Other languages
Japanese (ja)
Other versions
JP2018200176A (en
Inventor
満徳 馬場
圭一 平山
義郎 荒居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2017103590A priority Critical patent/JP6986364B2/en
Publication of JP2018200176A publication Critical patent/JP2018200176A/en
Application granted granted Critical
Publication of JP6986364B2 publication Critical patent/JP6986364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水面距離測定機に関する。 The present invention relates to a water surface distance measuring device.

水面上を航走する船舶や、水面上に建てられる構造物には、水面の波浪状態を把握するための波高計や水位を把握するための水位計などの水面距離測定機が設けられることがある。水面距離測定機には、電波を水面の所定領域に向けて照射し、かつ、水面において反射した電波(反射波)を受信するアンテナ部を備えたものがある。この種の水面距離測定機では、アンテナ部によって波の高さ(波高)や水位などを測定できる。
非特許文献1には、マイクロ波によるドップラーレーダー方式の波高計が開示されている。
Vessels sailing on the water surface and structures built on the water surface may be equipped with a water level distance measuring device such as a wave height meter for grasping the wave state of the water surface and a water level gauge for grasping the water level. be. Some water surface distance measuring instruments are provided with an antenna unit that irradiates radio waves toward a predetermined area on the water surface and receives radio waves (reflected waves) reflected on the water surface. In this type of water surface distance measuring device, the wave height (wave height), water level, etc. can be measured by the antenna unit.
Non-Patent Document 1 discloses a Doppler radar type wave height meter using microwaves.

安田明生、金居康文、桑島進、「マイクロ波を用いた舶用簡易波高計の開発」、日本航海学会論文集、昭和57年2月、第66号、p.31-38Akio Yasuda, Yasufumi Kanai, Susumu Kuwashima, "Development of Simple Wave Height Meter for Marines Using Microwaves", Proceedings of the Japan Voyage Society, February 1982, No. 66, p.31-38

ところで、水面の波浪状態が激しい場合や船舶の航走速度が速い場合には、波の強い衝撃が水面距離測定機のアンテナ部に作用して、アンテナ部が故障したり、破損したりすることがある。
従来では、アンテナ部を波の衝撃から保護するために、アンテナ部をガラス繊維からなるレドームによって覆うことが考えられている。しかしながら、レドームは非常に高価であるため、好ましくない。
By the way, when the wave condition of the water surface is severe or the sailing speed of the ship is fast, the strong impact of the wave acts on the antenna part of the water surface distance measuring device, and the antenna part may be damaged or damaged. There is.
Conventionally, in order to protect the antenna portion from the impact of waves, it has been considered to cover the antenna portion with a radome made of glass fiber. However, radomes are very expensive and are not preferred.

本発明は、上述した事情に鑑みたものであって、安価に波の強い衝撃から保護することが可能な水面距離測定機を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a water surface distance measuring device capable of inexpensively protecting from a strong impact of a wave.

本発明の一態様は、水面に対して間隔をあけて配される本体部と、前記本体部のうち前記水面に対向する対向面に取り付けられ、前記対向面から前記水面に向けて延びる筒状体と、を備え、前記本体部が、前記対向面から前記水面に向けて電波を照射し、かつ、前記水面において反射した前記電波を受信するアンテナ部を備え、前記筒状体が、前記筒状体の軸方向から見て前記アンテナ部を囲むように配され、軸方向における前記筒状体の長さ寸法が、前記筒状体の内径寸法よりも長く、耐衝撃性を有し、前記本体部の対向面に重ねて配される補強板を備え、前記筒状体は、前記補強板を介して前記本体部の対向面に取り付けられている水面距離測定機である。 One aspect of the present invention is a tubular shape that is attached to a main body portion that is arranged at intervals with respect to the water surface and a facing surface of the main body portion that faces the water surface and extends from the facing surface toward the water surface. The body is provided , the main body is provided with an antenna portion that irradiates radio waves from the facing surface toward the water surface, and receives the radio waves reflected on the water surface, and the tubular body is the cylinder. It is arranged so as to surround the antenna portion when viewed from the axial direction of the shape, and the length dimension of the tubular body in the axial direction is longer than the inner diameter dimension of the tubular body, and has impact resistance. The tubular body is provided with a reinforcing plate arranged so as to be overlapped on the facing surface of the main body portion, and the tubular body is a water surface distance measuring machine attached to the facing surface of the main body portion via the reinforcing plate.

上記構成の水面距離測定機では、本体部の対向面に向けて上昇する波(水)が筒状体の内部に入り込んだ際に、筒状体内部の空気を筒状体内部に入り込んだ波(水)によって圧縮することができる。このため、上昇する波のエネルギーが、筒状体内部の空気を圧縮するエネルギーとして消費されて弱められる。その結果、本体部に伝わる波の衝撃を弱めることができる。すなわち、本体部を波の強い衝撃から保護することが可能となる。また、筒状体はレドームと比較して安価に製造することができる。 In the water surface distance measuring machine having the above configuration, when the wave (water) rising toward the facing surface of the main body enters the inside of the tubular body, the air inside the tubular body enters the inside of the tubular body. Can be compressed with (water). Therefore, the energy of the rising wave is consumed and weakened as energy for compressing the air inside the cylinder. As a result, the impact of the wave transmitted to the main body can be weakened. That is, it is possible to protect the main body from the strong impact of waves. In addition, the tubular body can be manufactured at a lower cost than the radome.

また、前記水面距離測定機では、前記筒状体の内周面が撥水性を有してもよい。 Further, in the water surface distance measuring device, the inner peripheral surface of the tubular body may have water repellency.

また、前記水面距離測定機では、前記筒状体と前記本体部との間に隙間が形成され、前記筒状体の内部空間が、前記隙間を通して前記筒状体の外部につながっていてもよい。 Further, in the water surface distance measuring machine, a gap may be formed between the tubular body and the main body portion, and the internal space of the tubular body may be connected to the outside of the tubular body through the gap. ..

本発明によれば、安価に水面距離測定機の本体部を波の強い衝撃から保護することが可能となる。 According to the present invention, it is possible to inexpensively protect the main body of the water surface distance measuring machine from the strong impact of waves.

本発明の一実施形態に係る水面距離測定機を船舶に設けた一例を示す概略図である。It is a schematic diagram which shows an example which provided the water surface distance measuring machine which concerns on one Embodiment of this invention on a ship. 本発明の一実施形態に係る水面距離測定機を示す概略断面図である。It is a schematic sectional drawing which shows the water surface distance measuring machine which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る水面距離測定機を示す概略断面図である。It is a schematic sectional drawing which shows the water surface distance measuring machine which concerns on other embodiment of this invention.

以下、図1,2を参照して本発明の一実施形態について説明する。
本実施形態に係る水面距離測定機は、波浪状態を把握するための波高計である。図1,2に示すように、本実施形態の波高計1は、本体部2と、筒状体3と、を備える。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
The water surface distance measuring device according to the present embodiment is a wave height meter for grasping a wave state. As shown in FIGS. 1 and 2, the wave height meter 1 of the present embodiment includes a main body portion 2 and a tubular body 3.

本体部2は、水面WSに対して間隔をあけて配される。本体部2は、例えば水面WS上に建てられる構造物に設けられてもよいが、本実施形態では水面WS上を航走する船舶100に設けられている。図1において、本体部2は船舶100の船体101の上部(例えば甲板)から張り出す支持部材102の部位に取り付けられているが、これに限ることはない。本体部2は、例えば船体101上に設けられたブリッジ(船橋)のうち船体101から張り出す部位(サイドブリッジ)に設けられてもよい。 The main body 2 is arranged at intervals with respect to the water surface WS. The main body 2 may be provided on, for example, a structure built on the water surface WS, but in the present embodiment, it is provided on the ship 100 navigating on the water surface WS. In FIG. 1, the main body 2 is attached to a portion of a support member 102 projecting from an upper portion (for example, a deck) of a hull 101 of a ship 100, but the present invention is not limited to this. The main body 2 may be provided, for example, at a portion (side bridge) of the bridge (bridge) provided on the hull 101, which projects from the hull 101.

本体部2は、水面WSの水位や波の高さ(波高)を測定する機能を有する。具体的に、本実施形態の本体部2は、アンテナ部11を備える。アンテナ部11は、水面WSに対向する本体部2の対向面2aから水面WSに向けて電波を照射し、かつ、水面WSにおいて反射した電波(以下、反射波と呼ぶ。)を受信する。アンテナ部11が反射波を受信することで、水面WSの水位や波高を測定することができる。アンテナ部11の具体的な構成は、マイクロ波を用いたドップラーレーダーなど任意であってよい。 The main body 2 has a function of measuring the water level of the water surface WS and the height of the wave (wave height). Specifically, the main body portion 2 of the present embodiment includes an antenna portion 11. The antenna unit 11 irradiates radio waves from the facing surface 2a of the main body 2 facing the water surface WS toward the water surface WS, and receives radio waves reflected on the water surface WS (hereinafter, referred to as reflected waves). When the antenna unit 11 receives the reflected wave, the water level and wave height of the water surface WS can be measured. The specific configuration of the antenna unit 11 may be arbitrary, such as a Doppler radar using microwaves.

また、本実施形態の本体部2は、アンテナ部11を収容するケース12を備える。ケース12は、本体部2の対向面2aを構成している。ケース12のうち少なくとも本体部2の対向面2aをなす部位は、アンテナ部11から出射される電波、及び、水面WSからの反射波が透過する性質を有するとよい。図示例において、アンテナ部11は本体部2の対向面2aをなすケース12の部位に接触しているが、例えば接触しなくてもよい。 Further, the main body portion 2 of the present embodiment includes a case 12 for accommodating the antenna portion 11. The case 12 constitutes a facing surface 2a of the main body 2. It is preferable that at least the portion of the case 12 forming the facing surface 2a of the main body portion 2 has a property of transmitting the radio wave emitted from the antenna portion 11 and the reflected wave from the water surface WS. In the illustrated example, the antenna portion 11 is in contact with the portion of the case 12 forming the facing surface 2a of the main body portion 2, but it may not be in contact with the portion 12, for example.

筒状体3は、本体部2の対向面2aに取り付けられ、本体部2の対向面2aから水面WSに向けて延びている。
具体的に、筒状体3は、軸方向の両端が開口する筒状に形成されている。筒状体3は、筒状体3の第一開口3Aが本体部2によって覆われるように本体部2に取り付けられている。筒状体3の第二開口3Bは、本体部2の対向面2aよりも水面WSの近くに位置し、水面WS側に向いている。筒状体3の軸線A1は、例えば湾曲していてもよいが、本実施形態では直線状に延びている。筒状体3の軸線A1は、例えば本体部2の対向面2aの法線方向(図2における上下方向)に対して傾斜してもよいが、本実施形態では対向面2aの法線方向に対して傾斜せず平行している。
The tubular body 3 is attached to the facing surface 2a of the main body 2, and extends from the facing surface 2a of the main body 2 toward the water surface WS.
Specifically, the tubular body 3 is formed in a cylindrical shape in which both ends in the axial direction are open. The tubular body 3 is attached to the main body portion 2 so that the first opening 3A of the tubular body 3 is covered by the main body portion 2. The second opening 3B of the tubular body 3 is located closer to the water surface WS than the facing surface 2a of the main body portion 2 and faces the water surface WS side. The axis A1 of the tubular body 3 may be curved, for example, but in the present embodiment, it extends linearly. The axis A1 of the tubular body 3 may be inclined with respect to the normal direction (vertical direction in FIG. 2) of the facing surface 2a of the main body 2, for example, but in the present embodiment, the axis A1 may be inclined in the normal direction of the facing surface 2a. On the other hand, it is not tilted and is parallel.

軸方向から見た筒状体3の形状(軸線A1に直交する筒状体3の形状)は、多角形状、円形状、楕円形状など任意であってよい。
軸線A1に直交する筒状体3の大きさ(特に筒状体3内部の大きさ)は、例えば筒状体3の軸方向において変化してもよい。具体的に、筒状体3は、例えば第一開口3Aから第二開口3Bに向かうにしたがって小さくなる先細り状に形成されてもよい。また、筒状体3は、例えば第一開口3Aから第二開口3Bに向かうにしたがって大きくなる形状に形成されてもよい。本実施形態において、軸線A1に直交する筒状体3の大きさは、筒状体3の軸方向において変化しない。
The shape of the cylindrical body 3 viewed from the axial direction (the shape of the tubular body 3 orthogonal to the axis A1) may be arbitrary such as a polygonal shape, a circular shape, and an elliptical shape.
The size of the cylindrical body 3 orthogonal to the axis A1 (particularly the size inside the tubular body 3) may change, for example, in the axial direction of the tubular body 3. Specifically, the tubular body 3 may be formed in a tapered shape that becomes smaller from the first opening 3A to the second opening 3B, for example. Further, the tubular body 3 may be formed in a shape that increases from the first opening 3A to the second opening 3B, for example. In the present embodiment, the size of the tubular body 3 orthogonal to the axis A1 does not change in the axial direction of the tubular body 3.

軸方向における筒状体3の長さ寸法lと、筒状体3の内径寸法dとの関係は任意であってよい。本実施形態において、筒状体3の長さ寸法lは筒状体3の内径寸法dよりも長い。筒状体3の内径寸法dは、例えば本体部2から離れて位置する筒状体3の第二開口3Bにおける筒状体3の内径寸法dであってよい。また、軸方向から見た筒状体3の形状が多角形状や楕円形状である場合、筒状体3の内径寸法dには、例えば最長となる対角線や内径(長径)の寸法が採用されてもよいし、例えば最短となる対角線や内径(短径)の寸法が採用されてもよい。 The relationship between the length dimension l of the tubular body 3 in the axial direction and the inner diameter dimension d of the tubular body 3 may be arbitrary. In the present embodiment, the length dimension l of the tubular body 3 is longer than the inner diameter dimension d of the tubular body 3. The inner diameter dimension d of the tubular body 3 may be, for example, the inner diameter dimension d of the tubular body 3 in the second opening 3B of the tubular body 3 located away from the main body 2. Further, when the shape of the tubular body 3 seen from the axial direction is a polygonal shape or an elliptical shape, for example, the longest diagonal line or inner diameter (major diameter) is adopted as the inner diameter dimension d of the tubular body 3. Alternatively, for example, the shortest diagonal or inner diameter (minor diameter) dimension may be adopted.

本実施形態の筒状体3は、筒状体3の軸方向から見て本体部2のアンテナ部11を囲むように配されている。具体的に、筒状体3は、筒状体3の軸方向から見てアンテナ部11全体が筒状体3の第一開口3Aの縁よりも内側に位置するように配されている。また、本実施形態の筒状体3は、筒状体3の軸方向から見てアンテナ部11全体が筒状体3の第二開口3Bの縁よりも内側に位置するように配されている。 The tubular body 3 of the present embodiment is arranged so as to surround the antenna portion 11 of the main body portion 2 when viewed from the axial direction of the tubular body 3. Specifically, the tubular body 3 is arranged so that the entire antenna portion 11 is located inside the edge of the first opening 3A of the tubular body 3 when viewed from the axial direction of the tubular body 3. Further, in the tubular body 3 of the present embodiment, the entire antenna portion 11 is arranged so as to be located inside the edge of the second opening 3B of the tubular body 3 when viewed from the axial direction of the tubular body 3. ..

筒状体3は、例えば本体部2の対向面2aに直接取り付けられてもよいが、本実施形態では補強板4を介して本体部2の対向面2aに取り付けられている。すなわち、本実施形態の波高計1は、耐衝撃性を有し、本体部2の対向面2aに重ねて配される補強板4を備える。補強板4は、例えば本体部2(特にケース12)よりも高い耐衝撃性を有するとよい。また、補強板4は、アンテナ部11から出射される電波、及び、水面WSからの反射波が透過する性質を有するとよい。補強板4を構成する材料は、任意であってよいが、本実施形態ではポリカーボネートである。 The tubular body 3 may be directly attached to the facing surface 2a of the main body 2, for example, but in the present embodiment, it is attached to the facing surface 2a of the main body 2 via the reinforcing plate 4. That is, the wave height meter 1 of the present embodiment has impact resistance and includes a reinforcing plate 4 which is arranged so as to be overlapped with the facing surface 2a of the main body 2. The reinforcing plate 4 may have higher impact resistance than, for example, the main body 2 (particularly the case 12). Further, the reinforcing plate 4 may have a property of transmitting radio waves emitted from the antenna portion 11 and reflected waves from the water surface WS. The material constituting the reinforcing plate 4 may be arbitrary, but in the present embodiment, it is polycarbonate.

また、本実施形態の波高計1において、筒状体3は本体部2の対向面2aに対して隙間なく取り付けられている。具体的に、筒状体3は補強板4に対して隙間なく取り付けられている。言い換えれば、筒状体3の第一開口3Aは補強板4によって塞がれている。このため、筒状体3の内部空間は、第二開口3Bのみを通して筒状体3の外部につながっている。 Further, in the wave height meter 1 of the present embodiment, the tubular body 3 is attached to the facing surface 2a of the main body portion 2 without a gap. Specifically, the tubular body 3 is attached to the reinforcing plate 4 without a gap. In other words, the first opening 3A of the tubular body 3 is closed by the reinforcing plate 4. Therefore, the internal space of the tubular body 3 is connected to the outside of the tubular body 3 only through the second opening 3B.

また、本実施形態の波高計1において、筒状体3の内周面3cは撥水性を有する。例えば、筒状体3を構成する材料自体が撥水性を有してもよいが、本実施形態では筒状体3の内周面3cに撥水性を有する塗料(不図示)が塗布されている。例えば筒状体3と同様に、本体部2や補強板4のうち筒状体3の内側に向く面も撥水性を有してよい。 Further, in the wave height meter 1 of the present embodiment, the inner peripheral surface 3c of the tubular body 3 has water repellency. For example, the material itself constituting the tubular body 3 may have water repellency, but in the present embodiment, a water-repellent paint (not shown) is applied to the inner peripheral surface 3c of the tubular body 3. .. For example, similarly to the tubular body 3, the surface of the main body portion 2 and the reinforcing plate 4 facing the inside of the tubular body 3 may also have water repellency.

また、本実施形態の筒状体3は、アンテナ部11から出射される電波や反射波を反射又は吸収する性質を有する。筒状体3の構成材料は、任意であってよいが、例えばアルミニウム等の金属材料であってよい。 Further, the tubular body 3 of the present embodiment has a property of reflecting or absorbing radio waves and reflected waves emitted from the antenna unit 11. The constituent material of the tubular body 3 may be arbitrary, but may be a metal material such as aluminum.

以上説明したように、本実施形態の波高計1によれば、筒状体3が本体部2の対向面2aから延びるように設けられていることで、波高計1の本体部2を波の強い衝撃から保護することができる。以下、この点について具体的に説明する。
本実施形態の波高計1において、本体部2の対向面2aに向けて上昇する波(水)が筒状体3の第二開口3Bを塞ぐように筒状体3の内部に入り込んだ際には、筒状体3内部の空気が筒状体3内部に入り込んだ波(水)によって圧縮される。このため、上昇する波のエネルギーが、筒状体3内部の空気を圧縮するエネルギーとして消費されて弱められる。その結果、本体部2に伝わる波の衝撃を弱めることができる。また、本体部2に波が到達することを効果的に抑制できる。すなわち、本体部2を波の強い衝撃から保護することが可能となる。
また、筒状体3は、従来のレドームと比較して安価に製造することができる。したがって、本実施形態の波高計1によれば、安価に波高計1の本体部2を波の強い衝撃から保護することができる。
As described above, according to the wave height meter 1 of the present embodiment, the tubular body 3 is provided so as to extend from the facing surface 2a of the main body portion 2, so that the main body portion 2 of the wave height meter 1 can be subjected to waves. It can be protected from strong impact. Hereinafter, this point will be specifically described.
In the wave height meter 1 of the present embodiment, when a wave (water) rising toward the facing surface 2a of the main body 2 enters the inside of the cylindrical body 3 so as to block the second opening 3B of the cylindrical body 3. Is compressed by the wave (water) in which the air inside the cylindrical body 3 has entered the inside of the tubular body 3. Therefore, the energy of the rising wave is consumed and weakened as the energy for compressing the air inside the tubular body 3. As a result, the impact of the wave transmitted to the main body 2 can be weakened. In addition, it is possible to effectively suppress the arrival of waves on the main body 2. That is, it is possible to protect the main body 2 from the strong impact of waves.
Further, the tubular body 3 can be manufactured at a lower cost as compared with a conventional radome. Therefore, according to the wave height meter 1 of the present embodiment, the main body 2 of the wave height meter 1 can be protected from the strong impact of the wave at low cost.

また、本実施形態の波高計1によれば、筒状体3が、筒状体3の軸方向から見て本体部2のアンテナ部11を囲むように配されている。このため、アンテナ部11から水面WSに向けて出射された電波を筒状体3の内周面3cで反射させることができる。これにより、ビーム幅が広いアンテナ部11を用いても、水面WSに対する電波の照射領域を制限することができる。また、水面WSにおける電波の照射領域のうち所定領域よりも外側の領域において反射した電波(反射波)を、筒状体3の外周面において反射させることもできる。すなわち、所定領域よりも外側の領域からの反射波がアンテナ部11に到達することも防止できる。以上のことから、ビーム幅が広いアンテナ部11を用いても、水面WSの狭い領域における波高や水位を測定できる。これにより、波高や水位を精度よく測定することが可能となる。 Further, according to the wave height meter 1 of the present embodiment, the tubular body 3 is arranged so as to surround the antenna portion 11 of the main body portion 2 when viewed from the axial direction of the tubular body 3. Therefore, the radio wave emitted from the antenna portion 11 toward the water surface WS can be reflected by the inner peripheral surface 3c of the tubular body 3. Thereby, even if the antenna portion 11 having a wide beam width is used, the irradiation region of the radio wave to the water surface WS can be limited. Further, the radio wave (reflected wave) reflected in the region outside the predetermined region of the radio wave irradiation region on the water surface WS can be reflected on the outer peripheral surface of the tubular body 3. That is, it is possible to prevent the reflected wave from the region outside the predetermined region from reaching the antenna portion 11. From the above, even if the antenna unit 11 having a wide beam width is used, the wave height and the water level in a narrow region of the water surface WS can be measured. This makes it possible to accurately measure the wave height and water level.

また、ビーム幅が広いアンテナ部11の小型化(特に本体部2の対向面2aにおけるアンテナ部11の面積を小さくすること)は、容易である。このため、アンテナ部11に伝わる波の衝撃をさらに小さくすることができる。すなわち、アンテナ部11を効果的に保護することができる。 Further, it is easy to reduce the size of the antenna portion 11 having a wide beam width (particularly, to reduce the area of the antenna portion 11 on the facing surface 2a of the main body portion 2). Therefore, the impact of the wave transmitted to the antenna portion 11 can be further reduced. That is, the antenna portion 11 can be effectively protected.

また、本実施形態の波高計1では、軸方向における筒状体3の長さ寸法lが、筒状体3の内径寸法dよりも長い。このため、筒状体3の長さ寸法lが筒状体3の内径寸法d以下である場合と比較して、筒状体3内部に入り込んだ波は、本体部2の対向面2aからより離れた位置において筒状体3内部の空気をより大きく圧縮することができる。すなわち、本体部2の対向面2aからより離れた位置において波のエネルギーをさらに効果的に弱めることができる。これにより、波が本体部2の対向面2aに到達することを効果的に抑制できる。また、仮に波が本体部2の対向面2aに到達したとしても本体部2に伝わる波の衝撃をさらに弱めることができる。 Further, in the wave height meter 1 of the present embodiment, the length dimension l of the tubular body 3 in the axial direction is longer than the inner diameter dimension d of the tubular body 3. Therefore, as compared with the case where the length dimension l of the cylindrical body 3 is equal to or less than the inner diameter dimension d of the tubular body 3, the wave that has entered the inside of the tubular body 3 is more likely to be generated from the facing surface 2a of the main body portion 2. The air inside the cylindrical body 3 can be compressed more at a distant position. That is, the energy of the wave can be further effectively weakened at a position farther from the facing surface 2a of the main body 2. As a result, it is possible to effectively suppress the wave from reaching the facing surface 2a of the main body 2. Further, even if the wave reaches the facing surface 2a of the main body 2, the impact of the wave transmitted to the main body 2 can be further weakened.

また、本実施形態の波高計1では、本体部2と筒状体3との間に補強板4が設けられている。このため、筒状体3内部に入り込んだ波が本体部2の対向面2aに直接到達することを防止できる。また、補強板4によって筒状体3の内部に入り込んだ波の衝撃が本体部2に伝わることを効果的に抑制し、本体部2に伝わる波の衝撃をさらに弱めることができる。 Further, in the wave height meter 1 of the present embodiment, a reinforcing plate 4 is provided between the main body portion 2 and the tubular body 3. Therefore, it is possible to prevent the wave that has entered the inside of the tubular body 3 from directly reaching the facing surface 2a of the main body 2. Further, the reinforcing plate 4 can effectively suppress the impact of the wave entering the inside of the tubular body 3 from being transmitted to the main body 2, and further weaken the impact of the wave transmitted to the main body 2.

また、本実施形態の波高計1では、筒状体3の内周面3cが撥水性を有する。このため、筒状体3の内周面3cに水(水滴)が付着することを効果的に抑制できる。これにより、本体部2の対向面2aから筒状体3の内部を通して水面WSに向けて照射される電波及び水面WSから筒状体3内部を通して本体部2の対向面2aに向かう反射波が、筒状体3の内周面3cに付着した水(水滴)において反射することを効果的に抑制できる。 Further, in the wave height meter 1 of the present embodiment, the inner peripheral surface 3c of the tubular body 3 has water repellency. Therefore, it is possible to effectively prevent water (water droplets) from adhering to the inner peripheral surface 3c of the tubular body 3. As a result, the radio waves radiated from the facing surface 2a of the main body 2 through the inside of the tubular body 3 toward the water surface WS and the reflected waves from the water surface WS through the inside of the tubular body 3 toward the facing surface 2a of the main body 2 are generated. It is possible to effectively suppress reflection in water (water droplets) adhering to the inner peripheral surface 3c of the tubular body 3.

水(水滴)が筒状体3の内周面3cに付着し難くなることは、波高計1周囲の温度が変化する場合に特に有効である。以下、この点について具体的に説明する。
例えば、筒状体3の内周面3cに付着した水が凍結すると氷になる。そして、筒状体3の内周面3cに付着した氷が溶けかかっている状態では、氷の表面に水が留まる。氷の表面に留まっている水は、電波(反射波)を反射するため、波高や水位を誤って測定する可能性が高くなる。これに対し、本実施形態の波高計1では、筒状体3の内周面3cに対する氷の付着を抑制できる。その結果として、筒状体3の内周面3cに付着した水(水滴)において反射することを効果的に抑制できる。これにより、波高や水位を正しく測定することが可能となる。
It is particularly effective when the temperature around the wave height meter 1 changes that water (water droplets) is less likely to adhere to the inner peripheral surface 3c of the tubular body 3. Hereinafter, this point will be specifically described.
For example, when the water adhering to the inner peripheral surface 3c of the tubular body 3 freezes, it becomes ice. Then, in a state where the ice adhering to the inner peripheral surface 3c of the tubular body 3 is about to melt, water stays on the surface of the ice. Since the water remaining on the surface of the ice reflects radio waves (reflected waves), there is a high possibility that the wave height and water level will be measured incorrectly. On the other hand, in the wave height meter 1 of the present embodiment, the adhesion of ice to the inner peripheral surface 3c of the tubular body 3 can be suppressed. As a result, it is possible to effectively suppress the reflection of water (water droplets) adhering to the inner peripheral surface 3c of the tubular body 3. This makes it possible to accurately measure the wave height and water level.

以上、本発明の詳細について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。 Although the details of the present invention have been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

上記実施形態の波高計においては、例えば図3に示すように、本体部2と筒状体3との間に隙間Gが形成されてもよい。また、図示しないが、本体部2と筒状体3との間に上記実施形態と同様の補強板4(図2参照)が設けられる場合には、補強板4と筒状体3との間に隙間Gが形成されてもよい。そして、筒状体3の内部空間が、前述の隙間Gを通して筒状体3の外部につながっていてもよい。隙間Gは、例えば筒状体3の周方向の一部に形成されていればよい。隙間Gは、例えば筒状体3の第二開口3Bを塞ぐように筒状体3内部に入り込んだ波(水)による空気の圧縮を阻害しない程度に小さく形成されるとよい。隙間Gは、例えば一つだけ形成されてもよいし、複数形成されてもよい。複数の隙間Gは、筒状体3の周方向に間隔をあけて配列されていればよい。 In the wave height meter of the above embodiment, for example, as shown in FIG. 3, a gap G may be formed between the main body 2 and the tubular body 3. Further, although not shown, when a reinforcing plate 4 (see FIG. 2) similar to the above embodiment is provided between the main body 2 and the tubular body 3, the space between the reinforcing plate 4 and the tubular body 3 is provided. A gap G may be formed in the space. Then, the internal space of the tubular body 3 may be connected to the outside of the tubular body 3 through the above-mentioned gap G. The gap G may be formed, for example, in a part of the tubular body 3 in the circumferential direction. The gap G may be formed small enough not to hinder the compression of air by the wave (water) that has entered the inside of the tubular body 3 so as to close the second opening 3B of the tubular body 3, for example. For example, only one gap G may be formed, or a plurality of gaps G may be formed. The plurality of gaps G may be arranged at intervals in the circumferential direction of the tubular body 3.

図3に例示した波高計によれば、本体部2の対向面2aに向けて上昇して筒状体3の内部に入り込んだ波(水)を、筒状体3と本体部2との間の隙間Gから筒状体3の外側に排出することができる。これにより、筒状体3内部において上昇する波のエネルギーが弱められ、本体部2に伝わる波の衝撃を弱めることができる。このため、本体部2の対向面2aに向けて上昇する波(水)が、仮に、筒状体3の第二開口3Bを塞がないように筒状体3の内部に入り込んできて、波による筒状体3内部の空気の圧縮が不十分であっても、本体部2を波の強い衝撃から保護することができる。 According to the wave height meter illustrated in FIG. 3, the wave (water) that rises toward the facing surface 2a of the main body 2 and enters the inside of the tubular body 3 is between the tubular body 3 and the main body 2. It can be discharged to the outside of the tubular body 3 from the gap G of. As a result, the energy of the rising wave inside the tubular body 3 is weakened, and the impact of the wave transmitted to the main body portion 2 can be weakened. Therefore, the wave (water) rising toward the facing surface 2a of the main body 2 temporarily enters the inside of the cylindrical body 3 so as not to block the second opening 3B of the tubular body 3, and the wave. Even if the compression of the air inside the tubular body 3 is insufficient, the main body 2 can be protected from the strong impact of the wave.

本発明は、波高計に限らず、水位計などの他の水面距離測定機にも適用可能である。 The present invention is applicable not only to a wave height meter but also to other water level distance measuring instruments such as a water level gauge.

1 波高計(水面距離測定機)
2 本体部
2a 対向面
3 筒状体
3A 第一開口
3B 第二開口
3c 内周面
4 補強板
11 アンテナ部
12 ケース
G 隙間
1 Wave height meter (water surface distance measuring machine)
2 Main body 2a Facing surface 3 Cylindrical body 3A First opening 3B Second opening 3c Inner peripheral surface 4 Reinforcing plate 11 Antenna part 12 Case G Gap

Claims (3)

水面に対して間隔をあけて配される本体部と、
前記本体部のうち前記水面に対向する対向面に取り付けられ、前記対向面から前記水面に向けて延びる筒状体と、を備え
前記本体部が、前記対向面から前記水面に向けて電波を照射し、かつ、前記水面において反射した前記電波を受信するアンテナ部を備え、
前記筒状体が、前記筒状体の軸方向から見て前記アンテナ部を囲むように配され、
軸方向における前記筒状体の長さ寸法が、前記筒状体の内径寸法よりも長く、
耐衝撃性を有し、前記本体部の対向面に重ねて配される補強板を備え、
前記筒状体は、前記補強板を介して前記本体部の対向面に取り付けられている水面距離測定機。
The main body, which is arranged at intervals with respect to the water surface,
A cylindrical body attached to the facing surface of the main body portion facing the water surface and extending from the facing surface toward the water surface is provided .
The main body portion includes an antenna portion that irradiates radio waves from the facing surface toward the water surface and receives the radio waves reflected on the water surface.
The tubular body is arranged so as to surround the antenna portion when viewed from the axial direction of the tubular body.
The length dimension of the tubular body in the axial direction is longer than the inner diameter dimension of the tubular body.
It has impact resistance and is equipped with a reinforcing plate that is stacked on the facing surface of the main body.
The tubular body is a water surface distance measuring machine attached to a facing surface of the main body portion via the reinforcing plate.
前記筒状体の内周面が撥水性を有する請求項1に記載の水面距離測定機。 The water surface distance measuring device according to claim 1 , wherein the inner peripheral surface of the tubular body has water repellency. 前記筒状体と前記本体部との間に隙間が形成され、
前記筒状体の内部空間が、前記隙間を通して前記筒状体の外部につながっている請求項1又は請求項2に記載の水面距離測定機。
A gap is formed between the tubular body and the main body, and a gap is formed.
The water surface distance measuring device according to claim 1 or 2 , wherein the internal space of the tubular body is connected to the outside of the tubular body through the gap.
JP2017103590A 2017-05-25 2017-05-25 Water surface distance measuring machine Active JP6986364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017103590A JP6986364B2 (en) 2017-05-25 2017-05-25 Water surface distance measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017103590A JP6986364B2 (en) 2017-05-25 2017-05-25 Water surface distance measuring machine

Publications (2)

Publication Number Publication Date
JP2018200176A JP2018200176A (en) 2018-12-20
JP6986364B2 true JP6986364B2 (en) 2021-12-22

Family

ID=64667139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017103590A Active JP6986364B2 (en) 2017-05-25 2017-05-25 Water surface distance measuring machine

Country Status (1)

Country Link
JP (1) JP6986364B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116648637A (en) 2021-02-22 2023-08-25 古野电气株式会社 Radar signal processing device, radar signal processing method, and radar signal processing program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351946A (en) * 1998-06-10 1999-12-24 Tokimec Inc Electronic wave level meter
JP2001289696A (en) * 2000-04-05 2001-10-19 Taisei Corp Water-level measuring device
JP2007081856A (en) * 2005-09-14 2007-03-29 Japan Radio Co Ltd Radar antenna
EP2087325A4 (en) * 2006-11-28 2011-01-05 Rubicon Res Pty Ltd Ultrasonic level detection device with flared section for reduced distortion
JP2011123012A (en) * 2009-12-14 2011-06-23 Ud Trucks Corp Liquid level detector

Also Published As

Publication number Publication date
JP2018200176A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP6510439B2 (en) Antenna device
JP6440123B2 (en) Antenna device, radio communication device, and radar device
WO2016104575A1 (en) Cover member having plurality of surfaces and radar device comprising said cover member
JP4856096B2 (en) Acoustic reflector
US6779397B2 (en) Device for determining the filling level of a filling material in a container
JP6498931B2 (en) Radar device and cover member
US20180203110A1 (en) Cover member of sensor configured to detect ambient situation of vehicle and sensor assembly
CN105556259B (en) For by can frozen liquid be introduced into the equipment in the exhaust system of motor vehicles
JP2008309513A (en) Ultrasonic sensor
US20190302226A1 (en) Radar apparatus
JP2009031031A (en) Ultrasonic sensor
KR20190058072A (en) Radar device for vehicle
JP6986364B2 (en) Water surface distance measuring machine
JP5995664B2 (en) Reflector and reflective paint
JP6326920B2 (en) Radar equipment
JP2008107283A (en) On-vehicle radar system and radome for the same
US11397263B2 (en) Sonar system with acoustic beam reflector
JP2009278501A (en) Housing for antenna
US7679999B2 (en) Marine acoustic sensor assembly
US8547780B2 (en) Acoustic markers
JP2006284523A (en) Device for measuring pressure of pressurized container
US20210247415A1 (en) Airborne sound transducer for use in precipitation and thaw conditions
JP4246051B2 (en) Radar equipment
CN102282607B (en) Acoustic markers
KR100547507B1 (en) Passive-type radar reflector for fisheries

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R150 Certificate of patent or registration of utility model

Ref document number: 6986364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150