JP6985696B2 - A catalyst composition for producing an aromatic carboxylic acid or an ester thereof from carbon dioxide and an aromatic halogen compound, and a method for producing an aromatic carboxylic acid or an ester thereof using the catalyst composition. - Google Patents

A catalyst composition for producing an aromatic carboxylic acid or an ester thereof from carbon dioxide and an aromatic halogen compound, and a method for producing an aromatic carboxylic acid or an ester thereof using the catalyst composition. Download PDF

Info

Publication number
JP6985696B2
JP6985696B2 JP2017171110A JP2017171110A JP6985696B2 JP 6985696 B2 JP6985696 B2 JP 6985696B2 JP 2017171110 A JP2017171110 A JP 2017171110A JP 2017171110 A JP2017171110 A JP 2017171110A JP 6985696 B2 JP6985696 B2 JP 6985696B2
Authority
JP
Japan
Prior art keywords
transition metal
compound
aromatic
carboxylic acid
catalyst component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017171110A
Other languages
Japanese (ja)
Other versions
JP2019042708A (en
Inventor
伸治 岩澤
慧 村田
克也 下牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Tokyo Institute of Technology NUC
Original Assignee
Mitsubishi Chemical Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Tokyo Institute of Technology NUC filed Critical Mitsubishi Chemical Corp
Priority to JP2017171110A priority Critical patent/JP6985696B2/en
Publication of JP2019042708A publication Critical patent/JP2019042708A/en
Application granted granted Critical
Publication of JP6985696B2 publication Critical patent/JP6985696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Indole Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、二酸化炭素と芳香族ハロゲン化合物とから芳香族カルボン酸又はそのエステルを製造するための触媒組成物、さらに詳しくは、特定の光酸化還元触媒成分(A)と特定の遷移金属触媒成分(B)とを含有する触媒組成物に関する。また、当該触媒組成物を用いた芳香族カルボン酸又はそのエステルの製造方法に関する。 The present invention is a catalyst composition for producing an aromatic carboxylic acid or an ester thereof from carbon dioxide and an aromatic halogen compound, and more particularly, a specific photooxidation-reduction catalyst component (A) and a specific transition metal catalyst component. (B) The present invention relates to a catalyst composition containing and. The present invention also relates to a method for producing an aromatic carboxylic acid or an ester thereof using the catalyst composition.

近年、Pd、Ni及びCu等の遷移金属触媒成分を用い、二酸化炭素により有機ハロゲン化合物をカルボキシル化する反応が注目されている。具体的には、パラジウム触媒の存在下、二酸化炭素との反応により芳香族臭化物を直接カルボキシル化する方法が知られている(非特許文献1)。また、ニッケル触媒の存在下、二酸化炭素との反応により芳香族塩化物や塩化ビニルをカルボキシル化する方法も知られている(非特許文献2)。 In recent years, attention has been paid to a reaction of carboxylating an organic halogen compound with carbon dioxide using a transition metal catalyst component such as Pd, Ni and Cu. Specifically, a method of directly carboxylating an aromatic bromide by reacting with carbon dioxide in the presence of a palladium catalyst is known (Non-Patent Document 1). Further, a method of carboxylating an aromatic chloride or vinyl chloride by reacting with carbon dioxide in the presence of a nickel catalyst is also known (Non-Patent Document 2).

一方、金属還元剤を必要としない反応として、Rh(I)複合体と光酸化還元触媒成分の存在下、可視光を照射し、二酸化炭素との反応によりアルケンをヒドロカルボキシル化する触媒サイクルが知られている(非特許文献3)。 On the other hand, as a reaction that does not require a metal reducing agent, a catalytic cycle that hydrocarboxylates alken by reacting with carbon dioxide by irradiating visible light in the presence of the Rh (I) complex and a photooxidation-reduction catalyst component is known. (Non-Patent Document 3).

Arkaitz Correa, and Ruben Martin, Palladium-Catalyzed Direct Carboxylation of Aryl Bromides with Carbon Dioxide, J.AM.CHEM.SOC.2009,131,15974-15975, DOI:10.1021/ja905264aArkaitz Correa, and Ruben Martin, Palladium-Catalyzed Direct Carboxylation of Aryl Bromides with Carbon Dioxide, J.AM.CHEM.SOC.2009,131,15974-15975, DOI: 10.1021 / ja905264a Tetsuaki Fujihira, Keisuke Nogi, Tinghua Xu, Jun Terao, and Yasushi Tsuji, Nickel-Catalyzed Carboxylation of Aryl and Vinyl Chlorides Employing Carbon Dioxide, J.AM.CHEM.SOC.2012,134,9106-9109, DOI:10.1021/ja303514bTetsuaki Fujihira, Keisuke Nogi, Tinghua Xu, Jun Terao, and Yasushi Tsuji, Nickel-Catalyzed Carboxylation of Aryl and Vinyl Chlorides Employing Carbon Dioxide, J.AM.CHEM.SOC.2012,134,9106-9109, DOI: 10.1021 / ja303514b Kei Murata, Nobutsugu Numasawa, Katsuya Shimomaki, Jun Takaya, and Nobuharu Iwasawa, Construction of a visible light-driven hydrocarboxylation cycle of alkenes by the combined use of Rh(I) and photoredox catalysts, ChemComm, 2017, DOI:10.1039/c7cc00678kKei Murata, Nobutsugu Numasawa, Katsuya Shimomaki, Jun Takaya, and Nobuharu Iwasawa, Construction of a visible light-driven hydrocarboxylation cycle of alkenes by the combined use of Rh (I) and photoredox catalysts, ChemComm, 2017, DOI: 10.1039 / c7cc00678k

非特許文献1及び2に記載の方法では、EtZnやMnなどの金属還元剤を多量に必要とし、環境面から好ましくない。また、非特許文献3では、光酸化還元触媒反応によりオレフィンをヒドロカルボキシル化することには成功しているが、芳香族ハロゲン化合物のカルボキシル化を達成するに至っていない。 The methods described in Non-Patent Documents 1 and 2 require a large amount of metal reducing agent such as Et 2 Zn and Mn, which is not preferable from the environmental point of view. Further, in Non-Patent Document 3, although the olefin has been successfully hydrocarboxylated by the photooxidation-reduction catalytic reaction, the carboxylation of the aromatic halogen compound has not been achieved yet.

そこで、本発明は、上記課題を解決することを目的としている。すなわち、本発明は、ZnやMn等の遷移金属元素(周期表7族又は12属に属する遷移金属元素等)を含む金属還元剤を用いずに、芳香族ハロゲン化合物をカルボキシル化する触媒組成物を提供することを目的とする。 Therefore, an object of the present invention is to solve the above-mentioned problems. That is, the present invention is a catalyst composition for carboxylating an aromatic halogen compound without using a metal reducing agent containing a transition metal element such as Zn or Mn (transition metal element belonging to Group 7 or Group 12 of the Periodic Table). The purpose is to provide.

本発明者らは、特定の光酸化還元触媒成分と特定の遷移金属触媒成分とを含む触媒組成物を用いることで、光照射条件にて、金属還元剤を用いずに、二酸化炭素と芳香族ハロゲン化合物とから芳香族カルボン酸又はそのエステルを製造する触媒サイクルを見出した。 By using a catalyst composition containing a specific photooxidation-reduction catalyst component and a specific transition metal catalyst component, the present inventors use carbon dioxide and aromatics under light irradiation conditions without using a metal reducing agent. We have found a catalytic cycle for producing aromatic carboxylic acids or esters thereof from halogen compounds.

すなわち、本発明は以下に示す具体的態様を提供する。
[1]周期表8〜10族に属する遷移金属Mを含む光酸化還元触媒成分(A)と、周期表8〜11族に属し、前記遷移金属Mと異なる遷移金属M’を含む遷移金属触媒成分(B)とを含有し、
光照射条件下で、二酸化炭素と芳香族ハロゲン化合物とから芳香族カルボン酸又はそのエステルを製造するための触媒組成物。
That is, the present invention provides the following specific embodiments.
[1] A photooxidation-reduction catalyst component (A) containing a transition metal M belonging to groups 8 to 10 of the periodic table, and a transition metal catalyst containing a transition metal M'belonging to groups 8 to 11 of the periodic table and different from the transition metal M. Containing component (B),
A catalyst composition for producing an aromatic carboxylic acid or an ester thereof from carbon dioxide and an aromatic halogen compound under light irradiation conditions.

[2]前記光酸化還元触媒成分(A)が一般式(1)で表される化合物である、[1]に記載の触媒組成物。
(N−C)3−x(N−N)M (1)
(前記一般式(1)中のNは窒素原子、Cは炭素原子を示す。また、N−Cは、窒素原子と炭素原子とで前記遷移金属Mに配位する二座配位子を示し、N−Nは、窒素原子と窒素原子とで前記遷移金属Mに配位する二座配位子を示す。また、xは0〜3の整数を示す。)
[3]前記遷移金属Mがイリジウムまたはルテニウムである、[1]または[2]に記載の触媒組成物。
[4]前記遷移金属M’が、パラジウム、コバルト、ニッケル及び鉄からなる群から選択される少なくとも1種である、[1]〜[3]の何れか一項に記載の触媒組成物。
[5]前記遷移金属触媒成分(B)がリン原子を含む、[1]〜[4]の何れか一項に記載の触媒組成物。
[2] The catalyst composition according to [1], wherein the photooxidation-reduction catalyst component (A) is a compound represented by the general formula (1).
(NC) 3-x (NN) x M (1)
(N in the general formula (1) represents a nitrogen atom, C represents a carbon atom, and NC represents a bidentate ligand that coordinates the transition metal M with the nitrogen atom and the carbon atom. , N—N represent a bidentate ligand that coordinates the transition metal M with a nitrogen atom and a nitrogen atom, and x represents an integer of 0 to 3).
[3] The catalyst composition according to [1] or [2], wherein the transition metal M is iridium or ruthenium.
[4] The catalyst composition according to any one of [1] to [3], wherein the transition metal M'is at least one selected from the group consisting of palladium, cobalt, nickel and iron.
[5] The catalyst composition according to any one of [1] to [4], wherein the transition metal catalyst component (B) contains a phosphorus atom.

[6]周期表8〜10族に属する遷移金属Mを含む光酸化還元触媒成分(A)と、周期表8〜11族に属し、前記遷移金属Mと異なる遷移金属M’を含む遷移金属触媒成分(B)とを含む触媒組成物の存在下、二酸化炭素と芳香族ハロゲン化合物とに光照射する工程を含む、芳香族カルボン酸又はそのエステルの製造方法。
[7]前記芳香族ハロゲン化合物が、芳香族塩化物、芳香族臭化物又は芳香族ヨウ素化物である、[6]に記載の芳香族カルボン酸又はそのエステルの製造方法。
[8]前記触媒組成物とともに三級アミン化合物を存在させる、[6]または[7]に記載の芳香族カルボン酸又はそのエステルの製造方法。
[9]前記触媒組成物とともに塩基性化合物を存在させる、[6]〜[8]の何れか一項に記載の芳香族カルボン酸又はそのエステルの製造方法。
[6] A photooxidation-reduction catalyst component (A) containing a transition metal M belonging to groups 8 to 10 of the periodic table, and a transition metal catalyst containing a transition metal M'belonging to groups 8 to 11 of the periodic table and different from the transition metal M. A method for producing an aromatic carboxylic acid or an ester thereof, which comprises a step of irradiating carbon dioxide and an aromatic halogen compound with light in the presence of a catalyst composition containing the component (B).
[7] The method for producing an aromatic carboxylic acid or an ester thereof according to [6], wherein the aromatic halogen compound is an aromatic chloride, an aromatic bromide or an aromatic iodine product.
[8] The method for producing an aromatic carboxylic acid or an ester thereof according to [6] or [7], wherein a tertiary amine compound is present together with the catalyst composition.
[9] The method for producing an aromatic carboxylic acid or an ester thereof according to any one of [6] to [8], wherein a basic compound is present together with the catalyst composition.

本発明に係る触媒組成物によれば、金属還元剤を用いずに、芳香族ハロゲン化合物をカルボキシル化できる。また、本発明に係る製造方法によれば、特定の触媒組成物の存在下、光照射により、二酸化炭素と芳香族ハロゲン化合物とから芳香族カルボン酸又はそのエステルを製造できるため、金属還元剤が不要であり、環境負荷を低減できる。 According to the catalyst composition according to the present invention, the aromatic halogen compound can be carboxylated without using a metal reducing agent. Further, according to the production method according to the present invention, an aromatic carboxylic acid or an ester thereof can be produced from carbon dioxide and an aromatic halogen compound by light irradiation in the presence of a specific catalyst composition, so that a metal reducing agent can be used. It is unnecessary and can reduce the environmental load.

以下、本発明の実施の形態について詳細に説明するが、以下の実施の形態は、本発明を説明するための例示であり、本発明はこれらに限定されるものではなく、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において、「〜」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の数値又は物性値を含むものとして用いることとする。例えば「1〜100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含するものであり、「1以上100以下」を表す。他の数値範囲の表記も同様である。 Hereinafter, embodiments of the present invention will be described in detail, but the following embodiments are examples for explaining the present invention, and the present invention is not limited thereto and does not deviate from the gist thereof. It can be changed arbitrarily within the range. In addition, in this specification, when a numerical value or a physical property value is inserted before and after using "~", it is used as including the numerical value or the physical property value before and after that. For example, the notation of the numerical range of "1 to 100" includes both the lower limit value "1" and the upper limit value "100", and represents "1 or more and 100 or less". The same applies to the notation of other numerical ranges.

1.触媒組成物
本実施形態の触媒組成物は、光照射条件下で、二酸化炭素と芳香族ハロゲン化合物とから芳香族カルボン酸又はそのエステルを製造するために用いられ、周期表8〜10族に属する遷移金属Mを含む光酸化還元触媒成分(A)と、周期表8〜11族に属し、前記遷移金属Mと異なる遷移金属M’を含む遷移金属触媒成分(B)とを含有することを特徴とする。
本実施形態の触媒組成物によれば、ハロゲンアニオンの脱離及び芳香族カルボン酸の還元的脱離の段階で、光照射条件下で励起された光酸化還元触媒成分(A)から遷移金属触媒成分(B)に電子が渡されることで反応が進行すると推測される。
1. 1. Catalyst Composition The catalyst composition of the present embodiment is used for producing an aromatic carboxylic acid or an ester thereof from carbon dioxide and an aromatic halogen compound under light irradiation conditions, and belongs to Groups 8 to 10 of the Periodic Table. It is characterized by containing a photooxidation-reduction catalyst component (A) containing a transition metal M and a transition metal catalyst component (B) containing a transition metal M'that belongs to groups 8 to 11 of the periodic table and is different from the transition metal M. And.
According to the catalyst composition of the present embodiment, the transition metal catalyst from the photooxidation-reduction catalyst component (A) excited under light irradiation conditions at the stage of desorption of halogen anion and reductive desorption of aromatic carboxylic acid. It is presumed that the reaction proceeds by passing electrons to the component (B).

以下において、本実施形態の触媒組成物に含まれる成分に関し、光酸化還元触媒成分(A)及び遷移金属触媒成分(B)の順に説明する。 Hereinafter, the components contained in the catalyst composition of the present embodiment will be described in the order of the photooxidation-reduction catalyst component (A) and the transition metal catalyst component (B).

〔光酸化還元触媒成分(A)〕
光酸化還元触媒成分(A)は、周期表8〜10族に属する遷移金属Mを含む。遷移金属Mは、周期表8〜10族に属する遷移金属元素であれば特に限定されないが、好ましくはイリジウム又はルテニウムであり、より好ましくはイリジウムである。
[Photooxidation-reduction catalyst component (A)]
The photooxidation-reduction catalyst component (A) contains a transition metal M belonging to groups 8 to 10 of the periodic table. The transition metal M is not particularly limited as long as it is a transition metal element belonging to groups 8 to 10 of the periodic table, but is preferably iridium or ruthenium, and more preferably iridium.

このような光酸化還元触媒成分(A)は、以下の一般式(1)で表される化合物であることが好ましい。
(N−C)3−x(N−N)M (1)
(一般式(1)中のNは窒素原子、Cは炭素原子を示す。また、N−Cは、窒素原子と炭素原子とで遷移金属Mに配位する二座配位子を示し、N−Nは、窒素原子と窒素原子とで遷移金属Mに配位する二座配位子を示す。また、xは0〜3の整数を示す。xは1又は2であることが好ましく、xは1であることがより好ましい。)
Such a photooxidation-reduction catalyst component (A) is preferably a compound represented by the following general formula (1).
(NC) 3-x (NN) x M (1)
(N in the general formula (1) represents a nitrogen atom, C represents a carbon atom, and NC represents a bidentate ligand that coordinates the transition metal M with the nitrogen atom and the carbon atom, and N −N indicates a bidentate ligand that coordinates the transition metal M with a nitrogen atom and a nitrogen atom. In addition, x indicates an integer of 0 to 3. X is preferably 1 or 2, and x is preferable. Is more preferably 1.)

窒素原子と炭素原子とで遷移金属Mに配位する二座配位子(N−C)としては、分子内に1個以上の窒素原子と1個以上の炭素原子とを有し、これらの窒素原子と炭素原子とが遷移金属Mとの間に配位結合を形成して二座配位することで錯体を形成し得る化合物であればよい。このような化合物としては、例えば、フェニルピリジン骨格を有する化合物、フェニルキノリン骨格を有する化合物、フェニルイソキノリン骨格を有する化合物、フェニルイミダゾール骨格を有する化合物、ピリジルピリジン骨格を有する化合物、ナフチルピリジン骨格を有する化合物、ピリジルベンゾチオフェン骨格を有する化合物、フェニルベンゾチアゾール骨格を有する化合物、イソキノリルベンゾチオフェン骨格を有する化合物、フェニルキノキサリン骨格を有する化合物、フェニルベンゾイソキノリン骨格を有する化合物、フェニルピラゾール骨格を有する化合物、フェニルテトラゾール骨格を有する化合物、又はフェニルベンゾイミダゾール骨格を有する化合物等が挙げられる。これらの中でも、フェニルピリジン骨格を有する化合物が好ましく、2−フェニルピリジン骨格を有する化合物がより好ましい。 The bidentate ligand (NC) coordinated to the transition metal M by a nitrogen atom and a carbon atom has one or more nitrogen atoms and one or more carbon atoms in the molecule, and these Any compound may be used as long as it is a compound capable of forming a complex by forming a coordinate bond between a nitrogen atom and a carbon atom with a transition metal M and coordinating with a bidentate. Examples of such a compound include a compound having a phenylpyridine skeleton, a compound having a phenylquinoline skeleton, a compound having a phenylisoquinoline skeleton, a compound having a phenylimidazole skeleton, a compound having a pyridylpyridine skeleton, and a compound having a naphthylpyridine skeleton. , Compounds with pyridylbenzothiophene skeleton, compounds with phenylbenzothiazole skeleton, compounds with isoquinolylbenzothiophene skeleton, compounds with phenylquinoxaline skeleton, compounds with phenylbenzoisoquinoline skeleton, compounds with phenylpyrazole skeleton, phenyl Examples thereof include a compound having a tetrazole skeleton, a compound having a phenylbenzoimidazole skeleton, and the like. Among these, a compound having a phenylpyridine skeleton is preferable, and a compound having a 2-phenylpyridine skeleton is more preferable.

2−フェニルピリジン骨格を有する化合物としては、例えば、2−フェニルピリジン及びその誘導体が挙げられる。ここで、2−フェニルピリジンの誘導体には、置換基を有する2−フェニルピリジンが含まれる。このような誘導体の有する置換基は特に限定されないが、例えば、メチル基やエチル基等の炭素数が1〜10のアルキル基(C1〜10アルキル基)、メトキシ基やエトキシ基等の炭素数が1〜10のアルコキシ基(C1〜10アルコキシ基)、フッ素原子等のハロゲン原子、及びトリフルオロメチル基等のフッ素原子を含むアルキル基等が挙げられる。 Examples of the compound having a 2-phenylpyridine skeleton include 2-phenylpyridine and its derivatives. Here, the derivative of 2-phenylpyridine includes 2-phenylpyridine having a substituent. The substituent contained in such a derivative is not particularly limited, but for example, an alkyl group having 1 to 10 carbon atoms (C 1 to 10 alkyl group) such as a methyl group or an ethyl group, or a methoxy group or an ethoxy group has a carbon number of carbon atoms. Examples thereof include an alkoxy group having 1 to 10 (C 1 to 10 alkoxy group), a halogen atom such as a fluorine atom, and an alkyl group containing a fluorine atom such as a trifluoromethyl group.

2−フェニルピリジン骨格を有する化合物が置換基を有する場合、置換基の数は特に限定されないが、通常1以上、好ましくは2以上であり、通常6以下、好ましくは4以下である。例えば、2−フェニルピリジン骨格を有する化合物は、少なくとも5,4’,6’位のいずれかに置換基を有することが好ましく、5,4’,6’位に置換基を有することがより好ましい。 When the compound having a 2-phenylpyridine skeleton has a substituent, the number of substituents is not particularly limited, but is usually 1 or more, preferably 2 or more, and usually 6 or less, preferably 4 or less. For example, a compound having a 2-phenylpyridine skeleton preferably has a substituent at at least one of the 5,4', 6'positions, and more preferably a substituent at the 5,4', 6'position. ..

また、窒素原子と窒素原子とで遷移金属Mに配位する二座配位子(N−N)としては、分子内に2個以上の窒素原子を有し、これらの窒素原子が遷移金属Mとの間に配位結合を形成して二座配位することで錯体を形成し得る化合物であればよい。このような化合物としては、ビピリジンやその誘導体等のビピリジン骨格を有する化合物、フェナントロリンやその誘導体等のフェナントロリン骨格を有する化合物、及び、エチレンジアミン等が挙げられる。これらの中でも、ビピリジン骨格を有する化合物及びフェナントロリン骨格を有する化合物が好ましく、ビピリジン骨格を有する化合物がより好ましい。また、ビピリジン骨格を有する化合物の中でも、2,2’−ビピリジン骨格を有する化合物が好ましく用いられる。フェナントロリン骨格を有する化合物の中でも、1,10−フェナントロリン骨格を有する化合物が好ましく用いられる。
なお、ビピリジンの誘導体には、置換基を有するビピリジンが含まれる。また、フェナントロリンの誘導体には、置換基を有するフェナントロリンが含まれる。これら誘導体の有する置換基は特に限定されないが、例えば、メチル基、エチル基、イソプロピル基やt−ブチル基等の炭素数が1〜10のアルキル基(C1〜10アルキル基)、メトキシ基やエトキシ基等の炭素数が1〜10のアルコキシ基(C1〜10アルコキシ基)及びフェニル基等が挙げられる。これらの置換基としては、C1〜10アルキル基及びC1〜10アルコキシ基が好ましく、C1〜5アルキル基及びC1〜5アルコキシ基がより好ましく、C1〜5アルキル基が特に好ましい。なお、これらの置換基は、さらに別の置換基を有していてもよい。
Further, the bidentate ligand (NN) coordinated to the transition metal M by the nitrogen atom and the nitrogen atom has two or more nitrogen atoms in the molecule, and these nitrogen atoms are the transition metal M. Any compound can be used as long as it can form a complex by forming a coordination bond with and in a bidentate coordination. Examples of such a compound include a compound having a bipyridine skeleton such as bipyridine and its derivative, a compound having a phenanthroline skeleton such as phenanthroline and its derivative, and ethylenediamine. Among these, a compound having a bipyridine skeleton and a compound having a phenanthroline skeleton are preferable, and a compound having a bipyridine skeleton is more preferable. Further, among the compounds having a bipyridine skeleton, a compound having a 2,2'-bipyridine skeleton is preferably used. Among the compounds having a phenanthroline skeleton, compounds having a 1,10-phenanthroline skeleton are preferably used.
The bipyridine derivative includes bipyridine having a substituent. In addition, the derivative of phenanthroline includes phenanthroline having a substituent. The substituents of these derivatives are not particularly limited, but for example, an alkyl group having 1 to 10 carbon atoms (C 1 to 10 alkyl group) such as a methyl group, an ethyl group, an isopropyl group and a t-butyl group, a methoxy group and the like. Examples thereof include an alkoxy group having 1 to 10 carbon atoms (C 1 to 10 alkoxy group) such as an ethoxy group and a phenyl group. As these substituents, a C 1 to 10 alkyl group and a C 1 to 10 alkoxy group are preferable, a C 1 to 5 alkyl group and a C 1 to 5 alkoxy group are more preferable, and a C 1 to 5 alkyl group is particularly preferable. In addition, these substituents may have another substituent.

2,2’−ビピリジン骨格を有する化合物や1,10−フェナントロリン骨格を有する化合物が置換基を有する場合、置換基の数は特に限定されないが、通常1以上、好ましくは2以上であり、通常6以下、好ましくは4以下である。例えば、2,2’−ビピリジン骨格を有する化合物は、少なくとも4,4’位のいずれかに置換基を有することが好ましく、4,4’位に置換基を有することがより好ましい。また、1,10−フェナントロリン骨格を有する化合物は、少なくとも3,4,7,8位のいずれかに置換基を有することが好ましく、3,4,7,8位に置換基を有することがより好ましい。 When the compound having a 2,2'-bipyridine skeleton or the compound having a 1,10-phenanthroline skeleton has a substituent, the number of substituents is not particularly limited, but is usually 1 or more, preferably 2 or more, and usually 6 Hereinafter, it is preferably 4 or less. For example, a compound having a 2,2'-bipyridine skeleton preferably has a substituent at at least one of the 4,4'positions, and more preferably has a substituent at the 4,4'position. Further, the compound having a 1,10-phenanthroline skeleton preferably has a substituent at at least one of the 3,4,7,8 positions, and more preferably has a substituent at the 3,4,7,8 position. preferable.

上記の二座配位子は単独又は2種以上を組み合わせて用いることができる。 The above bidentate ligands can be used alone or in combination of two or more.

光酸化還元触媒成分(A)の好ましい具体例としては、例えば、トリス(2,2’-ビピリジン)ルテニウムジクロリド(Ru(bpy)3Cl2)、トリス(2,2’-ビピリジン)ルテニウムビス(ヘキサフルオロホスフェート)(Ru(bpy)3(PF6)2)、トリス(2-(2-ピリジニル-κN)フェニル-κC)イリジウム(fac-Ir(ppy)3)、ビス(2-(2-ピリジニル-κN)フェニル-κC)(4,4’-ジターシャリーブチル-2,2’-ビピリジン)イリジウム(ヘキサフルオロホスフェート)(Ir(ppy)2(dtbbpy)(PF6))、ビス(2-(5-トリフルオロメチルピリジン-2-イル-κN)-4,6-ジフルオロフェニル-κC)(4,4’-ジターシャリーブチル-2,2’-ビピリジン)イリジウム(ヘキサフルオロホスフェート)(Ir(dF(CF3)ppy)2(dtbbpy)(PF6))、ビス(2-(5-トリフルオロメチルピリジン-2-イル-κN)-4,6-ジフルオロフェニル-κC)(2,2’-ビピリジン)イリジウム(ヘキサフルオロホスフェート)(Ir(dF(CF3)ppy)2(bpy)(PF6))、ビス(2-(ピリジニル-κN)フェニル-κC)(4,4’-ジメトキシ-2,2’-ジピリジニル)イリジウム(ヘキサフルオロホスフェート)(Ir(ppy)2(dmobpy)(PF6))、ビス(2-(ピリジニル-κN)フェニル-κC)(4,4’-ジフェニル-2,2’-ジピリジニル)イリジウム(ヘキサフルオロホスフェート)(Ir(ppy)2(bpbpy)(PF6))、ビス(2-(ピリジニル-κN)フェニル-κC)(1,10-フェナントロリン)イリジウム(ヘキサフルオロホスフェート)(Ir(ppy)2(phen)(PF6))、ビス(2-(ピリジニル-κN)フェニル-κC)(3,4,7,8-テトラメチル-1,10-フェナントロリン)イリジウム(ヘキサフルオロホスフェート)(Ir(ppy)2(Me4phen)(PF6))などを挙げることができる。これらの光酸化還元触媒成分(A)は、単独又は2種以上を組み合わせて用いてもよい。 Preferred specific examples of the photooxidation-reduction catalyst component (A) include, for example, tris (2,2'-bipyridine) ruthenium dichloride (Ru (bpy) 3 Cl 2 ), tris (2,2'-bipyridine) ruthenium bis ( Hexafluorophosphate) (Ru (bpy) 3 (PF 6 ) 2 ), Tris (2- (2-pyridinyl-κN) phenyl-κC) Iridium (fac-Ir (ppy) 3 ), Bis (2- (2-) Pyridinyl-κN) phenyl-κC) (4,4'-ditersary butyl-2,2'-bipyridine) iridium (hexafluorophosphate) (Ir (ppy) 2 (dtbbpy) (PF 6 )), bis (2- (5-Trifluoromethylpyridine-2-yl-κN) -4,6-difluorophenyl-κC) (4,4'-ditersary butyl-2,2'-bipyridine) Iridium (hexafluorophosphate) (Ir ( dF (CF 3 ) ppy) 2 (dtbbpy) (PF 6 )), bis (2- (5-trifluoromethylpyridine-2-yl-κN) -4,6-difluorophenyl-κC) (2,2' -Bipyridine) Iridium (hexafluorophosphate) (Ir (dF (CF 3 ) ppy) 2 (bpy) (PF 6 )), bis (2- (pyridinyl-κN) phenyl-κC) (4,4'-dimethoxy- 2,2'-Dipyridinyl) Iridium (hexafluorophosphate) (Ir (ppy) 2 (dmobpy) (PF 6 )), Bis (2- (pyridinyl-κN) phenyl-κC) (4,4'-diphenyl-2 , 2'-dipyridinyl) iridium (hexafluorophosphate) (Ir (ppy) 2 (bpbpy) (PF 6 )), bis (2- (pyridinyl-κN) phenyl-κC) (1,10-phenanthroline) iridium (hexa) Fluorophosphate) (Ir (ppy) 2 (phen) (PF 6 )), bis (2- (pyridinyl-κN) phenyl-κC) (3,4,7,8-tetramethyl-1,10-phenanthroline) iridium (Hexafluorophosphate) (Ir (ppy) 2 (Me 4 phen) (PF 6 )) and the like can be mentioned. These photooxidation-reduction catalyst components (A) may be used alone or in combination of two or more.

芳香族カルボン酸の収率に優れるという観点から、光酸化還元触媒成分(A)のより好ましい具体例はIr(dF(CF3)ppy)2(dtbbpy)(PF6)、Ir(ppy)2(dtbbpy)(PF6)、Ir(ppy)2(dmobpy)(PF6)、Ir(ppy)2(bpbpy)(PF6)及び Ir(ppy)2(Me4phen)(PF6)であり、さらに好ましい具体例はIr(ppy)2(dtbbpy)(PF6)及び Ir(ppy)2(dmobpy)(PF6)であり、特に好ましい具体例は、Ir(ppy)2(dtbbpy)(PF6)である。 From the viewpoint of excellent yield of aromatic carboxylic acid, more preferable specific examples of the photooxidation-reduction catalyst component (A) are Ir (dF (CF 3 ) ppy) 2 (dtbbpy) (PF 6 ), Ir (ppy) 2. (dtbbpy) (PF 6 ), Ir (ppy) 2 (dmobpy) (PF 6 ), Ir (ppy) 2 (bpbpy) (PF 6 ) and Ir (ppy) 2 (Me 4 phen) (PF 6 ). Further preferred specific examples are Ir (ppy) 2 (dtbbpy) (PF 6 ) and Ir (ppy) 2 (dmobpy) (PF 6 ), and particularly preferable specific examples are Ir (ppy) 2 (dtbbpy) (PF). 6 ).

触媒組成物中の光酸化還元触媒成分(A)の含有割合は特に限定されないが、カルボキシル化反応の出発物質(基質)である芳香族ハロゲン化合物に対して、通常0.01mol%以上、好ましくは0.1mol%以上、より好ましくは0.5mol%以上であり、通常20mol%以下、好ましくは10mol%以下、より好ましくは5mol%以下である。
光酸化還元触媒成分(A)の含有割合が少ないと、触媒サイクルが十分に進行しないことがある。一方、光酸化還元触媒成分(A)の含有割合が多いと、効果の著しい向上は認められない傾向にあるため経済的ではない。
The content ratio of the photooxidation-reduction catalyst component (A) in the catalyst composition is not particularly limited, but is usually 0.01 mol% or more, preferably 0.01 mol% or more, based on the aromatic halogen compound which is the starting material (substrate) of the carboxylation reaction. It is 0.1 mol% or more, more preferably 0.5 mol% or more, usually 20 mol% or less, preferably 10 mol% or less, and more preferably 5 mol% or less.
If the content of the photooxidation-reduction catalyst component (A) is small, the catalytic cycle may not proceed sufficiently. On the other hand, if the content ratio of the photooxidation-reduction catalyst component (A) is large, the effect tends not to be significantly improved, which is not economical.

〔遷移金属触媒成分(B)〕
遷移金属触媒成分(B)は、周期表8〜11属に属し、光酸化還元触媒成分(A)に含まれる遷移金属Mとは異なる遷移金属M’を含む。
遷移金属M’は、周期表8〜11族に属する遷移金属元素であれば特に限定されないが、ロジウム以外の遷移金属元素が好ましく、パラジウム、コバルト、ニッケル及び鉄からなる群から選択される少なくとも1種であることがより好ましく、パラジウム又はニッケルがさらに好ましく、パラジウムが特に好ましい。
[Transition metal catalyst component (B)]
The transition metal catalyst component (B) belongs to the groups 8 to 11 of the periodic table and contains a transition metal M'different from the transition metal M contained in the photooxidation-reduction catalyst component (A).
The transition metal M'is not particularly limited as long as it is a transition metal element belonging to Groups 8 to 11 of the Periodic Table, but a transition metal element other than rhodium is preferable, and at least one selected from the group consisting of palladium, cobalt, nickel and iron. Species are more preferred, palladium or nickel is even more preferred, and palladium is particularly preferred.

また、遷移金属触媒成分(B)はリン原子を含むことが好ましい。このような遷移金属触媒成分(B)は、遷移金属M’を含む触媒前駆体とリン原子を含む単座配位子とからなる錯体である。 Further, the transition metal catalyst component (B) preferably contains a phosphorus atom. Such a transition metal catalyst component (B) is a complex composed of a catalyst precursor containing a transition metal M'and a monodentate ligand containing a phosphorus atom.

パラジウムを含む触媒前駆体の具体例としては、例えば、Pd(PPh、Pd(P(o-tol)、Pd(P(tBu)、Pd(dba)、Pd(dba)・CHCl、Pd(dba)、Pd(MeCN)(BF、PdCl、PdBr、Pd(acac)、Pd(TFA)、Pd(allyl)Cl、[(allyl)PdCl]、Pd(PCyCl、Pd(P(o-tol)Cl、Pd(OAc)、PdCl(dppf)、PdCl(dppf)CHCl、Pd(MeCN)Cl、Pd(amPhos)Cl、PdCl(dtbpf)又はPdCl(PPh等の、パラジウムが0価又は2価のものが挙げられる。
なお、本明細書において、Phはフェニル基、o-tolはo-トリル基、tBuはtert-ブチル基、dbaはジベンジリデンアセトン、MeCNはアセトニトリル、acacはアセチルアセトナート、TFAはトリフルオロアセテート、OAcはアセテート、allylはアリル、Cyはシクロへキシル基、dppfは1,1'-ビス(ジフェニルホスフィノ)フェロセン、dtbpfは1,1’-ジ-tert-ブチルホスフィノフェロセン、PPhはトリフェニルホスフィン、amPhosは[4-(N,N-ジメチルアミノ)フェニル]ジ-tert-ブチルホスフィンを表す。
これらの触媒前駆体は、単独又は2種以上を組み合わせて用いてもよい。
これらの中でも、芳香族カルボン酸の収率に優れるという観点から、Pd(OAc)及び[(allyl)PdCl]が好ましく、Pd(OAc)がより好ましい。
Specific examples of the catalyst precursor containing palladium include, for example, Pd (PPh 3 ) 4 , Pd (P (o-trol) 3 ) 4 , Pd (P (tBu) 3 ) 4 , Pd 2 (dba) 3 , Pd 2 (dba) 3 · CHCl 3 , Pd (dba) 2 , Pd (MeCN) 4 (BF 4 ) 2 , PdCl 2 , PdBr 2 , Pd (acac) 2 , Pd (TFA) 2 , Pd (allly) Cl 2 , [(allly) PdCl] 2 , Pd (PCy 3 ) 2 Cl 2 , Pd (P (o-toll) 3 ) 2 Cl 2 , Pd (OAc) 2 , PdCl 2 (dppff), PdCl 2 (dppf) CH 2 Cl 2 , Pd (MeCN) 2 Cl 2 , Pd (amPhos) Cl 2 , PdCl 2 (dtbpf) or PdCl 2 (PPh 3 ) 2, etc., and palladium is 0 or divalent.
In the present specification, Ph is a phenyl group, o-tol is an o-tolyl group, tBu is a tert-butyl group, dba is dibenzylidene acetone, MeCN is acetonitrile, acac is acetylacetonate, and TFA is trifluoroacetate. OAc is acetate, allyl is allyl, Cy is cyclohexyl group, dppf is 1,1'-bis (diphenylphosphino) ferrocene, dtbpf is 1,1'-di-tert-butylphosphinoferosen, PPh 3 is tri Phenylphosphin, amPhos represents [4- (N, N-dimethylamino) phenyl] di-tert-butylphosphine.
These catalyst precursors may be used alone or in combination of two or more.
Among these, Pd (OAc) 2 and [(allyl) PdCl] 2 are preferable, and Pd (OAc) 2 is more preferable, from the viewpoint of excellent yield of aromatic carboxylic acid.

リン原子を含む単座配位子(以下において、単に「配位子」と記載することがある。)としては、分子内に1個以上のリン原子を有し、このリン原子が遷移金属M’との間に配位結合を形成して単座配位することで錯体を形成し得る化合物であればよい。
このような化合物としては、一般式P(Rで表される有機リン化合物を用いることが好ましい。Rはリン原子(P)に結合する置換基を表す。Rは、置換又は無置換のC1〜30アルキル基、置換又は無置換のC1〜30シクロアルキル基、置換又は無置換の環形成炭素数6〜30の芳香族炭化水素基であることが好ましい。複数のRは互いに同一でも異なっていてもよい。また、有機リン化合物としては、一般式P(R・(HX)で表されるホスフィン塩を用いることもできる。Rは、前述と同義であり、Hは水素原子であり、Xは原子又は原子団を表し、HXとしては、例えば、HCl、HBr及びHBF等が挙げられる。
The monodentate ligand containing a phosphorus atom (hereinafter, may be simply referred to as “ligand”) has one or more phosphorus atoms in the molecule, and this phosphorus atom is a transition metal M'. Any compound can be used as long as it can form a complex by forming a coordination bond with and in a monodentate coordination.
As such a compound, it is preferable to use an organic phosphorus compound represented by the general formula P (R x ) 3. R x represents a substituent attached to the phosphorus atom (P). Rx is a substituted or unsubstituted C 1 to 30 alkyl group, a substituted or unsubstituted C 1 to 30 cycloalkyl group, and a substituted or unsubstituted ring-forming aromatic hydrocarbon group having 6 to 30 carbon atoms. Is preferable. A plurality of R x may be the same as or different from each other. Further, as the organic phosphorus compound, a phosphine salt represented by the general formula P (R x ) 3. (HX a ) can also be used. R x has the same meaning as described above, H is a hydrogen atom, X a represents an atom or an atomic group , and examples of HX a include HCl, HBr, and HBF 4 .

有機リン化合物としては、例えば、トリフェニルホスフィン(PPh3)、トリメシチルホスフィン(PMes3)、トリシクロヘキシルホスフィン(PCy3)、トリ(t-ブチル)ホスフィン(P(tBu)3)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(PtBu3-HBF4)、トリ-o-トリルホスフィン(P(o-tol)3)、トリ-p-トリルホスフィン(P(p-tol)3)、トリス(p-メトキシフェニル)ホスフィン(P(p-MeOC6H4)3)、トリス(o-メトキシフェニル)ホスフィン(P(o-MeOC6H4)3)、トリフラニルホスフィン(P(furanyl))、トリチエニルホスフィン(P(thienyl))、トリス(3,5-ジメトキシフェニル)ホスフィン(P(3,5-(MeO)2C6H3))、ジシクロへキシルフェニルホスフィン(PPh(Cy))、シクロへキシルジフェニルホスフィン(PPh(Cy))、ジシクロへキシルホスフィン(HPCy)、ジ-tert-ブチルホスフィン(HP(tBu))、ジ-tert-ブチルクロロホスフィン(P(tBu)Cl)、トリメチルホスファイト(P(OMe))、トリフェニルホスファイト(P(OPh))、ジフェニルホスフィンオキシド(HPOPh)、トリス(ジメチルアミノ)ホスフィン(HMPT)、トリス(ジエチルアミノ)ホスフィン(P(NEt))、5-(ジ-t-ブチルホスフィノ)-1’,3’,5’-トリフェニル-1’H-[1,4’]ビピラゾール(BippyPhos)、1,2,3,4,5-ペンタフェニル-1’-(ジ-t-ブチルホスフィノ)フェロセン(QPhos)、1,3,5-トリアザ-7-ホスファアダマンタン(PTA)、ビス[2-(ジフェニルホスフィノ)フェニル]エーテル(DPEPhos)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(dppf)、1,1’-ビス(ジフェニルホスフィノ)メタン(dppm)、1,2-ビス(ジフェニルホスフィノ)エタン(dppe)、1,3-ビス(ジフェニルホスフィノ)プロパン(dppp)、1,4-ビス(ジフェニルホスフィノ)ブタン(dppb)、1,2-ビス(ジシクロへキシルホスフィノ)エタン(dcpe)、1,1’-ビス(ジ-tert-ブチルホスフィノ)フェロセン(dtbpf)、2,2'-ビス(ジフェニルホスフィノ)-1,1'-ビナフチル(BINAP)、2-ジシクロヘキシルホスフィノ-2',6'-ジメトキシビフェニル(SPhos)、2-ジシクロヘキシルホスフィノ-2',4',6'-トリイソプロピルビフェニル(XPhos)、2-ジフェニルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(PhXPhos)、2-ジ-tert-ブチルホスフィノ-2',4',6'-トリイソプロピルビフェニル(tBuXPhos)、2-ジイソプロピルホスフィノ-2',4',6'-トリイソプロピルビフェニル(iPrXPhos)、2-ビス(p-トリフルオロメチルフェニル)ホスフィノ-2',4',6'-トリイソプロピルビフェニル(ArCF3XPhos)、2-(ジ-tert-ブチルホスフィノ)ビフェニル(JohnPhos)、2-(ジシクロへキシルホスフィノ)ビフェニル(cyclohexyl JohnPhos)、2-(ジシクロヘキシルホスフィノ)-2’-メチルビフェニル(MePhos)、2-(ジシクロへキシルホスフィノ)-2’,6’-ジイソプロポキシ-1,1’-ビフェニル(RuPhos)、2-(ジシクロへキシルホスフィノ)-3,6-ジメトキシ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(BrettPhos)、2’-(ジシクロへキシルホスフィノ)-2,6-ジメトキシ-ビフェニル-3-スルホン酸ナトリウム塩(SPhos)、2-(ジフェニルホスフィノ)-2’-(N,N’-ジメチルアミノ)ビフェニル(PhDavePhos)、2-ジ-tert-ブチルホスフィノ-3,4,5,6-テトラメチル-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(Tetramethyl di-tBuXPhos)、2-(ジ-tert-ブチルホスフィノ)-2’-メチルビフェニル(tBuMePhos)、2-ジ-tert-ブチルホスフィノ-2’-(N,N-ジメチルアミノ)ビフェニル(tBuDavePhos)、2-(ビス-[3,5-ビス(トリフルオロメチル)フェニル]ホスフィノ)-3,6-ジメトキシ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(JackiePhos)、(n-ブチル)ジ(1-アダマンチル)ホスフィン(cataCXium A)、(n-ブチル)ジ(1-アダマンチル)ホスフォニウムヒドロヨージド(cataCXium AHI)、N-フェニル-2-(ジ-tert-ブチルホスフィノ)ピロール(cataCXium PtB)、2-(ジ-tert-ブチルホスフィノ)-N-フェニルインドール(cataCXium PlntB)、N-フェニル-2-(ジシクロヘキシルホスフィノ)ピロール(cataCXium PCy)、N-(2-メトキシフェニル)-2-(ジ-tert-ブチルホスフィノ)ピロール(cataCXium POMetB)、2-(ジ(1-アダマンチル)ホスフィノ)-ジメチルアミノベンゼン(Me-DalPhos)、ジ(1-アダマンチル)-2-モルホリノフェニルホスフィン(Mor-DalPhos)、2-(ジシクロヘキシルホスフィノ)-2'-(ジメチルアミノ)ビフェニル(DavePhos)、及び4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(XantPhos)等が挙げられる。
これらの中でも、XPhos、PhXPhos、iPrXPhos、ArCF3XPhos及びtBuXPhosが好ましい。
これらの有機リン化合物は、単独又は2種以上を組み合わせて用いてもよい。
Examples of the organic phosphorus compound include triphenylphosphine (PPh 3 ), trimethylphosphine (PMes 3 ), tricyclohexylphosphine (PCy 3 ), tri (t-butyl) phosphine (P (tBu) 3 ), and tri-tert. -Butylphosphonium tetrafluorobolate (PtBu 3 -HBF 4 ), tri-o-triphenylphosphine (P (o-tol) 3 ), tri-p-tolylphosphine (P (p-tol) 3 ), tris (p) -Methoxyphenyl) phosphine (P (p-MeOC 6 H 4 ) 3 ), tris (o-methoxyphenyl) phosphine (P (o-MeOC 6 H 4 ) 3 ), triphenylphosphine (P (furanyl) 3 ) , Triphenylphosphine (P (thienyl) 3 ), tris (3,5-dimethoxyphenyl) phosphine (P (3,5- (MeO) 2 C 6 H 3 ) 3 ), dicyclohexylphenylphosphine (PPh (Cy) 2 ), Cyclohexyldiphenylphosphine (PPh 2 (Cy)), dicyclohexylphosphine (HPCy 2 ), di-tert-butylphosphine (HP (tBu) 2 ), di-tert-butylchlorophosphine (P () tBu) 2 Cl), trimethylphosphine (P (OMe) 3 ), triphenylphosphine (P (OPh) 3 ), diphenylphosphine oxide (HPOPh 2 ), tris (dimethylamino) phosphine (HMPT), tris (diethylamino) ) Phosphine (P (NEt 2 ) 3 ), 5- (di-t-butylphosphino) -1', 3', 5'-triphenyl-1'H- [1,4'] bipyrazole (BippyPhos), 1,2,3,4,5-pentaphenyl-1'-(di-t-butylphosphine) ferrocene (QPhos), 1,3,5-triaza-7-phosphaadamantan (PTA), bis [2] -(Diphenylphosphine) phenyl] ether (DPEPhos), 1,1'-bis (diphenylphosphino) ferrocene (dppf), 1,1'-bis (diphenylphosphino) methane (dppm), 1,2-bis (Diphenylphosphine) ethane (dppe), 1,3-bis (diphenylphosphino) propane (dppp), 1,4-bis (diphenylphosphino) butane (dppb), 1,2-bis (dicyclohexyl) Phosphino) ethane (dcpe), 1,1'-bis (di-tert-butylphosphino) ferrocene (dtbpf), 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl (BINAP), 2 -Dicyclohexylphosphino-2', 6'-dimethoxybiphenyl (SPhos), 2-dicyclohexylphosphino-2', 4', 6'-triisopropylbiphenyl (XPhos), 2-diphenylphosphino-2', 4' , 6'-Triisopropylbiphenyl (PhXPhos), 2-di-tert-butylphosphino-2', 4', 6'-triisopropylbiphenyl (tBuXPhos), 2-diisopropylphosphino-2', 4', 6 '-Triisopropylbiphenyl (iPrXPhos), 2-bis (p-trifluoromethylphenyl) phosphino-2', 4', 6'-triisopropylbiphenyl (Ar CF3 XPhos), 2- (di-tert-butylphosphino) ) Biphenyl (JohnPhos), 2- (dicyclohexylphosphino) Biphenyl (cyclohexyl JohnPhos), 2- (dicyclohexylphosphino) -2-'-methylbiphenyl (MePhos), 2- (dicyclohexylphosphino) -2', 6'- Diisopropoxy-1,1'-biphenyl (RuPhos), 2- (dicyclohexylphosphino) -3,6-dimethoxy-2', 4', 6'-triisopropyl-1,1'-biphenyl (BrettPhos), 2 '- (dicyclo to Kishiruhosufino) -2,6-dimethoxy - biphenyl-3-sulfonic acid sodium salt (s SPhos), 2-(diphenylphosphino) -2' - (N, N'-dimethylamino) biphenyl ( PhDavePhos), 2-di-tert-butylphosphino-3,4,5,6-tetramethyl-2', 4', 6'-triisopropyl-1,1'-biphenyl (Tetramethyl di-tBuXPhos), 2 -(Di-tert-butylphosphino) -2-'-methylbiphenyl (tBuMePhos), 2-di-tert-butylphosphino-2'-(N, N-dimethylamino) biphenyl (tBuDavePhos), 2- (bis) -[3,5-bis (trifluoromethyl) phenyl] phosphino) -3,6-dimethoxy-2', 4', 6'-triisopropyl-1,1'-biphenyl (JackiePhos) , (N-butyl) di (1-adamantyl) phosphine (cataCXium A), (n-butyl) di (1-adamantyl) phosphonium hydroiodide (cataCXium AHI), N-phenyl-2- (di-tert) -Butylphosphino) pyrrole (cataCXium PtB), 2- (di-tert-butylphosphino) -N-phenylindole (cataCXium PlntB), N-phenyl-2- (dicyclohexylphosphino) pyrrole (cataCXium PCy), N -(2-methoxyphenyl) -2- (di-tert-butylphosphino) pyrrole (cataCXium POMetB), 2- (di (1-adamantyl) phosphino)-dimethylaminobenzene (Me-DalPhos), di (1-) Adamanthyl) -2-Mor-DalPhos, 2- (Dicyclohexylphosphino) -2-'-(Dimethylamino) Biphenyl (DavePhos), and 4,5-Bis (Diphenylphosphino) -9,9- Examples thereof include dimethylxanthene (XantPhos).
Among these, XPhos, PhXPhos, iPrXPhos, Ar CF3 XPhos and tBuXPhos are preferable.
These organophosphorus compounds may be used alone or in combination of two or more.

上記有機リン化合物の中でも、リン原子(P)に結合する置換基(R)の少なくとも1つは嵩高い置換基であることが好ましい。具体的には、Rの少なくとも1つが芳香環を2つ以上有することが好ましく、Rの少なくとも1つがキサントホス骨格又はビフェニル骨格を有することがより好ましく、Rの少なくとも1つがビフェニル骨格を有することがさらに好ましく、Rの一つがビフェニル骨格を有することが特に好ましい。
このような有機リン化合物を選択することで、芳香族カルボン酸の収率がより向上する。
Among the above organic phosphorus compounds, it is preferable that at least one of the substituents (R x ) bonded to the phosphorus atom (P) is a bulky substituent. Specifically, it is preferable to at least one of R x having at least two aromatic rings, more preferably having at least one xantphos skeleton or biphenyl skeleton of R x, at least one of R x have the biphenyl skeleton It is even more preferable, and it is particularly preferable that one of R x has a biphenyl skeleton.
By selecting such an organic phosphorus compound, the yield of aromatic carboxylic acid is further improved.

また、ビフェニル骨格は置換基を有することが好ましい。このような置換基としては、メチル基、エチル基やイソプロピル基等のC1〜10アルキル基、メトキシ基やエトキシ基等のC1〜10アルキル基、ジメチルアミノ基、ジエチルアミノ等のC1〜10のアルキル基を有するジアルキルアミノ基等が挙げられ、好ましくはC1〜5アルキル基である。置換基の数は特に限定されないが、通常1以上、好ましくは3以上であり、通常6以下、好ましくは5以下である。 Further, the biphenyl skeleton preferably has a substituent. Such substituents, C 1 to 10 alkyl group such as a methyl group, an ethyl group or an isopropyl group, C 1 to 10 alkyl group such as a methoxy group or an ethoxy group, a dimethylamino group, C 1 to 10 of diethylamino Examples thereof include a dialkylamino group having the above-mentioned alkyl group, and a C 1 to 5 alkyl group is preferable. The number of substituents is not particularly limited, but is usually 1 or more, preferably 3 or more, and usually 6 or less, preferably 5 or less.

遷移金属触媒成分(B)は、予め遷移金属M’を含む触媒前駆体に有機リン化合物を反応させて調製しておいてもよいし、反応系中に遷移金属M’を含む触媒前駆体と有機リン化合物とを添加し、反応系中で調製してもよい。
反応系中で調製する際に、遷移金属M’を含む触媒前駆体と有機リン化合物を添加する順序は特に限定されず、遷移金属M’を含む触媒前駆体を有機リン化合物よりも先に添加してもよいし、後に添加してもよい。遷移金属触媒成分(B)を反応系中で調製する場合、遷移金属触媒成分(B)の存在は、予め調製した遷移金属触媒成分(B)のH−NMRスペクトルと、触媒組成物のH−NMRスペクトルとを対比することで確認できる。
The transition metal catalyst component (B) may be prepared by reacting an organic phosphorus compound with a catalyst precursor containing a transition metal M'in advance, or may be prepared with a catalyst precursor containing a transition metal M'in the reaction system. It may be prepared in a reaction system by adding an organic phosphorus compound.
When preparing in the reaction system, the order in which the catalyst precursor containing the transition metal M'and the organophosphorus compound are added is not particularly limited, and the catalyst precursor containing the transition metal M'is added before the organophosphorus compound. It may be added later. When the transition metal catalyst component (B) is prepared in the reaction system, the presence of the transition metal catalyst component (B) includes 1 H-NMR spectrum of the transition metal catalyst component (B) prepared in advance and 1 of the catalyst composition. It can be confirmed by comparing with the H-NMR spectrum.

触媒組成物中の遷移金属触媒成分(B)の含有割合は特に限定されないが、カルボキシル化反応の出発物質(基質)である芳香族ハロゲン化合物に対して、通常0.01mol%以上、好ましくは0.1mol%以上、より好ましくは0.5mol%以上であり、通常20mol%以下、好ましくは10mol%以下、より好ましくは5mol%以下である。
遷移金属触媒成分(B)の含有割合が少ないと、触媒サイクルが十分に進行しないことがある。一方、遷移金属触媒成分(B)の含有割合が多いと、効果の著しい向上は認められない傾向にあるため経済的ではない。
The content ratio of the transition metal catalyst component (B) in the catalyst composition is not particularly limited, but is usually 0.01 mol% or more, preferably 0, with respect to the aromatic halogen compound which is the starting material (substrate) of the carboxylation reaction. .1 mol% or more, more preferably 0.5 mol% or more, usually 20 mol% or less, preferably 10 mol% or less, more preferably 5 mol% or less.
If the content of the transition metal catalyst component (B) is low, the catalytic cycle may not proceed sufficiently. On the other hand, if the content ratio of the transition metal catalyst component (B) is large, the effect tends not to be significantly improved, which is not economical.

なお、遷移金属触媒成分(B)を反応系中で調製する場合には、遷移金属M’を含む触媒前駆体と有機リン化合物のそれぞれの含有割合は以下の通りである。
遷移金属M’を含む触媒前駆体の含有割合は、芳香族ハロゲン化合物に対して、通常0.1mol%以上、好ましくは0.5mol%以上、より好ましくは1.0mol%以上、さらに好ましくは2.0mol%以上であり、通常30mol%以下、好ましくは25mol%以下、より好ましくは20mol%以下、さらに好ましくは15mol%以下である。
また、有機リン化合物の含有割合は、芳香族ハロゲン化合物に対して、通常0.5mol%以上、好ましくは1.0mol%以上、より好ましくは2.0mol%以上、さらに好ましくは3.0mol%以上であり、通常50mol%以下、好ましくは40mol%以下、より好ましくは30mol%以下、さらに好ましくは25mol%以下である。
遷移金属M’を含む触媒前駆体の含有割合や有機リン化合物の含有割合が少ないと、遷移金属触媒成分(B)の生成量が少なくなり、触媒サイクルが十分に進行しないことがある。
一方、遷移金属M’を含む触媒前駆体の含有割合や有機リン化合物の含有割合が多いと、効果の著しい向上は認められない傾向にあるため経済的ではない。また、遷移金属触媒成分(B)が生成された後の残渣物(過剰量の触媒前駆体又は有機リン化合物)により、触媒サイクルが十分に進行しないことがある。
When the transition metal catalyst component (B) is prepared in the reaction system, the content ratios of the catalyst precursor containing the transition metal M'and the organophosphorus compound are as follows.
The content ratio of the catalyst precursor containing the transition metal M'is usually 0.1 mol% or more, preferably 0.5 mol% or more, more preferably 1.0 mol% or more, still more preferably 2 with respect to the aromatic halogen compound. It is 0.0 mol% or more, usually 30 mol% or less, preferably 25 mol% or less, more preferably 20 mol% or less, still more preferably 15 mol% or less.
The content ratio of the organic phosphorus compound is usually 0.5 mol% or more, preferably 1.0 mol% or more, more preferably 2.0 mol% or more, still more preferably 3.0 mol% or more with respect to the aromatic halogen compound. It is usually 50 mol% or less, preferably 40 mol% or less, more preferably 30 mol% or less, still more preferably 25 mol% or less.
If the content of the catalyst precursor containing the transition metal M'orientation of the organic phosphorus compound is small, the amount of the transition metal catalyst component (B) produced may be small and the catalytic cycle may not proceed sufficiently.
On the other hand, if the content of the catalyst precursor containing the transition metal M'and the content of the organic phosphorus compound are high, the effect tends not to be significantly improved, which is not economical. In addition, the catalytic cycle may not proceed sufficiently due to the residue (excessive amount of catalyst precursor or organophosphorus compound) after the transition metal catalyst component (B) is produced.

また、遷移金属M’を含む触媒前駆体に対する有機リン化合物のモル比(有機リン化合物/触媒前駆体)は、通常0.1以上、好ましくは0.5以上、より好ましくは1以上であり、通常20以下、好ましくは10以下、より好ましくは5以下である。
遷移金属M’を含む触媒前駆体に対する有機リン化合物のモル比が小さいと、遷移金属触媒成分(B)の生成量が少なくなり、触媒サイクルが十分に進行しないことがある。一方、遷移金属M’を含む触媒前駆体に対する有機リン化合物のモル比が大きいと、効果の著しい向上は認められない傾向にあるため経済的ではない。また、遷移金属M’を含む触媒前駆体に対する有機リン化合物のモル比が小さすぎたり、大きすぎたりすると、遷移金属触媒成分(B)が生成された後の残渣物(過剰量の触媒前駆体又は有機リン化合物)により、触媒サイクルが十分に進行しないことがある。
The molar ratio of the organophosphorus compound to the catalyst precursor containing the transition metal M'(organophosphorus compound / catalyst precursor) is usually 0.1 or more, preferably 0.5 or more, and more preferably 1 or more. It is usually 20 or less, preferably 10 or less, and more preferably 5 or less.
If the molar ratio of the organic phosphorus compound to the catalyst precursor containing the transition metal M'is small, the amount of the transition metal catalyst component (B) produced may be small, and the catalytic cycle may not proceed sufficiently. On the other hand, if the molar ratio of the organic phosphorus compound to the catalyst precursor containing the transition metal M'is large, the effect tends not to be significantly improved, which is not economical. Further, if the molar ratio of the organophosphorus compound to the catalyst precursor containing the transition metal M'is too small or too large, the residue after the transition metal catalyst component (B) is generated (excessive amount of catalyst precursor). Alternatively, the catalytic cycle may not proceed sufficiently due to the organophosphorus compound).

光酸化還元触媒成分(A)に対する遷移金属触媒成分(B)のモル比(B/A)は、通常1/20以上、好ましくは1/10以上、より好ましくは1/5以上であり、通常20/1以下、好ましくは15/1以下、より好ましくは10/1以下である。
光酸化還元触媒成分(A)に対する遷移金属触媒成分(B)のモル比が小さすぎたり、大きすぎたりすると、触媒サイクルが十分に進行しないことがある。また、過剰量に配合された成分が反応系中に残留し、触媒サイクルに影響を及ぼすおそれがある。
The molar ratio (B / A) of the transition metal catalyst component (B) to the photooxidation-reduction catalyst component (A) is usually 1/20 or more, preferably 1/10 or more, more preferably 1/5 or more, and is usually used. It is 20/1 or less, preferably 15/1 or less, and more preferably 10/1 or less.
If the molar ratio of the transition metal catalyst component (B) to the photooxidation-reduction catalyst component (A) is too small or too large, the catalytic cycle may not proceed sufficiently. In addition, an excessive amount of the component may remain in the reaction system and affect the catalytic cycle.

2.芳香族カルボン酸又はそのエステルの製造方法
本実施形態における芳香族カルボン酸又はそのエステルの製造方法は、周期表8〜10族に属する遷移金属Mを含む光酸化還元触媒成分(A)と、周期表8〜11族に属し、前記遷移金属Mと異なる遷移金属M’を含む遷移金属触媒成分(B)とを含む触媒組成物の存在下、二酸化炭素と芳香族ハロゲン化合物とに光照射する工程を含む。
2. 2. Method for producing aromatic carboxylic acid or ester thereof The method for producing aromatic carboxylic acid or its ester in the present embodiment comprises a photooxidation-reduction catalyst component (A) containing a transition metal M belonging to Groups 8 to 10 of the Periodic Table and a period. A step of irradiating carbon dioxide and an aromatic halogen compound with light in the presence of a catalyst composition belonging to Groups 8 to 11 and containing a transition metal catalyst component (B) containing a transition metal M'different from the transition metal M. including.

照射する光の波長は、使用する光酸化還元触媒成分(A)に応じて決めればよいが、光酸化還元触媒成分(A)に含まれる遷移金属Mがルテニウムやイリジウムの場合には、可視光(例えば、波長が400〜700nmの範囲にある光)を照射することが好ましく、青色光(例えば、波長が400〜500nmの範囲にある光)を照射することがより好ましい。また、照射する光は、太陽光のような自然光でも、LED等を光源とする人口光でもよい。 The wavelength of the light to be irradiated may be determined according to the photooxidation-reduction catalyst component (A) to be used, but when the transition metal M contained in the photooxidation-reduction catalyst component (A) is ruthenium or iridium, visible light. It is preferable to irradiate (for example, light having a wavelength in the range of 400 to 700 nm), and more preferably to irradiate blue light (for example, light having a wavelength in the range of 400 to 500 nm). Further, the light to be irradiated may be natural light such as sunlight or artificial light using an LED or the like as a light source.

光照射する際の温度(反応温度)は特に限定されないが、通常0℃以上、好ましくは15℃以上であり、通常70℃以下、好ましくは50℃以下である。なお、反応温度は、芳香族カルボン酸又はそのエステルを製造するための反応容器中の温度を意味する。反応温度が低すぎると、触媒サイクルが十分に進行しないことがある。また、反応温度が高すぎると、水素化生成物の収率が増加する傾向にある。 The temperature (reaction temperature) at the time of light irradiation is not particularly limited, but is usually 0 ° C. or higher, preferably 15 ° C. or higher, and usually 70 ° C. or lower, preferably 50 ° C. or lower. The reaction temperature means the temperature in the reaction vessel for producing the aromatic carboxylic acid or its ester. If the reaction temperature is too low, the catalytic cycle may not proceed sufficiently. Also, if the reaction temperature is too high, the yield of hydrogenation products tends to increase.

また、光照射する時間(反応時間)は特に限定されないが、通常1時間以上、好ましくは2時間以上であり、通常24時間以下、好ましくは10時間以下である。反応時間が短いと、触媒サイクルが十分に進行しないことがある。一方、反応時間が長くても芳香族カルボン酸の収率の著しい向上は認められず、水素化生成物の収率が増加する傾向にある。 The time of light irradiation (reaction time) is not particularly limited, but is usually 1 hour or more, preferably 2 hours or more, and usually 24 hours or less, preferably 10 hours or less. If the reaction time is short, the catalytic cycle may not proceed sufficiently. On the other hand, even if the reaction time is long, no significant improvement in the yield of the aromatic carboxylic acid is observed, and the yield of the hydrogenation product tends to increase.

また、照射する光の強度は特に限定されない。例えば、LEDランプ等の光照射装置を用いる場合には、ソケット数の増減により光の強度を制御することができる。照射する光の強度が大きくなると、出発物質である芳香族ハロゲン化合物の転化率が向上することがある。 Further, the intensity of the emitted light is not particularly limited. For example, when a light irradiation device such as an LED lamp is used, the light intensity can be controlled by increasing or decreasing the number of sockets. When the intensity of the irradiated light is increased, the conversion rate of the aromatic halogen compound as a starting material may be improved.

光照射工程は、反応容器に触媒組成物、二酸化炭素及び芳香族ハロゲン化合物を入れて行なうことが好ましい。光照射工程は、大気圧下で行っても、大気圧以上の圧力下で行ってもよい。
ここで、二酸化炭素は、大気圧下又は加圧条件下で反応系中にバブリングして添加してもよいし、大気圧下又は加圧条件下で好ましくは上下に撹拌しながら気相から液相に溶解させてもよい。
The light irradiation step is preferably carried out by putting the catalyst composition, carbon dioxide and the aromatic halogen compound in the reaction vessel. The light irradiation step may be performed under atmospheric pressure or at a pressure higher than atmospheric pressure.
Here, carbon dioxide may be added by bubbling into the reaction system under atmospheric pressure or pressurized conditions, or liquid from the gas phase while stirring preferably up and down under atmospheric pressure or pressurized conditions. It may be dissolved in the phase.

反応形式は特に限定されず、例えば、連続方式又はバッチ方式のいずれでもよい。 The reaction form is not particularly limited, and may be, for example, either a continuous method or a batch method.

上記条件下における光照射工程により、ハロゲンアニオンの脱離及び芳香族カルボン酸の還元的脱離の段階で、励起された光酸化還元触媒成分(A)から遷移金属触媒成分(B)に電子が渡され、反応が進行すると推測される。 By the light irradiation step under the above conditions, electrons are transferred from the excited photooxidation-reduction catalyst component (A) to the transition metal catalyst component (B) at the stage of desorption of halogen anions and reductive desorption of aromatic carboxylic acid. It is passed and it is presumed that the reaction will proceed.

反応終了後、芳香族カルボン酸を分離する方法は特に限定されず、例えば、蒸留・濃縮法により行うことが好ましい。この蒸留・濃縮のための手段としては、従来の蒸留・濃縮装置、例えば減圧連続式蒸留装置や減圧バッチ式蒸留装置等を用いることができる。 After completion of the reaction, the method for separating the aromatic carboxylic acid is not particularly limited, and for example, it is preferably carried out by a distillation / concentration method. As the means for this distillation / concentration, a conventional distillation / concentration device, for example, a decompression continuous distillation device, a decompression batch type distillation device, or the like can be used.

このようにして得られる芳香族カルボン酸は、後述する芳香族ハロゲン化合物におけるハロゲン原子(−X)が、カルボキシ基(−COOH)に置換された化合物である。なお、芳香族カルボン酸とともに、副生成物として水素化生成物も得られる。水素化生成物は、芳香族ハロゲン化合物におけるハロゲン原子(−X)が、水素原子(−H)に置換された化合物である。 The aromatic carboxylic acid thus obtained is a compound in which the halogen atom (-X) in the aromatic halogen compound described later is replaced with a carboxy group (-COOH). Along with the aromatic carboxylic acid, a hydrogenation product can also be obtained as a by-product. The hydrogenation product is a compound in which a halogen atom (−X) in an aromatic halogen compound is replaced with a hydrogen atom (−H).

〔芳香族ハロゲン化合物〕
本実施形態の製造方法において用いられる芳香族ハロゲン化合物は、芳香族化合物の環を構成する原子にハロゲン原子が直接化学結合した構造を含む化合物であれば特に限定されない。ここで、「芳香族化合物の環を構成する原子」とは、例えばベンゼン環を構成する炭素原子が挙げられる。ベンゼン環は1個であっても2個以上であってもよく、ベンゼン環はナフタレン環のように縮合環式構造であってもよい。また、芳香族性を有していれば環構造はベンゼン環に限定されず、複素環式であってもよいし、六員環以外の五員環や七員環等であってもよい。さらに、芳香族ハロゲン化合物は、1種類のみを使用しても、異なる複数種を併用してもよい。
[Aromatic halogen compounds]
The aromatic halogen compound used in the production method of the present embodiment is not particularly limited as long as it contains a structure in which a halogen atom is directly chemically bonded to an atom constituting the ring of the aromatic compound. Here, examples of the "atoms constituting the ring of the aromatic compound" include carbon atoms constituting the benzene ring. The number of benzene rings may be one or two or more, and the benzene rings may have a fused ring structure such as a naphthalene ring. Further, the ring structure is not limited to the benzene ring as long as it has aromaticity, and may be a heterocyclic ring, a five-membered ring other than the six-membered ring, a seven-membered ring, or the like. Further, as the aromatic halogen compound, only one kind may be used, or a plurality of different kinds may be used in combination.

例えば、ベンゼン環が1個の場合の芳香族ハロゲン化合物は、下記構造式(I)で表されることが好ましい。

Figure 0006985696
(式中、Xはハロゲン原子を表し、nは1〜3の整数を表す。nが2以上の場合には、Xは互いに同一でも異なっていてもよい。Rは水素原子、フッ素原子、塩素原子、アルキル基、フッ素原子を含有するアルキル基、アルコキシ基、シクロアルキル基、アリール基、カルボニル基、エステル基、ニトリル基又はシリル基を表し、nは1〜3の整数を表す。nが2以上の場合にはRは互いに同一でも異なっていてもよい。またRは隣接炭素原子に結合し、それらの炭素原子とともに炭化水素環又は複素環を形成してもよい。) For example, the aromatic halogen compound in the case of one benzene ring is preferably represented by the following structural formula (I).
Figure 0006985696
(In the formula, X represents a halogen atom and n 1 represents an integer of 1 to 3. When n 1 is 2 or more, X may be the same as or different from each other. R is a hydrogen atom and a fluorine atom. , A chlorine atom, an alkyl group, an alkyl group containing a fluorine atom, an alkoxy group, a cycloalkyl group, an aryl group, a carbonyl group, an ester group, a nitrile group or a silyl group, and n 2 represents an integer of 1 to 3. When n 2 is 2 or more, R may be the same as or different from each other. Further, R may be bonded to an adjacent carbon atom to form a hydrocarbon ring or a heterocycle with those carbon atoms.)

触媒サイクルの進行に優れるという観点から、ハロゲン原子Xとしては塩素原子、臭素原子又はヨウ素原子が好ましく、臭素原子又は塩素原子がより好ましい。つまり、芳香族ハロゲン化合物は、芳香族塩化物、芳香族臭化物又は芳香族ヨウ素化物であることが好ましく、芳香族塩化物又は芳香族臭化物であることがより好ましい。
また、触媒サイクルの進行に優れるという観点から、構造式(I)中、nは好ましくは1又は2、より好ましくは1であり、nは好ましくは1又は2である。
From the viewpoint of excellent progress of the catalytic cycle, the halogen atom X is preferably a chlorine atom, a bromine atom or an iodine atom, and more preferably a bromine atom or a chlorine atom. That is, the aromatic halogen compound is preferably an aromatic chloride, an aromatic bromide or an aromatic iodide, and more preferably an aromatic chloride or an aromatic bromide.
Further, from the viewpoint of excellent progress of the catalytic cycle, n 1 is preferably 1 or 2, more preferably 1 and n 2 is preferably 1 or 2 in the structural formula (I).

ハロゲン原子Xが臭素原子の場合、構造式(I)で表される化合物の具体例を以下に示す。これらはハロゲン原子Xが臭素原子の場合の単なる例示であり、ハロゲン原子Xが塩素原子やヨウ素原子の場合にも同様の芳香族ハロゲン化合物を例示できる。なお、以下に例示する化合物はo-位もm-位もp-位も含むものとする。 When the halogen atom X is a bromine atom, specific examples of the compound represented by the structural formula (I) are shown below. These are merely examples when the halogen atom X is a bromine atom, and similar aromatic halogen compounds can be exemplified when the halogen atom X is a chlorine atom or an iodine atom. The compounds exemplified below include the o-position, the m-position, and the p-position.

Rが水素原子の例としては、ブロモベンゼン等が挙げられる。 Examples of the hydrogen atom in which R is a hydrogen atom include bromobenzene and the like.

Rがフッ素原子及び/又は塩素原子の例としては、フルオロブロモベンゼン、ジフルオロブロモベンゼン、クロロブロモベンゼン、ジクロロブロモベンゼン、フルオロクロロブロモベンエン等が挙げられる。 Examples of the fluorine atom and / or chlorine atom in which R is fluorobromobenzene, difluorobromobenzene, chlorobromobenzene, dichlorobromobenzene, fluorochlorobromobenene and the like can be mentioned.

Rがアルキル基の例としては、ブロモトルエン、ブロモキシレン、トリメチルブロモベンゼン、エチルブロモベンゼン、メチルエチルブロモベンゼン、tert-ブチルブロモベンゼン、2-エチルヘキシルブロモベンゼン、2,4,6-トリイソプロピルブロモベンゼン等が挙げられる。アルキル基の中でも、C1〜10アルキル基が好ましく、C1〜5アルキル基がより好ましい。 Examples of alkyl groups in which R is bromotoluene, bromoxylene, trimethylbromobenzene, ethylbromobenzene, methylethylbromobenzene, tert-butylbromobenzene, 2-ethylhexylbromobenzene, 2,4,6-triisopropylbromobenzene And so on. Among the alkyl groups, C 1 to 10 alkyl groups are preferable, and C 1 to 5 alkyl groups are more preferable.

Rがフッ素原子を含有するアルキル基の例としては、トリフルオロメチルブロモベンゼン等が挙げられる。 Examples of the alkyl group in which R contains a fluorine atom include trifluoromethylbromobenzene and the like.

Rがアルコキシ基の例としては、ブロモアニソール、ジメトキシブロモベンゼン、トリメトキシブロモベンゼン、エトキシブロモベンゼン、メトキシエトキシブロモベンゼン、プロポキシブロモベンゼン、エトキシペントキシブロモベンゼン、フェノキシブロモベンゼン、ベンゾキシブロモベンゼン等が挙げられる。アルコキシ基の中でも、C1〜10アルコキシ基が好ましく、C1〜5アルコキシ基がより好ましい。 Examples of alkoxy groups in which R is alkoxy groups include bromoanisole, dimethoxybromobenzene, trimethoxybromobenzene, ethoxybromobenzene, methoxyethoxybromobenzene, propoxybromobenzene, ethoxypentoxybromobenzene, phenoxybromobenzene, benzoxibromobenzene and the like. Can be mentioned. Among the alkoxy groups, C 1 to 10 alkoxy groups are preferable, and C 1 to 5 alkoxy groups are more preferable.

Rがシクロアルキル基の例としては、シクロペンチルブロモベンゼン、シクロヘキシルブロモベンゼン、シクロオクチルブロモベンゼン等が挙げられる。 Examples of the cycloalkyl group in which R is a cycloalkyl group include cyclopentylbromobenzene, cyclohexylbromobenzene, cyclooctylbromobenzene and the like.

Rがアリール基の例としては、ブロモビフェニル等が挙げられる。 Examples of the aryl group in which R is an aryl group include bromobiphenyl and the like.

Rがカルボニル基の例としては、アセチルブロモベンゼン、t-ブトキシカルボニルアミノブロモベンゼン等が挙げられる。 Examples of the carbonyl group in which R is a carbonyl group include acetylbromobenzene and t-butoxycarbonylaminobromobenzene.

Rがエステル基の例としては、ブロモ安息香酸メチル、ブロモ安息香酸エチル、ブロモ安息香酸ブチル、ブロモフタル酸ジメチル等が挙げられる。 Examples of the ester group in which R is an ester group include methyl bromobenzoate, ethyl bromobenzoate, butyl bromobenzoate, dimethyl bromophthalate and the like.

Rがニトリル基の例としては、シアノブロモベンゼン等が挙げられる。 Examples of the nitrile group in which R is a nitrile group include cyanobromobenzene and the like.

Rがシリル基の例としては、トリメチルシリルブロモベンゼン、トリエチルシリルブロモベンゼン、トリイソプロピルシリルブロモベンゼン、ジ-t-ブチルメチルシリルブロモベンゼンやトリイソプロピルシリルエチニルブロモベンゼン等が挙げられる。 Examples of the silyl group in which R is silyl group include trimethylsilylbromobenzene, triethylsilylbromobenzene, triisopropylsilylbromobenzene, di-t-butylmethylsilylbromobenzene, triisopropylsilylethynylbromobenzene and the like.

Rがイソプロペニル基、アリル基、ビニル基の例示としては、イソプロペニルブロモベンゼン、アリルブロモベンゼン、ビニルブロモベンゼン等が挙げられる。 Examples of the isopropenyl group, allyl group, and vinyl group in which R is isopropenylbromobenzene, allylbromobenzene, vinylbromobenzene, and the like can be mentioned.

Rが炭化水素環又は複素環の例としては、メチレンジオキシブロモベンゼン、ブロモチオフェン、N-tert-ブトキシカルボニルブロモインドール、ブロモインドール等が挙げられる。 Examples of the hydrocarbon ring or heterocycle in which R is a hydrocarbon ring or a heterocycle include methylenedioxybromobenzene, bromothiophene, N-tert-butoxycarbonylbromoindole, bromoindole and the like.

〔溶媒〕
本実施形態のカルボキシル化反応は反応溶媒中で行われる。反応溶媒としては有機溶媒が好ましく、特に限定されるものではないが、例えば、ジメチルスルホキシド、トルエン、ベンゼン、1,4-ジオキサン、エタノール、ブタノール、キシレン、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)、アセトニトリル(MeCN)、アセトン、テトラヒドロフラン(THF)及びN,N-ジメチルアセトアミド(DMA)等が挙げられる。これらの中でも、芳香族カルボン酸の収率に優れるという観点から、DMF、NMP、アセトン又はDMAが好ましく、DMF、NMP又はDMAがより好ましく、DMAが特に好ましい。
〔solvent〕
The carboxylation reaction of this embodiment is carried out in a reaction solvent. The reaction solvent is preferably an organic solvent, and is not particularly limited, but for example, dimethyl sulfoxide, toluene, benzene, 1,4-dioxane, ethanol, butanol, xylene, N, N-dimethylformamide (DMF), N. -Methylpyrrolidone (NMP), acetonitrile (MeCN), acetone, tetrahydrofuran (THF) and N, N-dimethylacetamide (DMA) and the like can be mentioned. Among these, DMF, NMP, acetone or DMA is preferable, DMF, NMP or DMA is more preferable, and DMA is particularly preferable, from the viewpoint of excellent yield of aromatic carboxylic acid.

〔エステル化反応〕
上記芳香族ハロゲン化合物と二酸化炭素とから得られた芳香族カルボン酸をエステル化することにより、芳香族カルボン酸エステルが得られる。
エステル化反応は従来公知のエステル化法を採用することができ、例えばアルキルエステル化法(アルカノール+酸触媒)、アラルキルエステル化法(アラルキルアルコール+酸触媒)、あるいはジアゾメタンやトリメチルシリルジアゾメタンを用いるメチル化法等が挙げられる。
[Esterification reaction]
An aromatic carboxylic acid ester can be obtained by esterifying an aromatic carboxylic acid obtained from the above aromatic halogen compound and carbon dioxide.
For the esterification reaction, a conventionally known esterification method can be adopted, for example, an alkyl esterification method (alkanol + acid catalyst), an aralkyl esterification method (aralkyl alcohol + acid catalyst), or methylation using diazomethane or trimethylsilyldiazomethane. The law etc. can be mentioned.

〔三級アミン化合物〕
本実施形態における芳香族カルボン酸又はそのエステルの製造方法においては、触媒組成物とともに、三級アミン化合物を存在させることが好ましい。三級アミン化合物は電子供与体としてハロゲンイオンを水和し、芳香族カルボン酸の収率を向上させることができる。
[Tertiary amine compound]
In the method for producing an aromatic carboxylic acid or an ester thereof in the present embodiment, it is preferable that a tertiary amine compound is present together with the catalyst composition. The tertiary amine compound can hydrate halogen ions as an electron donor and improve the yield of aromatic carboxylic acid.

三級アミン化合物としては、例えば、トリメチルアミン、ジメチルエチルアミン、トリエチルアミン、トリ(n-ブチル)アミン、ジイソプロピルエチルアミン、ジイソブチルメチルアミン等のN,N,N-トリ(C1〜4アルキル)アミン;ジエチル(テトラメチルシリル)アミン、N-メチルピロリジン、N-メチルピぺリジン、N-エチル-2,2,6,6-テトラメチルピペリジン等のN-(C1〜4アルキル)アザシクロアルカン;N-メチルモルホリン、N-エチルモルホリン等のN-(C1〜4アルキル)アザオキシシクロアルカン;N-ベンジル-N,N-ジメチルアミン、N-ベンジル-N,N-ジエチルアミン等のN-ベンジル-N,N-ジ(C1〜4アルキル)アミン;N,N-ジメチルアニリン等のN,N-ジ(C1〜4アルキル)アニリン;ジアザビシクロウンデセン、ジアザビシクロノネン等の二環式アミン類;トリエタノールアミン等のN,N,N-トリ(C1〜4アルコール)アミン等を挙げることができる。これらの三級アミン化合物は単独又は2種以上を組み合わせて用いることができる。
これらの中でも、芳香族カルボン酸の収率を向上させる観点から、N,N,N−トリ(C1〜4アルキル)アミンが好ましく、ジイソプロピルエチルアミンがより好ましい。
Examples of the tertiary amine compound include N, N, N-tri (C 1-4 alkyl) amines such as trimethylamine, dimethylethylamine, triethylamine, tri (n-butyl) amine, diisopropylethylamine and diisobutylmethylamine; diethyl ( N- (C 1-4 alkyl) azacycloalkanes such as tetramethylsilyl) amines, N-methylpyrrolidin, N-methylpiperidine, N-ethyl-2,2,6,6-tetramethylpiperidine; N-methyl N- (C 1-4 alkyl) azaoxycycloalkanes such as morpholin, N-ethylmorpholin; N-benzyl-N, such as N-benzyl-N, N-dimethylamine, N-benzyl-N, N-diethylamine, etc. N- di (C 1 to 4 alkyl) amine; N, N- dimethylaniline or the like of N, N- di (C 1 to 4 alkyl) aniline; diazabicycloundecene, bicyclic amines, such as diazabicyclononene Kind: N, N, N-tri (C 1-4 alcohol) amines such as triethanolamine and the like can be mentioned. These tertiary amine compounds can be used alone or in combination of two or more.
Among these, N, N, N-tri (C 1-4 alkyl) amines are preferable, and diisopropylethylamine is more preferable, from the viewpoint of improving the yield of aromatic carboxylic acid.

三級アミン化合物の配合量は特に限定されないが、芳香族ハロゲン化合物中のハロゲン原子に対して、通常1当量以上、好ましくは2当量以上、より好ましくは3当量以上であり、通常20当量以下、好ましくは15当量以下、より好ましくは10当量以下である。三級アミン化合物の配合量を上記範囲とすることで、芳香族カルボン酸の収率を向上させることができる。 The blending amount of the tertiary amine compound is not particularly limited, but is usually 1 equivalent or more, preferably 2 equivalents or more, more preferably 3 equivalents or more, and usually 20 equivalents or less, with respect to the halogen atom in the aromatic halogen compound. It is preferably 15 equivalents or less, more preferably 10 equivalents or less. By setting the blending amount of the tertiary amine compound in the above range, the yield of the aromatic carboxylic acid can be improved.

〔塩基性化合物〕
また、本実施形態における芳香族カルボン酸又はそのエステルの製造方法においては、触媒組成物とともに、添加剤として塩基性化合物を存在させることが好ましい。塩基性化合物は遊離した酸成分を捕捉し、芳香族カルボン酸の収率を向上させることができる。また、塩基性化合物を配合することにより、副生成物の生成を抑制することができる。
[Basic compound]
Further, in the method for producing an aromatic carboxylic acid or an ester thereof in the present embodiment, it is preferable that a basic compound is present as an additive together with the catalyst composition. The basic compound can capture the liberated acid component and improve the yield of aromatic carboxylic acid. Further, by blending a basic compound, the formation of by-products can be suppressed.

塩基性化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等のアルカリ金属炭酸水素塩;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属水酸化物;炭酸マグネシウム、炭酸カルシウム、炭酸バリウム等のアルカリ土類金属炭酸塩、ナトリウムメトキシド、ナトリウムエトキシド、カリウムt−ブトキシド等のアルカリ金属アルコキシド;酢酸ナトリウム等のアルカリ金属有機酸塩;トリエチルアミン、ピペリジン、N−メチルピペリジン等のアミン類やピリジン、ピコリン等の含窒素複素環化合物等を挙げることができる。これらの塩基性化合物は、単独又は2種以上を組み合わせて用いることができる。
これらの中でも、芳香族カルボン酸の収率を向上させる観点から、アルカリ金属炭酸塩が好ましく、炭酸ナトリウム、炭酸カリウム又は炭酸セシウムがより好ましく、炭酸セシウムがさらに好ましい。
Examples of the basic compound include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide; alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate; carbonic acid. Alkaline metal hydrogen carbonates such as sodium hydrogen, potassium hydrogen carbonate, and cesium hydrogen carbonate; alkaline earth metal hydroxides such as magnesium hydroxide, calcium hydroxide, and barium hydroxide; alkalis such as magnesium carbonate, calcium carbonate, and barium carbonate. Alkali metal alkoxides such as earth metal carbonates, sodium methoxydos, sodium ethoxydos, potassium t-butoxides; alkali metal organic acid salts such as sodium acetate; amines such as triethylamine, piperidine, N-methylpiperidine, pyridine, picolin And the like, a nitrogen-containing heterocyclic compound and the like can be mentioned. These basic compounds can be used alone or in combination of two or more.
Among these, from the viewpoint of improving the yield of aromatic carboxylic acid, alkali metal carbonate is preferable, sodium carbonate, potassium carbonate or cesium carbonate is more preferable, and cesium carbonate is further preferable.

塩基性化合物の配合量は特に限定されないが、芳香族ハロゲン化合物中のハロゲン原子に対して、通常1当量以上、好ましくは2当量以上、より好ましくは3当量以上であり、通常20当量以下、好ましくは15当量以下、より好ましくは10当量以下である。塩基性化合物の配合量を上記範囲とすることで、芳香族カルボン酸の収率を向上させることができる。 The amount of the basic compound to be blended is not particularly limited, but is usually 1 equivalent or more, preferably 2 equivalents or more, more preferably 3 equivalents or more, and usually 20 equivalents or less, preferably 20 equivalents or less, with respect to the halogen atom in the aromatic halogen compound. Is 15 equivalents or less, more preferably 10 equivalents or less. By setting the blending amount of the basic compound in the above range, the yield of the aromatic carboxylic acid can be improved.

三級アミン化合物と塩基性化合物とを併用する場合、三級アミン化合物に対する塩基性化合物の配合比(ハロゲン原子に対する当量比として計算、塩基性化合物/三級アミン化合物)は、通常0.1以上、好ましくは0.5以上であり、通常5以下、好ましくは3以下である。 When a tertiary amine compound and a basic compound are used in combination, the compounding ratio of the basic compound to the tertiary amine compound (calculated as an equivalent ratio to the halogen atom, basic compound / tertiary amine compound) is usually 0.1 or more. It is preferably 0.5 or more, usually 5 or less, and preferably 3 or less.

光照射工程終了後、従来公知の手法により、反応物質から芳香族カルボン酸又はそのエステルを分離する。芳香族カルボン酸又はそのエステルを分離した後、残液中の触媒組成物は新しい操作で再使用するため、再循環に供することができる。芳香族カルボン酸又はそのエステルの収率は、出発物質である芳香族ハロゲン化合物の全量に対して、通常2質量%以上、好ましくは10質量%以上、より好ましくは30質量%以上、さらに好ましくは50質量%以上、特に好ましくは60質量%以上である。収率の上限は特に限定されないが、通常100質量%以下である。 After the completion of the light irradiation step, the aromatic carboxylic acid or its ester is separated from the reactant by a conventionally known method. After separating the aromatic carboxylic acid or ester thereof, the catalytic composition in the residual liquid can be reused in a new operation and thus subjected to recirculation. The yield of the aromatic carboxylic acid or its ester is usually 2% by mass or more, preferably 10% by mass or more, more preferably 30% by mass or more, still more preferably 30% by mass, based on the total amount of the aromatic halogen compound as a starting material. It is 50% by mass or more, particularly preferably 60% by mass or more. The upper limit of the yield is not particularly limited, but is usually 100% by mass or less.

以下、実施例により本発明をさらに詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例により限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。なお、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist thereof is not exceeded. The present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved. The values of various manufacturing conditions and evaluation results in the following examples have meanings as preferable values of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the above-mentioned upper limit or lower limit value. , The range specified by the combination of the values of the following examples or the values of the examples may be used.

以下においては、特に記載のない限り、全ての操作はアルゴン、窒素又は二酸化炭素雰囲気下で行った。
H−NMRスペクトルは、内部標準として残留CHCl(for 1H,δ=7.26)を用い、CDCl中のJEOL ECZ−500及びECX−500(500MHz)分光計で測定した。
分析用薄層クロマトグラフィー(TLC)には、Merck Kiesel gel 60 F254プレート(厚さ0.25mm、20×20cmのガラスで被覆)を使用し、分取TLCには、ガラス上に厚さ0.9mmでコーティングしたWakogel B−5Fを使用した。
可視光照射は、光触媒反応用途のRelyon Twin LED Light(3W×2、λirr.=425±15nm)を用いて行った。
In the following, all operations were performed in an argon, nitrogen or carbon dioxide atmosphere unless otherwise stated.
1 1 H-NMR spectrum was measured by a JEOL ECZ-500 and ECX-500 (500 MHz) spectrometer in CDCl 3 using residual CHCl 3 (for 1H, δ = 7.26) as an internal standard.
For thin layer chromatography (TLC) for analysis, a Merck silica gel 60 F254 plate (thickness 0.25 mm, coated with 20 × 20 cm 2 glass) was used, and for preparative TLC, the thickness was 0 on the glass. Wakogel B-5F coated with .9 mm was used.
Visible light irradiation was performed using a Relyon Twin LED Light (3 W × 2, λ irr. = 425 ± 15 nm) for photocatalytic reaction.

活性アルミナ(A−2、Purity)のカラムに続いて、Q−5捕捉剤(Engelhard)のカラムを通過させることにより、EtOを乾燥させた。
脱水アセトン、アセトニトリル(MeCN)、ジメチルアセトアミド(DMA)、ジメチルホルムアミド(DMF)及びメタノール(MeOH)は関東化学社から購入し、N-メチルピロリドン(NMP)はシグマアルドリッチ社から購入し、使用前にアルゴンで泡立てて脱気した。
三級アミン化合物を蒸留し、凍結脱気法(3回)で脱気し、窒素雰囲気下で保管した。
COガスは大陽日酸社から購入した。
Et 2 O was dried by passing a column of activated alumina (A-2, Purity) followed by a column of Q-5 scavenger (Engelhard).
Dehydrated acetone, acetonitrile (MeCN), dimethylacetamide (DMA), dimethylformamide (DMF) and methanol (MeOH) were purchased from Kanto Chemical Co., Inc., and N-methylpyrrolidone (NMP) was purchased from Sigma Aldrich, Inc. before use. It was whipped with argon and degassed.
The tertiary amine compound was distilled, degassed by the freeze degassing method (3 times), and stored in a nitrogen atmosphere.
CO 2 gas was purchased from Taiyo Nippon Sanso.

Pd(OAc)、XPhos、tBuXPhos、ブロモベンゼン(化合物1b)、アセチルブロモベンゼン(化合物1r)及び3-クロロ安息香酸メチル(化合物6u)は、シグマアルドリッチ社から購入した。 Pd (OAc) 2 , XPhos, tBuXPhos, bromobenzene (Compound 1b), acetylbromobenzene (Compound 1r) and methyl 3-chlorobenzoate (Compound 6u) were purchased from Sigma Aldrich.

3,4-メチレンジオキシブロモベンゼン(化合物1a)、4-ブロモトルエン(化合物1c)、4-ブロモアニソール(化合物1d)、4-トリフルオロメチルブロモベンゼン(化合物1e)、4-フルオロブロモベンゼン(化合物1f)、4-クロロブロモベンゼン(化合物1g)、4-ブロモ安息香酸メチル(化合物1i)、4-シアノブロモベンゼン(化合物1j)、2-ブロモトルエン(化合物1m)、2,4,6-トリイソプロピルブロモベンゼン(化合物1n)、3-ブロモチオフェン(化合物1o)、クロロベンゼン(化合物6b)、4-クロロトルエン(化合物6c)、4-トリフルオロメチルクロロベンゼン(化合物6e)、4-シアノクロロベンゼン(化合物6j)、4-アセチルクロロベンゼン(化合物6s)、3-クロロアニソール(化合物6t)及び2-クロロナフタレン(化合物6v)は、東京化成工業社から購入した。 3,4-Methylenedioxybromobenzene (Compound 1a), 4-bromotoluene (Compound 1c), 4-bromoanisole (Compound 1d), 4-trifluoromethylbromobenzene (Compound 1e), 4-Fluorobromobenzene (Compound 1e) Compound 1f), 4-chlorobromobenzene (Compound 1 g), methyl 4-bromobenzoate (Compound 1i), 4-cyanobromobenzene (Compound 1j), 2-bromotoluene (Compound 1 m), 2,4,6- Triisopropylbromobenzene (Compound 1n), 3-bromothiophene (Compound 1o), chlorobenzene (Compound 6b), 4-chlorotoluene (Compound 6c), 4-trifluoromethylchlorobenzene (Compound 6e), 4-cyanochlorobenzene (Compound 6e). 6j), 4-Acetylchlorobenzene (Compound 6s), 3-chloroanisole (Compound 6t) and 2-chloronaphthalene (Compound 6v) were purchased from Tokyo Kasei Kogyo Co., Ltd.

炭酸セシウム及びN-tert-ブトキシカルボニルブロモインドール(化合物1p)は、和光純薬工業社から購入した。 Cesium carbonate and N-tert-butoxycarbonylbromoindole (Compound 1p) were purchased from Wako Pure Chemical Industries, Ltd.

PhXPhos、Ru(bpy)3(PF6)2、Ir(dF(CF3)ppy)2(dtbbpy)(PF6)、Ir(ppy)2(dtbbpy)(PF6)、Ir(ppy)2(dmobpy)(PF6)、Ir(ppy)2(Me4phen)(PF6)、TMSCHN2、t-ブトキシカルボニルアミノブロモベンゼン(化合物1h)、4-トリイソプロピルシリルエチニルブロモベンゼン(化合物1k)、4-イソプロペニルブロモベンゼン(化合物1l)、5-ブロモインドール(化合物1q)、4-クロロアニソール(化合物6d)は従来公知の手法により調製した。 PhXPhos, Ru (bpy) 3 (PF 6 ) 2 , Ir (dF (CF 3 ) ppy) 2 (dtbbpy) (PF 6 ), Ir (ppy) 2 (dtbbpy) (PF 6 ), Ir (ppy) 2 ( dmobpy) (PF 6 ), Ir (ppy) 2 (Me 4 phen) (PF 6 ), TMSCHN 2 , t-butoxycarbonylaminobromobenzene (Compound 1h), 4-triisopropylsilylethynylbromobenzene (Compound 1k), 4-Isopropenylbromobenzene (Compound 1l), 5-bromoindole (Compound 1q), and 4-chloroanisole (Compound 6d) were prepared by a conventionally known method.

液体材料である化合物1a〜1f,1m,1o,1r及び6b〜6e,6s〜6uは、蒸留後、アルゴン雰囲気下で保管した。 Compounds 1a to 1f, 1m, 1o, 1r and 6b to 6e, 6s to 6u, which are liquid materials, were stored in an argon atmosphere after distillation.

(実施例1)
光酸化還元触媒成分(A)としてIr(ppy)2(dtbbpy)(PF6)(0.002 mmol、1.0 mol%)を使用した。また、遷移金属触媒成分(B)を得るための触媒前駆体として酢酸パラジウム(1.1 mg、0.005 mmol、2.5 mol%)を使用し、配位子として表1に記載の有機リン化合物(0.01 mmol,5.0 mol%)を使用した。また、三級アミン化合物としてN,N-ジイソプロピルエチルアミン(iPr2NEt、0.10 mL、0.60 mmol、3.0当量)を使用した。さらに、塩基性化合物として炭酸セシウム(Cs2CO3、195 mg、0.60 mmol、3.0当量)を使用した。
上記光酸化還元触媒成分(A)、遷移金属触媒成分(B)、三級アミン化合物及び塩基性化合物を含む、3,4-メチレンジオキシブロモベンゼン(化合物1a、24 μL、0.20 mmol)のN,N-ジメチルアセトアミド(DMA)溶液(1.0 mL)を窒素雰囲気下、試験管中で調製した。なお、予め調製した遷移金属触媒成分(B)のH−NMRスペクトルと、試験管中の試料のH−NMRスペクトルとを対比したところ、試験管中に遷移金属触媒成分(B)が含まれていることが確認できた。
(Example 1)
Ir (ppy) 2 (dtbbpy) (PF 6 ) (0.002 mmol, 1.0 mol%) was used as the photooxidation-reduction catalyst component (A). Further, palladium acetate (1.1 mg, 0.005 mmol, 2.5 mol%) was used as a catalyst precursor for obtaining the transition metal catalyst component (B), and the organophosphorus compound (0.01 mmol, 0.01 mmol, shown in Table 1) shown in Table 1 was used as the ligand. 5.0 mol%) was used. In addition, N, N-diisopropylethylamine (iPr 2 NEt, 0.10 mL, 0.60 mmol, 3.0 eq) was used as the tertiary amine compound. Furthermore, cesium carbonate (Cs 2 CO 3 , 195 mg, 0.60 mmol, 3.0 eq) was used as the basic compound.
N of 3,4-methylenedioxybromobenzene (compound 1a, 24 μL, 0.20 mmol) containing the photooxidation-reduction catalyst component (A), transition metal catalyst component (B), tertiary amine compound and basic compound. , N-Dimethylacetamide (DMA) solution (1.0 mL) was prepared in vitro under a nitrogen atmosphere. Note that contain a 1 H-NMR spectrum of the previously prepared transition metal catalyst component (B), was compared with the 1 H-NMR spectrum of the sample in the test tube, the transition metal catalyst component into a test tube (B) is I was able to confirm that it was.

次いで、気相を大気圧のCOに置換し、反応容器を光源から10mmの距離に置いたウォーターバスに入れた。そして、2つのソケットを有する青色LEDランプを用い、室温(具体的には25℃)にて、閉鎖系で6時間、可視光(λirr.=425nm)を照射した。可視光照射後、HOを用いて反応を抑え、反応容器中の混合物に対し、EtO(ジエチルエーテル)による抽出作業を3回行った。 The gas phase was then replaced with atmospheric pressure CO 2 and the reaction vessel was placed in a water bath at a distance of 10 mm from the light source. Then, using a blue LED lamp having two sockets, visible light (λ irr. = 425 nm) was irradiated in a closed system at room temperature (specifically, 25 ° C.) for 6 hours. After irradiation with visible light, the reaction was suppressed using H 2 O, and the mixture in the reaction vessel was extracted with Et 2 O (diethyl ether) three times.

有機層をHOで洗浄した後、NaSOを添加して脱水した。ろ過した後、ろ液を濃縮して組成物を得た。組成物をH−NMRを用いて分光分析し、出発物質である3,4-メチレンジオキシブロモベンゼン(化合物1a)の回収率及び水素化生成物(化合物3a)の収率を測定した(内部標準:ジブロモメタン)。
また、水層を1N HCl水溶液で酸性化し、次いで、EtO(ジエチルエーテル)による抽出作業を3回行った。有機層をNaSOで脱水・ろ過し、減圧下で濃縮して芳香族カルボン酸(化合物2a)を得た。芳香族カルボン酸(化合物2a)の収率は、H−NMRにより測定した(内部標準:1,4-ジオキサン)。
最初に配合した化合物1aの量と化合物1aの回収率とから、化合物1aの転化率を算出した。結果を表1に示す。
After washing the organic layer with H 2 O, Na 2 SO 4 was added and dehydrated. After filtering, the filtrate was concentrated to obtain a composition. The composition was spectroscopically analyzed using 1 H-NMR, and the recovery rate of the starting material 3,4-methylenedioxybromobenzene (Compound 1a) and the yield of the hydrogenation product (Compound 3a) were measured (. Internal standard: dibromomethane).
Further, the aqueous layer was acidified with aqueous 1N HCl, then three times extracted work by Et 2 O (diethyl ether). The organic layer was dehydrated and filtered through Na 2 SO 4 and concentrated under reduced pressure to obtain an aromatic carboxylic acid (Compound 2a). The yield of the aromatic carboxylic acid (Compound 2a) was measured by 1 H-NMR (internal standard: 1,4-dioxane).
The conversion rate of compound 1a was calculated from the amount of compound 1a initially blended and the recovery rate of compound 1a. The results are shown in Table 1.

(実施例2〜6)
実施例1において、配位子を、表1に記載のものに変更したこと以外は実施例1と同様の操作を行なった。実施例6は、(A)成分を2.5mol%にしたこと以外、実施例4と同様の操作を行なった。得られた結果を表1に示す。
(Examples 2 to 6)
In Example 1, the same operation as in Example 1 was performed except that the ligand was changed to that shown in Table 1. In Example 6, the same operation as in Example 4 was performed except that the component (A) was adjusted to 2.5 mol%. The results obtained are shown in Table 1.

Figure 0006985696
Figure 0006985696

表1より、遷移金属触媒成分(B)を生成するための配位子として、種々の有機リン化合物を用いることができることが示された。また、実施例6から、光酸化還元触媒成分(A)の含有割合を増やすと芳香族カルボン酸(化合物2a)の収率が上昇し、水素化生成物(化合物3a)の収率が低下することが分かる。 From Table 1, it was shown that various organophosphorus compounds can be used as the ligand for producing the transition metal catalyst component (B). Further, from Example 6, when the content ratio of the photooxidation-reduction catalyst component (A) is increased, the yield of the aromatic carboxylic acid (Compound 2a) increases, and the yield of the hydrogenation product (Compound 3a) decreases. You can see that.

(実施例7)
実施例1において塩基性化合物を使用しなかったこと以外は実施例1と同様の操作を行った。結果を表2に示す。
(比較例1〜5)
配合成分や光照射の有無及び気相を以下の表2に記載のように変更したこと以外は実施例7と同様の操作を行った(比較例1〜5)。結果を表2に示す。

Figure 0006985696
(Example 7)
The same operation as in Example 1 was performed except that the basic compound was not used in Example 1. The results are shown in Table 2.
(Comparative Examples 1 to 5)
The same operation as in Example 7 was performed except that the compounding components, the presence / absence of light irradiation, and the gas phase were changed as shown in Table 2 below (Comparative Examples 1 to 5). The results are shown in Table 2.
Figure 0006985696

表2より、芳香族ハロゲン化合物から芳香族カルボン酸(化合物2a)を得るためには、光酸化還元触媒成分(A)、遷移金属触媒成分(B)、二酸化炭素及び光照射が必須であることが分かる。これらのうちの一つを欠いても、芳香族カルボン酸(化合物2a)が得られないことが示された。 From Table 2, in order to obtain an aromatic carboxylic acid (Compound 2a) from an aromatic halogen compound, a photooxidation-reduction catalyst component (A), a transition metal catalyst component (B), carbon dioxide and light irradiation are indispensable. I understand. It was shown that the absence of one of these does not yield an aromatic carboxylic acid (Compound 2a).

(実施例8〜25)
芳香族臭化物として、実施例8〜25において、それぞれ、化合物1a〜1rを使用した。化合物1a〜1rは、芳香族カルボン酸メチルエステル(下記表3中の化合物5a〜5r)のカルボン酸エステル部位(−COMe)を臭素(−Br)に置換した化合物である。
光酸化還元触媒成分(A)としてIr(ppy)2(dtbbpy)(PF6)(4.6 mg、0.005 mmol、2.5 mol%)を使用した。また、遷移金属触媒成分(B)を得るための触媒前駆体として酢酸パラジウム(1.1 mg、0.005 mmol、2.5 mol%)を使用し、配位子としてPhXPhos(0.01 mmol、5.0 mol%)を使用した。また、三級アミン化合物としてiPr2NEt(0.10 mL、0.60 mmol、3.0当量)を使用した。さらに、塩基性化合物としてCs2CO3(195 mg、0.60 mmol、3.0当量)を使用した。
上記光酸化還元触媒成分(A)、遷移金属触媒成分(B)、三級アミン化合物及び塩基性化合物を含む、芳香族臭化物(0.20 mmol、表3中の化合物1a〜1r)のDMA溶液(1.0 mL)を窒素雰囲気下、試験管中で調製した。なお、予め調製した遷移金属触媒成分(B)のH−NMRスペクトルと、試験管中の試料のH−NMRスペクトルとを対比したところ、試験管中に遷移金属触媒成分(B)が含まれていることが確認できた。
(Examples 8 to 25)
As the aromatic bromide, compounds 1a to 1r were used in Examples 8 to 25, respectively. Compounds 1a to 1r are compounds in which the carboxylic acid ester moiety (-CO 2 Me) of the aromatic carboxylic acid methyl ester (compounds 5a to 5r in Table 3 below) is replaced with bromine (-Br).
Ir (ppy) 2 (dtbbpy) (PF 6 ) (4.6 mg, 0.005 mmol, 2.5 mol%) was used as the photooxidation-reduction catalyst component (A). In addition, palladium acetate (1.1 mg, 0.005 mmol, 2.5 mol%) was used as a catalyst precursor for obtaining the transition metal catalyst component (B), and PhXPhos (0.01 mmol, 5.0 mol%) was used as a ligand. .. In addition, iPr 2 NEt (0.10 mL, 0.60 mmol, 3.0 eq) was used as the tertiary amine compound. In addition, Cs 2 CO 3 (195 mg, 0.60 mmol, 3.0 eq) was used as the basic compound.
DMA solution (1.0) of aromatic bromide (0.20 mmol, compounds 1a to 1r in Table 3) containing the photooxidation-reduction catalyst component (A), transition metal catalyst component (B), tertiary amine compound and basic compound. mL) was prepared in vitro under a nitrogen atmosphere. Note that contain a 1 H-NMR spectrum of the previously prepared transition metal catalyst component (B), was compared with the 1 H-NMR spectrum of the sample in the test tube, the transition metal catalyst component into a test tube (B) is I was able to confirm that it was.

次いで、気相を大気圧のCOに置換し、反応容器を光源から10mmの距離に置いたウォーターバスに入れた。そして、2つのソケットを有する青色LEDランプを用い、室温(具体的には25℃)にて、閉鎖系で6時間、可視光(λirr.=425nm)を照射した。可視光照射後、HOを用いて反応を抑え、反応容器中の混合物に対し、EtO(ジエチルエーテル)による抽出作業を3回行った。 The gas phase was then replaced with atmospheric pressure CO 2 and the reaction vessel was placed in a water bath at a distance of 10 mm from the light source. Then, using a blue LED lamp having two sockets, visible light (λ irr. = 425 nm) was irradiated in a closed system at room temperature (specifically, 25 ° C.) for 6 hours. After irradiation with visible light, the reaction was suppressed using H 2 O, and the mixture in the reaction vessel was extracted with Et 2 O (diethyl ether) three times.

有機層をHOで洗浄した。水層を1N HCl水溶液で酸性化し、次いで、EtO(ジエチルエーテル)による抽出作業を3回行った。有機層をNaSOで脱水・ろ過し、減圧下で濃縮して芳香族カルボン酸を得た。この芳香族カルボン酸をEtO(2.0 mL)とMeOH(メタノール、0.5 mL)に溶解し、0℃で、トリメチルシリルジアゾメタン(TMSCHN、2.0当量)のEtO溶液を添加した。混合物を0℃で30分間撹拌し、減圧下で溶媒を除去し、組成物を得た。得られた組成物を分取用薄層クロマトグラフィーにより精製し、芳香族カルボン酸に対応するメチルエステル(芳香族カルボン酸メチルエステル、実施例8〜25において、それぞれ、表3中の化合物5a〜5r)を得た。芳香族カルボン酸メチルエステルの収率を表3に示す。収率は、実施例1と同様の操作により、H−NMRスペクトルで測定した。
なお、実施例14では可視光照射時間を4時間とし、実施例21では可視光照射時間を8時間とした。また、実施例15〜17,25ではPhXPhosの代わりにtBuXPhosを使用した。
The organic layer was washed with H 2 O. The aqueous layer was acidified with aqueous 1N HCl, then three times extracted work by Et 2 O (diethyl ether). The organic layer was dehydrated and filtered through Na 2 SO 4 and concentrated under reduced pressure to obtain an aromatic carboxylic acid. This aromatic carboxylic acid was dissolved in Et 2 O (2.0 mL) and MeOH (methanol, 0.5 mL), and a solution of trimethylsilyldiazomethane (TMSCHN 2 , 2.0 eq) in Et 2 O was added at 0 ° C. The mixture was stirred at 0 ° C. for 30 minutes and the solvent was removed under reduced pressure to give the composition. The obtained composition was purified by preparative thin layer chromatography, and the methyl ester corresponding to the aromatic carboxylic acid (aromatic carboxylic acid methyl ester, in Examples 8 to 25, each of the compounds 5a to 5a in Table 3). 5r) was obtained. The yield of aromatic carboxylic acid methyl ester is shown in Table 3. The yield was measured in 1 1 H-NMR spectrum by the same operation as in Example 1.
In Example 14, the visible light irradiation time was set to 4 hours, and in Example 21, the visible light irradiation time was set to 8 hours. Further, in Examples 15 to 17, 25, tBuXPhos was used instead of PhXPhos.

表3中の「反応時間」とは、可視光照射時間を意味する。結果を表3に示す。 The "reaction time" in Table 3 means the visible light irradiation time. The results are shown in Table 3.

Figure 0006985696
Figure 0006985696

表3から、出発物質として、様々な官能基Rを有する芳香族臭化物を使用できることが示された。具体的には、官能基Rとしてアルキル基、アルコキシ基、ハロゲン原子、内部アルキンやアルケンを、4位に有する芳香族臭化物(化合物1c〜1g,1k,1l)を用いると、トリメチルシリルジアゾメタン(TMSCHN)によるメチルエステル化により得られる芳香族カルボン酸メチルエステルの収率が80%を超え、良好な結果が得られた。
特に、基質(出発物質)として4-クロロブロモベンゼン(化合物1g)を用いると、反応時間が少ないにも関わらず、4-クロロベンゾエート(化合物5g)が選択的に得られた。
From Table 3, it was shown that aromatic bromides having various functional groups R can be used as starting materials. Specifically, when an aromatic bromide (compound 1c to 1 g, 1 k, 1 l) having an alkyl group, an alkoxy group, a halogen atom, an internal alkyne or an alkene at the 4-position is used as the functional group R, trimethylsilyldiazomethane (TMSCHN 2) is used. ), The yield of the aromatic carboxylic acid methyl ester obtained by the methyl esterification exceeded 80%, and good results were obtained.
In particular, when 4-chlorobromobenzene (1 g of the compound) was used as the substrate (starting material), 4-chlorobenzoate (5 g of the compound) was selectively obtained even though the reaction time was short.

コバルト及びニッケル触媒による、立体障害性を有するアリールトリフラートのカルボキシル化反応は知られているが、このカルボキシル化反応では2,6-ジイソプロピルフェニルトリフラートからカルボン酸は得られなかった。一方、同様の立体障害性を有する2,4,6-トリイソプロピルブロモベンゼン(化合物1n)のカルボキシル化反応は、光酸化還元触媒成分(A)と遷移金属触媒成分(B)との併用により76%の収率で進行した。これにより、かさ高い基質にも使用できることが示された。 Although the carboxylation reaction of aryltriflate having steric hindrance by cobalt and nickel catalysts is known, carboxylic acid was not obtained from 2,6-diisopropylphenyltriflate in this carboxylation reaction. On the other hand, the carboxylation reaction of 2,4,6-triisopropylbromobenzene (compound 1n) having the same steric hindrance was carried out by the combined use of the photooxidation-reduction catalyst component (A) and the transition metal catalyst component (B) 76. Progressed in% yield. This indicates that it can also be used for bulky substrates.

チオフェン(化合物1o)やインドール(化合物1p,1q)などの電子豊富なヘテロアレーンの臭化物からも、メチルエステル(化合物5o〜5q)が得られた。 Methyl esters (compounds 5o-5q) were also obtained from electron-rich heteroarene bromides such as thiophene (compound 1o) and indole (compound 1p, 1q).

(実施例26〜34)
芳香族臭化物の代わりに芳香族塩化物を用い、遷移金属触媒成分(B)を得るための配位子としてtBuXPhosを使用したこと以外は実施例8〜25と同様の操作を行った。
(Examples 26 to 34)
The same operations as in Examples 8 to 25 were carried out except that aromatic chloride was used instead of the aromatic bromide and tBuXPhos was used as a ligand for obtaining the transition metal catalyst component (B).

具体的には、芳香族塩化物として、実施例26〜34において、それぞれ、化合物6b〜6e,6j,6s〜6vを使用した。化合物6b〜6e,6j,6s〜6vは、芳香族カルボン酸メチルエステル(下記表4中の化合物5b〜5e,5j,5s〜5v)のカルボン酸エステル部位(−COMe)を塩素(−Cl)に置換した化合物である。
光酸化還元触媒成分(A)としてIr(ppy)2(dtbbpy)(PF6)(4.6 mg、0.005 mmol、2.5 mol%)を使用した。また、遷移金属触媒成分(B)を得るための触媒前駆体として酢酸パラジウム(1.1 mg、0.005 mmol、2.5 mol%)を使用し、配位子としてtBuXPhos(0.01 mmol、5.0 mol%)を使用した。また、三級アミン化合物としてiPr2NEt(0.10 mL、0.60 mmol、3.0当量)を使用した。さらに、塩基性化合物としてCs2CO3(195 mg、0.60 mmol、3.0当量)を使用した。
上記光酸化還元触媒成分(A)、遷移金属触媒成分(B)、三級アミン化合物及び塩基性化合物を含む、芳香族塩化物(0.20 mmol、表4中の化合物6b〜6e,6j,6s〜6v)のDMA溶液(1.0 mL)を窒素雰囲気下、試験管中で調製した。なお、予め調製した遷移金属触媒成分(B)のH−NMRスペクトルと、試験管中の試料のH−NMRスペクトルとを対比したところ、試験管中に遷移金属触媒成分(B)が含まれていることが確認できた。
Specifically, as the aromatic chloride, compounds 6b to 6e, 6j, and 6s to 6v were used in Examples 26 to 34, respectively. In compounds 6b to 6e, 6j, 6s to 6v, the carboxylic acid ester moiety (-CO 2 Me) of the aromatic carboxylic acid methyl ester (compounds 5b to 5e, 5j, 5s to 5v in Table 4 below) is chlorine (-CO 2 Me). It is a compound substituted with Cl).
Ir (ppy) 2 (dtbbpy) (PF 6 ) (4.6 mg, 0.005 mmol, 2.5 mol%) was used as the photooxidation-reduction catalyst component (A). In addition, palladium acetate (1.1 mg, 0.005 mmol, 2.5 mol%) was used as a catalyst precursor for obtaining the transition metal catalyst component (B), and tBuXPhos (0.01 mmol, 5.0 mol%) was used as a ligand. .. In addition, iPr 2 NEt (0.10 mL, 0.60 mmol, 3.0 eq) was used as the tertiary amine compound. In addition, Cs 2 CO 3 (195 mg, 0.60 mmol, 3.0 eq) was used as the basic compound.
Aromatic chloride (0.20 mmol, compounds 6b to 6e, 6j, 6s ~ in Table 4, containing the photooxidation-reduction catalyst component (A), transition metal catalyst component (B), tertiary amine compound and basic compound. A DMA solution (1.0 mL) of 6v) was prepared in vitro under a nitrogen atmosphere. Note that contain a 1 H-NMR spectrum of the previously prepared transition metal catalyst component (B), was compared with the 1 H-NMR spectrum of the sample in the test tube, the transition metal catalyst component into a test tube (B) is I was able to confirm that it was.

次いで、気相を大気圧のCOに置換し、反応容器を光源から10mmの距離に置いたウォーターバスに入れた。そして、2つのソケットを有する青色LEDランプを用い、室温(具体的には25℃)にて、閉鎖系で6時間、可視光(λirr.=425nm)を照射した。可視光照射後、HOを用いて反応を抑え、反応容器中の混合物に対し、EtO(ジエチルエーテル)による抽出作業を3回行った。 The gas phase was then replaced with atmospheric pressure CO 2 and the reaction vessel was placed in a water bath at a distance of 10 mm from the light source. Then, using a blue LED lamp having two sockets, visible light (λ irr. = 425 nm) was irradiated in a closed system at room temperature (specifically, 25 ° C.) for 6 hours. After irradiation with visible light, the reaction was suppressed using H 2 O, and the mixture in the reaction vessel was extracted with Et 2 O (diethyl ether) three times.

有機層をHOで洗浄した。水層を1N HCl水溶液で酸性化し、次いで、EtO(ジエチルエーテル)による抽出作業を3回行った。有機層をNaSOで脱水・ろ過し、減圧下で濃縮して芳香族カルボン酸を得た。この芳香族カルボン酸をEtO(2.0 mL)とMeOH(メタノール、0.5 mL)に溶解し、0℃で、トリメチルシリルジアゾメタン(TMSCHN、2.0当量)のEtO溶液を添加した。混合物を0℃で30分間撹拌し、減圧下で溶媒を除去し、組成物を得た。得られた組成物を分取用薄層クロマトグラフィーにより精製し、芳香族カルボン酸に対応するメチルエステル(芳香族カルボン酸メチルエステル、実施例26〜34において、それぞれ、表4中の化合物5b〜5e,5j,5s〜5v)を得た。芳香族カルボン酸メチルエステルの収率を表4に示す。なお、収率は、実施例1と同様の操作により、H−NMRスペクトルで測定した。 The organic layer was washed with H 2 O. The aqueous layer was acidified with aqueous 1N HCl, then three times extracted work by Et 2 O (diethyl ether). The organic layer was dehydrated and filtered through Na 2 SO 4 and concentrated under reduced pressure to obtain an aromatic carboxylic acid. This aromatic carboxylic acid was dissolved in Et 2 O (2.0 mL) and MeOH (methanol, 0.5 mL), and a solution of trimethylsilyldiazomethane (TMSCHN 2 , 2.0 eq) in Et 2 O was added at 0 ° C. The mixture was stirred at 0 ° C. for 30 minutes and the solvent was removed under reduced pressure to give the composition. The obtained composition was purified by preparative thin layer chromatography, and the methyl ester corresponding to the aromatic carboxylic acid (aromatic carboxylic acid methyl ester, in Examples 26 to 34, compounds 5b to 4 in Table 4, respectively. 5e, 5j, 5s-5v) were obtained. The yield of aromatic carboxylic acid methyl ester is shown in Table 4. The yield was measured in 1 1 H-NMR spectrum by the same operation as in Example 1.

Figure 0006985696
Figure 0006985696

表4より、TMSCHNを用いたメチルエステル化により、種々の芳香族塩化物から、種々の芳香族カルボン酸メチルエステルが良好な収率で得られることが示された。 From Table 4, it was shown that various aromatic carboxylic acid methyl esters can be obtained in good yields from various aromatic chlorides by methyl esterification using TMSCHN 2.

なお、ZnEtを用いたPd触媒によるカルボキシル化反応では、臭素化物よりより安価である芳香族塩化物から芳香族カルボン酸を得ることができなかった。一方、光酸化還元触媒成分(A)と遷移金属触媒成分(B)とを含む触媒組成物を用いたカルボキシル化反応では、多種多様な基質を用いることができ、種々の官能基を有する芳香族塩化物から芳香族カルボン酸又はそのエステルを良好な収率で得られ、非常に有用であることが分かった。 In the Pd-catalyzed carboxylation reaction using ZnEt 2 , the aromatic carboxylic acid could not be obtained from the aromatic chloride, which is cheaper than the bromine. On the other hand, in the carboxylation reaction using a catalyst composition containing a photooxidation-reduction catalyst component (A) and a transition metal catalyst component (B), a wide variety of substrates can be used, and aromatics having various functional groups can be used. Aromatic carboxylic acids or esters thereof were obtained from chlorides in good yields and were found to be very useful.

(実施例35〜36)
以下の表5に記載の光酸化還元触媒成分(A)を使用し、三級アミン化合物の含有割合を芳香族ハロゲン化合物中のハロゲン原子に対して6.0当量とし、塩基性化合物を使用しなかったこと以外は実施例1と同様の操作を行った。結果を表5に示す。
(Examples 35 to 36)
Using the photooxidation-reduction catalyst component (A) shown in Table 5 below, the content ratio of the tertiary amine compound was 6.0 equivalent to the halogen atom in the aromatic halogen compound, and the basic compound was used. The same operation as in Example 1 was performed except that there was no such thing. The results are shown in Table 5.

Figure 0006985696
Figure 0006985696

表5から、光酸化還元触媒成分(A)としてIr(ppy)2(Me4phen)(PF6)よりも還元力に優れるIr(ppy)2(dmobpy)(PF6)を用いると、基質(化合物1a)の転化率や芳香族カルボン酸(化合物2a)の収率に優れることが分かる。 From Table 5, when Ir (ppy) 2 (dmobpy) (PF 6 ), which has a higher reducing power than Ir (ppy) 2 (Me 4 phen) (PF 6 ), is used as the photooxidation-reduction catalyst component (A), the substrate is used. It can be seen that the conversion rate of (Compound 1a) and the yield of the aromatic carboxylic acid (Compound 2a) are excellent.

(実施例37〜38)
実施例37として、三級アミン化合物の含有割合を6.0当量とし、塩基性化合物を使用しなかったこと以外は実施例1と同様の操作を行った。
また、実施例38として、光酸化還元触媒成分(A)の含有割合を2.5mol%に変更したこと以外は実施例37と同様の操作を行った。結果を表6に示す。
(Examples 37 to 38)
In Example 37, the content ratio of the tertiary amine compound was 6.0 equivalents, and the same operation as in Example 1 was carried out except that the basic compound was not used.
Further, as Example 38, the same operation as in Example 37 was performed except that the content ratio of the photooxidation-reduction catalyst component (A) was changed to 2.5 mol%. The results are shown in Table 6.

Figure 0006985696
Figure 0006985696

表6から、塩基性化合物を使用しなくても目的化合物が収率よく得られることが分かる。更に、光酸化還元触媒成分(A)の含有割合を増やすことで、水素化生成物(化合物3a)の生成が抑制され、芳香族カルボン酸(化合物2a)の収率が向上することも分かる。 From Table 6, it can be seen that the target compound can be obtained in good yield without using a basic compound. Further, it can be seen that by increasing the content ratio of the photooxidation-reduction catalyst component (A), the production of the hydrogenation product (Compound 3a) is suppressed and the yield of the aromatic carboxylic acid (Compound 2a) is improved.

(実施例39〜40)
以下の表7に記載の光酸化還元触媒成分(A)を使用し、三級アミン化合物の含有割合を6.0当量とし、塩基性化合物を使用しなかったこと以外は実施例1と同様の操作を行った。結果を表7に示す。
(Examples 39 to 40)
The same as in Example 1 except that the photooxidation-reduction catalyst component (A) shown in Table 7 below was used, the content ratio of the tertiary amine compound was 6.0 equivalents, and no basic compound was used. The operation was performed. The results are shown in Table 7.

Figure 0006985696
Figure 0006985696

表7より、光酸化還元触媒成分(A)としてRu(bpy)3(PF6)2を用いた場合でも芳香族ハロゲン化合物から芳香族カルボン酸を生成できることが示された。また、Ir(dF(CF3)ppy)2(dtbbpy)(PF6)の還元力はRu(bpy)3(PF6)2の還元力よりも優れることから、適切な遷移金属を含む光酸化還元触媒成分(A)を選択することで、芳香族カルボン酸の収率が向上することが分かる。 From Table 7, it was shown that an aromatic carboxylic acid can be produced from an aromatic halogen compound even when Ru (bpy) 3 (PF 6 ) 2 is used as the photooxidation-reduction catalyst component (A). Also, since the reducing power of Ir (dF (CF 3 ) ppy) 2 (dtbbpy) (PF 6 ) is superior to the reducing power of Ru (bpy) 3 (PF 6 ) 2 , photooxidation containing an appropriate transition metal It can be seen that the yield of the aromatic carboxylic acid is improved by selecting the reduction catalyst component (A).

本発明に係る触媒組成物は、ZnやMn等の遷移金属元素(周期表7族又は12属に属する遷移金属元素等)を含む金属還元剤を用いずに、光照射条件下で、二酸化炭素と芳香族ハロゲン化合物とから芳香族カルボン酸又はそのエステルを製造できるため、環境負荷を低減できる。 The catalyst composition according to the present invention does not use a metal reducing agent containing a transition metal element such as Zn or Mn (transition metal element belonging to Group 7 or Group 12 of the Periodic Table), and carbon dioxide is used under light irradiation conditions. Since the aromatic carboxylic acid or an ester thereof can be produced from the above and the aromatic halogen compound, the environmental load can be reduced.

Claims (5)

周期表8〜10族に属する遷移金属Mを含む光酸化還元触媒成分(A)と、周期表8〜11族に属し、前記遷移金属Mと異なる遷移金属M’を含む遷移金属触媒成分(B)とを含有し、
光照射条件下で、二酸化炭素と芳香族ハロゲン化合物とから芳香族カルボン酸又はそのエステルを製造するための触媒組成物であって、
前記光酸化還元触媒成分(A)が一般式(1)で表される化合物であり、
(N−C) 3−x (N−N) M (1)
(前記一般式(1)中のNは窒素原子、Cは炭素原子を示す。また、N−Cは、窒素原子と炭素原子とで前記遷移金属Mに配位する二座配位子を示し、N−Nは、窒素原子と窒素原子とで前記遷移金属Mに配位する二座配位子を示し、(N−C)の二座配位子がフェニルピリジン骨格を有し、(N−N)の二座配位子がビピリジン骨格またはフェナントロリン骨格を有するものである。また、xは0〜3の整数を示す。また、前記遷移金属Mは、イリジウムまたはルテニウムである。)
前記遷移金属触媒成分(B)が、遷移金属M’がパラジウムであり、かつ、配位子として有機リン化合物を含むものである、触媒組成物。
A photooxidation-reduction catalyst component (A) containing a transition metal M belonging to groups 8 to 10 of the periodic table and a transition metal catalyst component (B) containing a transition metal M'belonging to groups 8 to 11 of the periodic table and different from the transition metal M. ) And
A catalyst composition for producing an aromatic carboxylic acid or an ester thereof from carbon dioxide and an aromatic halogen compound under light irradiation conditions .
The photooxidation-reduction catalyst component (A) is a compound represented by the general formula (1).
(NC) 3-x (NN) x M (1)
(N in the general formula (1) represents a nitrogen atom, C represents a carbon atom, and NC represents a bidentate ligand that coordinates the transition metal M with the nitrogen atom and the carbon atom. , N—N represent a bidentate ligand coordinated to the transition metal M with a nitrogen atom and a nitrogen atom, the bidentate ligand of (NC) has a phenylpyridine skeleton, and (N). The bidentate ligand of −N) has a bipyridine skeleton or a phenanthroline skeleton. In addition, x represents an integer of 0 to 3. The transition metal M is iridium or ruthenium.)
The catalyst composition in which the transition metal catalyst component (B) is such that the transition metal M'is palladium and contains an organophosphorus compound as a ligand.
周期表8〜10族に属する遷移金属Mを含む光酸化還元触媒成分(A)と、周期表8〜11族に属し、前記遷移金属Mと異なる遷移金属M’を含む遷移金属触媒成分(B)とを含む触媒組成物の存在下、二酸化炭素と芳香族ハロゲン化合物とに光照射する工程を含み、
前記光酸化還元触媒成分(A)が一般式(1)で表される化合物であり、
(N−C) 3−x (N−N) M (1)
(前記一般式(1)中のNは窒素原子、Cは炭素原子を示す。また、N−Cは、窒素原子と炭素原子とで前記遷移金属Mに配位する二座配位子を示し、N−Nは、窒素原子と窒素原子とで前記遷移金属Mに配位する二座配位子を示し、(N−C)の二座配位子がフェニルピリジン骨格を有し、(N−N)の二座配位子がビピリジン骨格またはフェナントロリン骨格を有するものである。また、xは0〜3の整数を示す。また、前記遷移金属Mは、イリジウムまたはルテニウムである。)
前記遷移金属触媒成分(B)が、遷移金属M’がパラジウムであり、かつ、配位子として有機リン化合物を含むものである、芳香族カルボン酸又はそのエステルの製造方法。
A photooxidation-reduction catalyst component (A) containing a transition metal M belonging to groups 8 to 10 of the periodic table and a transition metal catalyst component (B) containing a transition metal M'belonging to groups 8 to 11 of the periodic table and different from the transition metal M. ) and the presence of a catalyst composition comprising, viewed including the step of light irradiation to carbon dioxide and aromatic halogen compounds,
The photooxidation-reduction catalyst component (A) is a compound represented by the general formula (1).
(NC) 3-x (NN) x M (1)
(N in the general formula (1) represents a nitrogen atom, C represents a carbon atom, and NC represents a bidentate ligand that coordinates the transition metal M with the nitrogen atom and the carbon atom. , N—N represent a bidentate ligand coordinated to the transition metal M with a nitrogen atom and a nitrogen atom, the bidentate ligand of (NC) has a phenylpyridine skeleton, and (N). The bidentate ligand of −N) has a bipyridine skeleton or a phenanthroline skeleton. In addition, x represents an integer of 0 to 3. The transition metal M is iridium or ruthenium.)
A method for producing an aromatic carboxylic acid or an ester thereof, wherein the transition metal catalyst component (B) contains palladium as the transition metal M'and an organophosphorus compound as a ligand.
前記芳香族ハロゲン化合物が、芳香族塩化物、芳香族臭化物又は芳香族ヨウ素化物である、請求項に記載の芳香族カルボン酸又はそのエステルの製造方法。 The method for producing an aromatic carboxylic acid or an ester thereof according to claim 2 , wherein the aromatic halogen compound is an aromatic chloride, an aromatic bromide or an aromatic iodine product. 前記触媒組成物とともに三級アミン化合物を存在させる、請求項またはに記載の芳香族カルボン酸又はそのエステルの製造方法。 The method for producing an aromatic carboxylic acid or an ester thereof according to claim 2 or 3 , wherein a tertiary amine compound is present together with the catalyst composition. 前記触媒組成物とともに塩基性化合物を存在させる、請求項の何れか一項に記載の芳香族カルボン酸又はそのエステルの製造方法。 The method for producing an aromatic carboxylic acid or an ester thereof according to any one of claims 2 to 4 , wherein a basic compound is present together with the catalyst composition.
JP2017171110A 2017-09-06 2017-09-06 A catalyst composition for producing an aromatic carboxylic acid or an ester thereof from carbon dioxide and an aromatic halogen compound, and a method for producing an aromatic carboxylic acid or an ester thereof using the catalyst composition. Active JP6985696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017171110A JP6985696B2 (en) 2017-09-06 2017-09-06 A catalyst composition for producing an aromatic carboxylic acid or an ester thereof from carbon dioxide and an aromatic halogen compound, and a method for producing an aromatic carboxylic acid or an ester thereof using the catalyst composition.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017171110A JP6985696B2 (en) 2017-09-06 2017-09-06 A catalyst composition for producing an aromatic carboxylic acid or an ester thereof from carbon dioxide and an aromatic halogen compound, and a method for producing an aromatic carboxylic acid or an ester thereof using the catalyst composition.

Publications (2)

Publication Number Publication Date
JP2019042708A JP2019042708A (en) 2019-03-22
JP6985696B2 true JP6985696B2 (en) 2021-12-22

Family

ID=65815231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017171110A Active JP6985696B2 (en) 2017-09-06 2017-09-06 A catalyst composition for producing an aromatic carboxylic acid or an ester thereof from carbon dioxide and an aromatic halogen compound, and a method for producing an aromatic carboxylic acid or an ester thereof using the catalyst composition.

Country Status (1)

Country Link
JP (1) JP6985696B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102582223B1 (en) * 2021-07-23 2023-09-25 한국화학연구원 Ag catalyst for carboxylation of aromatic compounds and method for producing aromatic carboxylic acid using same

Also Published As

Publication number Publication date
JP2019042708A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP5386968B2 (en) Method for producing n-butanol
CN106861757B (en) A kind of organic boron of fluorescent marker/nitrogen lewis acid base bifunctional catalyst and preparation method thereof
JP6985696B2 (en) A catalyst composition for producing an aromatic carboxylic acid or an ester thereof from carbon dioxide and an aromatic halogen compound, and a method for producing an aromatic carboxylic acid or an ester thereof using the catalyst composition.
KR20180080193A (en) Method for homogeneous hydrogenation of a halogenated heteroaryl compound
CN109824579B (en) Preparation method of (S) -phenyl (pyridine-2-yl) methanol derivative
JP6125032B2 (en) Hydrocarbonylation or methoxycarbonylation of 1,3-diene derivatives with palladium complexes
WO2016141840A1 (en) Method synthesizing pharmaceutical intermediate phenanthrene compound in sodium hydroxide environment
Liu et al. Hydrocarboxylation of alkynes with formic acid over multifunctional ligand modified Pd-catalyst with co-catalytic effect
JP5194542B2 (en) Method for producing alcohol
Fairlamb et al. Alkoxy-and amidocarbonylation of functionalised aryl and heteroaryl halides catalysed by a Bedford palladacycle and dppf: a comparison with the primary Pd (ii) precursors (PhCN) 2 PdCl 2 and Pd (OAc) 2
ES2374027T3 (en) 1,4-HYDROGENATION OF SORBOL WITH RU COMPLEXES.
CN111484437A (en) Method for introducing tertiary isopentenyl group to C3 position of indole
JP2008303160A (en) Method for producing alcohol
CN113354500B (en) Method for preparing 1,5-diene derivative
Tao et al. Homocoupling of aryl bromides catalyzed by nickel chloride in pyridine
Mala Utilising a novel Ni/Zn catalytic system in small molecule synthesis
Stoesser et al. Synthesizing Highly Fluorinated Oligophenyls via Negishi Coupling of Fluoroarylzinc Pivalates
JP2009023925A (en) Method for producing amide compound and catalyst used for the method
Štambaský et al. Preparation of Boc-protected cinnamyl-type alcohols: A comparison of the Suzuki-Miyaura coupling, cross-metathesis, and Horner-Wadsworth-Emmons approaches and their merit in parallel synthesis
EP3337783A1 (en) Method for coupling an aromatic compound to an alkyne
Ma Palladium-Catalyzed Stereoselective CF Bond Activation of Gem-Difluoroalkenes and Copper-Mediated Trifluoromethylation of α-Diazo Compounds
El Chami A Visible Light Driven Nickel Catalyst for Carbonylative Coupling Reactions
JP2010024171A (en) Process for producing carbonyl compound
JP2023135313A (en) Catalyst for producing lactones and method of producing lactones
ES2842879T3 (en) Procedure for the preparation of aryl- and heteroarylacetic acid derivatives

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211116

R150 Certificate of patent or registration of utility model

Ref document number: 6985696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150