JP6985682B2 - Simple monitoring method for tunnel face - Google Patents

Simple monitoring method for tunnel face Download PDF

Info

Publication number
JP6985682B2
JP6985682B2 JP2017236723A JP2017236723A JP6985682B2 JP 6985682 B2 JP6985682 B2 JP 6985682B2 JP 2017236723 A JP2017236723 A JP 2017236723A JP 2017236723 A JP2017236723 A JP 2017236723A JP 6985682 B2 JP6985682 B2 JP 6985682B2
Authority
JP
Japan
Prior art keywords
face
monitoring
tunnel
horizontal
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017236723A
Other languages
Japanese (ja)
Other versions
JP2019105471A (en
Inventor
晃央 市川
裕考 佐藤
達央 三木
悠太 伊勢田
敬太 坪井
伸輝 藤原
祥持 藤原
修平 中熊
洋樹 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEISOKUGIKEN CO., LTD.
Takenaka Civil Engineering and Construction Co Ltd
Original Assignee
KEISOKUGIKEN CO., LTD.
Takenaka Civil Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEISOKUGIKEN CO., LTD., Takenaka Civil Engineering and Construction Co Ltd filed Critical KEISOKUGIKEN CO., LTD.
Priority to JP2017236723A priority Critical patent/JP6985682B2/en
Publication of JP2019105471A publication Critical patent/JP2019105471A/en
Application granted granted Critical
Publication of JP6985682B2 publication Critical patent/JP6985682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、トンネル切羽の押し出し量(変位量、押し出し変位とも呼ばれる。)を計測することによりトンネル切羽の挙動(状態)を定量的に把握するトンネル切羽の簡易監視方法の技術分野に属する。 The present invention belongs to the technical field of a simple monitoring method for a tunnel face, in which the behavior (state) of the tunnel face is quantitatively grasped by measuring the extrusion amount (displacement amount, also referred to as extrusion displacement) of the tunnel face.

山岳トンネル工事では、トンネル切羽(以下、単に切羽と略す場合がある。)の安定性確保が、作業員の安全確保や品質・工程確保のために重要となる。
そこで、切羽監視員によって目視異常がないかを確認するのが一般的であるが、目視による監視では、定性的な監視であるが故に、切羽の押し出し量を早期に発見することが困難であり、人的感覚による判断のバラツキも生じる可能性がある。また、変状が目視確認されてからの対応となることから、対策を講じる猶予が制限される虞がある。
よって、近年、前記定性的な監視の代わりに、又は前記定性的な監視に加えて、切羽挙動を定量的に把握することにより、早期に予防保全的対応を施す体制を整えることを可能とする技術が開示されている(例えば、特許文献1参照)。
In mountain tunnel construction, ensuring the stability of the tunnel face (hereinafter, sometimes simply abbreviated as face) is important for ensuring the safety of workers and ensuring quality and process.
Therefore, it is common for a face observer to check for visual abnormalities, but it is difficult to detect the amount of face extrusion at an early stage because visual monitoring is qualitative monitoring. , There may be variations in judgment due to human senses. In addition, since the response will be taken after the deformation is visually confirmed, there is a risk that the grace period for taking countermeasures will be limited.
Therefore, in recent years, instead of the qualitative monitoring or in addition to the qualitative monitoring, it is possible to establish a system for early preventive maintenance measures by quantitatively grasping the face behavior. The technique is disclosed (see, for example, Patent Document 1).

前記特許文献1に係る発明は、トンネル切羽面上の複数の測点を測定することによりトンネル切羽面の形状を測定する切羽形状測定工程と、前記切羽形状測定工程により複数回測定されたトンネル切羽面の形状を比較してトンネル切羽面の変位を検出する切羽形状比較工程とを含むトンネル切羽監視方法である。
具体的に、前記切羽形状測定工程は、測距手段の原点から発光されるレーザ光をトンネル切羽面の複数の測点に順次照射して、前記トンネル切羽面上の測点で反射された前記レーザ光を前記原点において検知することで前記原点と前記測点との距離を順次測定する測距段階と、前記測距段階の測定結果に基づき、前記複数の測点の位置データを算出することによりトンネル切羽面の3次元データを作成する3次元データ作成段階とを含んでいる(請求項1等の記載を参照)。
The invention according to Patent Document 1 has a face shape measuring step of measuring the shape of the tunnel face surface by measuring a plurality of stations on the tunnel face surface, and a tunnel face measured a plurality of times by the face shape measuring step. It is a tunnel face monitoring method including a face shape comparison step of comparing surface shapes and detecting displacement of the tunnel face surface.
Specifically, in the face shape measuring step, the laser beam emitted from the origin of the distance measuring means is sequentially irradiated to a plurality of stations on the tunnel face surface, and is reflected at the station on the tunnel face surface. To calculate the position data of the plurality of stations based on the distance measurement step in which the distance between the origin and the station is sequentially measured by detecting the laser beam at the origin and the measurement results of the distance measurement step. It includes a 3D data creation step of creating 3D data of the tunnel face surface (see the description of claim 1 and the like).

前記特許文献1に係るトンネル切羽監視方法によれば、トンネル切羽面の高精度の三次元データを、容易かつ早期に測定することが可能なトンネル切羽監視方法を提供できる旨の記載が認められる(明細書の段落[0006]、[0019]参照)。 According to the tunnel face monitoring method according to Patent Document 1, it is acknowledged that a tunnel face monitoring method capable of easily and early measuring high-precision three-dimensional data of the tunnel face surface can be provided (). See paragraphs [0006] and [0019] of the specification).

特開2005−331363号公報Japanese Unexamined Patent Publication No. 2005-331363

しかしながら、前記特許文献1に係るトンネル切羽監視方法は、同文献1の図3が分かりやすいように、座標で管理しているので、予め設計データとして切羽面の全面に相当する座標を入力等する必要があり(詳しくは、段落[0027]〜[0029]等参照)、非常に煩雑で手間がかかる問題があった。
その座標も、予め設定され用意された座標であり、実施工の例えば上げ越し等を考慮した実測値に基づいたものではなく、大掛かりな監視技術のわりには、地山の安定性を評価するための座標自体が信頼性に欠ける等、改善すべき課題があった。
予め設定され用意された座標で管理する構成であるが故に、実際の切羽の押し出し量について測定誤差が生じ易く、また、カーブや勾配の変化が当たり前の長大トンネル等では切羽面の周縁部の座標が存在しない場合も想定される等、汎用性に欠ける課題もあった。
However, since the tunnel face monitoring method according to Patent Document 1 is managed by coordinates so that FIG. 3 of Document 1 can be easily understood, coordinates corresponding to the entire surface of the face surface are input in advance as design data. It is necessary (for details, refer to paragraphs [0027] to [0029], etc.), and there is a problem that it is very complicated and time-consuming.
The coordinates are also preset and prepared, and are not based on actual measurement values that take into account, for example, climbing over, etc., in order to evaluate the stability of the ground in spite of the large-scale monitoring technology. There was a problem to be improved, such as the lack of reliability of the coordinates themselves.
Since the configuration is managed by preset coordinates, measurement errors are likely to occur in the actual extrusion amount of the face, and the coordinates of the peripheral edge of the face surface are common in long tunnels where changes in curves and slopes are commonplace. There was also a problem of lack of versatility, such as the possibility that there is no such thing.

本発明は、上述した背景技術の課題に鑑みて案出されたものであり、その目的とするところは、座標を不要とし、これに伴うデータ入力の手間を省くことができることに加え、実施工に基づいた正確な数値をリアルタイムで合理的且つ高精度に計測することにより、切羽の挙動を簡易かつ早期に把握することが可能な、トンネル切羽の簡易監視方法を提供することにある。 The present invention has been devised in view of the above-mentioned problems of the background technology, and its purpose is to eliminate the need for coordinates, to save the trouble of data input associated therewith, and to carry out the work. by measuring the reasonable and accurate exact numbers based on real-time, which can grasp the behavior of the working face easily and quickly, it is to provide a simplified monitoring how the tunnel face.

上記背景技術の課題を解決するための手段として、請求項1に記載した発明に係るトンネル切羽の簡易監視方法は、レーザー光を水平方向に旋回させつつ照射し、照射点までの距離を計測するレーザー距離計を搭載した水平監視用計測装置により切羽の押し出し量を監視するトンネル切羽の簡易監視方法であって、
(A)前記水平監視用計測装置を、切羽の押し出し量を監視する適正な高さレベルに設置する工程と、
(B)前記水平監視用計測装置のレーザー距離計を、水平方向に旋回させつつトンネル坑内面へレーザー光を照射し、トンネル坑内面における所定の高さレベルの照射点までの距離の計測結果に基づき、切羽の左右両端位置を判定する工程と、
(C)前記判定した切羽の左右両端位置の間の範囲内で複数の計測ポイントを水平一直線上に設定する工程と、
(D)前記水平監視用計測装置のレーザー距離計を前記計測ポイントに合致する旋回角度で水平方向に旋回させつつレーザー光を照射し、各計測ポイントの照射点までの距離を計測する工程を連続的に繰り返し行う工程と、
(E)切羽の掘削進捗状況に応じて前記(B)、(C)の工程を行い、改めて前記計測ポイントを設定し直して前記(D)の工程を行う工程と、
(F)前記各(D)の工程と並行して、同一の計測ポイントにおけるリアルタイムな計測データの変位に基づき切羽の押し出し量を監視する工程と、から成ることを特徴とする。
As a means for solving the above-mentioned problems of the background technique, the simple monitoring method for the tunnel face according to the invention according to claim 1 irradiates the laser beam while swirling it in the horizontal direction and measures the distance to the irradiation point. It is a simple monitoring method for tunnel faces that monitors the amount of face extrusion with a horizontal monitoring measuring device equipped with a laser rangefinder.
(A) A process of installing the horizontal monitoring measuring device at an appropriate height level for monitoring the amount of extrusion of the face, and
(B) The laser range finder of the horizontal monitoring measuring device is swiveled in the horizontal direction to irradiate the inner surface of the tunnel with laser light, and the measurement result of the distance to the irradiation point at a predetermined height level on the inner surface of the tunnel is obtained. Based on the process of determining the left and right ends of the face,
(C) A step of setting a plurality of measurement points on a horizontal straight line within the range between the left and right ends of the determined face.
(D) The process of irradiating the laser beam while turning the laser range finder of the horizontal monitoring measuring device in the horizontal direction at a turning angle matching the measurement point and measuring the distance to the irradiation point of each measurement point is continuous. Repeated process and
(E) The steps (B) and (C) are performed according to the progress of excavation of the face, the measurement points are set again, and the step (D) is performed.
(F) It is characterized by comprising a step of monitoring the extrusion amount of the face based on the displacement of real-time measurement data at the same measurement point in parallel with the steps of each (D).

請求項1に記載した発明に係るトンネル切羽の簡易監視方法は、レーザー光を水平方向に旋回させつつ照射し、照射点までの距離を計測するレーザー距離計を搭載した水平監視用計測装置と、レーザー光を鉛直方向に回動させつつ照射し、照射点までの距離を計測するレーザー距離計を搭載した鉛直監視用計測装置とを併用して切羽の押し出し量を監視するトンネル切羽の簡易監視方法であって、
(A)前記水平監視用計測装置を、切羽の押し出し量を監視する適正な高さレベルに設置する工程と、
(B)前記水平監視用計測装置のレーザー距離計を、水平方向に旋回させつつトンネル坑内面へレーザー光を照射し、トンネル坑内面における所定の高さレベルの照射点までの距離の計測結果に基づき、切羽の左右両端位置を判定する工程と、
(C)前記判定した切羽の左右両端位置の間の範囲内で複数の計測ポイントを水平一直線上に設定する工程と、
(D)前記水平監視用計測装置のレーザー距離計を前記計測ポイントに合致する旋回角度で水平方向に旋回させつつレーザー光を照射し、各計測ポイントの照射点までの距離を計測する工程を連続的に繰り返し行う工程と、
(E)切羽の掘削進捗状況に応じて前記(B)、(C)の工程を行い、改めて前記計測ポイントを設定し直して前記(D)の工程を行う工程と、
(F)前記各(D)の工程と並行して、同一の計測ポイントにおけるリアルタイムな計測データの変位に基づき切羽の押し出し量を監視する工程と、から成るトンネル切羽の水平監視方法と、および、
(a)前記鉛直監視用計測装置を、切羽の天端部を通過する鉛直方向ラインを監視する適正な部位に設置する工程と、
(b)前記鉛直方向ラインにおける前記切羽の天端部と地面部との間の範囲内で複数の計測ポイントを設定する工程と、
(c)前記鉛直監視用計測装置のレーザー距離計を前記計測ポイントに合致する回動角度で鉛直方向に回動させつつレーザー光を照射し、各計測ポイントの照射点までの距離を計測する工程を連続的に繰り返し行う工程と、
(d)切羽の掘削進捗状況に応じて前記(b)の工程を行い、改めて前記計測ポイントを設定し直して前記(c)の工程を行う工程と、
(e)前記各(c)の工程と並行して、同一の計測ポイントにおけるリアルタイムな計測データの変位に基づき切羽の押し出し量を監視する工程と、から成るトンネル切羽の鉛直監視方法とを同時期に行うことを特徴とする。
The simple monitoring method for a tunnel face according to the first aspect of the present invention includes a measuring device for horizontal monitoring equipped with a laser range finder that irradiates a laser beam while swirling it in the horizontal direction and measures the distance to the irradiation point. A simple monitoring method for tunnel faces that monitors the amount of face extrusion in combination with a vertical monitoring measuring device equipped with a laser rangefinder that irradiates laser light while rotating it in the vertical direction and measures the distance to the irradiation point. And,
(A) A process of installing the horizontal monitoring measuring device at an appropriate height level for monitoring the amount of extrusion of the face, and
(B) The laser range finder of the horizontal monitoring measuring device is swiveled in the horizontal direction to irradiate the inner surface of the tunnel with laser light, and the measurement result of the distance to the irradiation point at a predetermined height level on the inner surface of the tunnel is obtained. Based on the process of determining the left and right ends of the face,
(C) A step of setting a plurality of measurement points on a horizontal straight line within the range between the left and right ends of the determined face.
(D) The process of irradiating the laser beam while turning the laser range finder of the horizontal monitoring measuring device in the horizontal direction at a turning angle matching the measurement point and measuring the distance to the irradiation point of each measurement point is continuous. Repeated process and
(E) The steps (B) and (C) are performed according to the progress of excavation of the face, the measurement points are set again, and the step (D) is performed.
(F) In parallel with each of the steps (D), a step of monitoring the extrusion amount of the face based on the displacement of real-time measurement data at the same measurement point, a horizontal monitoring method of the tunnel face, and a method of horizontally monitoring the face.
(A) The process of installing the vertical monitoring measuring device at an appropriate site for monitoring the vertical line passing through the top of the face.
(B) A step of setting a plurality of measurement points within a range between the top end portion and the ground portion of the face in the vertical direction line, and a step of setting a plurality of measurement points.
(C) A step of irradiating laser light while rotating the laser rangefinder of the vertical monitoring measuring device in the vertical direction at a rotation angle matching the measurement point, and measuring the distance to the irradiation point of each measurement point. And the process of continuously repeating
(D) The step (b) is performed according to the progress of excavation of the face, the measurement point is set again, and the step (c) is performed.
(E) In parallel with each of the steps (c), the step of monitoring the extrusion amount of the face based on the displacement of the real-time measurement data at the same measurement point and the vertical monitoring method of the tunnel face comprising the same period. It is characterized by doing so.

請求項3に記載した発明は、請求項1又は2に記載したトンネル切羽の簡易監視方法において、前記水平監視用計測装置は、トンネルのスプリングラインと天頂部との間の1/2以上、3/4以下の高さで、トンネル支保工の一側部又は両側部に設置することを特徴とする。 The invention according to claim 3 is the simple monitoring method for a tunnel face according to claim 1, wherein the horizontal monitoring measuring device is ½ or more between the spring line of the tunnel and the zenith. It is characterized by being installed on one side or both sides of the tunnel support at a height of 4/4 or less.

請求項4に記載した発明は、請求項3に記載したトンネル切羽の簡易監視方法において、前記水平監視用計測装置をトンネル支保工の両側部に設置するときは、切羽との距離を互いに異なるように設置し、一方の水平監視用計測装置の盛り替え時にも水平監視用計測装置による計測が中断しない構成とすることを特徴とする。 According to the fourth aspect of the present invention, in the simple monitoring method for the tunnel face according to the third aspect, when the horizontal monitoring measuring devices are installed on both sides of the tunnel support, the distances from the face are different from each other. It is characterized in that it is installed in the tunnel and the measurement by the horizontal monitoring measuring device is not interrupted even when one of the horizontal monitoring measuring devices is replaced.

請求項5に記載した発明は、請求項1〜4のいずれか1項に記載したトンネル切羽の簡易監視方法において、前記水平監視用計測装置は、上下方向にも回動制御して照射できる構成とし、前記水平一直線上の計測ポイントを複数の段状に設定することを特徴とする。 The invention according to claim 5 is the simple monitoring method for a tunnel face according to any one of claims 1 to 4, wherein the horizontal monitoring measuring device can be rotated and irradiated in the vertical direction as well. It is characterized in that the measurement points on the horizontal straight line are set in a plurality of steps.

請求項6に記載した発明は、請求項1〜5のいずれか1項に記載したトンネル切羽の簡易監視方法において、前記切羽の押し出し量の変位が、設定した管理基準値を超えた場合に警報手段を作動させることを特徴とする。 The invention according to claim 6 is an alarm when the displacement of the extrusion amount of the face exceeds the set control reference value in the simple monitoring method for the tunnel face according to any one of claims 1 to 5. It is characterized by activating the means.

本発明に係るトンネル切羽の簡易監視方法によれば、座標を不要とし、これに伴うデータ入力の手間を省くことができることに加え、実施工に基づいた正確な数値をリアルタイムで合理的且つ高精度に計測することにより、切羽の挙動(状態)を簡易かつ早期に定量的に把握することができる。
よって、切羽の挙動を簡易かつ早期に定量的に把握できるので、より早期に予防保全的対応を施す体制を整えることができる。
また、座標を不要とし、これに伴うデータ入力の手間を省くことができるので、例えば、図12、図13に概略的に示したように、カーブの変化にも時間的ロスもなくスムーズに対応でき、カーブした切羽の挙動(状態)であっても簡易かつ早期に定量的に把握できる。
According to a simple monitoring how the tunnel face according to the present invention, and unnecessary coordinates, in addition to being able to save the trouble of the data input associated therewith, reasonable and highly accurate numerical values based on the actual construction in real time By measuring with accuracy, the behavior (state) of the face can be grasped quantitatively at an early stage easily.
Therefore, since the behavior of the face can be grasped easily and quantitatively at an early stage, it is possible to prepare a system for taking preventive maintenance measures at an earlier stage.
In addition, since coordinates are not required and the time and effort required for data input can be saved, for example, as shown schematically in FIGS. 12 and 13, changes in curves can be smoothly dealt with without time loss. Even the behavior (state) of a curved face can be grasped easily and early quantitatively.

本発明に係るトンネル切羽の簡易監視方法に用いる水平監視用計測装置により、所要の範囲内におけるトンネル坑内面との距離を計測する状況を概略的に示した平面図である。It is a top view which showed the situation which measured the distance with the tunnel inner surface within a required range by the horizontal monitoring measuring apparatus used for the simple monitoring method of a tunnel face which concerns on this invention. 前記水平監視用計測装置により、所要の範囲内におけるトンネル坑内面との距離を計測する状況を透視図的に示した斜視図である。FIG. 3 is a perspective view showing a situation in which the distance from the tunnel inner surface within a required range is measured by the horizontal monitoring measuring device. Aは、前記水平監視用計測装置により、設定した複数の計測ポイントを計測する状況を概略的に示した平面図であり、Bは、同正面図である。なお、Bについて、水平監視用計測装置1は図示の便宜上省略した。A is a plan view schematically showing a situation in which a plurality of set measurement points are measured by the horizontal monitoring measuring device, and B is a front view thereof. Regarding B, the horizontal monitoring measuring device 1 is omitted for convenience of illustration. 図1の状態から更に切羽の掘削を進めた段階で、前記水平監視用計測装置により、所要の範囲内におけるトンネル坑内面との距離を計測する状況を概略的に示した平面図である。FIG. 3 is a plan view schematically showing a situation in which the distance from the tunnel inner surface within a required range is measured by the horizontal monitoring measuring device at the stage where the excavation of the face is further advanced from the state of FIG. 図1の状態から更に切羽の掘削を進めた段階で、前記水平監視用計測装置により、所要の範囲内におけるトンネル坑内面との距離を計測する状況を透視図的に示した斜視図である。FIG. 3 is a perspective view showing a situation in which the distance from the tunnel inner surface within a required range is measured by the horizontal monitoring measuring device at the stage where the excavation of the face is further advanced from the state of FIG. Aは、図1の状態から更に切羽の掘削を進めた段階で、前記水平監視用計測装置により、設定した複数の計測ポイントを計測する状況を概略的に示した平面図であり、Bは、同正面図である。なお、Bについて、水平監視用計測装置1は図示の便宜上省略した。A is a plan view schematically showing a situation in which a plurality of set measurement points are measured by the horizontal monitoring measuring device at the stage where the excavation of the face is further advanced from the state of FIG. It is the same front view. Regarding B, the horizontal monitoring measuring device 1 is omitted for convenience of illustration. 前記水平監視用計測装置の設置部位を説明するための正面図である。It is a front view for demonstrating the installation part of the said horizontal monitoring measuring apparatus. 実施例2に係るトンネル切羽の簡易監視方法を説明するための正面図である。It is a front view for demonstrating the simple monitoring method of the tunnel face which concerns on Example 2. FIG. 実施例3に係るトンネル切羽の簡易監視方法を説明するための概略図である。It is a schematic diagram for demonstrating the simple monitoring method of the tunnel face which concerns on Example 3. FIG. 実施例3に係るトンネル切羽の簡易監視方法を説明するための概略図である。It is a schematic diagram for demonstrating the simple monitoring method of the tunnel face which concerns on Example 3. FIG. 実施例3に係るトンネル切羽の簡易監視方法を説明するための概略図である。It is a schematic diagram for demonstrating the simple monitoring method of the tunnel face which concerns on Example 3. FIG. 本発明に係るトンネル切羽の簡易監視方法の作用効果を説明するための概略図である。It is a schematic diagram for demonstrating the operation effect of the simple monitoring method of a tunnel face which concerns on this invention. 本発明に係るトンネル切羽の簡易監視方法の作用効果を説明するための概略図である。It is a schematic diagram for demonstrating the operation effect of the simple monitoring method of a tunnel face which concerns on this invention.

次に、本発明に係るトンネル切羽の簡易監視方法の実施例を図面に基づいて説明する。 Will now be described with reference to examples of simple monitoring how the tunnel face according to the present invention with reference to the drawings.

本発明に係るトンネル切羽の簡易監視方法は、図1等に示したように、レーザー光Lを水平方向に旋回させつつ照射し、照射点(レーザー光Lの矢印地点)までの距離を計測するレーザー距離計を搭載した水平監視用計測装置1により切羽10の押し出し量を監視するトンネル切羽10の簡易監視方法(以下、単に「水平監視方法」と略す場合がある。)である。
本実施例1(請求項1に記載した発明)に係る前記水平監視方法は、主として、以下の(A)〜(F)の工程により行われる。
In the simple monitoring method for the tunnel face according to the present invention, as shown in FIG. 1 and the like, the laser beam L is irradiated while being swirled in the horizontal direction, and the distance to the irradiation point (the arrow point of the laser beam L) is measured. This is a simple monitoring method for a tunnel face 10 (hereinafter, may be simply abbreviated as "horizontal monitoring method") for monitoring the amount of extrusion of the face 10 by a horizontal monitoring measuring device 1 equipped with a laser range finder.
The horizontal monitoring method according to the first embodiment (the invention according to claim 1) is mainly performed by the following steps (A) to (F).

(A)先ず、前記水平監視用計測装置1を、切羽10の押し出し量を監視する適正な高さレベルに設置する工程を行う。 (A) First, a step of installing the horizontal monitoring measuring device 1 at an appropriate height level for monitoring the extrusion amount of the face 10 is performed.

本実施例に係る水平監視用計測装置1は、施工機械の移動等の邪魔にならないスペースを考慮し、例えばアーチ状に形成されたトンネル支保工11(のH形鋼のフランジ部等)を利用して設置される(図7参照)。具体的には、トンネル切羽10から所定の距離(切羽10までの距離を十分に計測できる距離)後方に離れたトンネル支保工11にブラケット等の取付部材(図示の便宜上省略)を介して設置される。
前記トンネル支保工11に取り付ける適正な高さレベルは、図7に概略的に示したように、トンネルのスプリングラインSLと天端部Tとの間の1/2以上、3/4以下の範囲K内の任意の高さで、トンネル支保工11の一側部(図示例では右側部)に設置される(請求項3記載の発明)。トンネル支保工11の左右両側部に設置して実施する場合も勿論あるが、これについては後述する。
前記範囲K内で切羽10を計測する意義は、この範囲K内の押し出し量の変位が切羽10の崩落を把握(予見)するのにもっとも影響を与える部位だからである。
The measuring device 1 for horizontal monitoring according to this embodiment uses, for example, an arch-shaped tunnel support 11 (flange portion of H-shaped steel, etc.) in consideration of a space that does not interfere with the movement of the construction machine. (See Fig. 7). Specifically, it is installed on the tunnel support 11 which is separated from the tunnel face 10 by a predetermined distance (a distance at which the distance to the face 10 can be sufficiently measured) via a mounting member such as a bracket (omitted for convenience of illustration). Ru.
The appropriate height level to be attached to the tunnel support 11 is in the range of 1/2 or more and 3/4 or less between the spring line SL of the tunnel and the top end T, as schematically shown in FIG. It is installed on one side (right side in the illustrated example) of the tunnel support 11 at an arbitrary height in K (the invention according to claim 3). Of course, it may be installed on both the left and right sides of the tunnel support 11 and carried out, but this will be described later.
The significance of measuring the face 10 within the range K is that the displacement of the extrusion amount within this range K has the greatest influence on grasping (predicting) the collapse of the face 10.

(B)次に、前記水平監視用計測装置1のレーザー距離計を、図1、図2に示したように、水平方向に旋回させつつトンネル坑内面へレーザー光Lを照射し、トンネル坑内面における所定の高さレベルHの照射点までの距離の計測結果に基づき、切羽10の左右両端位置(E点とC点)を判定する工程を行う。 (B) Next, as shown in FIGS. 1 and 2, the laser range finder of the horizontal monitoring measuring device 1 is swiveled in the horizontal direction to irradiate the inner surface of the tunnel with laser light L to irradiate the inner surface of the tunnel with laser light L. Based on the measurement result of the distance to the irradiation point of the predetermined height level H, the step of determining the left and right end positions (points E and C) of the face 10 is performed.

ここで、前記水平監視用計測装置1の構成について説明する。当該監視装置1は、切羽10のトンネルの坑内面にレーザー光Lを照射して照射点で反射されたレーザー光Lを検知することで前記照射点までの距離を計測するレーザー距離計と、前記レーザー距離計の水平方向の旋回と停止を可能にする水平方向旋回装置と、前記水平方向旋回装置の任意の角度での旋回と停止を制御する制御装置とを備えている。
要するに、前記水平監視用計測装置1は、レーザー距離計が水平方向に自在に旋回可能な構成とされ、切羽10を含むトンネルの坑内面に対して順次レーザー光Lを設定したピッチで照射し、照射点までの距離を順次、自動的に計測することが可能な装置である。水平方向へ旋回するだけでなく鉛直方向に回動可能な構成を備えても勿論実施可能であるが、これについては後述する。
なお、図示は省略するが、この水平監視用計測装置1は、計測制御用のコンピュータと連動(連携)している。このコンピュータは、前記水平監視用計測装置1の遠隔操作や、データを必要に応じて演算処理等する役割を担っている。すなわち、コンピュータから指令が制御装置に通信されて前記水平監視用計測装置1の制御を可能な構成で実施している。
Here, the configuration of the horizontal monitoring measuring device 1 will be described. The monitoring device 1 includes a laser range finder that measures the distance to the irradiation point by irradiating the inner surface of the tunnel of the face 10 with the laser light L and detecting the laser light L reflected at the irradiation point. and horizontal turning apparatus which enables stopping the horizontal rotation of the laser rangefinder, that have a control device for controlling the stopping and turning at any angle of the horizontal pivoting device.
In short, the horizontal monitoring measuring apparatus 1 is a laser rangefinder and freely pivotable arrangement in the horizontal direction, is irradiated at a pitch set sequentially laser beam L relative to the downhole face of the tunnel, including a working face 10, It is a device that can automatically measure the distance to the irradiation point in sequence. Of course, it is possible to provide a configuration that can rotate not only in the horizontal direction but also in the vertical direction, but this will be described later.
Although not shown, the horizontal monitoring measuring device 1 is linked (coordinated) with a computer for measurement control. This computer plays a role of remote control of the horizontal monitoring measuring device 1 and arithmetic processing of data as needed. That is, a command is transmitted from the computer to the control device to control the horizontal monitoring measurement device 1.

前記構成の水平監視用計測装置1を旋回制御しつつレーザー光Lによるトンネル坑内面における所定の高さレベル(前記段落[0021]参照)の各照射点までの距離の計測結果に基づき、切羽10の左右両端位置を判定する工程を行うのである。
具体的に、切羽10の左右両端位置の判定は、図1に示すように、切羽10を含むトンネル坑内面の、例えば水平方向範囲に225度程度(A点〜A’点)にわたって所定の角度(一例として0.5度ピッチ)毎に順次照射し、計測した各照射点までの距離の変位(特には隣接する照射点との距離の変位)により、リアルタイム又は事後的に判定する。
例えば、前記A点を始点とし、A’点を終点として所要ピッチで計測した場合、まず、A点からB点(計測装置1の右側真横=最短距離)までは距離が漸次短くなる。次に、B点からC点(切羽10の右端点)までは距離が漸次長くなる。次に、C点からD点(切羽10までの直交距離)までは距離が漸次短くなり、D点からE点(切羽10の左端点)までは距離が漸次長くなる。そして、E点からF点(計測装置1の左側真横)までは距離が漸次短くなり、F点から終点のA’点まで距離が漸次長くなる。これらのトンネル坑内面の距離的特性を手がかりに、切羽10の左右両端位置(E点とC点)を判定(特定)するのである。
なお、本実施例では225度程度と広範囲にわたって照射しているが、勿論これに限定されず、切羽10の左右両端位置が判定できればよいので、例えば、切羽10を含む水平方向範囲に55度程度(a点〜a’点)にわたって所定の角度毎に順次照射して計測してもよい。
The face 10 is based on the measurement result of the distance to each irradiation point at a predetermined height level (see the paragraph [0021] above) on the inner surface of the tunnel by the laser beam L while turning and controlling the horizontal monitoring measuring device 1 having the above configuration. The process of determining the positions of both left and right ends of the is performed.
Specifically, as shown in FIG. 1, the determination of the left and right end positions of the face 10 is performed at a predetermined angle over a predetermined angle of about 225 degrees (points A to A') on the inner surface of the tunnel including the face 10, for example, in a horizontal range. Irradiation is performed sequentially every (0.5 degree pitch as an example), and the measurement is determined in real time or ex post facto based on the measured distance displacement to each irradiation point (particularly, the displacement of the distance from the adjacent irradiation point).
For example, when the measurement is performed at the required pitch with the point A as the start point and the point A'as the end point, the distance from the point A to the point B (right side of the measuring device 1 = shortest distance) is gradually shortened. Next, the distance from point B to point C (the right end point of the face 10) gradually increases. Next, the distance gradually decreases from the point C to the point D (the orthogonal distance to the face 10), and gradually increases from the point D to the point E (the left end point of the face 10). Then, the distance from the point E to the point F (just beside the left side of the measuring device 1) gradually decreases, and the distance from the point F to the point A'at the end point gradually increases. The left and right end positions (points E and C) of the face 10 are determined (specified) based on the distance characteristics of the inner surface of the tunnel.
In this embodiment, the irradiation is performed over a wide range of about 225 degrees, but of course, the irradiation is not limited to this, and it is sufficient if the positions of the left and right ends of the face 10 can be determined. It may be measured by sequentially irradiating (points a to a') at predetermined angles.

このように、切羽10の左右両端位置を判定(特定)する意義は、切羽10の幅寸は、設計上の幅寸よりも実施工上の幅寸の方が広く、また左右にカーブしたり、上下に勾配が変化したりする場合が往々にしてあるので、切羽10の所定高さレベルの幅寸、すなわち左右両端位置をリアルタイムに実測することにより、切羽の幅寸を正確に把握した上で、その幅寸内のトンネル切羽10の押し出し量の変位(累積変位、変位速度)を精度良く把握するためである。
ちなみに、本実施例では、切羽10の左右両端位置(E点、C点)の位置を特定した結果、一例として、切羽10の高さレベルHの幅寸は11mと判明した。この切羽10の幅寸は、通常、10m前後となる場合が多い。
In this way, the significance of determining (identifying) the positions of the left and right ends of the face 10 is that the width of the face 10 is wider than the design width, and the width of the face 10 is curved to the left and right. Since the gradient often changes up and down, the width dimension of the face 10 at a predetermined height level, that is, the left and right end positions are measured in real time to accurately grasp the width dimension of the face. This is to accurately grasp the displacement (cumulative displacement, displacement speed) of the extrusion amount of the tunnel face 10 within the width dimension.
Incidentally, in this embodiment, as a result of specifying the positions of the left and right end positions (points E and C) of the face 10, it was found that the width dimension of the height level H of the face 10 is 11 m as an example. The width of the face 10 is usually around 10 m in many cases.

(C)次に、前記判定した切羽の左右両端位置の間の範囲内で複数の計測ポイントPを水平一直線上に設定する工程を行う。 (C) Next, a step of setting a plurality of measurement points P on a horizontal straight line within the range between the left and right end positions of the determined face is performed.

本実施例では一例として、図3に示したように、切羽の幅寸(前記11m)に対し、左右のE点、C点からそれぞれ1m離れた地点を照射点の左右端とし、その間に測定ポイントPを等間隔の1mピッチで10個設定した。
前記測定ポイントPの設定は、上記構成の水平監視用計測装置1により自在(例えば、2m、1.5m、0.5m、0.1mピッチ)に設定することができる。
本実施例に係る測定ポイントPを1mピッチの距離等分法としたのは、トンネル切羽10の押し出し量の変位を、早期に精度良く把握するためである。すなわち、1mピッチよりも大きいピッチで計測する場合と比し、隣接する測定ポイントP、P同士の間隔が狭まり、切羽10の性状を精度よく把握できるし、1mピッチよりも小さいピッチで計測する場合と比し、測定ポイントPの数量が低減し、切羽10の端から端までの1サイクルの計測時間が短くなることに伴い、同一の計測ポイントPの計測回数(計測データ)が増え、切羽10の性状を精度よく把握できるからである。
なお、前記測定ポイントPは、1mピッチがベストモードという訳でなく、現場毎の切羽10の性状に応じて適宜増減したピッチで計測される。また、前記測定ポイントPは、前記したような距離等分法ではなく、レーザー光Lの照射角度を一定とする角度等分法で自在に設定することもできる。
In this embodiment, as an example, as shown in FIG. 3, points 1 m away from the left and right points E and C with respect to the width dimension of the face (11 m above) are set as the left and right ends of the irradiation points, and measurements are taken between them. Ten points P were set at equal intervals of 1 m pitch.
The measurement point P can be freely set (for example, 2 m, 1.5 m, 0.5 m, 0.1 m pitch) by the horizontal monitoring measuring device 1 having the above configuration.
The measurement point P according to this embodiment is divided into equal parts with a pitch of 1 m in order to accurately grasp the displacement of the extrusion amount of the tunnel face 10 at an early stage. That is, compared to the case of measuring at a pitch larger than 1 m pitch, the distance between adjacent measurement points P and P is narrowed, the properties of the face 10 can be accurately grasped, and the case of measuring at a pitch smaller than 1 m pitch is possible. As the number of measurement points P decreases and the measurement time for one cycle from end to end of the face 10 becomes shorter, the number of measurements (measurement data) of the same measurement point P increases, and the face 10 This is because it is possible to accurately grasp the properties of.
The measurement point P is not in the best mode at a pitch of 1 m, but is measured at a pitch that is appropriately increased or decreased according to the properties of the face 10 at each site. Further, the measurement point P can be freely set by an angle equal division method in which the irradiation angle of the laser beam L is constant, instead of the distance equal division method as described above.

(D)次に、前記水平監視用計測装置1のレーザー距離計を前記計測ポイントPに合致する旋回角度で水平方向に旋回させつつレーザー光Lを照射し、各計測ポイントPの照射点までの距離を計測する工程を連続的に繰り返し行う工程を行う。
(F)また、前記(D)の工程と並行して(同時期に)、同一の計測ポイントPにおけるリアルタイムな計測データの変位に基づき切羽の押し出し量を監視する工程を行う。
(D) Next, the laser range finder of the horizontal monitoring measuring device 1 is swirled in the horizontal direction at a swiveling angle matching the measuring point P to irradiate the laser beam L to the irradiation point of each measuring point P. A process of continuously repeating the process of measuring the distance is performed.
(F) Further, in parallel with the step (D), a step of monitoring the extrusion amount of the face is performed based on the displacement of the real-time measurement data at the same measurement point P (at the same time).

本実施例では、前記したように、所定の高さレベルHの幅寸が11mの切羽10に、測定ポイントを1mピッチで10個設定した。この10個の測定ポイントPにそれぞれ、旋回角度を制御したレーザー光Lを端から端(例えば右端から左端)まで照射する計測作業を1サイクルとし、それを少なくとも次の切羽の掘削作業に着手するまで多数サイクル連続的に繰り返し行って切羽10の押し出し量を監視する。
本出願人らによる実試験によると、1サイクル工程に要する時間はわずか2〜3分であった。これを少なくとも次(通常、翌日)の切羽の掘削作業に着手するまで多数サイクル連続的に繰り返し行えば、2〜3分毎の実に膨大な計測データを同一の測定ポイントPで得ることができる。この2〜3分毎の同一の計測ポイントPにおける膨大な計測データに基づき、切羽10の挙動を定量的に精度よく把握できるのである。
例えば、前記計測データから同一の測定ポイントPにおける押し出し量の変位速度(mm/min)や累積変位が分かり、これらを事前に設定した管理基準値に照らし合わせ、切羽10の崩落可能性を予測する。
ちなみに、本実施例では、押し出し量の変位速度が顕著に大きくなる等、前記管理基準値を超えた場合にはパトランプを点滅させてサイレンを鳴らす等の警報手段を作動させ、作業員に注意を喚起する構成で実施している(請求項6記載の発明)。このような警報手段は、トンネル坑外の現場事務所、或いは工事責任者、監視担当者等の携帯電話に伝送可能な構成で実施することもできる。
In this embodiment, as described above, 10 measurement points are set on the face 10 having a width dimension of a predetermined height level H of 11 m at a pitch of 1 m. A measurement operation of irradiating each of these 10 measurement points P with a laser beam L having a controlled turning angle from one end to the other (for example, from the right end to the left end) is set as one cycle, and at least the next face excavation work is started. The amount of extrusion of the face 10 is monitored by continuously repeating a large number of cycles until.
According to the actual test by the applicants, the time required for one cycle process was only 2 to 3 minutes. By repeating this continuously for a large number of cycles until at least the next (usually, the next day) face excavation work is started, a huge amount of measurement data every 2 to 3 minutes can be obtained at the same measurement point P. Based on the enormous amount of measurement data at the same measurement point P every 2 to 3 minutes, the behavior of the face 10 can be quantitatively and accurately grasped.
For example, the displacement speed (mm / min) and cumulative displacement of the extrusion amount at the same measurement point P can be known from the measurement data, and these are compared with the preset control reference values to predict the possibility of the face 10 collapsing. ..
By the way, in this embodiment, when the displacement speed of the extrusion amount becomes remarkably large and the control standard value is exceeded, an alarm means such as blinking the patrol lamp and sounding the siren is activated to pay attention to the worker. It is carried out with a configuration that arouses (the invention according to claim 6). Such an alarm means can be implemented in a configuration that can be transmitted to a field office outside the tunnel, or a mobile phone such as a construction manager or a monitoring staff.

(E)次に、切羽10の掘削進捗状況に応じて前記(B)、(C)の工程を行い、改めて前記計測ポイントを設定し直して前記(D)、(F)の工程を行う。 (E) Next, the steps (B) and (C) are performed according to the excavation progress of the face 10, the measurement points are set again, and the steps (D) and (F) are performed.

要するに、既述した前記水平監視方法を、トンネルを掘り進める先の切羽20、さらに図示は省略するが、その先の掘削した切羽に対しても継続して行う。1回の掘削作業で1〜1.5m掘り進めるたびに、図4、図5に概略的に示したように、前記(B)に係る切羽10の左右両端位置を判定する工程を行い(詳しくは段落[0024]参照)、続いて図6に示したように、前記(C)に係る計測ポイントPを水平一直線上に改めて設定し直す工程を行う(詳しくは段落[0027]参照)。そして、設定し直した計測ポイントPについて、前記(D)に係る照射点までの距離を計測する工程を繰り返し行い、当該工程(D)と並行して、前記(F)に係る切羽20の押し出し量を監視する工程を行うのである(詳しくは段落[0029]参照)。 In short, the above-mentioned horizontal monitoring method is continuously performed on the face 20 at which the tunnel is dug, and further, although not shown, the face excavated after that. Every time 1 to 1.5 m is dug in one excavation work, as shown schematically in FIGS. 4 and 5, a step of determining the left and right end positions of the face 10 according to the above (B) is performed (details). Refers to paragraph [0024]), and then, as shown in FIG. 6, a step of resetting the measurement point P according to (C) above to a horizontal straight line is performed (see paragraph [0027] for details). Then, for the reset measurement point P, the step of measuring the distance to the irradiation point according to the above (D) is repeated, and in parallel with the step (D), the face 20 according to the above (F) is extruded. The process of monitoring the quantity is carried out (see paragraph [0029] for details).

以上説明したとおり、上記実施例1に係るトンネル切羽の簡易監視方法によれば、座標を不要とし、これに伴うデータ入力の手間を省くことができることに加え、実施工に基づいた正確な数値をリアルタイムで合理的且つ高精度に計測することにより、切羽の挙動(状態)を簡易かつ早期に定量的に把握することができる。
よって、切羽の挙動を簡易かつ早期に定量的に把握できるので、より早期に予防保全的対応を施す体制を整えることができる。
また、上記実施例1に係るトンネル切羽の簡易監視方法によれば、座標を不要とし、これに伴うデータ入力の手間を省くことができるので、例えば、図12、図13に概略的に示したように、カーブの変化にも時間的ロスもなくスムーズに対応でき、カーブした切羽30A、30Bの挙動(状態)であっても簡易かつ早期に定量的に把握できる。
As described above, according to the simple monitoring method of the tunnel face according to the first embodiment, the coordinates are not required, the time and effort of data input associated therewith can be saved, and the accurate numerical value based on the implementation work can be obtained. By measuring in real time with rational and high accuracy, the behavior (state) of the face can be grasped quantitatively at an early stage easily.
Therefore, since the behavior of the face can be grasped easily and quantitatively at an early stage, it is possible to prepare a system for taking preventive maintenance measures at an earlier stage.
Further, according to the simple monitoring method for the tunnel face according to the first embodiment, the coordinates are not required and the time and effort for data input associated therewith can be saved. Therefore, for example, FIGS. 12 and 13 are schematically shown. As described above, it is possible to smoothly respond to changes in the curve without time loss, and even the behavior (state) of the curved faces 30A and 30B can be grasped easily and early quantitatively.

次に、実施例2(請求項2に記載した発明)について説明する。
この実施例2に係るトンネル切羽の簡易監視方法は、上記実施例1に係る水平監視用計測装置1を用いた水平監視方法に加え、言わば鉛直監視方法を新たに導入した点が相違する。
本実施例2に係る監視方法は、上記実施例1に係る水平監視方法と同時期に、主として、以下の(a)〜(e)の工程により行われる。なお、上記実施例1に係る水平監視方法の説明は上述した通りなので割愛する。
Next, Example 2 (the invention described in claim 2) will be described.
The simple monitoring method for the tunnel face according to the second embodiment is different in that a vertical monitoring method is newly introduced in addition to the horizontal monitoring method using the horizontal monitoring measuring device 1 according to the first embodiment.
The monitoring method according to the second embodiment is mainly performed by the following steps (a) to (e) at the same time as the horizontal monitoring method according to the first embodiment. The description of the horizontal monitoring method according to the first embodiment is omitted because it is as described above.

(a)先ず、鉛直監視用計測装置を、切羽の天端部Tを通過する鉛直方向ラインを監視する適正な部位に設置する工程を行う。 (A) First, a step of installing a measuring device for vertical monitoring at an appropriate part for monitoring a vertical line passing through the top end T of the face is performed.

本実施例2では、前記鉛直監視用計測装置に、前記実施例1で説明した水平監視用計測装置1と同一タイプの計測装置を採用し、これを横向きの姿勢でブラケット等の取付部材に設置することにより、鉛直監視用計測装置とした。
この鉛直監視用計測装置は、施工機械の移動等の邪魔にならないスペースを考慮し、例えばアーチ状に形成されたトンネル支保工11(のH形鋼のフランジ部等)を利用して天端部Tに設置される(図7参照)。具体的には、トンネル切羽10から所定の距離(切羽10までの距離を十分に計測できる距離)後方に離れたトンネル支保工11の天端部Tに、レーザー距離計が天端部Tを通過する鉛直方向ラインを照射するようにブラケット等の取付部材を介して設置される。
この鉛直監視用計測装置の構成は、上記水平監視用計測装置1と同様であり、コンピュータにより入力された指令が、制御装置に通信されて当該鉛直監視用計測装置の制御を可能な構成で実施している(詳しくは、前記段落[0023]参照)。
前記天端部Tを通過する鉛直方向ラインを計測する意義は、切羽10の不安定現象は、肌落ち、小崩落、崩落の3つに分類されるところ、その多くはトンネルの天端部Tの異変に起因する実情があるからである。
なお、本実施例2に係る鉛直監視用計測装置は、取扱性(操作性)、経済性を考慮して前記水平監視用計測装置1と同一タイプの計測装置を用いたが、勿論これに限定されず、鉛直方向に回動する構成のレーザー距離計を備えた計測装置や、水平方向に旋回でき、鉛直方向にも回動できる構成のレーザー距離計を備えた計測装置でも同様に実施できる。
In the second embodiment, the same type of measuring device as the horizontal monitoring measuring device 1 described in the first embodiment is adopted as the vertical monitoring measuring device, and the measuring device is installed on a mounting member such as a bracket in a sideways posture. By doing so, it became a measuring device for vertical monitoring.
This measuring device for vertical monitoring considers a space that does not interfere with the movement of construction machines, and uses, for example, an arch-shaped tunnel support 11 (such as the flange of H-shaped steel) at the top. It is installed in T (see FIG. 7). Specifically, the laser rangefinder passes through the top end T of the tunnel support 11 which is separated from the tunnel face 10 by a predetermined distance (a distance at which the distance to the face 10 can be sufficiently measured). It is installed via a mounting member such as a bracket so as to irradiate the vertical line.
The configuration of this vertical monitoring measuring device is the same as that of the horizontal monitoring measuring device 1, and the command input by the computer is communicated to the control device to control the vertical monitoring measuring device. (For details, see the paragraph [0023] above).
The significance of measuring the vertical line passing through the top end T is that the instability phenomenon of the face 10 is classified into three categories: skin drop, small collapse, and collapse, and most of them are the top end T of the tunnel. This is because there is a fact that is caused by the accident of.
The vertical monitoring measuring device according to the second embodiment uses the same type of measuring device as the horizontal monitoring measuring device 1 in consideration of handleability (operability) and economy, but is of course limited to this. Sarezu, vertical direction measuring apparatus and having a laser distance meter configuration which rotates, can pivot in a horizontal direction, similarly implemented in the measurement equipment provided with a laser rangefinder vertically may pivot structure can.

(b)次に、前記鉛直方向ラインにおける前記切羽の天端部と地面部との間の範囲内で複数の計測ポイントPを設定する工程を行う(図8参照)。 (B) Next, a step of setting a plurality of measurement points P within the range between the top end portion and the ground portion of the face in the vertical direction line is performed (see FIG. 8).

この鉛直監視方法では、鉛直方向ラインの特には天端部Tの監視で足り、上記実施例1の(B)の工程のように、切羽10の左右の境界を判定する必要が特にはないので、前記鉛直監視用計測装置を設置した後、速やかに鉛直方向ライン上に複数の計測ポイントPを設定する作業を行う。 In this vertical monitoring method, it is sufficient to monitor the vertical line, especially the top end portion T, and it is not particularly necessary to determine the left and right boundaries of the face 10 as in the step (B) of the first embodiment. After installing the vertical monitoring measuring device, the work of immediately setting a plurality of measuring points P on the vertical line is performed.

本実施例では、図8に例示したように、測定ポイントPを等間隔の1mピッチで6個設定した。
前記測定ポイントPの設定は自在であること、角度等分法でも設定できること、は上記実施例1に係る水平監視用計測装置1と同様である。ただし、この鉛直監視方法では、天端部T及びその近傍位置の監視で足りるので1mピッチよりも小さいピッチで設定した方が好ましい。
In this embodiment, as illustrated in FIG. 8, six measurement points P are set at equal intervals of 1 m pitch.
The measurement point P can be freely set and can be set by the angle equal division method, which is the same as that of the horizontal monitoring measuring device 1 according to the first embodiment. However, in this vertical monitoring method, it is sufficient to monitor the top end T and its vicinity, so it is preferable to set the pitch smaller than the 1 m pitch.

(c)次に、前記鉛直監視用計測装置のレーザー距離計を前記計測ポイントPに合致する回動角度で鉛直方向に回動させつつレーザー光Lを照射し、各計測ポイントPの照射点までの距離を計測する工程を連続的に繰り返し行う工程を行う。
(e)また、前記(c)の工程と並行して(同時期に)、同一の計測ポイントPにおけるリアルタイムな計測データの変位に基づき切羽10の押し出し量を監視する工程を行う。
(C) Next, the laser range finder of the vertical monitoring measuring device is irradiated with the laser beam L while rotating in the vertical direction at a rotation angle matching the measurement point P, to the irradiation point of each measurement point P. A process of continuously repeating the process of measuring the distance of the laser is performed.
(E) Further, in parallel with the step (c), a step of monitoring the extrusion amount of the face 10 based on the displacement of the real-time measurement data at the same measurement point P is performed.

本実施例では、前記6個の測定ポイントPにそれぞれ、回動角度を制御したレーザー光Lを端から端(例えば上端から下端)まで照射する計測作業を1サイクルとし、それを少なくとも次の切羽の掘削作業に着手するまで多数サイクル連続的に繰り返し行って切羽10の押し出し量を監視する。
本出願人らによる実試験によると、1サイクル工程に要する時間はわずか2分程度であった。これを少なくとも次(通常、翌日)の切羽の掘削作業に着手するまで多数サイクル連続的に繰り返し行えば、約2分毎の実に膨大な計測データを同一の測定ポイントPで得ることができる。この約2分毎の同一の計測ポイントPにおける膨大な計測データに基づき、切羽10の特には天端部Tの挙動を定量的に精度よく把握するのである。
例えば、前記計測データから同一の測定ポイントPにおける押し出し量の変位速度(mm/min)や累積変位が分かり、これらを事前に設定した管理基準値に照らし合わせ、切羽10の崩落可能性を予測する。
ちなみに、本実施例では、押し出し量の変位速度が顕著に大きくなる等、前記管理基準値を超えた場合にはパトランプを点滅させてサイレンを鳴らす等の警報手段を作動させ、作業員に注意を喚起する構成で実施している(請求項6記載の発明)。このような警報手段は、トンネル坑外の現場事務所、或いは工事責任者、監視担当者等の携帯電話に伝送可能な構成で実施することもできる。
In this embodiment, the measurement work of irradiating each of the six measurement points P with the laser beam L whose rotation angle is controlled from one end to the other (for example, from the upper end to the lower end) is set as one cycle, and at least the next face is faced. The amount of extrusion of the face 10 is monitored by continuously repeating a large number of cycles until the excavation work is started.
According to the actual test by the applicants, the time required for one cycle process was only about 2 minutes. If this is repeated continuously for a large number of cycles until at least the next (usually the next day) face excavation work is started, a really huge amount of measurement data can be obtained at the same measurement point P about every 2 minutes. Based on the enormous amount of measurement data at the same measurement point P about every 2 minutes, the behavior of the face 10, especially the top end portion T, is quantitatively and accurately grasped.
For example, the displacement speed (mm / min) and cumulative displacement of the extrusion amount at the same measurement point P can be known from the measurement data, and these are compared with the preset control reference values to predict the possibility of the face 10 collapsing. ..
By the way, in this embodiment, when the displacement speed of the extrusion amount becomes remarkably large and the control standard value is exceeded, an alarm means such as blinking the patrol lamp and sounding the siren is activated to pay attention to the worker. It is carried out with a configuration that arouses (the invention according to claim 6). Such an alarm means can be implemented in a configuration that can be transmitted to a field office outside the tunnel, or a mobile phone such as a construction manager or a monitoring staff.

(d)次に、切羽10の掘削進捗状況に応じて前記(b)の工程を行い、改めて前記計測ポイントを設定し直して前記(c)、(e)の工程を行う。 (D) Next, the step (b) is performed according to the excavation progress of the face 10, the measurement points are set again, and the steps (c) and (e) are performed.

要するに、既述した前記鉛直監視方法を、トンネルを掘り進める先の切羽20、さらに図示は省略するが、その先の掘削した切羽に対しても継続して行う。1回の掘削作業で1〜1.5m掘り進めるたびに、前記(b)に係る計測ポイントPを鉛直方向ライン上に改めて設定し直す工程を行う。そして、設定し直した計測ポイントPについて、前記(c)に係る照射点までの距離を計測する工程を繰り返し行い、当該工程(c)と並行して、前記(e)に係る切羽20の押し出し量を監視する工程を行うのである。 In short, the above-mentioned vertical monitoring method is continuously performed on the face 20 at which the tunnel is dug, and further, although not shown, the face excavated after that. Every time 1 to 1.5 m is dug in one excavation work, the step of resetting the measurement point P according to the above (b) on the vertical line is performed. Then, for the reset measurement point P, the step of measuring the distance to the irradiation point according to the above (c) is repeated, and in parallel with the step (c), the face 20 according to the above (e) is extruded. The process of monitoring the quantity is carried out.

以上説明したとおり、上記実施例2に係るトンネル切羽の簡易監視方法によれば、上記実施例1に係る作用効果(前記段落[0032]参照)に加え、天端部Tを含めた鉛直監視方法も同時期に行うことができる。
よって、上記実施例1と比し、さらに精度よく切羽の挙動(状態)を簡易かつ早期に定量的に把握することができる。また、勾配の変化にもスムーズに対応できるので、勾配を有する切羽の挙動であっても簡易かつ早期に定量的に把握することができる。
As described above, according to the simple monitoring method for the tunnel face according to the second embodiment, the vertical monitoring method including the top end T in addition to the action and effect according to the first embodiment (see the paragraph [0032]). Can also be done at the same time.
Therefore, as compared with the first embodiment, the behavior (state) of the face can be quantitatively grasped more accurately and at an early stage. In addition, since it is possible to respond smoothly to changes in the gradient, even the behavior of a face having a gradient can be easily and quickly quantitatively grasped.

図9〜図11は、上記実施例1、2に係る水平監視方法のバリエーションを概略的に示している。この実施例3に係る水平監視方法によれば、水平監視用計測装置1を前方へ移設する、いわゆる盛り替え時においても連続的な計測作業を実現できる。 9 to 11 schematically show variations of the horizontal monitoring method according to the first and second embodiments. According to the horizontal monitoring method according to the third embodiment, continuous measurement work can be realized even at the time of so-called refilling, in which the horizontal monitoring measuring device 1 is moved forward.

すなわち、この実施例3の水平監視方法は、図9〜図11に段階的に示したように、前記水平監視用計測装置1をトンネル支保工11の範囲K(図7参照)内の両側部に、切羽10との距離を互いに異なるように設置し(図中の符号M参照。例えば10m程度)、一方(図示例では左側)の水平監視用計測装置1の盛り替え時にも、他方の水平監視用計測装置1を作動させることにより、水平監視用計測装置1による計測作業が中断しない構成で実施している(請求項4記載の発明)。
ちなみに、図中の符号2は、ブラケット等の取付部材を示し、符号Nは、レーザー距離計の計測精度の限界値である40m程度を示している。
なお、前記符号M、Nで示す距離は、水平監視用計測装置1(レーザー距離計)の性能、トンネルの形態(カーブの有無)等に応じて適宜設計変更可能である。
That is, in the horizontal monitoring method of the third embodiment, as shown stepwise in FIGS. 9 to 11, the horizontal monitoring measuring device 1 is provided on both sides of the tunnel support 11 within the range K (see FIG. 7). In addition, the distances from the face 10 are set so as to be different from each other (see the reference numeral M in the figure, for example, about 10 m), and when the horizontal monitoring measuring device 1 (on the left side in the illustrated example) is replaced, the other is horizontal. By operating the monitoring measuring device 1, the measurement work by the horizontal monitoring measuring device 1 is not interrupted (the invention according to claim 4).
Incidentally, reference numeral 2 in the drawing indicates a mounting member such as a bracket, and reference numeral N indicates a limit value of about 40 m of measurement accuracy of the laser range finder.
The distances indicated by the reference numerals M and N can be appropriately redesigned according to the performance of the horizontal monitoring measuring device 1 (laser rangefinder), the form of the tunnel (presence or absence of a curve), and the like.

この実施例3に係るトンネル切羽の簡易監視方法によれば、上記実施例1、2に係る効果(前記段落[0032]、[0043]参照)に加えて、水平監視用計測装置1の盛り替え時にかかわらず、常に連続的に前方の切羽10A、20A等を監視することができ、当該切羽10A、20A等の挙動を簡易かつ早期に定量的に把握することができる。 According to the simple monitoring method of the tunnel face according to the third embodiment, in addition to the effects according to the first and second embodiments (see the paragraphs [0032] and [0043]), the horizontal monitoring measuring device 1 is replaced. Regardless of the time, the front faces 10A, 20A, etc. can always be continuously monitored, and the behavior of the face faces 10A, 20A, etc. can be quantitatively grasped easily and early.

上記実施例2の説明の際にふれた(前記段落[0035]末文参照)、水平方向に旋回でき、鉛直方向にも回動できる構成のレーザー距離計を備えた計測装置について詳しく説明すると、この水平・鉛直方向自在な計測装置(以下、単に水平監視用計測装置と言う。)は、図示は省略するが、切羽10等のトンネルの坑内面にレーザー光Lを照射して照射点で反射されたレーザー光Lを検知することで前記照射点までの距離を計測するレーザー距離計と、前記レーザー距離計の水平方向の旋回と停止を可能にする水平方向旋回装置と、前記レーザー距離計の上下方向の回動と停止を可能にする上下方向回動装置と、前記水平方向旋回装置の任意の角度での旋回と停止を制御する制御装置と、前記上下方向回動装置の任意の角度での回動と停止を制御する制御装置と、を備えた構成で実施される。
当該水平監視用計測装置によれば、水平方向に旋回制御して照射できることはもとより、上下方向にも回動制御して照射できる構成なので、前記水平一直線上の計測ポイントPを、例えば前記図7の範囲K内で、複数の段状(例えば3段等)に設定し、当該3段に係る前記水平一直線上の計測ポイントPの計測データを取得することができる。
1段分の1サイクル工程に要する時間は上記の通りわずか2〜3分なので、3段に増えたとしても1サイクル工程に要する時間は10分かからない。よって、これを少なくとも次(通常、翌日)の切羽の掘削作業に着手するまで多数サイクル連続的に繰り返し行えば、やはり切羽10等の挙動を定量的に把握するのに十分な計測データを得ることができる。
As mentioned in the explanation of the second embodiment (see the last sentence of the above paragraph [0035]), the measuring device provided with the laser distance meter having a configuration that can rotate in the horizontal direction and also in the vertical direction will be described in detail. Although not shown, this measuring device that can freely move in the horizontal and vertical directions (hereinafter, simply referred to as a measuring device for horizontal monitoring) irradiates the inner surface of a tunnel such as a face 10 with a laser beam L and reflects it at an irradiation point. A laser distance meter that measures the distance to the irradiation point by detecting the laser light L, a horizontal turning device that enables horizontal turning and stopping of the laser distance meter, and the laser distance meter. A vertical rotation device that enables vertical rotation and stop, a control device that controls turning and stopping of the horizontal rotation device at an arbitrary angle, and an arbitrary angle of the vertical rotation device. It is carried out in a configuration including a control device for controlling the rotation and stopping of the.
According to the horizontal monitoring measuring device, not only can the irradiation be controlled by turning in the horizontal direction, but also the irradiation can be performed by controlling the rotation in the vertical direction. Therefore, the measurement point P on the horizontal straight line is, for example, FIG. Within the range K of, it is possible to set a plurality of steps (for example, three steps) and acquire the measurement data of the measurement point P on the horizontal straight line related to the three steps.
As described above, the time required for one cycle process for one stage is only 2 to 3 minutes, so even if the number is increased to three stages, the time required for one cycle process is less than 10 minutes. Therefore, if this is repeated for a large number of cycles continuously until at least the next (usually the next day) face excavation work is started, sufficient measurement data can be obtained to quantitatively grasp the behavior of the face 10 and the like. Can be done.

したがって、この実施例4に係るトンネル切羽の簡易監視方法によれば、上記実施例1、2に係る効果(前記段落[0032]、[0043]参照)に加えて、より広範な範囲で、精度よく、切羽10等の挙動を簡易かつ早期に定量的に把握できる。 Therefore, according to the simple monitoring method of the tunnel face according to the fourth embodiment, in addition to the effects according to the first and second embodiments (see the paragraphs [0032] and [0043]), the accuracy is in a wider range. Well, the behavior of the face 10 and the like can be grasped quantitatively easily and early.

以上、実施例1〜4を図面に基づいて説明したが、本発明はこの限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更、応用のバリエーションの範囲を含むことを念のために言及する。 Although Examples 1 to 4 have been described above with reference to the drawings, the present invention is not limited to this, and includes a range of design changes and application variations normally performed by those skilled in the art within a range not deviating from the technical idea thereof. I will mention it just in case.

1 水平監視用計測装置
L レーザー光
10 切羽
P 計測ポイント
20 切羽
11 トンネル支保工
T 天端部
SL スプリングライン
10A 切羽
20A 切羽
2 ブラケット(取付部材)
30A 切羽
30B 切羽
1 Horizontal monitoring measuring device L Laser light 10 Face P Measurement point 20 Face 11 Tunnel support T Top SL Spring line 10A Face 20A Face 2 Bracket (mounting member)
30A face 30B face

Claims (6)

レーザー光を水平方向に旋回させつつ照射し、照射点までの距離を計測するレーザー距離計を搭載した水平監視用計測装置により切羽の押し出し量を監視するトンネル切羽の簡易監視方法であって、
(A)前記水平監視用計測装置を、切羽の押し出し量を監視する適正な高さレベルに設置する工程と、
(B)前記水平監視用計測装置のレーザー距離計を、水平方向に旋回させつつトンネル坑内面へレーザー光を照射し、トンネル坑内面における所定の高さレベルの照射点までの距離の計測結果に基づき、切羽の左右両端位置を判定する工程と、
(C)前記判定した切羽の左右両端位置の間の範囲内で複数の計測ポイントを水平一直線上に設定する工程と、
(D)前記水平監視用計測装置のレーザー距離計を前記計測ポイントに合致する旋回角度で水平方向に旋回させつつレーザー光を照射し、各計測ポイントの照射点までの距離を計測する工程を連続的に繰り返し行う工程と、
(E)切羽の掘削進捗状況に応じて前記(B)、(C)の工程を行い、改めて前記計測ポイントを設定し直して前記(D)の工程を行う工程と、
(F)前記各(D)の工程と並行して、同一の計測ポイントにおけるリアルタイムな計測データの変位に基づき切羽の押し出し量を監視する工程と、
から成ることを特徴とする、トンネル切羽の簡易監視方法。
It is a simple monitoring method for tunnel faces that monitors the amount of face extrusion by a horizontal monitoring measuring device equipped with a laser rangefinder that irradiates laser light while swirling in the horizontal direction and measures the distance to the irradiation point.
(A) A process of installing the horizontal monitoring measuring device at an appropriate height level for monitoring the amount of extrusion of the face, and
(B) The laser range finder of the horizontal monitoring measuring device is swiveled in the horizontal direction to irradiate the inner surface of the tunnel with laser light, and the measurement result of the distance to the irradiation point at a predetermined height level on the inner surface of the tunnel is obtained. Based on the process of determining the left and right ends of the face,
(C) A step of setting a plurality of measurement points on a horizontal straight line within the range between the left and right ends of the determined face.
(D) The process of irradiating the laser beam while turning the laser range finder of the horizontal monitoring measuring device in the horizontal direction at a turning angle matching the measurement point and measuring the distance to the irradiation point of each measurement point is continuous. Repeated process and
(E) The steps (B) and (C) are performed according to the progress of excavation of the face, the measurement points are set again, and the step (D) is performed.
(F) In parallel with each of the steps (D), a step of monitoring the extrusion amount of the face based on the displacement of real-time measurement data at the same measurement point, and a step of monitoring.
A simple monitoring method for tunnel faces, characterized by consisting of.
レーザー光を水平方向に旋回させつつ照射し、照射点までの距離を計測するレーザー距離計を搭載した水平監視用計測装置と、レーザー光を鉛直方向に回動させつつ照射し、照射点までの距離を計測するレーザー距離計を搭載した鉛直監視用計測装置とを併用して切羽の押し出し量を監視するトンネル切羽の簡易監視方法であって、
(A)前記水平監視用計測装置を、切羽の押し出し量を監視する適正な高さレベルに設置する工程と、
(B)前記水平監視用計測装置のレーザー距離計を、水平方向に旋回させつつトンネル坑内面へレーザー光を照射し、トンネル坑内面における所定の高さレベルの照射点までの距離の計測結果に基づき、切羽の左右両端位置を判定する工程と、
(C)前記判定した切羽の左右両端位置の間の範囲内で複数の計測ポイントを水平一直線上に設定する工程と、
(D)前記水平監視用計測装置のレーザー距離計を前記計測ポイントに合致する旋回角度で水平方向に旋回させつつレーザー光を照射し、各計測ポイントの照射点までの距離を計測する工程を連続的に繰り返し行う工程と、
(E)切羽の掘削進捗状況に応じて前記(B)、(C)の工程を行い、改めて前記計測ポイントを設定し直して前記(D)の工程を行う工程と、
(F)前記各(D)の工程と並行して、同一の計測ポイントにおけるリアルタイムな計測データの変位に基づき切羽の押し出し量を監視する工程と、
から成るトンネル切羽の水平監視方法と、および、
(a)前記鉛直監視用計測装置を、切羽の天端部を通過する鉛直方向ラインを監視する適正な部位に設置する工程と、
(b)前記鉛直方向ラインにおける前記切羽の天端部と地面部との間の範囲内で複数の計測ポイントを設定する工程と、
(c)前記鉛直監視用計測装置のレーザー距離計を前記計測ポイントに合致する回動角度で鉛直方向に回動させつつレーザー光を照射し、各計測ポイントの照射点までの距離を計測する工程を連続的に繰り返し行う工程と、
(d)切羽の掘削進捗状況に応じて前記(b)の工程を行い、改めて前記計測ポイントを設定し直して前記(c)の工程を行う工程と、
(e)前記各(c)の工程と並行して、同一の計測ポイントにおけるリアルタイムな計測
データの変位に基づき切羽の押し出し量を監視する工程と、
から成るトンネル切羽の鉛直監視方法とを同時期に行うことを特徴とする、トンネル切羽の簡易監視方法。
A measuring device for horizontal monitoring equipped with a laser distance meter that irradiates while swirling the laser beam in the horizontal direction and measures the distance to the irradiation point, and irradiates while rotating the laser beam in the vertical direction to the irradiation point. It is a simple monitoring method for tunnel faces that monitors the amount of face extrusion in combination with a measuring device for vertical monitoring equipped with a laser distance meter that measures distance.
(A) A process of installing the horizontal monitoring measuring device at an appropriate height level for monitoring the amount of extrusion of the face, and
(B) The laser range finder of the horizontal monitoring measuring device is swiveled in the horizontal direction to irradiate the inner surface of the tunnel with laser light, and the measurement result of the distance to the irradiation point at a predetermined height level on the inner surface of the tunnel is obtained. Based on the process of determining the left and right ends of the face,
(C) A step of setting a plurality of measurement points on a horizontal straight line within the range between the left and right ends of the determined face.
(D) The process of irradiating the laser beam while turning the laser range finder of the horizontal monitoring measuring device in the horizontal direction at a turning angle matching the measurement point and measuring the distance to the irradiation point of each measurement point is continuous. Repeated process and
(E) The steps (B) and (C) are performed according to the progress of excavation of the face, the measurement points are set again, and the step (D) is performed.
(F) In parallel with each of the steps (D), a step of monitoring the extrusion amount of the face based on the displacement of real-time measurement data at the same measurement point, and a step of monitoring.
Horizontal monitoring method of tunnel face consisting of, and
(A) The process of installing the vertical monitoring measuring device at an appropriate site for monitoring the vertical line passing through the top of the face.
(B) A step of setting a plurality of measurement points within a range between the top end portion and the ground portion of the face in the vertical direction line, and a step of setting a plurality of measurement points.
(C) A step of irradiating laser light while rotating the laser rangefinder of the vertical monitoring measuring device in the vertical direction at a rotation angle matching the measurement point, and measuring the distance to the irradiation point of each measurement point. And the process of continuously repeating
(D) The step (b) is performed according to the progress of excavation of the face, the measurement point is set again, and the step (c) is performed.
(E) In parallel with each of the steps (c), a step of monitoring the extrusion amount of the face based on the displacement of real-time measurement data at the same measurement point, and
A simple method for monitoring a tunnel face, which is characterized by performing a vertical monitoring method for a tunnel face consisting of the same period.
前記水平監視用計測装置は、トンネルのスプリングラインと天頂部との間の1/2以上、3/4以下の高さで、トンネル支保工の一側部又は両側部に設置することを特徴とする、請求項1又は2に記載したトンネル切羽の簡易監視方法。 The horizontal monitoring measuring device is characterized in that it is installed on one side or both sides of the tunnel support at a height of 1/2 or more and 3/4 or less between the spring line of the tunnel and the zenith. The simple monitoring method for a tunnel face according to claim 1 or 2. 前記水平監視用計測装置をトンネル支保工の両側部に設置するときは、切羽との距離を互いに異なるように設置し、一方の水平監視用計測装置の盛り替え時にも水平監視用計測装置による計測が中断しない構成とすることを特徴とする、請求項3に記載したトンネル切羽の簡易監視方法。 When installing the horizontal monitoring measuring device on both sides of the tunnel support, install it so that the distance from the face is different from each other, and measure with the horizontal monitoring measuring device even when replacing one of the horizontal monitoring measuring devices. The simple monitoring method for a tunnel face according to claim 3, wherein the tunnel face is configured to be uninterrupted. 前記水平監視用計測装置は、上下方向にも回動制御して照射できる構成とし、前記水平一直線上の計測ポイントを複数の段状に設定することを特徴とする、請求項1〜4のいずれか1項に記載したトンネル切羽の簡易監視方法。 Any of claims 1 to 4, wherein the horizontal monitoring measuring device is configured to be capable of irradiating by controlling rotation in the vertical direction as well, and the measurement points on the horizontal straight line are set in a plurality of steps. The simple monitoring method for the tunnel face described in item 1. 前記切羽の押し出し量の変位が、設定した管理基準値を超えた場合に警報手段を作動させることを特徴とする、請求項1〜5のいずれか1項に記載したトンネル切羽の簡易監視方法。 The simple monitoring method for a tunnel face according to any one of claims 1 to 5, wherein an alarm means is activated when the displacement of the extrusion amount of the face exceeds a set control reference value.
JP2017236723A 2017-12-11 2017-12-11 Simple monitoring method for tunnel face Active JP6985682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017236723A JP6985682B2 (en) 2017-12-11 2017-12-11 Simple monitoring method for tunnel face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017236723A JP6985682B2 (en) 2017-12-11 2017-12-11 Simple monitoring method for tunnel face

Publications (2)

Publication Number Publication Date
JP2019105471A JP2019105471A (en) 2019-06-27
JP6985682B2 true JP6985682B2 (en) 2021-12-22

Family

ID=67061852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017236723A Active JP6985682B2 (en) 2017-12-11 2017-12-11 Simple monitoring method for tunnel face

Country Status (1)

Country Link
JP (1) JP6985682B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113446955B (en) * 2021-07-12 2022-11-01 重庆交通大学 Rock cavity weathering depth monitoring system for dumping type dangerous rock and collapse early warning method
CN114198093B (en) * 2021-10-29 2023-11-24 中铁十九局集团第五工程有限公司 Measuring method for subway shield tunnel
CN114382458B (en) * 2021-12-15 2023-06-27 中建三局集团有限公司 Visual real-time monitoring method for underground water level and stratum deformation in underground construction process
CN116147597B (en) * 2023-04-24 2023-06-20 四川跃航智能设备制造有限公司 Electric automobile charging pile installation reference measurement device and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065755A (en) * 2001-08-21 2003-03-05 Taisei Corp Displacement measuring method for tunnel shape
JP2005331363A (en) * 2004-05-20 2005-12-02 Taisei Corp Method for monitoring cutting face of tunnel, and instrument for measuring the cutting face of tunnel
JP2006078415A (en) * 2004-09-13 2006-03-23 Sokkia Co Ltd Total station
JP6103828B2 (en) * 2012-06-18 2017-03-29 株式会社安藤・間 Tunnel displacement measurement method
JP6310784B2 (en) * 2014-06-23 2018-04-11 鹿島建設株式会社 Face face monitoring method

Also Published As

Publication number Publication date
JP2019105471A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6985682B2 (en) Simple monitoring method for tunnel face
CN105756711B (en) Constructing tunnel based on 3 D laser scanning, which just props up, invades limit monitoring analysis and early warning method
US9121692B2 (en) Method and apparatus for projection of BIM information
CN103307977B (en) The field measurement apparatus of huge revolving class workpiece inner wall size, system and method
WO2016050095A1 (en) Slag thickness detection and slag adding prediction method and system
JP5631688B2 (en) A slope change monitoring method using a ground-based 3D laser scanner without a target.
US10731322B2 (en) Work machine control system and work machine control method
JP2005331363A (en) Method for monitoring cutting face of tunnel, and instrument for measuring the cutting face of tunnel
JP2015506480A (en) Automatic system and method for tracking and detecting defects on a target
JP2017214224A (en) Measurement method for hoistway and interference determination system
CN110736434A (en) coal mine roadway surface displacement online monitoring system and monitoring method
JP2018066236A (en) Investigation device of lining concrete and investigation method of lining concrete
JP7059820B2 (en) Anchor hole drilling position management system and anchor hole drilling position management method
JP6559201B2 (en) Analysis system, analysis method, and analysis program
KR100994742B1 (en) The method of collision detection and passpoint generation for moving path in 3 dimensional coordinate measuring machine
CN109403946B (en) Rotary drilling rig rotation animation display method and device and rotary drilling rig
CN113720283B (en) Building construction height identification method, device, electronic equipment and system
TWI612277B (en) Tunnel displacement monitoring method
CN112738463B (en) Tracking and monitoring device for drill site
CN115477232A (en) Anti-collision method for gantry crane and gantry crane
JP7407089B2 (en) Method and system for evaluating the properties of the ground in front of the face
JP2017096703A (en) Gas measuring device and gas concentration visualization system, and monitoring method for excavation site
CN110349288B (en) Pipeline inspection blind area calculation method and device
JP7251407B2 (en) SENSOR INSTALLATION ASSIST DEVICE, SENSOR INSTALLATION ASSIST METHOD AND PROGRAM
CN112815909A (en) Tunnel deformation measuring method and system and measuring robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R150 Certificate of patent or registration of utility model

Ref document number: 6985682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150