JP6984876B2 - Transport pipes with wear detection function, transport pipe manufacturing method, wear detection method, and transport pipe operation method - Google Patents

Transport pipes with wear detection function, transport pipe manufacturing method, wear detection method, and transport pipe operation method Download PDF

Info

Publication number
JP6984876B2
JP6984876B2 JP2017202388A JP2017202388A JP6984876B2 JP 6984876 B2 JP6984876 B2 JP 6984876B2 JP 2017202388 A JP2017202388 A JP 2017202388A JP 2017202388 A JP2017202388 A JP 2017202388A JP 6984876 B2 JP6984876 B2 JP 6984876B2
Authority
JP
Japan
Prior art keywords
wear
pipe
transport pipe
wear detection
transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017202388A
Other languages
Japanese (ja)
Other versions
JP2018084326A (en
Inventor
一比古 高橋
正夫 小野
慧 高野
聡太郎 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Publication of JP2018084326A publication Critical patent/JP2018084326A/en
Application granted granted Critical
Publication of JP6984876B2 publication Critical patent/JP6984876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、固形物等の摩耗性物質と液体の混合物であるスラリー、又は粉体若しくはペレット等の摩耗性物質の輸送に用いる輸送管に関する。 The present invention relates to a transport pipe used for transporting a slurry which is a mixture of a wearable substance such as a solid substance and a liquid, or a wearable substance such as powder or pellets.

海底で掘削した鉱石等の海上の船舶への輸送や、各種プラントにおけるスラリー、粉体又はペレット等の輸送には、輸送管が用いられる。
図23は輸送管の一部透過図であり、図23(a)は曲がり部を有する可撓性の輸送管を示し、図23(b)は曲がり部を有さない輸送管を示している。
図23に示すように、輸送管(耐摩耗ホース)10は、一方の端部10aと他方の端部10bが、それぞれ継手20を介して配管1に接続されている。輸送管10の内管11には、一方の端部10aから他方の端部10bに向かって、粉体又はペレット等の摩耗性物質2と液体の混合したスラリー又は摩耗性物質2が流れている。
図23(a)に示す輸送管(耐摩耗ホース)10は、一方の端部10aから他方の端部10bに至るまでに4カ所の曲がり部を有する。また、図23(b)に示す輸送管10は、一方の端部10aから他方の端部10bに至るまでに曲がり部を有さない。
図23(a)に示すように、輸送管の一種である耐摩耗ホース10をスラリー又は摩耗性物質2の輸送に使用すると、耐摩耗ホース10のうち曲率が大きくなっている部分の曲がり外側部分(耐摩耗ホース10のカーブしている流路の外寄りの部分)の内管11が、摩耗性物質2の衝突により局所的に著しい摩耗損傷を受けやすい。したがって、内管11の曲がり外側部分が、その他の部分よりも摩耗の進行が速い摩耗進行領域Xとなる(内管11のうち図23(a)の長円で囲まれた部分)。そして、内管11のどこか1カ所でも摩耗限界に達した場合には、たとえ耐摩耗ホース10の他の部分にはまったく摩耗損傷がなくても、耐摩耗ホース10全体としては短時間で使用不能となり交換を余儀なくされる。耐摩耗ホース10の交換作業は、それ自体煩雑であるのと同時に、作業中の全体システム停止に伴う時間的、経済的損失も甚大となる。
図23(b)に示すように、耐摩耗ホース以外の輸送管10においても、液相に比べて固相の比重が大きいスラリーや、ペレットなどの摩耗性物質2を輸送する場合には、曲がりのない直管部においても重力の影響により摩耗の進行が内管11の鉛直下側に偏る。したがって、内管11の鉛直下側の部分が、その他の部分よりも摩耗の進行が速い摩耗進行領域Xとなる(内管11のうち図23(b)の長円で囲まれた部分)。そして、内管11のどこか1カ所でも摩耗限界に達した場合には、たとえ鉛直上側や側面にはまったく摩耗損傷がなくても鉛直下側の部分の摩耗が限界に達した時点で輸送管10全体が使用不能となってしまう。
このように、摩耗性物質2の衝突により生ずる内管11の摩耗損傷は、内管11全体で一様に進行するのではなく、部分によって進行の度合いに程度の差がある。
従って、耐摩耗ホースなどの輸送管10をスラリー又は摩耗性物質2の輸送に用いる場合には、内管11の局所的摩耗による破損を避けて輸送管10全体としての稼働性をできるだけ長く維持し、輸送管10の寿命を延伸させるような対策をとることが望まれる。そして、適切な対策をとるためには、摩耗が進行した部分の管軸周りの角度範囲を的確に検知することが必要である。
Transport pipes are used for transporting ores excavated on the seabed to marine vessels and for transporting slurries, powders, pellets, etc. in various plants.
FIG. 23 is a partial transmission view of the transport pipe, FIG. 23 (a) shows a flexible transport pipe having a bent portion, and FIG. 23 (b) shows a transport pipe having no bent portion. ..
As shown in FIG. 23, in the transport pipe (wear resistant hose) 10, one end 10a and the other end 10b are each connected to the pipe 1 via a joint 20. In the inner pipe 11 of the transport pipe 10, a slurry or a wearable substance 2 in which a wearable substance 2 such as powder or pellets and a liquid are mixed flows from one end portion 10a toward the other end portion 10b. ..
The transport pipe (wear resistant hose) 10 shown in FIG. 23 (a) has four bends from one end 10a to the other end 10b. Further, the transport pipe 10 shown in FIG. 23 (b) has no bent portion from one end 10a to the other end 10b.
As shown in FIG. 23A, when the wear-resistant hose 10, which is a kind of transport pipe, is used for transporting the slurry or the wear-resistant substance 2, the bent outer portion of the wear-resistant hose 10 having a large curvature. The inner pipe 11 (the outer portion of the curved flow path of the wear-resistant hose 10) is susceptible to significant wear damage locally due to the collision of the wear-resistant substance 2. Therefore, the bent outer portion of the inner pipe 11 becomes the wear progress region X in which the wear progresses faster than the other portions (the portion of the inner pipe 11 surrounded by the oval in FIG. 23 (a)). When the wear limit is reached at any one of the inner pipes 11, the wear-resistant hose 10 as a whole can be used in a short time even if the other parts of the wear-resistant hose 10 have no wear damage. It becomes impossible and is forced to be replaced. The replacement work of the wear-resistant hose 10 is complicated in itself, and at the same time, the time and economic loss due to the stoppage of the entire system during the work is enormous.
As shown in FIG. 23B, even in the transport pipe 10 other than the wear-resistant hose, when transporting a slurry having a larger specific gravity of the solid phase than the liquid phase or a wearable substance 2 such as pellets, bending is performed. Even in a straight pipe portion without a hose, the progress of wear is biased to the vertically lower side of the inner pipe 11 due to the influence of gravity. Therefore, the portion vertically below the inner pipe 11 becomes the wear progress region X in which the wear progresses faster than the other parts (the portion of the inner pipe 11 surrounded by the oval in FIG. 23 (b)). When the wear limit is reached at any one of the inner pipes 11, the transport pipe is reached when the wear of the vertically lower portion reaches the limit even if there is no wear damage on the vertically upper side or the side surface. The entire 10 becomes unusable.
As described above, the wear damage of the inner pipe 11 caused by the collision of the wearable substance 2 does not progress uniformly in the entire inner pipe 11, but the degree of progress varies depending on the portion.
Therefore, when the transport pipe 10 such as an wear-resistant hose is used for transporting the slurry or the wearable substance 2, the operability of the transport pipe 10 as a whole is maintained as long as possible while avoiding damage due to local wear of the inner pipe 11. It is desirable to take measures to extend the life of the transport pipe 10. Then, in order to take appropriate measures, it is necessary to accurately detect the angle range around the pipe axis of the portion where the wear has progressed.

ここで、特許文献1には、ゴム管の外側に鋼鉄線を配し、内側に導電材を螺旋状に接合し、ゴム管の亀裂又は腐食が進行して導電材が切れることによりゴム管の異常を検出することが開示されている。
また、特許文献2には、モルタル圧送用ホースなど、ホースの摩耗や破損を検知する必要のあるホースにおいて、ホースの内周面側に螺旋状に埋設された導線と、ホースの外周面側に螺旋状に埋設された導線とを互いに直列に接続して、接続した導線の導通状態を調べることによって、ホースの内周面と外周面の損傷を同時に電気的に検知することが開示されている。
また、特許文献3には、内面層と耐圧補強層の間にホース長手方向に渡って一対の離間した電気的に導通性を有する検知線を配設し、検知線はホースの一端では結線し、もう一端ではホースの外部に引き出して、内面層が流体によって摩耗損傷された場合に、これを検知することが開示されている。
Here, in Patent Document 1, a steel wire is arranged on the outside of the rubber tube, the conductive material is spirally joined on the inside, and the rubber tube is cracked or corroded and the conductive material is cut, so that the rubber tube is cut. It is disclosed to detect anomalies.
Further, in Patent Document 2, in a hose such as a hose for pumping mortar, which needs to detect wear or breakage of the hose, a conductor wire spirally embedded on the inner peripheral surface side of the hose and the outer peripheral surface side of the hose are described. It is disclosed that damage to the inner peripheral surface and the outer peripheral surface of a hose can be electrically detected at the same time by connecting the spirally embedded conductors in series to each other and examining the continuity state of the connected conductors. ..
Further, in Patent Document 3, a pair of separated electrically conductive detection wires are provided between the inner surface layer and the pressure resistant reinforcing layer in the longitudinal direction of the hose, and the detection wires are connected at one end of the hose. It is disclosed that the other end is pulled out of the hose to detect when the inner layer is worn and damaged by a fluid.

実開昭53−140912号公報Gazette No. 53-140912 特開2010−138991号公報Japanese Unexamined Patent Publication No. 2010-138991 特開平8−270844号公報Japanese Unexamined Patent Publication No. 8-270844

特許文献1から3に記載の発明は、いずれも、ホース等のうち摩耗が進行した部分の管軸周りの角度範囲を検知することはできない。従って、ホース等の内管の局所的摩耗による破損を避けた運用を行うことは困難である。 None of the inventions described in Patent Documents 1 to 3 can detect the angle range around the tube axis of the portion of the hose or the like where the wear has progressed. Therefore, it is difficult to avoid damage due to local wear of the inner pipe such as a hose.

そこで本発明は、摩耗性物質輸送用の輸送管に関し、輸送管の摩耗が進行した部分の管軸周りの角度範囲を検知する摩耗検知機能をもつ輸送管、輸送管の製造方法、摩耗検知方法、及び輸送管の運用方法を提供することを目的とする。 Therefore, the present invention relates to a transport pipe for transporting a wearable substance, a transport pipe having a wear detection function for detecting an angle range around a pipe axis of a portion where wear of the transport pipe has progressed, a method for manufacturing the transport pipe, and a wear detection method. , And to provide a method of operating the transport pipe.

請求項1記載に対応した摩耗検知機能をもつ輸送管においては、摩耗性物質と液体の混合したスラリー又は摩耗性物質の輸送に用いる輸送管であって、輸送管の内管の内部、又は内管の外周及び内部に、管軸周りの角度範囲に応じて複数の摩耗検知線を配置した構造を備え、複数の摩耗検知線を、担当する角度範囲では相対的に内管の内面に近い位置を通り、担当外の角度範囲では相対的に内管の内面から遠い位置又は内管の外周を通るように配置したことを特徴とする。
請求項1に記載の本発明によれば、輸送管のうち摩耗が進行した部分の管軸周りの角度範囲を摩耗検知線を用いて検知することができる。また、摩耗検知線ごとに摩耗検知を担当する角度範囲の部分を明確に区分けすることができる。
The transport pipe having the wear detection function corresponding to the first aspect of the present invention is a transport pipe used for transporting a slurry in which a wearable substance and a liquid are mixed or a wearable substance, and is inside or inside the inner pipe of the transport pipe. A structure is provided in which a plurality of wear detection lines are arranged on the outer periphery and the inside of the pipe according to the angle range around the pipe axis, and the multiple wear detection lines are located relatively close to the inner surface of the inner pipe in the angle range in charge. It is characterized in that it is arranged so as to pass through a position relatively far from the inner surface of the inner pipe or the outer circumference of the inner pipe in an angle range outside the charge.
According to the first aspect of the present invention, the angle range around the pipe axis of the portion of the transport pipe where wear has progressed can be detected by using the wear detection line. In addition, the portion of the angle range in charge of wear detection can be clearly divided for each wear detection line.

請求項2記載に対応した摩耗検知機能をもつ輸送管においては、摩耗性物質と液体の混合したスラリー又は摩耗性物質の輸送に用いる輸送管であって、輸送管の内管の内部、又は内管の外周及び内部に、管軸周りの角度範囲に応じて複数の摩耗検知線を配置した構造を備え、摩耗検知線が、導電塗膜で形成されていることを特徴とする。The transport pipe having the wear detection function corresponding to the second aspect is a transport pipe used for transporting a slurry in which a wearable substance and a liquid are mixed or a wearable substance, and is inside or inside the inner pipe of the transport pipe. It is characterized by having a structure in which a plurality of wear detection lines are arranged according to an angle range around the tube axis on the outer periphery and the inside of the tube, and the wear detection lines are formed of a conductive coating film.
請求項2に記載の本発明によれば、輸送管のうち摩耗が進行した部分の管軸周りの角度範囲を、導電塗膜で形成された摩耗検知線を用いて検知することができる。According to the second aspect of the present invention, the angle range around the pipe axis of the portion of the transport pipe where wear has progressed can be detected by using the wear detection line formed of the conductive coating film.

請求項記載の本発明は、摩耗検知線を、螺旋状に巻回して配置したことを特徴とする。
請求項に記載の本発明によれば、曲率が大きい場所でも摩耗検知線が断線し難くなり、特に大きな曲がり部を有する可撓管に適用した場合に信頼性を高めることができる
The present invention according to claim 3 is characterized in that the wear detection wire is spirally wound and arranged.
According to the third aspect of the present invention, the wear detection line is less likely to be broken even in a place having a large curvature, and reliability can be improved particularly when applied to a flexible tube having a large bent portion .

求項4記載の本発明は、複数の摩耗検知線が結線される共通線を有したことを特徴とする。
請求項4に記載の本発明によれば、輸送管の一方の端部だけで導通検査を行うことができるため、作業効率が向上する。また、端部だけで導通検査を行う場合に、例えば複数の摩耗検知線のそれぞれに戻り線を設ける必要が無くなり、戻り線を共通線で共用化できる。
Motomeko 4 the invention described is characterized in that the plurality of wear-detection lines having a common line to be connected.
According to the fourth aspect of the present invention, the continuity inspection can be performed only at one end of the transport pipe, so that the work efficiency is improved. Further, when the continuity inspection is performed only at the end portion, for example, it is not necessary to provide a return line for each of the plurality of wear detection lines, and the return line can be shared by the common line.

請求項5記載の本発明は、内管の外側に保護層又は補強層を設けたことを特徴とする。
請求項5に記載の本発明によれば、摩耗検知線が内管の内面側からの摩耗以外で断線することをさらに防止できる。
The present invention according to claim 5 is characterized in that a protective layer or a reinforcing layer is provided on the outside of the inner pipe.
According to the fifth aspect of the present invention, it is possible to further prevent the wear detection wire from being broken except for the wear from the inner surface side of the inner pipe.

請求項6記載の本発明は、複数の摩耗検知線が配置された管軸周りの角度範囲に応じて、保護層又は補強層を複数の色に色分けして形成したことを特徴とする。
請求項6に記載の本発明によれば、色分けすることにより、摩耗検知線の破断(非導通)で検知された内管の摩耗位置を含む管軸周りの角度範囲を、輸送管の外側からでも対応色を視認することにより容易に特定可能となる。
The present invention according to claim 6 is characterized in that the protective layer or the reinforcing layer is color-coded into a plurality of colors according to an angle range around a pipe axis in which a plurality of wear detection lines are arranged.
According to the sixth aspect of the present invention, by color-coding, the angle range around the pipe axis including the wear position of the inner pipe detected by the breakage (non-conduction) of the wear detection line can be obtained from the outside of the transport pipe. However, it can be easily identified by visually recognizing the corresponding color.

請求項7記載の本発明は、複数の摩耗検知線が、複数の色の色分けに対応した色の被覆を有したことを特徴とする。
請求項7に記載の本発明によれば、摩耗検知線の破断(非導通)で検知された内管の摩耗位置を含む管軸周りの角度範囲との対応づけが容易となる。
The present invention according to claim 7 is characterized in that the plurality of wear detection lines have a color coating corresponding to the color coding of the plurality of colors.
According to the seventh aspect of the present invention, it becomes easy to correspond to the angle range around the pipe axis including the wear position of the inner pipe detected by the breakage (non-conduction) of the wear detection line.

請求項8記載の本発明は、内管と摩耗検知線を多層に配置し、深さ方向への摩耗の進行を検出可能としたことを特徴とする。
請求項8に記載の本発明によれば、内管に発生した摩耗の深さ方向への進行度(摩耗度)を検知することができる
The present invention according to claim 8 is characterized in that the inner tube and the wear detection line are arranged in multiple layers so that the progress of wear in the depth direction can be detected.
According to the eighth aspect of the present invention, it is possible to detect the degree of progress (degree of wear) of wear generated in the inner pipe in the depth direction .

求項記載の本発明は、導電塗膜の塗膜面が、内管の内面と略直交する方向に形成されていることを特徴とする。
請求項に記載の本発明によれば、内管の内面と略直交する方向への塗膜面の減少度合いに基づいて、内管に発生した摩耗の深さ方向への進行度を検知することができる。また、例えば塗膜面の幅を広く取ることにより、摩耗検知層を単層とした場合でも摩耗の深さ方向への進行度を検知することが可能となる。
The present inventionMotomeko 9 wherein the coated surface of the conductive coating, characterized in that formed on the inner surface in a direction substantially perpendicular to the inner tube.
According to the ninth aspect of the present invention, the degree of progress of wear generated in the inner pipe in the depth direction is detected based on the degree of decrease of the coating film surface in the direction substantially orthogonal to the inner surface of the inner pipe. be able to. Further, for example, by widening the width of the coating film surface, it is possible to detect the progress of wear in the depth direction even when the wear detection layer is a single layer.

請求項10記載に対応した輸送管の製造方法においては、棒状又は板状の内管材料に複数の摩耗検知線を配置し、内管材料と複数の摩耗検知線を巻回し、内管材料の隣接側面を順次接着していくことにより輸送管を完成することを特徴とする。
請求項10に記載の本発明によれば、螺旋状に巻回された摩耗検知線を有する輸送管を効率良く成形することができる。
In the method for manufacturing a transport pipe according to claim 10 , a plurality of wear detection lines are arranged on a rod-shaped or plate-shaped inner pipe material, and the inner pipe material and a plurality of wear detection lines are wound around the inner pipe material. The feature is that the transport pipe is completed by sequentially adhering the adjacent side surfaces.
According to the tenth aspect of the present invention, it is possible to efficiently form a transport pipe having a wear detection wire wound in a spiral shape.

請求項11記載に対応した輸送管の製造方法においては、棒状又は板状の内管材料に複数の摩耗検知線を配置し、内管材料と複数の摩耗検知線を巻回し、内管材料の隣接側面を順次接着していくことにより輸送管を完成し、内管材料の側面に導電塗料を、管軸周りの角度範囲に応じて塗布して導電塗膜を形成したことを特徴とする。
請求項11に記載の本発明によれば、摩耗検知線が導電塗料により形成された輸送管を効率よく成形することができる。また、内管材料の側面に導電塗料を各種の塗装方法や印刷等により予め塗布しておくことができるため、製造が容易となる。
In the method for manufacturing a transport pipe according to claim 11 , a plurality of wear detection lines are arranged on a rod-shaped or plate-shaped inner pipe material, and the inner pipe material and a plurality of wear detection lines are wound around the inner pipe material. The transport pipe is completed by sequentially adhering the adjacent side surfaces, and a conductive coating material is applied to the side surfaces of the inner pipe material according to the angle range around the pipe axis to form a conductive coating film.
According to the eleventh aspect of the present invention, it is possible to efficiently form a transport pipe in which a wear detection line is formed of a conductive paint. Further, since the conductive paint can be applied to the side surface of the inner tube material in advance by various painting methods, printing, or the like, the production becomes easy.

請求項12記載に対応した摩耗検知方法においては、複数の摩耗検知線に電圧を印加し摩耗検知線の摩耗又は断線を電気的変化として検知することにより、摩耗のあった内管の管軸周りの角度範囲を特定することを特徴とする。
請求項12に記載の本発明によれば、内管のうち摩耗が進行した部分の管軸周りの角度範囲を電気的変化により検知することができる。
In the wear detection method corresponding to claim 12 , a voltage is applied to a plurality of wear detection lines to detect wear or disconnection of the wear detection lines as an electrical change, so that the circumference of the worn inner pipe is around the pipe axis. It is characterized by specifying the angle range of.
According to the twelfth aspect of the present invention, it is possible to detect the angle range around the pipe axis of the portion of the inner pipe where the wear has progressed by an electric change.

請求項13記載に対応した摩耗検知方法においては、複数の摩耗検知線に電圧を印加し摩耗検知線の摩耗又は断線を電気的変化として検知することにより、摩耗のあった内管の管軸周りの角度範囲を特定するにあたり、導電塗膜の導通面積の減少による抵抗値の変化を検出して摩耗を検知することを特徴とする。
請求項13に記載の本発明によれば、内管に発生した摩耗の深さ方向への進行度を検知することができる。また、摩耗の深さ方向への進行度と抵抗値変化の関係が比例的になり、検出が容易となる。
In the wear detection method corresponding to the thirteenth aspect , a voltage is applied to a plurality of wear detection lines to detect wear or disconnection of the wear detection lines as an electrical change, so that the circumference of the worn inner pipe is around the pipe axis. In specifying the angle range of the above, it is characterized in that the change in the resistance value due to the decrease in the conduction area of the conductive coating film is detected to detect the wear.
According to the thirteenth aspect of the present invention, it is possible to detect the degree of progress of wear generated in the inner pipe in the depth direction. In addition, the relationship between the degree of progress of wear in the depth direction and the change in resistance value becomes proportional, facilitating detection.

請求項14記載に対応した摩耗検知方法においては、複数の摩耗検知線に電圧を印加し摩耗検知線の摩耗又は断線を電気的変化として検知することにより、摩耗のあった内管の管軸周りの角度範囲を特定するにあたり、複数の摩耗検知線のうち角度範囲が隣り合う2本の摩耗検知線の同時、又は相次ぐ電気的変化を検知することにより、2つの角度範囲の境界領域が摩耗したことを検知することを特徴とする。
請求項14に記載の本発明によれば、複数の摩耗検知線のうち破断した2本が担当する管軸周りの角度範囲の境界近傍が局所的に摩耗したことを検知することができる。
In the wear detection method corresponding to claim 14 , a voltage is applied to a plurality of wear detection lines to detect wear or disconnection of the wear detection lines as an electrical change, so that the circumference of the worn inner pipe is around the pipe axis. In specifying the angle range of, the boundary region of the two angle ranges was worn by detecting the simultaneous or successive electrical changes of two wear detection lines whose angle ranges are adjacent to each other among the multiple wear detection lines. It is characterized by detecting that.
According to the present invention described in claim 14, it is possible to the vicinity of the border of the angular range around the tube axis 2 was broken in charge of the plurality of wear-detection line detects that it has locally worn.

請求項15記載に対応した摩耗検知方法においては、輸送系統の摩耗の想定される箇所にのみ輸送管を用いたことを特徴とする。
請求項15に記載の本発明によれば、内管の摩耗箇所の管軸周りの角度範囲を特定すると共に、管軸方向の位置範囲を特定することができる。また、摩耗検知に用いる輸送管の総長も節約できる。
The wear detection method according to claim 15 is characterized in that a transport pipe is used only in a place where wear of the transport system is expected.
According to the fifteenth aspect of the present invention, it is possible to specify the angle range around the pipe axis of the worn portion of the inner pipe and to specify the position range in the pipe axis direction. In addition, the total length of the transport pipe used for wear detection can be saved.

請求項16記載に対応した輸送管の運用方法は、管軸周りの特定した角度範囲を、角度範囲とは異なる角度範囲に移動させることを特徴とする。
請求項16に記載の本発明によれば、内管が摩耗性物質の衝突により局所的な摩耗を受けるとしても、摩耗が生じた部分を異なる角度範囲に移動させることで、内管に生ずる摩耗を管軸周りの各角度範囲に分散させることができる。よって、摩耗限界に達するまでの時間が大幅に長くなり、輸送管全体としての寿命を大きく延伸することができる。
The method of operating a transport pipe according to claim 16 is characterized in that the specified angle range around the pipe axis is moved to an angle range different from the angle range.
According to the sixteenth aspect of the present invention, even if the inner pipe is locally worn due to the collision of a wearable substance, the wear caused in the inner pipe is caused by moving the worn portion to a different angle range. Can be distributed in each angle range around the tube axis. Therefore, the time required to reach the wear limit is significantly extended, and the life of the entire transport pipe can be greatly extended.

請求項17記載の本発明は、異なる角度範囲に移動させるように、管軸周りに輸送管を回転させることを特徴とする。
請求項17に記載の本発明によれば、管軸周りに輸送管を回転させて摩耗が生じた部分を異なる角度範囲に移動させることで、内管に生ずる摩耗を管軸周りの各角度範囲に分散させることができる。
17th aspect of the present invention is characterized in that the transport pipe is rotated around a pipe axis so as to be moved to a different angle range.
According to the 17th aspect of the present invention, by rotating the transport pipe around the pipe axis and moving the worn portion to a different angle range, the wear generated in the inner pipe is caused by each angle range around the pipe axis. Can be dispersed in.

請求項18記載の本発明は、異なる角度範囲に移動させるように、輸送管を可撓性を持たせて構成し、輸送管に外力を加えて変形させることを特徴とする。
請求項18に記載の本発明によれば、輸送管に外力を加えて変形させ摩耗が生じた部分を異なる角度範囲に移動させることで、内管に生ずる摩耗を管軸周りの各角度範囲に分散させることができる。
The present invention according to claim 18 is characterized in that the transport pipe is configured to have flexibility so as to be moved to a different angle range, and the transport pipe is deformed by applying an external force.
According to the eighteenth aspect of the present invention, by applying an external force to the transport pipe to deform and move the worn portion to a different angle range, the wear generated in the inner pipe is reduced to each angle range around the pipe axis. Can be dispersed.

請求項19記載の本発明は、外力は、浮力発生手段による浮力であることを特徴とする。
請求項19に記載の本発明によれば、特に水中において、浮力により輸送管に外力を加えることが容易となる。
The present invention according to claim 19 is characterized in that the external force is buoyancy by a buoyancy generating means.
According to the nineteenth aspect of the present invention, it becomes easy to apply an external force to the transport pipe by buoyancy, especially in water.

請求項20記載の本発明は、外力は、懸吊機、架台を含む機構手段による機構的外力であることを特徴とする。
請求項20に記載の本発明によれば、機構的外力により輸送管に外力を加えることが容易となる。
The present invention according to claim 20 is characterized in that the external force is a mechanical external force by a mechanical means including a suspension machine and a gantry.
According to the 20th aspect of the present invention, it becomes easy to apply an external force to the transport pipe by a mechanical external force.

請求項21記載の本発明は、異なる角度範囲の選定に当って、輸送管の移動履歴を考慮して選定することを特徴とする。
請求項21に記載の本発明によれば、移動履歴を考慮することで移動先の角度範囲をさらに適切に設定して、輸送管全体としての寿命を大きく延伸することができる。
The present invention according to claim 21 is characterized in that, when selecting different angle ranges, the selection is made in consideration of the movement history of the transport pipe.
According to the 21st aspect of the present invention, by considering the movement history, the angle range of the movement destination can be set more appropriately, and the life of the entire transport pipe can be greatly extended.

請求項22記載の本発明は、移動履歴を考慮して、輸送管の寿命を延伸する上で最も効果的な角度範囲に異なる角度範囲を設定することを特徴とする。
請求項22に記載の本発明によれば、輸送管全体としての寿命をさらに大きく延伸することができる。
The invention according to claim 22 is characterized in that different angle ranges are set to the most effective angle range in extending the life of the transport pipe in consideration of the movement history.
According to the 22nd aspect of the present invention, the life of the entire transport pipe can be further extended.

請求項23記載の本発明は、移動履歴を考慮しても異なる角度範囲の選定ができない場合は、元の角度範囲に留めることを特徴とする。
請求項23に記載の本発明によれば、輸送管の不要な移動を防止することができる。
The present invention according to claim 23 is characterized in that, when a different angle range cannot be selected even in consideration of the movement history, the original angle range is maintained.
According to the 23rd aspect of the present invention, it is possible to prevent unnecessary movement of the transport pipe.

請求項24記載の本発明は、輸送管の摩耗を分散させ摩耗検知線の摩耗又は断線が検知されるまでの時間を延伸させるために、所定の稼働時間が経過したら、所定の範囲だけ輸送管を移動させることを特徴とする。
請求項24に記載の本発明によれば、摩耗を受けやすい角度範囲に位置する内管の部分を所定の稼働時間ごとに変えて、内管に生ずる摩耗を管軸周りの各角度範囲に均一に分散させやすくなる。
The present invention according to claim 24 is to disperse the wear of the transport pipe and extend the time until the wear or disconnection of the wear detection line is detected. It is characterized by moving.
According to the 24th aspect of the present invention, the portion of the inner pipe located in the angle range susceptible to wear is changed every predetermined operating time, and the wear generated in the inner pipe is made uniform in each angle range around the pipe axis. It becomes easy to disperse to.

請求項25記載の本発明は、輸送管の摩耗を分散させ摩耗検知線の摩耗又は断線が検知されるまでの時間を延伸させるために、輸送管を常時、低速で移動させることを特徴とする。
請求項25に記載の本発明によれば、内管に生ずる摩耗を管軸周りの各角度範囲に均一に分散させやすくなる。
25. The present invention according to claim 25 is characterized in that the transport pipe is constantly moved at a low speed in order to disperse the wear of the transport pipe and extend the time until the wear or disconnection of the wear detection line is detected. ..
According to the 25th aspect of the present invention, it becomes easy to uniformly disperse the wear generated in the inner pipe in each angle range around the pipe axis.

請求項26記載の本発明は、管軸周りに輸送管を回転させるに当り、電動機を含む駆動手段を用いて回転させることを特徴とする。
請求項26に記載の本発明によれば、効率よく輸送管の回転作業を行うことができるとともに、自動化への展開が容易となる。
The present invention according to claim 26 is characterized in that, in rotating a transport pipe around a pipe axis, the transport pipe is rotated by using a driving means including an electric motor.
According to the 26th aspect of the present invention, the rotation work of the transport pipe can be efficiently performed, and the development to automation becomes easy.

請求項27記載の本発明は、管軸周りに輸送管を回転させたときの回転角度を、管軸周りに輸送管を回転可能とする回転管継手に設けた回転角度把握手段により把握することを特徴とする。
請求項27に記載の本発明によれば、輸送管の回転角度を把握しやすくなる。
According to the 27th aspect of the present invention, the rotation angle when the transport pipe is rotated around the pipe axis is grasped by the rotation angle grasping means provided in the rotary pipe joint that enables the transport pipe to rotate around the pipe axis. It is characterized by.
According to the 27th aspect of the present invention, it becomes easy to grasp the rotation angle of the transport pipe.

請求項28記載の本発明は、輸送管の摩耗限界を判断し、輸送管の稼働を停止することを特徴とする。
請求項28に記載の本発明によれば、大きなトラブルに至る前に稼働を停止し、検査や輸送管の交換等を行うことができる。
The present invention according to claim 28 is characterized in that the wear limit of the transport pipe is determined and the operation of the transport pipe is stopped.
According to the 28th aspect of the present invention, the operation can be stopped, inspection, replacement of the transport pipe, and the like can be performed before a major trouble occurs.

本発明の摩耗検知機能をもつ輸送管によれば、輸送管のうち摩耗が進行した部分の管軸周りの角度範囲を摩耗検知線を用いて検知することができる。また、摩耗検知線ごとに摩耗検知を担当する角度範囲の部分を明確に区分けすることができる。 According to the transport pipe having the wear detection function of the present invention, the angle range around the pipe axis of the portion of the transport pipe where wear has progressed can be detected by using the wear detection line. In addition, the portion of the angle range in charge of wear detection can be clearly divided for each wear detection line.

また、本発明の摩耗検知機能をもつ輸送管によれば、摩耗検知線が、導電塗膜で形成されていることで、輸送管のうち摩耗が進行した部分の管軸周りの角度範囲を、導電塗膜で形成された摩耗検知線を用いて検知することができる。Further, according to the transport pipe having the wear detection function of the present invention, the wear detection line is formed of the conductive coating film, so that the angle range around the pipe axis of the portion of the transport pipe where the wear has progressed can be determined. It can be detected by using a wear detection line formed of a conductive coating film.

また、摩耗検知線を、螺旋状に巻回して配置した場合には、曲率が大きい場所でも摩耗検知線がさらに断線し難くなり、特に大きな曲がり部を有する可撓管に適用した場合に信頼性を高めることができる Further, when the wear detection wire is spirally wound and arranged, it becomes more difficult for the wear detection wire to break even in a place having a large curvature, and the reliability is particularly high when applied to a flexible pipe having a large bent portion. Can be enhanced .

た、複数の摩耗検知線が結線される共通線を有した場合には、輸送管の一方の端部だけで導通検査を行うことができるため、作業効率が向上する。また、端部だけで導通検査を行う場合に、例えば複数の摩耗検知線のそれぞれに戻り線を設ける必要が無くなり、戻り線を共通線で共用化できる。 Also, when a plurality of wear-detection lines having a common line to be connected, since it is possible to perform the conductivity test only one end of the transport tube, work efficiency is improved. Further, when the continuity inspection is performed only at the end portion, for example, it is not necessary to provide a return line for each of the plurality of wear detection lines, and the return line can be shared by the common line.

また、内管の外側に保護層又は補強層を設けた場合には、摩耗検知線が内管の内面側からの摩耗以外で断線することをさらに防止できる。 Further, when the protective layer or the reinforcing layer is provided on the outer side of the inner pipe, it is possible to further prevent the wear detection line from being broken except for the wear from the inner surface side of the inner pipe.

また、複数の摩耗検知線が配置された管軸周りの角度範囲に応じて、保護層又は補強層を複数の色に色分けして形成した場合には、色分けすることにより、摩耗検知線の破断(非導通)で検知された内管の摩耗位置を含む管軸周りの角度範囲を、輸送管の外側からでも対応色を視認することにより容易に特定可能となる。 Further, when the protective layer or the reinforcing layer is color-coded into a plurality of colors according to the angle range around the pipe axis in which the plurality of wear detection lines are arranged, the wear detection lines are broken by color-coding. The angular range around the pipe axis including the wear position of the inner pipe detected by (non-conduction) can be easily specified by visually recognizing the corresponding color even from the outside of the transport pipe.

また、複数の摩耗検知線が、複数の色の色分けに対応した色の被覆を有した場合には、摩耗検知線の破断(非導通)で検知された内管の摩耗位置を含む管軸周りの角度範囲との対応づけが容易となる。 Further, when a plurality of wear detection lines have color coatings corresponding to a plurality of colors, the circumference of the pipe axis including the wear position of the inner pipe detected by the breakage (non-conduction) of the wear detection lines. It becomes easy to correspond with the angle range of.

また、内管と摩耗検知線を多層に配置し、深さ方向への摩耗の進行を検出可能とした場合には、内管に発生した摩耗の深さ方向への進行度(摩耗度)を検知することができる In addition, when the inner pipe and the wear detection line are arranged in multiple layers so that the progress of wear in the depth direction can be detected, the progress (wear degree) of the wear generated in the inner pipe in the depth direction can be determined. Can be detected .

た、導電塗膜の塗膜面が、内管の内面と略直交する方向に形成されている場合には、内管の内面と略直交する方向への塗膜面の減少度合いに基づいて、内管に発生した摩耗の深さ方向への進行度を検知することができる。また、例えば塗膜面の幅を広く取ることにより、摩耗検知層を単層とした場合でも摩耗の深さ方向への進行度を検知することが可能となる。 Also, the coated surface of the conductive coating film, when formed on the inner surface in a direction substantially perpendicular to the inner tube, on the basis of the reduction degree of the coating film surface to the inner surface in a direction substantially perpendicular to the inner tube , It is possible to detect the degree of progress of wear generated in the inner pipe in the depth direction. Further, for example, by widening the width of the coating film surface, it is possible to detect the progress of wear in the depth direction even when the wear detection layer is a single layer.

本発明の輸送管の製造方法によれば、螺旋状に巻回された摩耗検知線を有する輸送管を効率良く成形することができる。 According to the method for manufacturing a transport pipe of the present invention, a transport pipe having a spirally wound wear detection line can be efficiently molded.

また、本発明の輸送管の製造方法によれば、内管材料の側面に導電塗料を、管軸周りの角度範囲に応じて塗布して導電塗膜を形成したことで、摩耗検知線が導電塗料により形成された輸送管を効率よく成形することができる。また、内管材料の側面に導電塗料を各種の塗装方法や印刷等により予め塗布しておくことができるため、製造が容易となる。 Further, according to the manufacturing method of the transport tube of the present invention, a conductive coating on the side surface of the inner tube material, by forming the conductive coating film by applying in accordance with the angle range around the tube axis, the wear detection line conductive The transport pipe formed by the paint can be efficiently molded. Further, since the conductive paint can be applied to the side surface of the inner tube material in advance by various painting methods, printing, or the like, the production becomes easy.

本発明の摩耗検知方法によれば、内管のうち摩耗が進行した部分の管軸周りの角度範囲を電気的変化により検知することができる。 According to the wear detection method of the present invention, the angle range around the pipe axis of the portion of the inner pipe where wear has progressed can be detected by an electrical change.

また、本発明の摩耗検知方法によれば、導電塗膜の導通面積の減少による抵抗値の変化を検出して摩耗を検知することで、内管に発生した摩耗の深さ方向への進行度を検知することができる。また、摩耗の深さ方向への進行度と抵抗値変化の関係が比例的になり、検出が容易となる。 Further, according to the wear detection method of the present invention, the conductive coating film by detecting a reduction by detecting and wear the change in the resistance value of the conductive area, progress in the depth direction of the wear occurring to the inner tube Can be detected. In addition, the relationship between the degree of progress of wear in the depth direction and the change in resistance value becomes proportional, facilitating detection.

また、本発明の摩耗検知方法によれば、複数の摩耗検知線のうち角度範囲が隣り合う2本の摩耗検知線の同時、又は相次ぐ電気的変化を検知することにより、2つの角度範囲の境界領域が摩耗したことを検知することで、複数の摩耗検知線のうち破断した2本が担当する管軸周りの角度範囲の境界近傍が局所的に摩耗したことを検知することができる。 Further , according to the wear detection method of the present invention, the boundary between two angle ranges is detected by simultaneously detecting two wear detection lines having adjacent angle ranges among a plurality of wear detection lines or by detecting successive electrical changes. By detecting that the area is worn, it is possible to detect that the vicinity of the boundary of the angular range around the pipe axis in charge of the two broken lines of the plurality of wear detection lines is locally worn.

また、本発明の摩耗検知方法によれば、輸送系統の摩耗の想定される箇所にのみ輸送管を用いたことで、内管の摩耗箇所の管軸周りの角度範囲を特定すると共に、管軸方向の位置範囲を特定することができる。また、摩耗検知に用いる輸送管の総長も節約できる。 Further, according to the wear detection method of the present invention, by only using the transport pipe at a location which is assumed wear transport system, as well as identify the angular range around the tube axis of the wear part of the inner tube, the tube axis The position range of the direction can be specified. In addition, the total length of the transport pipe used for wear detection can be saved.

本発明の輸送管の運用方法によれば、内管が摩耗性物質の衝突により局所的な摩耗を受けるとしても、摩耗が生じた部分を異なる角度範囲に移動させることで、内管に生ずる摩耗を管軸周りの各角度範囲に分散させることができる。よって、摩耗限界に達するまでの時間が大幅に長くなり、輸送管全体としての寿命を大きく延伸することができる。 According to the operation method of the transport pipe of the present invention, even if the inner pipe is locally worn due to the collision of a wearable substance, the wear caused by the inner pipe is caused by moving the worn portion to a different angle range. Can be distributed over each angle range around the tube axis. Therefore, the time required to reach the wear limit is significantly extended, and the life of the entire transport pipe can be greatly extended.

また、異なる角度範囲に移動させるように、管軸周りに輸送管を回転させる場合には、管軸周りに輸送管を回転させて摩耗が生じた部分を異なる角度範囲に移動させることで、内管に生ずる摩耗を管軸周りの各角度範囲に分散させることができる。 In addition, when the transport pipe is rotated around the pipe axis so as to move it to a different angle range, the transport pipe is rotated around the pipe axis to move the worn part to a different angle range. The wear that occurs on the tube can be distributed over each angle range around the tube axis.

また、異なる角度範囲に移動させるように、輸送管を可撓性を持たせて構成し、輸送管に外力を加えて変形させる場合には、輸送管に外力を加えて変形させ摩耗が生じた部分を異なる角度範囲に移動させることで、内管に生ずる摩耗を管軸周りの各角度範囲に分散させることができる。 Further, when the transport pipe is configured to be flexible so as to be moved to a different angle range and the transport pipe is deformed by applying an external force, the transport pipe is deformed by applying an external force and wear occurs. By moving the portions to different angular ranges, the wear generated on the inner tube can be distributed to each angular range around the tube axis.

また、外力は、浮力発生手段による浮力である場合には、特に水中において、浮力により輸送管に外力を加えることが容易となる。 Further, when the external force is the buoyancy caused by the buoyancy generating means, it becomes easy to apply the external force to the transport pipe by the buoyancy, especially in water.

また、外力は、懸吊機、架台を含む機構手段による機構的外力である場合には、機構的外力により輸送管に外力を加えることが容易となる。 Further, when the external force is a mechanical external force by a mechanical means including a suspension machine and a gantry, it becomes easy to apply the external force to the transport pipe by the mechanical external force.

また、異なる角度範囲の選定に当って、輸送管の移動履歴を考慮して選定する場合には、移動履歴を考慮することで移動先の角度範囲をさらに適切に設定して、輸送管全体としての寿命を大きく延伸することができる。 In addition, when selecting a different angle range in consideration of the movement history of the transport pipe, the angle range of the destination is set more appropriately by considering the movement history, and the transport pipe as a whole is selected. The life of the can be greatly extended.

また、移動履歴を考慮して、輸送管の寿命を延伸する上で最も効果的な角度範囲に異なる角度範囲を設定する場合には、輸送管全体としての寿命をさらに大きく延伸することができる。 Further, when different angle ranges are set for the most effective angle range for extending the life of the transport pipe in consideration of the movement history, the life of the transport pipe as a whole can be further extended.

また、移動履歴を考慮しても異なる角度範囲の選定ができない場合は、元の角度範囲に留める場合には、輸送管の不要な移動を防止することができる。 Further, if a different angle range cannot be selected even in consideration of the movement history, unnecessary movement of the transport pipe can be prevented by keeping the original angle range.

また、輸送管の摩耗を分散させ摩耗検知線の摩耗又は断線が検知されるまでの時間を延伸させるために、所定の稼働時間が経過したら、所定の範囲だけ輸送管を移動させる場合には、摩耗を受けやすい角度範囲に位置する内管の部分を所定の稼働時間ごとに変えて、内管に生ずる摩耗を管軸周りの各角度範囲に均一に分散させやすくなる。 In addition, in order to disperse the wear of the transport pipe and extend the time until the wear or disconnection of the wear detection line is detected, when the transport pipe is moved by a predetermined range after a predetermined operating time has elapsed, the transport pipe is moved. By changing the portion of the inner pipe located in the wear-prone angle range every predetermined operating time, it becomes easy to uniformly disperse the wear generated in the inner pipe in each angle range around the pipe axis.

また、輸送管の摩耗を分散させ摩耗検知線の摩耗又は断線が検知されるまでの時間を延伸させるために、輸送管を常時、低速で移動させる場合には、内管に生ずる摩耗を管軸周りの各角度範囲に均一に分散させやすくなる。 Further, in order to disperse the wear of the transport pipe and extend the time until the wear or disconnection of the wear detection line is detected, when the transport pipe is constantly moved at a low speed, the wear generated in the inner pipe is caused by the pipe shaft. It is easy to disperse evenly in each angle range around.

また、管軸周りに輸送管を回転させるに当り、電動機を含む駆動手段を用いて回転させる場合には、効率よく輸送管の回転作業を行うことができるとともに、自動化への展開が容易となる。 Further, when rotating the transport pipe around the pipe axis by using a drive means including an electric motor, the transport pipe can be efficiently rotated and the development to automation becomes easy. ..

また、管軸周りに輸送管を回転させたときの回転角度を、管軸周りに輸送管を回転可能とする回転管継手に設けた回転角度把握手段により把握する場合には、輸送管の回転角度を把握しやすくなる。 Further, when the rotation angle when the transport pipe is rotated around the pipe axis is grasped by the rotation angle grasping means provided in the rotary pipe joint that enables the transport pipe to rotate around the pipe axis, the rotation of the transport pipe is performed. It becomes easier to grasp the angle.

また、輸送管の摩耗限界を判断し、輸送管の稼働を停止する場合には、大きなトラブルに至る前に稼働を停止し、検査や輸送管の交換等を行うことができる。 Further, when the wear limit of the transport pipe is determined and the operation of the transport pipe is stopped, the operation can be stopped before a major trouble occurs, and inspection and replacement of the transport pipe can be performed.

本発明の一実施形態による輸送管の第一実施例による運用方法のフローチャートA flowchart of an operation method according to the first embodiment of the transport pipe according to the embodiment of the present invention. 同輸送管の第二実施例による運用方法のフローチャートFlow chart of the operation method according to the second embodiment of the transport pipe 同輸送管の第三実施例による運用方法のフローチャートFlowchart of operation method according to the third embodiment of the transport pipe 同輸送管の輸送管回転機構の一例を示す図The figure which shows an example of the transport pipe rotation mechanism of the same transport pipe 同輸送管の輸送管回転機構の他の例を示す図The figure which shows another example of the transport pipe rotation mechanism of the same transport pipe. 同輸送管の輸送管回転機構のさらに他の例を示す図The figure which shows still another example of the transport pipe rotation mechanism of the same transport pipe. 同輸送管の輸送管変形機構の一例を示す図The figure which shows an example of the transport pipe deformation mechanism of the same transport pipe 実証試験に用いた螺旋状ライナー付き耐摩耗ホースの内部の概観写真Photograph of the inside of the wear-resistant hose with a spiral liner used in the verification test 同螺旋状ライナーの近接写真Close-up photo of the same spiral liner 同スラリー循環式摩耗試験装置の概観写真Overview photograph of the slurry circulation type wear test equipment 同模擬鉱石の概観写真Overview photo of the simulated ore 同螺旋状ライナーの破断箇所の観察写真Observation photograph of the broken part of the spiral liner 同耐摩耗ホースの管軸周りの角度位置を示す図The figure which shows the angular position around the pipe axis of the wear-resistant hose. 同螺旋状ライナーの破断箇所の観察写真Observation photograph of the broken part of the spiral liner 本実施形態による輸送管の内管に設けた摩耗検知線及び共通線の形状を示す図The figure which shows the shape of the wear detection line and the common line provided in the inner pipe of the transport pipe by this embodiment. 同輸送管の内管に設けた摩耗検知線及び共通線の形状を示す参考図Reference diagram showing the shape of the wear detection line and common line provided on the inner pipe of the transport pipe. 同輸送管の内管に設けた摩耗検知線及び共通線の形状と内管を示す図The figure which shows the shape and the inner pipe of the wear detection line and the common line provided in the inner pipe of the transport pipe. 同輸送管の内管に設けた摩耗検知線及び共通線の形状と内管を示す参考図Reference diagram showing the shape and inner pipe of the wear detection line and common line provided on the inner pipe of the transport pipe. 同輸送管の内管の成形方法を示す図The figure which shows the molding method of the inner pipe of the transport pipe 同輸送管の内管に設けた導電塗膜による摩耗検知線及び共通線の形状を示す図The figure which shows the shape of the wear detection line and the common line by the conductive coating film provided in the inner pipe of the transport pipe. 2層の摩耗検知層を形成した状態を示す図The figure which shows the state which formed the two-layer wear detection layer. 本実施形態による摩耗検知機能をもつ輸送管の配置例を示す図The figure which shows the arrangement example of the transport pipe which has the wear detection function by this embodiment. 輸送管の一部透過図Partial transmission diagram of the transport pipe 輸送管の従来の運用方法のフローチャートFlowchart of the conventional operation method of the transportation pipe

以下に、本発明の実施形態による摩耗検知機能をもつ輸送管、輸送管の製造方法、摩耗検知方法、及び輸送管の運用方法について説明する。 Hereinafter, a transport pipe having a wear detection function, a method for manufacturing the transport pipe, a wear detection method, and a method for operating the transport pipe according to the embodiment of the present invention will be described.

まず、本実施形態による輸送管の運用方法について説明する。
図1は本実施形態による輸送管の第一実施例による運用方法のフローチャート、図2は同輸送管の第二実施例による運用方法のフローチャート、図3は同輸送管の第三実施例による運用方法のフローチャートである。また、図24は輸送管の従来の運用方法のフローチャートである。
First, the operation method of the transport pipe according to the present embodiment will be described.
FIG. 1 is a flowchart of an operation method according to the first embodiment of the transport pipe according to the present embodiment, FIG. 2 is a flowchart of an operation method according to the second embodiment of the transport pipe, and FIG. 3 is an operation according to the third embodiment of the transport pipe. It is a flowchart of a method. Further, FIG. 24 is a flowchart of a conventional operation method of the transport pipe.

図24は、輸送管の従来の運用方法のフローチャートである。
輸送管10の両端をそれぞれ継手20を介して配管1に接続し、稼働を開始する(ステップ100)。稼働開始すると、輸送管10の内管11にはスラリー又は摩耗性物質2が流れる。
ステップ100の後、輸送管10の稼働を継続する(ステップ200)。
ステップ200における稼働が一定の時間を経過した後、内管11の摩耗が限界に達したか否かを判断する(ステップ300)。摩耗限界は、内管11について目視検査や導通試験等を実施することにより判断する。
ステップ300において、内管11の摩耗が限界に達していないと判断した場合は、ステップ200に戻って稼働を継続する。
ステップ300において、内管11の摩耗が限界に達したと判断した場合は、輸送管10の稼働を停止し、輸送管10を交換する(ステップ400)。
FIG. 24 is a flowchart of a conventional operation method of a transportation pipe.
Both ends of the transport pipe 10 are connected to the pipe 1 via the joint 20, and the operation is started (step 100). When the operation is started, the slurry or the wearable substance 2 flows through the inner pipe 11 of the transport pipe 10.
After step 100, the operation of the transport pipe 10 is continued (step 200).
After the operation in step 200 has elapsed for a certain period of time, it is determined whether or not the wear of the inner tube 11 has reached the limit (step 300). The wear limit is determined by performing a visual inspection, a continuity test, or the like on the inner pipe 11.
If it is determined in step 300 that the wear of the inner pipe 11 has not reached the limit, the process returns to step 200 to continue the operation.
If it is determined in step 300 that the wear of the inner pipe 11 has reached the limit, the operation of the transport pipe 10 is stopped and the transport pipe 10 is replaced (step 400).

このように従来の運用方法では、輸送管10は、ステップ100において稼働が開始された後は、その状態のまま稼働が継続される。そのため、内管11の摩耗進行領域Xに位置する部分は常に同じであり、その部分の摩耗損傷が著しく進んで摩耗限界に達するため、輸送管10の寿命が短くなってしまう。 As described above, in the conventional operation method, after the operation of the transport pipe 10 is started in step 100, the operation of the transport pipe 10 is continued in that state. Therefore, the portion of the inner pipe 11 located in the wear progress region X is always the same, and the wear damage of that portion is remarkably advanced to reach the wear limit, so that the life of the transport pipe 10 is shortened.

これに対して図1は、本実施形態による輸送管の運用方法の第一実施例を示すフローチャートである。
輸送管10の両端をそれぞれ継手20を介して配管1に接続し、稼働を開始する(ステップ1)。稼働開始すると、輸送管10の内管11にはスラリー又は摩耗性物質2が流れる。
ステップ1の後、輸送管10の稼働を継続する(ステップ2)。
ステップ2における稼働が所定の時間を経過した後、内管11の摩耗が限界に達したか否かを判断する(ステップ3)。摩耗限界は、内管11について目視検査や導通試験等を実施することにより判断する。
ステップ3において、内管11の摩耗が限界に達したと判断した場合は、輸送管10の稼働を停止し、輸送管10を交換する(ステップ4)。これにより、大きなトラブルに至ることを防止できる。
ステップ3において、内管11の摩耗が限界に達していないと判断した場合は、輸送管10が所定の稼働時間に達したか否かを判断する(ステップ5)。所定の稼働時間は、経験や予測等に基づいて予め設定する。
ステップ5において、輸送管10が所定の稼働時間に達していないと判断した場合は、ステップ2に戻って稼働を継続する。
ステップ5において、輸送管10が所定の稼働時間に達したと判断した場合は、輸送管10を管軸周りに所定の角度だけ回転させる(ステップ6)。所定の角度は、内管11のうち、それまで摩耗進行領域Xに配置されていた部分が、管軸周りの回転によって摩耗進行領域Xとは異なる角度範囲に移動するように、経験や予測等に基づいて予め設定する。ステップ6の後、ステップ2に戻って稼働を継続する。
On the other hand, FIG. 1 is a flowchart showing the first embodiment of the operation method of the transport pipe according to the present embodiment.
Both ends of the transport pipe 10 are connected to the pipe 1 via the joint 20, and the operation is started (step 1). When the operation is started, the slurry or the wearable substance 2 flows through the inner pipe 11 of the transport pipe 10.
After step 1, the operation of the transport pipe 10 is continued (step 2).
After the operation in step 2 has elapsed a predetermined time, it is determined whether or not the wear of the inner pipe 11 has reached the limit (step 3). The wear limit is determined by performing a visual inspection, a continuity test, or the like on the inner pipe 11.
If it is determined in step 3 that the wear of the inner pipe 11 has reached the limit, the operation of the transport pipe 10 is stopped and the transport pipe 10 is replaced (step 4). This can prevent major troubles.
If it is determined in step 3 that the wear of the inner pipe 11 has not reached the limit, it is determined whether or not the transport pipe 10 has reached a predetermined operating time (step 5). The predetermined operating time is set in advance based on experience, prediction, and the like.
If it is determined in step 5 that the transport pipe 10 has not reached the predetermined operating time, the process returns to step 2 to continue the operation.
If it is determined in step 5 that the transport pipe 10 has reached a predetermined operating time, the transport pipe 10 is rotated around the pipe axis by a predetermined angle (step 6). As for the predetermined angle, experience, prediction, etc. are made so that the portion of the inner pipe 11 previously arranged in the wear progress region X moves to an angle range different from the wear progress region X due to rotation around the pipe axis. It is set in advance based on. After step 6, the process returns to step 2 to continue operation.

第一実施例による運用方法によれば、内管11のうち、摩耗進行領域Xに位置していた部分は、所定の稼働時間が経過した時点で管軸周りに輸送管10が回転することによって摩耗進行領域Xから外れ、それまで摩耗進行領域X以外に位置していた部分が新たに摩耗進行領域Xに位置して局所的摩耗を引き受けることになる。
このように、内管11が摩耗性物質2の衝突により局所的な摩耗を受けるとしても、内管11のうち摩耗進行領域Xに位置する部分をローテーションさせることで摩耗箇所が分散し、摩耗限界に達するまでの時間が大幅に長くなり、輸送管10全体としての寿命(稼働可能な時間)を大きく延伸することができる。
なお、第一実施例では、所定の稼働時間ごとに輸送管10を離散的に回転する方式としているが、電動機等の駆動手段(図示せず)を有する輸送管回転機構を設け、輸送管回転機構による回転速度を所定の稼働時間ごとに所定の角度分輸送管10が管軸周りに回転するように設定し、稼働中は輸送管10を常時、低速で回転させてもよい。稼働中は輸送管10を常に低速で回転させることにより、内管11に生ずる摩耗を管軸周りに均一に分散させやすくなる。また、駆動手段を有する輸送管回転機構を設けることで、効率よく輸送管10の回転作業を行うことができるとともに、自動化への展開が容易となる。
According to the operation method according to the first embodiment, in the portion of the inner pipe 11 located in the wear progress region X, the transport pipe 10 rotates around the pipe axis when a predetermined operating time elapses. A portion that is out of the wear progress region X and has been located outside the wear progress region X is newly located in the wear progress region X to undertake local wear.
In this way, even if the inner tube 11 is locally worn due to the collision of the wearable substance 2, the wear points are dispersed by rotating the portion of the inner tube 11 located in the wear progress region X, and the wear limit is reached. The time required to reach the above point is significantly increased, and the life (operable time) of the entire transport pipe 10 can be greatly extended.
In the first embodiment, the transport pipe 10 is discretely rotated every predetermined operating time, but a transport pipe rotation mechanism having a driving means (not shown) such as an electric motor is provided to rotate the transport pipe. The rotation speed by the mechanism may be set so that the transport pipe 10 rotates around the pipe axis by a predetermined angle every predetermined operating time, and the transport pipe 10 may be constantly rotated at a low speed during operation. By constantly rotating the transport pipe 10 at a low speed during operation, it becomes easy to uniformly disperse the wear generated in the inner pipe 11 around the pipe shaft. Further, by providing the transport pipe rotation mechanism having the drive means, the transport pipe 10 can be efficiently rotated and the development to automation becomes easy.

なお、第一実施例による運用方法において、耐摩耗ホースのように輸送管10を可撓性を持たせて構成した場合には、ステップ6において、輸送管10を回転させることに代えて、輸送管10に外力を加えて輸送管10を変形させることにより、内管11のうち、それまで摩耗進行領域Xに配置されていた部分を摩耗進行領域Xとは異なる角度範囲に移動させることもできる。 In the operation method according to the first embodiment, when the transport pipe 10 is configured to have flexibility like a wear-resistant hose, in step 6, instead of rotating the transport pipe 10, the transport pipe 10 is transported. By deforming the transport pipe 10 by applying an external force to the pipe 10, the portion of the inner pipe 11 previously arranged in the wear progress region X can be moved to an angle range different from the wear progress region X. ..

図2は、本実施形態による輸送管の運用方法の第二実施例を示すフローチャートである。
輸送管10の両端をそれぞれ継手20を介して配管1に接続し、稼働を開始する(ステップ11)。稼働開始すると、輸送管10の内管11にはスラリー又は摩耗性物質2が流れる。
ステップ11の後、輸送管10の稼働を継続する(ステップ12)。
ステップ12における稼働が所定の時間を経過した後、内管11の摩耗が限界に達したか否かを判断する(ステップ13)。摩耗限界は、内管11について目視検査や導通試験等を実施することにより判断する。
ステップ13において、内管11の摩耗が限界に達したと判断した場合は、輸送管10の稼働を停止し、輸送管10を交換する(ステップ14)。これにより、大きなトラブルに至ることを防止できる。
ステップ13において、内管11の摩耗が限界に達していないと判断した場合は、内管11の摩耗量が所定の閾値に達したか否かを判断する(ステップ15)。内管11の摩耗量は、測定器等によって測定する。所定の閾値は、経験や予測等に基づいて予め設定する。
ステップ15において、内管11の摩耗量が所定の閾値に達していないと判断した場合は、ステップ12に戻って稼働を継続する。
ステップ15において、内管11の摩耗量が所定の閾値に達したと判断した場合は、摩耗箇所の管軸周りの角度範囲を特定する(ステップ16)。角度範囲は、内管11について目視検査や導通試験等を実施することにより特定する。
ステップ16で摩耗箇所の管軸周りの角度範囲を特定した後、輸送管10を管軸周りに回転した場合に稼働を継続することが可能か否かを判断する(ステップ17)。この判断は、それまでの輸送管10の回転履歴(移動履歴)を考慮して行う。例えば、まだ一回も管軸周りに輸送管10を回転させていない場合は、内管11のうち摩耗進行領域X以外に位置していた部分は殆ど摩耗していないため、それらの部分を摩耗進行領域Xに新たに位置させて稼働を継続することが可能と判断し、何回か管軸周りに輸送管10を回転させていて、内管11のうち摩耗進行領域X以外に位置している部分全ての摩耗量が所定の閾値に達したことを検知している場合は、それらの部分を摩耗進行領域Xに新たに位置させて稼働を継続することは不可能と判断する。
ステップ17において、管軸周りに輸送管10を回転した場合に稼働を継続することが可能と判断した場合は、輸送管10の寿命を延伸する上で最も効果的な管軸周りの回転角度を選定する(ステップ18)。最も効果的な管軸周りの回転角度は、それまでの輸送管10の回転履歴を考慮して選定する。例えば、内管11のうち摩耗量が最も少ないか、摩耗進行領域Xに位置した回数が最も少ない場所が、回転後に摩耗進行領域Xに位置するように選定する。
ステップ18で輸送管10の最も効果的な管軸周りの回転角度を選定した後、輸送管10を選定した回転角度、回転させる(ステップ19)。これにより、ステップ16で特定した摩耗箇所の管軸周りの角度範囲が、その角度範囲とは異なる角度範囲に移動する。ステップ19の後、ステップ12に戻って稼働を継続する。
ステップ17において、管軸周りに輸送管10を回転した場合に稼働を継続することが不可能と判断した場合は、輸送管10を回転することなくステップ12に戻って稼働を継続する。このように回転履歴を考慮しても移動先となる異なる角度範囲の選定ができない場合は、内管11のうち摩耗進行領域Xに位置していた部分を元の角度範囲に留めることで、輸送管10の不要な回転を防止することができる。
なお、内管11の摩耗が限界に達したか否かを判断するステップ13と、内管11の摩耗量が所定の閾値に達したか否かを判断するステップ15は、まとめて行ってもよい。
FIG. 2 is a flowchart showing a second embodiment of the operation method of the transport pipe according to the present embodiment.
Both ends of the transport pipe 10 are connected to the pipe 1 via the joint 20, and the operation is started (step 11). When the operation is started, the slurry or the wearable substance 2 flows through the inner pipe 11 of the transport pipe 10.
After step 11, the operation of the transport pipe 10 is continued (step 12).
After the operation in step 12 has elapsed a predetermined time, it is determined whether or not the wear of the inner pipe 11 has reached the limit (step 13). The wear limit is determined by performing a visual inspection, a continuity test, or the like on the inner pipe 11.
When it is determined in step 13 that the wear of the inner pipe 11 has reached the limit, the operation of the transport pipe 10 is stopped and the transport pipe 10 is replaced (step 14). This can prevent major troubles.
If it is determined in step 13 that the wear of the inner pipe 11 has not reached the limit, it is determined whether or not the amount of wear of the inner pipe 11 has reached a predetermined threshold value (step 15). The amount of wear of the inner tube 11 is measured by a measuring instrument or the like. A predetermined threshold value is set in advance based on experience, prediction, and the like.
If it is determined in step 15 that the amount of wear of the inner pipe 11 has not reached a predetermined threshold value, the process returns to step 12 and the operation is continued.
When it is determined in step 15 that the amount of wear of the inner pipe 11 has reached a predetermined threshold value, the angle range around the pipe axis of the worn portion is specified (step 16). The angle range is specified by performing a visual inspection, a continuity test, or the like on the inner pipe 11.
After specifying the angle range around the pipe axis of the worn portion in step 16, it is determined whether or not the operation can be continued when the transport pipe 10 is rotated around the pipe axis (step 17). This determination is made in consideration of the rotation history (movement history) of the transport pipe 10 up to that point. For example, when the transport pipe 10 has not been rotated around the pipe axis even once, the parts of the inner pipe 11 located outside the wear progress region X are hardly worn, and therefore those parts are worn. Judging that it is possible to newly position it in the progress region X and continue the operation, the transport pipe 10 is rotated around the pipe axis several times, and it is located outside the wear progress region X in the inner pipe 11. When it is detected that the amount of wear of all the existing parts has reached a predetermined threshold value, it is determined that it is impossible to newly position those parts in the wear progress region X and continue the operation.
In step 17, when it is determined that the operation can be continued when the transport pipe 10 is rotated around the pipe axis, the most effective rotation angle around the pipe axis for extending the life of the transport pipe 10 is determined. Select (step 18). The most effective rotation angle around the pipe axis is selected in consideration of the rotation history of the transport pipe 10 up to that point. For example, among the inner pipes 11, the place where the amount of wear is the smallest or the number of times of being located in the wear progress region X is the smallest is selected so as to be located in the wear progress region X after rotation.
After selecting the most effective rotation angle of the transport pipe 10 around the pipe axis in step 18, the transport pipe 10 is rotated at the selected rotation angle (step 19). As a result, the angle range around the pipe axis of the worn portion identified in step 16 moves to an angle range different from the angle range. After step 19, the process returns to step 12 to continue operation.
If it is determined in step 17 that it is impossible to continue the operation when the transport pipe 10 is rotated around the pipe axis, the operation is continued by returning to step 12 without rotating the transport pipe 10. If it is not possible to select a different angle range to move to even if the rotation history is taken into consideration, the portion of the inner pipe 11 that was located in the wear progress region X can be transported by keeping it in the original angle range. It is possible to prevent unnecessary rotation of the tube 10.
Even if the step 13 for determining whether or not the wear of the inner pipe 11 has reached the limit and the step 15 for determining whether or not the amount of wear of the inner pipe 11 has reached a predetermined threshold value are performed together. good.

第二実施例による運用方法によれば、内管11のうち、摩耗性物質2の衝突により局所的に摩耗を受けて摩耗量が所定の閾値に達した部分の管軸周りの角度範囲が特定され、管軸周りに輸送管10を回転して稼働を継続することが可能な場合は、輸送管10の寿命を延伸する上で最も効果的な管軸周りの輸送管10の回転角度を選定して、所定の閾値に達した部分の管軸周りの角度範囲を異なる角度範囲に移動させる。
よって、内管11のうち、それまで摩耗進行領域Xに位置していた部分以外の相対的に最も健全な部分が新たに摩耗進行領域Xに位置して局所的摩耗を引き受けることになるため、内管11の摩耗が局所的摩耗により限界に達するまでの時間が大幅に長くなり、輸送管10全体としての寿命を大きく延伸することができる。
According to the operation method according to the second embodiment, the angle range around the pipe axis of the portion of the inner pipe 11 that is locally worn by the collision of the wearable substance 2 and the amount of wear reaches a predetermined threshold is specified. If it is possible to rotate the transport pipe 10 around the pipe axis and continue operation, select the rotation angle of the transport pipe 10 around the pipe axis that is most effective in extending the life of the transport pipe 10. Then, the angle range around the tube axis of the portion that has reached a predetermined threshold is moved to a different angle range.
Therefore, of the inner pipe 11, the relatively healthiest portion other than the portion previously located in the wear progress region X is newly located in the wear progress region X and undertakes local wear. The time until the wear of the inner pipe 11 reaches the limit due to the local wear becomes significantly longer, and the life of the transport pipe 10 as a whole can be greatly extended.

なお、第二実施例による運用方法において、耐摩耗ホースのように輸送管10を可撓性を持たせて構成した場合には、ステップ19において、輸送管10を回転させることに代えて、輸送管10に外力を加えて輸送管10を変形させることにより、内管11のうち、それまで摩耗進行領域Xに配置されていた部分を摩耗進行領域Xとは異なる角度範囲に移動させることもできる。
輸送管10に外力を加えて変形させる場合は、ステップ17において、輸送管10を管軸周りに回転した場合に稼働を継続することが可能か否かの判断に代えて、輸送管10に外力を加えて変形させた場合に稼働を継続することが可能か否かを判断する。この判断は、それまでの輸送管10に外力を加えた履歴(移動履歴)を考慮して行う。例えば、まだ一回も輸送管10に外力を加えて変形させていない場合は、内管11のうち摩耗進行領域X以外に位置していた部分は殆ど摩耗していないため、それらの部分を摩耗進行領域Xに新たに位置させて稼働を継続することが可能と判断し、何回か輸送管10に外力を加えて変形させていて、内管11のうち摩耗進行領域X以外に位置している部分全ての摩耗量が所定の閾値に達したことを検知している場合は、それらの部分を摩耗進行領域Xに新たに位置させて稼働を継続することは不可能と判断する。
また、輸送管10に外力を加えて変形させる場合は、ステップ18において、輸送管10の寿命を延伸する上で最も効果的な管軸周りの回転角度を選定することに代えて、輸送管10の寿命を延伸する上で最も効果的な変形後の状態を選定する。最も効果的な変形後の状態は、それまでの輸送管10に外力を加えた履歴を考慮して選定する。例えば、内管11のうち摩耗量が最も少ないか、摩耗進行領域Xに位置した回数が最も少ない場所が、外力による変形後に摩耗進行領域Xに位置するように選定する。
In the operation method according to the second embodiment, when the transport pipe 10 is configured to have flexibility like a wear-resistant hose, in step 19, the transport pipe 10 is transported instead of being rotated. By deforming the transport pipe 10 by applying an external force to the pipe 10, the portion of the inner pipe 11 previously arranged in the wear progress region X can be moved to an angle range different from the wear progress region X. ..
When an external force is applied to the transport pipe 10 to deform it, in step 17, an external force is applied to the transport pipe 10 instead of determining whether or not the operation can be continued when the transport pipe 10 is rotated around the pipe axis. It is judged whether or not it is possible to continue the operation when it is deformed by adding. This determination is made in consideration of the history (movement history) of applying an external force to the transport pipe 10 up to that point. For example, if the transport pipe 10 has not been deformed by applying an external force even once, the parts of the inner pipe 11 located outside the wear progress region X are hardly worn, and therefore those parts are worn. Judging that it is possible to newly position it in the traveling region X and continue the operation, the transport pipe 10 is deformed by applying an external force several times, and it is located outside the wear progress region X in the inner pipe 11. When it is detected that the amount of wear of all the existing parts has reached a predetermined threshold value, it is determined that it is impossible to newly position those parts in the wear progress region X and continue the operation.
When the transport pipe 10 is deformed by applying an external force, in step 18, instead of selecting the most effective rotation angle around the pipe axis for extending the life of the transport pipe 10, the transport pipe 10 is deformed. Select the most effective post-deformation state to extend the life of the. The most effective post-deformation state is selected in consideration of the history of applying an external force to the transport pipe 10 up to that point. For example, the inner pipe 11 having the least amount of wear or the least number of times it is located in the wear progress region X is selected so as to be located in the wear progress region X after being deformed by an external force.

図3は、本実施形態による輸送管の運用方法の第三実施例を示すフローチャートである。
輸送管10の両端をそれぞれ継手20を介して配管1に接続し、稼働を開始する(ステップ21)。稼働開始すると、輸送管10の内管11にはスラリー又は摩耗性物質2が流れる。
ステップ21の後、輸送管10の稼働を継続する(ステップ22)。
ステップ22における稼働が一定の時間を経過した後、内管11の摩耗が限界に達したか否かを判断する(ステップ23)。摩耗限界は、内管11について目視検査や導通試験等を実施することにより判断する。
ステップ23において、内管11の摩耗が限界に達したと判断した場合は、輸送管10の稼働を停止し、輸送管10を交換する(ステップ24)。これにより、大きなトラブルに至ることを防止できる。
ステップ23において、内管11の摩耗が限界に達していないと判断した場合は、輸送管10が所定の稼働時間に達したか否かを判断する(ステップ25)。所定の稼働時間は、経験や予測等に基づいて予め設定する。
ステップ25において、所定の稼働時間に達していないと判断した場合は、ステップ22に戻って稼働を継続する。
ステップ25において、所定の稼働時間に達したと判断した場合は、内管11の摩耗量が所定の閾値に達したか否かを判断する(ステップ26)。内管11の摩耗量は、測定器等によって測定する。所定の閾値は、経験や予測等に基づいて予め設定する。
ステップ26において、内管11の摩耗量が所定の閾値に達していないと判断した場合は、輸送管10を管軸周りに所定の角度だけ回転させる(ステップ27)。所定の角度は、内管11のうち、それまで摩耗進行領域Xに配置されていた部分が、管軸周りの回転によって摩耗進行領域Xとは異なる角度範囲に移動するように、経験や予測等に基づいて予め設定する。ステップ27の後、ステップ22に戻って稼働を継続する。
ステップ26において、内管11の摩耗量が所定の閾値に達したと判断した場合は、摩耗箇所の管軸周りの角度範囲を特定する(ステップ28)。角度範囲は、内管11について目視検査や導通試験等を実施することにより特定する。
ステップ28で摩耗箇所の管軸周りの角度範囲を特定した後、輸送管10を管軸周りに回転した場合に稼働を継続することが可能か否かを判断する(ステップ29)。この判断は、それまでの輸送管10の回転履歴(移動履歴)を考慮して行う。例えば、まだ一回も管軸周りに輸送管10を回転させていない場合は、内管11のうち摩耗進行領域X以外に位置していた部分は殆ど摩耗していないため、それらの部分を摩耗進行領域Xに新たに位置させて稼働を継続することが可能と判断し、何回か管軸周りに輸送管10を回転させていて、内管11のうち摩耗進行領域X以外に位置している部分全ての摩耗量が所定の閾値に達したことを検知している場合は、それらの部分を摩耗進行領域Xに新たに位置させて稼働を継続することは不可能と判断する。
ステップ29において、管軸周りに輸送管10を回転した場合に稼働を継続することが可能と判断した場合は、輸送管10の寿命を延伸する上で最も効果的な管軸周りの回転角度を選定する(ステップ30)。最も効果的な管軸周りの回転角度は、それまでの輸送管10の回転履歴を考慮して選定する。例えば、内管11のうち摩耗量が最も少ないか、摩耗進行領域Xに位置した回数が最も少ない場所が、回転後に摩耗進行領域Xに位置するように選定する。
ステップ30で輸送管10の最も効果的な管軸周りの回転角度を選定した後、輸送管10を選定した回転角度、回転させる(ステップ31)。これにより、ステップ28で特定した摩耗箇所の管軸周りの角度範囲が、その角度範囲とは異なる角度範囲に移動する。ステップ31の後、ステップ22に戻って稼働を継続する。
ステップ29において、管軸周りに輸送管10を回転した場合に稼働を継続することが不可能と判断した場合は、輸送管10を回転することなくステップ22に戻って稼働を継続する。このように回転履歴を考慮しても移動先となる異なる角度範囲の選定ができない場合は、内管11のうち摩耗進行領域Xに位置していた部分を元の角度範囲に留めることで、輸送管10の不要な回転を防止することができる。
なお、内管11の摩耗が限界に達したか否かを判断するステップ23と、内管11の摩耗量が所定の閾値に達したか否かを判断するステップ26は、まとめて行ってもよい。
FIG. 3 is a flowchart showing a third embodiment of the operation method of the transport pipe according to the present embodiment.
Both ends of the transport pipe 10 are connected to the pipe 1 via the joint 20, and the operation is started (step 21). When the operation is started, the slurry or the wearable substance 2 flows through the inner pipe 11 of the transport pipe 10.
After step 21, the operation of the transport pipe 10 is continued (step 22).
After the operation in step 22 has elapsed for a certain period of time, it is determined whether or not the wear of the inner pipe 11 has reached the limit (step 23). The wear limit is determined by performing a visual inspection, a continuity test, or the like on the inner pipe 11.
When it is determined in step 23 that the wear of the inner pipe 11 has reached the limit, the operation of the transport pipe 10 is stopped and the transport pipe 10 is replaced (step 24). This can prevent major troubles.
If it is determined in step 23 that the wear of the inner pipe 11 has not reached the limit, it is determined whether or not the transport pipe 10 has reached a predetermined operating time (step 25). The predetermined operating time is set in advance based on experience, prediction, and the like.
If it is determined in step 25 that the predetermined operating time has not been reached, the process returns to step 22 to continue the operation.
When it is determined in step 25 that the predetermined operating time has been reached, it is determined whether or not the amount of wear of the inner pipe 11 has reached the predetermined threshold value (step 26). The amount of wear of the inner tube 11 is measured by a measuring instrument or the like. A predetermined threshold value is set in advance based on experience, prediction, and the like.
If it is determined in step 26 that the amount of wear of the inner pipe 11 has not reached a predetermined threshold value, the transport pipe 10 is rotated around the pipe axis by a predetermined angle (step 27). As for the predetermined angle, experience, prediction, etc. are made so that the portion of the inner pipe 11 previously arranged in the wear progress region X moves to an angle range different from the wear progress region X due to rotation around the pipe axis. It is set in advance based on. After step 27, the process returns to step 22 to continue operation.
When it is determined in step 26 that the amount of wear of the inner pipe 11 has reached a predetermined threshold value, the angle range around the pipe axis of the worn portion is specified (step 28). The angle range is specified by performing a visual inspection, a continuity test, or the like on the inner pipe 11.
After specifying the angle range around the pipe axis of the worn portion in step 28, it is determined whether or not the operation can be continued when the transport pipe 10 is rotated around the pipe axis (step 29). This determination is made in consideration of the rotation history (movement history) of the transport pipe 10 up to that point. For example, when the transport pipe 10 has not been rotated around the pipe axis even once, the parts of the inner pipe 11 located outside the wear progress region X are hardly worn, and therefore those parts are worn. Judging that it is possible to newly position it in the progress region X and continue the operation, the transport pipe 10 is rotated around the pipe axis several times, and it is located outside the wear progress region X in the inner pipe 11. When it is detected that the amount of wear of all the existing parts has reached a predetermined threshold value, it is determined that it is impossible to newly position those parts in the wear progress region X and continue the operation.
In step 29, when it is determined that the operation can be continued when the transport pipe 10 is rotated around the pipe axis, the most effective rotation angle around the pipe axis for extending the life of the transport pipe 10 is determined. Select (step 30). The most effective rotation angle around the pipe axis is selected in consideration of the rotation history of the transport pipe 10 up to that point. For example, among the inner pipes 11, the place where the amount of wear is the smallest or the number of times of being located in the wear progress region X is the smallest is selected so as to be located in the wear progress region X after rotation.
After selecting the most effective rotation angle of the transport pipe 10 around the pipe axis in step 30, the transport pipe 10 is rotated at the selected rotation angle (step 31). As a result, the angle range around the pipe axis of the worn portion identified in step 28 moves to an angle range different from the angle range. After step 31, the process returns to step 22 to continue operation.
If it is determined in step 29 that it is impossible to continue the operation when the transport pipe 10 is rotated around the pipe axis, the operation is continued by returning to step 22 without rotating the transport pipe 10. If it is not possible to select a different angle range to move to even if the rotation history is taken into consideration, the portion of the inner pipe 11 that was located in the wear progress region X can be transported by keeping it in the original angle range. It is possible to prevent unnecessary rotation of the tube 10.
Even if the step 23 for determining whether or not the wear of the inner pipe 11 has reached the limit and the step 26 for determining whether or not the amount of wear of the inner pipe 11 has reached a predetermined threshold value are performed together. good.

第三実施例による運用方法によれば、内管11のうち、摩耗進行領域Xに位置していた部分は、所定の稼働時間が経過した時点で管軸周りに輸送管10が回転することによって摩耗進行領域Xから外れ、それまで摩耗進行領域X以外に位置していた部分が新たに摩耗進行領域Xに位置して局所的摩耗を引き受けることになる。また、内管11のうち、摩耗性物質2の衝突により局所的に摩耗を受けて摩耗量が所定の閾値に達した部分の管軸周りの角度範囲が特定され、管軸周りに輸送管10を回転して稼働を継続することが可能な場合は、輸送管10の寿命を延伸する上で最も効果的な管軸周りの輸送管10の回転角度を選定して、所定の閾値に達した部分の管軸周りの角度範囲を異なる角度範囲に移動させることにより、内管11のうち、それまで摩耗進行領域Xに位置していた部分以外の相対的に最も健全な部分が新たに摩耗進行領域Xに位置して局所的摩耗を引き受けることになる。
したがって、内管11の摩耗が局所的摩耗により限界に達するまでの時間が大幅に長くなり、輸送管10全体としての寿命を大きく延伸することができる。
なお、第三実施例では、内管11の摩耗量が所定の閾値に達していない場合は所定の稼働時間ごとに輸送管10を離散的に回転する方式としているが、電動機等の駆動手段を有する輸送管回転機構を設け、輸送管回転機構による回転速度を所定の稼働時間ごとに所定の角度分輸送管10が管軸周りに回転するように設定し、稼働中は輸送管10を常時、低速で回転させてもよい。稼働中は輸送管10を常に低速で回転させることにより、内管11に生ずる摩耗を管軸周りに均一に分散させやすくなる。また、駆動手段を有する輸送管回転機構を設けることで、効率よく輸送管10の回転作業を行うことができるとともに、自動化への展開が容易となる。
According to the operation method according to the third embodiment, in the portion of the inner pipe 11 located in the wear progress region X, the transport pipe 10 rotates around the pipe axis when a predetermined operating time elapses. A portion that is out of the wear progress region X and has been located outside the wear progress region X is newly located in the wear progress region X to undertake local wear. Further, the angular range around the pipe axis of the portion of the inner pipe 11 that is locally worn by the collision of the wearable substance 2 and the amount of wear reaches a predetermined threshold value is specified, and the transport pipe 10 is located around the pipe shaft. When it is possible to rotate and continue the operation, the rotation angle of the transport pipe 10 around the pipe axis, which is most effective in extending the life of the transport pipe 10, is selected and the predetermined threshold is reached. By moving the angle range around the pipe axis of the portion to a different angle range, the relatively healthiest portion of the inner pipe 11 other than the portion previously located in the wear progress region X is newly worn. It is located in region X and will undertake local wear.
Therefore, the time until the wear of the inner pipe 11 reaches the limit due to the local wear becomes significantly longer, and the life of the transport pipe 10 as a whole can be greatly extended.
In the third embodiment, when the amount of wear of the inner pipe 11 does not reach a predetermined threshold value, the transport pipe 10 is discretely rotated every predetermined operating time, but a driving means such as an electric motor may be used. A transport pipe rotation mechanism is provided, and the rotation speed of the transport pipe rotation mechanism is set so that the transport pipe 10 rotates around the pipe axis by a predetermined angle at a predetermined operation time. It may be rotated at a low speed. By constantly rotating the transport pipe 10 at a low speed during operation, it becomes easy to uniformly disperse the wear generated in the inner pipe 11 around the pipe shaft. Further, by providing the transport pipe rotation mechanism having the drive means, the transport pipe 10 can be efficiently rotated and the development to automation becomes easy.

なお、第三実施例による運用方法において、耐摩耗ホースのように輸送管10を可撓性を持たせて構成した場合には、ステップ27及びステップ31において、輸送管10を回転させることに代えて、輸送管10に外力を加えて輸送管10を変形させることにより、内管11のうち、それまで摩耗進行領域Xに配置されていた部分を摩耗進行領域Xとは異なる角度範囲に移動させることもできる。
輸送管10に外力を加えて変形させる場合は、ステップ29において、輸送管10を管軸周りに回転した場合に稼働を継続することが可能か否かの判断に代えて、輸送管10に外力を加えて変形させた場合に稼働を継続することが可能か否かを判断する。この判断は、それまでの輸送管10に外力を加えた履歴(移動履歴)を考慮して行う。例えば、まだ一回も輸送管10に外力を加えて変形させていない場合は、内管11のうち摩耗進行領域X以外に位置していた部分は殆ど摩耗していないため、それらの部分を摩耗進行領域Xに新たに位置させて稼働を継続することが可能と判断し、何回か輸送管10に外力を加えて変形させていて、内管11のうち摩耗進行領域X以外に位置している部分全ての摩耗量が所定の閾値に達したことを検知している場合は、それらの部分を摩耗進行領域Xに新たに位置させて稼働を継続することは不可能と判断する。
また、輸送管10に外力を加えて変形させる場合は、ステップ30において、輸送管10の寿命を延伸する上で最も効果的な管軸周りの回転角度を選定することに代えて、輸送管10の寿命を延伸する上で最も効果的な変形後の状態を選定する。最も効果的な変形後の状態は、それまでの輸送管10に外力を加えた履歴を考慮して選定する。例えば、内管11のうち摩耗量が最も少ないか、摩耗進行領域Xに位置した回数が最も少ない場所が、外力による変形後に摩耗進行領域Xに位置するように選定する。
なお、輸送管10を可撓性を持たせて構成し、回転させることと外力を加えることを組み合わせて異なる角度範囲に移動させることも可能である。
In the operation method according to the third embodiment, when the transport pipe 10 is configured to have flexibility like a wear-resistant hose, the transport pipe 10 is replaced with the rotation in steps 27 and 31. By applying an external force to the transport pipe 10 to deform the transport pipe 10, the portion of the inner pipe 11 previously arranged in the wear progress region X is moved to an angle range different from the wear progress region X. You can also do it.
When an external force is applied to the transport pipe 10 to deform it, in step 29, instead of determining whether or not the operation can be continued when the transport pipe 10 is rotated around the pipe axis, the external force is applied to the transport pipe 10. It is judged whether or not it is possible to continue the operation when it is deformed by adding. This determination is made in consideration of the history (movement history) of applying an external force to the transport pipe 10 up to that point. For example, if the transport pipe 10 has not been deformed by applying an external force even once, the parts of the inner pipe 11 located outside the wear progress region X are hardly worn, and therefore those parts are worn. Judging that it is possible to newly position it in the traveling region X and continue the operation, the transport pipe 10 is deformed by applying an external force several times, and it is located outside the wear progress region X in the inner pipe 11. When it is detected that the amount of wear of all the existing parts has reached a predetermined threshold value, it is determined that it is impossible to newly position those parts in the wear progress region X and continue the operation.
Further, when the transport pipe 10 is deformed by applying an external force, in step 30, instead of selecting the most effective rotation angle around the pipe axis for extending the life of the transport pipe 10, the transport pipe 10 is deformed. Select the most effective post-deformation state to extend the life of the. The most effective post-deformation state is selected in consideration of the history of applying an external force to the transport pipe 10 up to that point. For example, the inner pipe 11 having the least amount of wear or the least number of times it is located in the wear progress region X is selected so as to be located in the wear progress region X after being deformed by an external force.
It is also possible to configure the transport pipe 10 with flexibility and move it to a different angle range by combining rotation and applying an external force.

図4は、上述した第一から第三実施例による輸送管の運用方法に用いることができる輸送管回転機構の一例を示す図であり、図4(a)は曲がり部を有する輸送管を管軸周りに回転させる状態を示し、図4(b)は曲がり部を有さない輸送管を管軸周りに回転させる状態を示している。輸送管回転機構は、輸送管10と、それを接続する配管1との間にボルト・ナット締結式のフランジ継手20を設け、接合するフランジのボルト穴を相対的に輸送管10の管軸周りに適宜ずらしてボルト・ナット締結することにより、輸送管10を管軸周りに(ボルト穴の角度間隔の整数倍分だけ)段階的に回転できるようにしたものであり、後述するスラリー循環式摩耗試験の第三実施による運用方法で用いた回転方法である。
本例の輸送管回転機構は、機構が簡素で安価である。殆どの場合、現行の配管設定のままで輸送管10の回転が実現できる。
なお、フランジ継手20は締結したままにしておき、フランジ付き金具と輸送管10との間の相対的角度位置を適宜ずらす方式にしてもよい。
FIG. 4 is a diagram showing an example of a transport pipe rotation mechanism that can be used in the transport pipe operation method according to the first to third embodiments described above, and FIG. 4A is a diagram showing a transport pipe having a bent portion. A state of rotating around the axis is shown, and FIG. 4 (b) shows a state of rotating a transport pipe having no bent portion around the tube axis. The transport pipe rotation mechanism is provided with a bolt-nut fastening type flange joint 20 between the transport pipe 10 and the pipe 1 connecting the transport pipe 10, and the bolt holes of the flanges to be joined are relatively around the pipe axis of the transport pipe 10. The transport pipe 10 can be rotated stepwise around the pipe axis (by an integral multiple of the angle interval of the bolt holes) by fastening bolts and nuts at appropriate intervals. This is the rotation method used in the operation method according to the third implementation of the test.
The transport pipe rotation mechanism of this example has a simple mechanism and is inexpensive. In most cases, the rotation of the transport pipe 10 can be realized with the current pipe settings.
The flange joint 20 may be left fastened and the relative angular position between the flanged metal fitting and the transport pipe 10 may be appropriately shifted.

図5は、上述した第一から第三実施例による輸送管の運用方法に用いることができる輸送管回転機構の他の例を示している。輸送管回転機構は、輸送管10と、それを接続する配管1との間に回転管継手20を設け、輸送管10を管軸周りに自由に回転できるようにしたものである。
回転管継手20には、回転角度把握手段として、輸送管10の管軸周りの一定角度ごと(例えば30度ごと)にノッチを設けたり、回転角度を示す目盛を設けたりしておくと、回転作業時に輸送管10の回転角度を把握しやすくなる。
回転管継手20の輸送管10側フランジには、回転作業用の取っ手やハンドル30などを適宜設けておくと、テコの原理により輸送管10の回転が容易になる。輸送管10がホースのような可撓管で長い場合には、輸送管10の捩れを防止するため、図5に示すように輸送管10の両端10a、10bを同時かつ同方向に回すことが望ましいが、輸送管10が鋼管のような高剛性管である場合や可撓管であっても短い場合には、輸送管10の一方の端部10a(又は他方の端部10b)のみを回すことにより輸送管10全体を回転させてもよい。
本例の輸送管回転機構によれば、配管系を稼働したまま輸送管10を回転することができるので、輸送管10の回転に要する手間を減らし作業時間を大幅に短縮できる。
FIG. 5 shows another example of the transport pipe rotation mechanism that can be used in the method of operating the transport pipe according to the first to third embodiments described above. The transport pipe rotation mechanism is provided with a rotary pipe joint 20 between the transport pipe 10 and the pipe 1 connecting the transport pipe 10 so that the transport pipe 10 can freely rotate around the pipe axis.
The rotary pipe joint 20 is provided with a notch at a fixed angle (for example, every 30 degrees) around the pipe axis of the transport pipe 10 or a scale indicating the rotation angle as a means for grasping the rotation angle. It becomes easy to grasp the rotation angle of the transport pipe 10 during work.
If a handle, a handle 30, or the like for rotating work is appropriately provided on the flange on the transport pipe 10 side of the rotary pipe joint 20, the transport pipe 10 can be easily rotated by the principle of leverage. When the transport pipe 10 is a flexible pipe such as a hose and is long, in order to prevent the transport pipe 10 from twisting, both ends 10a and 10b of the transport pipe 10 may be rotated simultaneously and in the same direction as shown in FIG. Desirably, if the transport pipe 10 is a highly rigid pipe such as a steel pipe, or if the transport pipe 10 is a flexible pipe but is short, only one end 10a (or the other end 10b) of the transport pipe 10 is turned. Thereby, the entire transport pipe 10 may be rotated.
According to the transport pipe rotation mechanism of this example, since the transport pipe 10 can be rotated while the piping system is in operation, the labor required for the rotation of the transport pipe 10 can be reduced and the work time can be significantly shortened.

図6は、上述した第一から第三実施例による輸送管の運用方法に用いることができる輸送管回転機構のさらに他の例を示している。輸送管回転機構は、輸送管10と、それを接続する配管1との間に回転管継手20を設け、輸送管10を管軸周りに自由に回転できるようにした上、回転管継手20の輸送管側フランジを電動回転機構40によって任意の角度だけ回転できるようにしたものである。
摩耗検知情報の処理及び輸送管回転角度の決定や電動回転機構40の操作などは人間が手動で行ってもよいが、図6に示すように専用の計測・制御装置50を設け、専用プログラムによるコンピューター制御とすることも可能である。コンピューター制御の場合、輸送管10からの摩耗検知情報と電動回転機構40からの輸送管回転角度情報が計測・制御装置50への入力となり、電動回転機構40への輸送管回転制御信号が計測・制御装置50からの出力となる。なお、本例では輸送管側フランジの回転に電動回転機構40を用いたが、油圧、水圧、空気圧、又は電磁気力等、任意の駆動力による回転機構を用いることもできる。
本例の輸送管回転機構によれば配管系を稼働したまま輸送管10を回転することができるので、輸送管10の回転に要する手間を減らし作業時間を大幅に短縮できる。また、輸送管10からの摩耗検知情報に基づいて的確な輸送管回転角度を割り出し、電動回転機構40により正確な輸送管回転制御を行うことができる。また、コンピューター制御による自動化が可能となる。
FIG. 6 shows still another example of the transport pipe rotation mechanism that can be used in the transport pipe operation method according to the first to third embodiments described above. In the transport pipe rotation mechanism, a rotary pipe joint 20 is provided between the transport pipe 10 and the pipe 1 connecting the transport pipe 10 so that the transport pipe 10 can freely rotate around the pipe axis, and then the rotary pipe joint 20 is provided. The transport pipe side flange can be rotated by an arbitrary angle by the electric rotation mechanism 40.
Humans may manually process wear detection information, determine the rotation angle of the transport pipe, and operate the electric rotation mechanism 40. However, as shown in FIG. 6, a dedicated measurement / control device 50 is provided and a dedicated program is used. It can also be controlled by a computer. In the case of computer control, wear detection information from the transport pipe 10 and transport pipe rotation angle information from the electric rotation mechanism 40 are input to the control device 50, and the transport pipe rotation control signal to the electric rotation mechanism 40 is measured. It is an output from the control device 50. In this example, the electric rotation mechanism 40 is used for the rotation of the flange on the transport pipe side, but a rotation mechanism by an arbitrary driving force such as hydraulic pressure, water pressure, pneumatic force, or electromagnetic force can also be used.
According to the transport pipe rotation mechanism of this example, since the transport pipe 10 can be rotated while the piping system is in operation, the labor required for the rotation of the transport pipe 10 can be reduced and the work time can be significantly shortened. Further, an accurate transport pipe rotation angle can be determined based on wear detection information from the transport pipe 10, and accurate transport pipe rotation control can be performed by the electric rotation mechanism 40. In addition, computer-controlled automation is possible.

図7は、上述した第一から第三実施例による輸送管の運用方法において、耐摩耗ホースのように輸送管を可撓性を持たせて構成した場合に用いることができる輸送管変形機構の一例を示している。
輸送管変形機構は、輸送管10の一方の端部10aと他方の端部10bとの中間部分に設けられた浮力発生手段60であり、外力としての浮力を輸送管10に加える。浮力発生手段60を用いることにより、特に水中にある輸送管10に外力を加えることが容易となる。なお、大気中にある輸送管10に浮力発生手段60を用いることもできる。
浮力発生手段60は、空気やガス等の気体の出し入れによって膨張及び収縮する膨縮部61を有する。なお、気体の出し入れは外部からのオン/オフ操作等により行う。
図7(a)に示すように、膨縮部61が内部に気体が充満しておらず収縮しているときには、輸送管10は、自重及び浮力発生手段60の重さによって垂れ下がった状態である。また、図7(b)に示すように、気体を入れて膨縮部61を膨張させると、浮力発生手段60に浮力が発生し、浮力発生手段60の浮力が輸送管10に加わり、輸送管10の中間部分が持ち上げられた状態に変形する。
このように浮力発生手段60に作用する浮力を制御し、輸送管10に浮力を加えて変形させることで、輸送管10の中間部分の位置を上下反転させることができる。このとき輸送管10は、管軸周りに回転せず、図7(a)に示す状態から図7(b)に示す状態へ、又は図7(b)に示す状態から図7(a)に示す状態へと変形することにより、一方の端部10aと他方の端部10bとの間に形成された4カ所の曲がり部のうち、摩耗性物質2の衝突により局所的に著しい摩耗損傷を受けやすい曲がり外側部分が上下で入れ替わる。これにより、内管11のうち、それまで摩耗進行領域Xに配置されていた部分が摩耗進行領域Xとは異なる角度範囲に移動することになり、輸送管10を管軸周りに180度回転させた場合と同様の効果を得ることができる。
FIG. 7 shows a transport pipe deformation mechanism that can be used when the transport pipe is configured to have flexibility like a wear-resistant hose in the method of operating the transport pipe according to the first to third embodiments described above. An example is shown.
The transport pipe deformation mechanism is a buoyancy generating means 60 provided in an intermediate portion between one end 10a and the other end 10b of the transport pipe 10, and applies buoyancy as an external force to the transport pipe 10. By using the buoyancy generating means 60, it becomes easy to apply an external force particularly to the transport pipe 10 in the water. The buoyancy generating means 60 can also be used for the transport pipe 10 in the atmosphere.
The buoyancy generating means 60 has an expansion / contraction portion 61 that expands and contracts when a gas such as air or gas is taken in and out. It should be noted that the gas is taken in and out by an on / off operation from the outside.
As shown in FIG. 7A, when the expansion / contraction portion 61 is not filled with gas and is contracting, the transport pipe 10 is in a state of hanging due to its own weight and the weight of the buoyancy generating means 60. .. Further, as shown in FIG. 7B, when the expansion / contraction portion 61 is expanded by injecting gas, buoyancy is generated in the buoyancy generating means 60, and the buoyancy of the buoyancy generating means 60 is applied to the transport pipe 10 to form the transport pipe. The middle part of 10 is deformed into a lifted state.
By controlling the buoyancy acting on the buoyancy generating means 60 in this way and applying the buoyancy to the transport pipe 10 to deform it, the position of the intermediate portion of the transport pipe 10 can be turned upside down. At this time, the transport pipe 10 does not rotate around the pipe axis, and changes from the state shown in FIG. 7 (a) to the state shown in FIG. 7 (b), or from the state shown in FIG. 7 (b) to FIG. 7 (a). By deforming to the state shown, of the four bends formed between one end 10a and the other end 10b, the wear-resistant substance 2 collides with the wear-related material 2 to cause significant wear damage locally. Easy bend The outer part is swapped up and down. As a result, the portion of the inner pipe 11 previously arranged in the wear progress region X moves to an angle range different from the wear progress region X, and the transport pipe 10 is rotated 180 degrees around the pipe axis. The same effect as in the case of

なお、輸送管10の両端10a、10bの高さと中間部分の高さが同じとなるように、又は任意の高さとなるように浮力発生手段60の浮力を制御し、輸送管10に浮力を加えることで、曲がり部の曲率を緩やかにして内管11の摩耗を軽減させたり、内管11のうち、それまで摩耗進行領域Xに配置されていた部分を摩耗進行領域Xとは異なる角度範囲に移動させたりすることもできる。
また、輸送管変形機構は、浮力発生手段60に代えて、輸送管10の中間部分をワイヤー等の吊具を用いて牽引する懸吊機や、輸送管10の中間部分を載せて上下に動く架台等の機構手段を用いて構成することもできる。さらに、例えば輸送管10の中間部分を載せて動く架台を上下のみならず左右にも動くように構成し、架台を下→左→上→右の順に移動させれば、架台の動きに伴って輸送管10が変形し、中間部分の位置も下→左→上→右の順に変わるため、内管11のうち、摩耗進行領域Xに配置されている部分が順次移動し、輸送管10を管軸周りに90度ずつ回転した場合と同様の効果を得ることができる。
なお、輸送管10を可撓性を持たせて構成し、回転させることと外力を加えることを組み合わせて異なる角度範囲に移動させる場合には、例えば輸送管回転機構と輸送管変形機構を組み合わせて用いることができる。また、輸送管回転機構により可撓性を有した輸送管10を回転させることによる回転と、回転に伴う輸送管10の変形を利用して実現することもできる。
The buoyancy of the buoyancy generating means 60 is controlled so that the heights of both ends 10a and 10b of the transport pipe 10 and the height of the intermediate portion are the same or arbitrary heights, and the buoyancy is applied to the transport pipe 10. As a result, the curvature of the bent portion is made gentle to reduce the wear of the inner pipe 11, and the portion of the inner pipe 11 previously arranged in the wear progress region X is set in an angle range different from the wear progress region X. You can also move it.
Further, the transport pipe deformation mechanism moves up and down by mounting a suspension machine for pulling the intermediate portion of the transport pipe 10 using a hanging tool such as a wire or an intermediate portion of the transport pipe 10 instead of the buoyancy generating means 60. It can also be configured by using a mechanical means such as a gantry. Further, for example, if the pedestal on which the intermediate portion of the transport pipe 10 is placed is configured to move not only up and down but also left and right, and the pedestal is moved in the order of bottom → left → top → right, the pedestal moves with the movement of the pedestal. Since the transport pipe 10 is deformed and the position of the intermediate portion also changes in the order of bottom → left → top → right, the portion of the inner pipe 11 arranged in the wear progress region X moves in sequence, and the transport pipe 10 is piped. The same effect as when rotated by 90 degrees around the axis can be obtained.
When the transport pipe 10 is configured to have flexibility and is moved to different angle ranges by combining rotation and applying an external force, for example, a transport pipe rotation mechanism and a transport pipe deformation mechanism are combined. Can be used. Further, it can also be realized by utilizing the rotation by rotating the flexible transport pipe 10 by the transport pipe rotation mechanism and the deformation of the transport pipe 10 due to the rotation.

次に、本実施形態による輸送管の運用方法を用いた実証試験について説明する。
本実施形態による輸送管の運用方法による寿命延伸効果を検証するため、輸送管の一種である耐摩耗ホースと模擬鉱石スラリーを用いたスラリー循環式摩耗試験を実施し、上記した従来の運用方法(比較例)と第三実施例による運用方法の比較検証を行った。
Next, a verification test using the operation method of the transport pipe according to the present embodiment will be described.
In order to verify the life extension effect of the transport pipe operation method according to this embodiment, a slurry circulation type wear test using a wear-resistant hose, which is a kind of transport pipe, and a simulated ore slurry was carried out, and the above-mentioned conventional operation method ( A comparative verification of the operation method using the comparative example) and the third embodiment was performed.

摩耗試験に供した耐摩耗ホース10は、市販の工業用耐摩耗ホースであり、内径76mm、外径100mmである。耐摩耗ホース10の内管11は耐摩耗性ゴムであり、その外側には順次、補強繊維層、軟質PVC補強層及び螺旋状の硬質PVC補強材が設けられている。ここで、輸送管10の運用方法の比較検証を行うには、内管11の局所的摩耗が所定の閾値に達したかどうかを適宜検知する必要があるが、耐摩耗性ゴム製の内管11の局所的摩耗度を目視等、通常の方法により定量的に検知することは困難であるため、予め内管11の内側に鋼製の螺旋状ライナーを形成しておき、この螺旋状ライナーがスラリー中の模擬鉱石(摩耗性物質2)の衝突によって摩滅し破断した時点をもって「輸送管10の内管11の局所的摩耗が限界に達した時点」と判断し、同様にして螺旋状ライナーが破断した箇所をもって「輸送管10の内管11の局所的摩耗が限界に達した箇所」と判断した。
螺旋状ライナーの形成方法としては、まずSUS304鋼製のテープ(断面寸法:厚さ2mm×幅10mm)を外径70mmの鋼製パイプに適当な張力をかけた状態で螺旋状に巻き付け、そのまま張力を保ってテープがパイプに密着した状態で工業用耐摩耗ホース10の内管11に挿入した後、テープ端の張力を解放して螺旋を径方向に膨らませ、内管11に密着させて螺旋状ライナーを形成した。ここで、最終的な螺旋状ライナーのホース管軸方向の隙間は約2mmであった。ホース端からホース管軸方向に撮影した螺旋状ライナー付き耐摩耗ホース10の内部の概観写真を図8に、工業用内視鏡を用いて撮影した螺旋状ライナーの近接写真を図9にそれぞれ示す。
The wear-resistant hose 10 used for the wear test is a commercially available industrial wear-resistant hose having an inner diameter of 76 mm and an outer diameter of 100 mm. The inner pipe 11 of the wear-resistant hose 10 is made of wear-resistant rubber, and a reinforcing fiber layer, a soft PVC reinforcing layer, and a spiral hard PVC reinforcing material are sequentially provided on the outer side thereof. Here, in order to perform comparative verification of the operation method of the transport pipe 10, it is necessary to appropriately detect whether or not the local wear of the inner pipe 11 has reached a predetermined threshold, but the inner pipe made of wear-resistant rubber is used. Since it is difficult to quantitatively detect the degree of local wear of 11 by a usual method such as visual inspection, a steel spiral liner is formed inside the inner tube 11 in advance, and this spiral liner is used. The time when the simulated ore (wearable substance 2) in the slurry is worn away and broken is judged as "the time when the local wear of the inner pipe 11 of the transport pipe 10 reaches the limit", and the spiral liner is similarly formed. The broken portion was determined to be "a portion where the local wear of the inner pipe 11 of the transport pipe 10 reached the limit".
As a method for forming the spiral liner, first, a SUS304 steel tape (cross-sectional dimensions: thickness 2 mm x width 10 mm) is spirally wound around a steel pipe having an outer diameter of 70 mm with appropriate tension applied, and the tension is maintained as it is. After inserting the tape into the inner tube 11 of the industrial wear-resistant hose 10 in a state where the tape is in close contact with the pipe, the tension at the end of the tape is released to inflate the spiral in the radial direction, and the spiral is brought into close contact with the inner tube 11 to form a spiral. Formed a liner. Here, the gap in the hose tube axial direction of the final spiral liner was about 2 mm. FIG. 8 shows an overview photograph of the inside of the wear-resistant hose 10 with a spiral liner taken in the direction of the hose tube axis from the hose end, and FIG. 9 shows a close-up photograph of the spiral liner taken using an industrial endoscope. ..

図10は実証試験に用いたスラリー循環式摩耗試験装置の概観写真であり、図10(a)は全体図、図10(b)はホース摩耗試験部を拡大した図である。本装置は、水を満たしたタンク3の上部から模擬鉱石を一定量投入してスラリーとし、これをスラリー循環用ポンプ4で配管1内を循環させることにより、途中に接続した耐摩耗ホース10の摩耗試験を行うものである。なお、図10の白塗矢印は、スラリー循環方向を示している。
図10に示すように、上流側の耐摩耗ホース(ライナーなし)1にフランジ付き金具(継手)20を介して螺旋状ライナー付き耐摩耗ホース10を連結してホース摩耗試験部αとした。実際の使用状況を考慮してホース摩耗試験部αには曲率を持たせており、ホース摩耗試験部αにおける耐摩耗ホース10の最小曲率半径は2.2mとした。なお、螺旋状ライナー付き耐摩耗ホース10を連結する際には、螺旋状ライナー端部を内管11と接続用のフランジ付き金具20の間に挟み、耐摩耗ホース10の外側から締め付け用器具で締め付けることにより螺旋状ライナー端部を固定した。また、摩耗試験部αの下流側には流量計5を設けている。
FIG. 10 is an overview photograph of the slurry circulation type wear test apparatus used in the verification test, FIG. 10 (a) is an overall view, and FIG. 10 (b) is an enlarged view of the hose wear test unit. In this device, a certain amount of simulated ore is charged from the upper part of the tank 3 filled with water to form a slurry, which is circulated in the pipe 1 by the slurry circulation pump 4, so that the wear-resistant hose 10 connected in the middle thereof. A wear test is performed. The white-painted arrow in FIG. 10 indicates the slurry circulation direction.
As shown in FIG. 10, a wear-resistant hose 10 with a spiral liner was connected to a wear-resistant hose (without liner) 1 on the upstream side via a metal fitting (joint) 20 with a flange to form a hose wear test unit α. The hose wear test unit α is provided with a curvature in consideration of the actual usage situation, and the minimum radius of curvature of the wear resistant hose 10 in the hose wear test unit α is set to 2.2 m. When connecting the wear-resistant hose 10 with a spiral liner, the end of the spiral liner is sandwiched between the inner pipe 11 and the metal fitting 20 with a flange for connection, and a tightening tool is used from the outside of the wear-resistant hose 10. The end of the spiral liner was fixed by tightening. Further, a flow meter 5 is provided on the downstream side of the wear test unit α.

図11は同実証試験に用いた模擬鉱石の概観写真である。
スラリー中の模擬鉱石には、ある程度粒径の揃った市販の砕石(生産品名:単粒度砕石S−20(5号)(茨城県笠間産)、岩質:硬質砂岩(堆積岩)、絶乾密度:2.65g/cm、平均粒径:約19mm)を用いた。
試験時の模擬鉱石投入量(1回分)は25kgとし、移送水は淡水を使用した。試験中、スラリーの模擬鉱石濃度は約5%(体積濃度)であった。
FIG. 11 is an overview photograph of the simulated ore used in the demonstration test.
The simulated ore in the slurry is commercially available crushed stone with a certain grain size (product name: single grain size crushed stone S-20 (No. 5) (produced in Kasama, Ibaraki Prefecture), rock quality: hard sandstone (sedimentary rock), absolute dry density. : 2.65 g / cm 3 , average particle size: about 19 mm) was used.
The simulated ore input amount (one dose) at the time of the test was 25 kg, and fresh water was used as the transfer water. During the test, the simulated ore concentration of the slurry was about 5% (volume concentration).

なお、実証試験では、模擬鉱石の経時摩耗劣化を考慮して1回の連続試験時間を1時間とした。すなわち、新しい模擬鉱石を25kg投入して1時間連続試験を行った後は使用した模擬鉱石をすべて回収し、改めて新しい模擬鉱石を25kg投入してから次の連続試験を1時間行うこととし、このサイクルを所定の摩耗試験時間に達するまで繰り返した。 In the verification test, one continuous test time was set to 1 hour in consideration of wear deterioration of the simulated ore over time. That is, after 25 kg of new simulated ore is charged and the continuous test is performed for 1 hour, all the used simulated ore is recovered, and after 25 kg of new simulated ore is charged again, the next continuous test is performed for 1 hour. The cycle was repeated until the specified wear test time was reached.

まず、従来の運用方法(比較例)の試験結果について説明する。
螺旋状ライナー付き耐摩耗ホース10をホース摩耗試験部αに装着し、図24に示すフローチャートに従って、耐摩耗ホース10の管軸周り角度を固定したままスラリー循環式摩耗試験を実施した。
図24に示すフローチャートでは、稼働が所定の時間を経過した後、内管11の摩耗が限界に達したか否かを判断する(ステップ300)が、摩耗試験では、試験時間(稼働時間)が、10時間、16時間、18時間を経過したそれぞれの時点で、耐摩耗ホース10を取り外して内部観察を行い、螺旋状ライナーの状態を調べた。最終的に内管11の摩耗が限界に達したと判断された時点(本試験の場合は螺旋状ライナーの破断が確認された時点)で摩耗試験は終了とし、それまでの試験時間をもって耐摩耗ホース10の寿命と定義した。
図24に示すフローチャートに基づいた摩耗試験では、試験時間が18時間経過した時点で上流側のホース端から78.8cm下流側に離れた位置の鉛直下側(下面側)の螺旋状ライナーが破断した。工業用内視鏡による螺旋状ライナーの破断箇所の観察写真を図11に示す。
First, the test results of the conventional operation method (comparative example) will be described.
The wear-resistant hose 10 with a spiral liner was attached to the hose wear test unit α, and a slurry circulation type wear test was performed with the angle around the tube axis of the wear-resistant hose 10 fixed according to the flowchart shown in FIG.
In the flowchart shown in FIG. 24, it is determined whether or not the wear of the inner pipe 11 has reached the limit after the operation has elapsed a predetermined time (step 300), but in the wear test, the test time (operating time) is determined. At each time point after 10 hours, 16 hours, and 18 hours, the wear-resistant hose 10 was removed and an internal observation was performed to examine the state of the spiral liner. The wear test is terminated when it is finally determined that the wear of the inner tube 11 has reached the limit (in the case of this test, when the breakage of the spiral liner is confirmed), and the wear resistance is reached with the test time up to that point. It was defined as the life of the hose 10.
In the wear test based on the flowchart shown in FIG. 24, when the test time has elapsed 18 hours, the spiral liner on the vertically lower side (lower surface side) at a position 78.8 cm downstream from the hose end on the upstream side breaks. did. FIG. 11 shows an observation photograph of the broken portion of the spiral liner with an industrial endoscope.

次に、第三実施例による運用方法の試験結果について説明する。
螺旋状ライナー付き耐摩耗ホース10をホース摩耗試験部αに装着し、図3に示すフローチャートに従って、管軸周りに耐摩耗ホース10を適宜回転させながらスラリー循環式摩耗試験を実施した。
図3に示すフローチャートでは、稼働が所定の時間を経過した後、内管11の摩耗が限界に達したか否かを判断する(ステップ23)が、摩耗試験では、試験時間(稼働時間)が4時間を経過するごとに、耐摩耗ホース10を取り外して内部観察を行い、螺旋状ライナーの状態を調べた。また、それと同時に、内管11の摩耗量が所定の閾値に達したか否かの判断を行った(ステップ26)。すなわち本試験では、内管11の摩耗が限界に達したか否かを判断するステップ23と、内管11の摩耗量が所定の閾値に達したか否かを判断するステップ26を、まとめて実施した。
Next, the test results of the operation method according to the third embodiment will be described.
The wear-resistant hose 10 with a spiral liner was attached to the hose wear test unit α, and a slurry circulation type wear test was performed while appropriately rotating the wear-resistant hose 10 around the pipe axis according to the flowchart shown in FIG.
In the flowchart shown in FIG. 3, it is determined whether or not the wear of the inner pipe 11 has reached the limit after the operation has elapsed a predetermined time (step 23), but in the wear test, the test time (operating time) is determined. After every 4 hours, the wear-resistant hose 10 was removed and an internal observation was performed to check the state of the spiral liner. At the same time, it was determined whether or not the amount of wear of the inner tube 11 reached a predetermined threshold value (step 26). That is, in this test, a step 23 for determining whether or not the wear of the inner tube 11 has reached the limit and a step 26 for determining whether or not the amount of wear of the inner tube 11 has reached a predetermined threshold value are put together. Carried out.

第三実施例による運用方法の試験において、図3に示すフローチャートのステップ27における、耐摩耗ホース10を管軸周りに「所定の角度」だけ回転させる方法としては、以下の方法を用いた。
1.図13は耐摩耗ホースの管軸周りの角度位置を示す図である。配管1と耐摩耗ホース10との接続に使用しているフランジ付き金具(継手)20を上流側から眺め、図13に示すように、耐摩耗ホース10の管軸周りのボルト穴の角度位置に応じて位置番号(1)〜(8)を振る。これらの位置番号は、耐摩耗ホース10の回転に伴って耐摩耗ホース10と一緒に回転するものとする。
2.スラリー循環式摩耗試験では、試験の開始時に耐摩耗ホース10は角度位置(1)が鉛直上側、角度位置(2)が鉛直下側となるように装着しておき、試験時間が4時間経過するごとに、角度位置が(3)、(4)、(5)、(6)、(7)、(8)、(1)、(2)、・・・の順で鉛直上側となるように耐摩耗ホース10を管軸周りに回転していく。
In the test of the operation method according to the third embodiment, the following method was used as a method of rotating the wear-resistant hose 10 around the pipe axis by a “predetermined angle” in step 27 of the flowchart shown in FIG.
1. 1. FIG. 13 is a diagram showing an angular position of the wear-resistant hose around the tube axis. Looking at the flanged metal fitting (joint) 20 used for connecting the pipe 1 and the wear-resistant hose 10 from the upstream side, as shown in FIG. 13, at the angle position of the bolt hole around the pipe axis of the wear-resistant hose 10. Position numbers (1) to (8) are assigned accordingly. These position numbers shall rotate together with the wear-resistant hose 10 as the wear-resistant hose 10 rotates.
2. 2. In the slurry circulation type wear test, the wear resistant hose 10 is attached so that the angle position (1) is vertically above and the angle position (2) is vertically below at the start of the test, and the test time elapses for 4 hours. So that the angle position is vertically above in the order of (3), (4), (5), (6), (7), (8), (1), (2), ... The wear-resistant hose 10 is rotated around the pipe axis.

なお、第三実施例による運用方法の試験においては、鉛直上側にくる角度位置が上記順序となる回転方法としたが、実際の運用では、摩耗箇所の管軸周りの角度範囲の大小や、摩耗箇所に関する経験的な知見等に基づいて、鉛直上側にくる角度位置の順序を、(1)→(2)→(3)→(4)の繰り返しとしたり、(1)→(2)→(1)→(2)、(1)→(3)→(2)→(4)、又は(1)→(5)→(3)→(7)→(2)→(6)→(4)→(8)というように一定の角度分ずつ回転させていったりと、耐摩耗ホース10の稼働状況や摩耗形態に応じて最適な回転方法を選択することが好ましい。 In the test of the operation method according to the third embodiment, the rotation method was adopted in which the angle positions coming to the vertical upper side are in the above order, but in the actual operation, the magnitude of the angle range around the pipe axis of the worn part and the wear are used. Based on empirical knowledge about the location, the order of the angular positions that come to the vertical upper side may be a repetition of (1) → (2) → (3) → (4), or (1) → (2) → ( 1) → (2), (1) → (3) → (2) → (4), or (1) → (5) → (3) → (7) → (2) → (6) → (4) ) → (8), it is preferable to select the optimum rotation method according to the operating condition and the wear form of the wear-resistant hose 10, such as rotating the wear-resistant hose 10 by a certain angle.

第三実施例による運用方法の試験においては、図3に示すフローチャートのステップ26及びステップ28として、試験時間が4時間経過するごとに耐摩耗ホース10を取り外して内部を観察し、局所的に螺旋状ライナーの摩耗や変形、浮きなどの異常が認められた場合には、耐摩耗ホース10を管軸周りに所定の角度だけ回転させるステップ27には移行せず、異常箇所を含む耐摩耗ホース10の管軸周りの角度範囲がなるべく鉛直下側の位置(模擬鉱石による摩耗が最も激しいと予測される摩耗進行領域X)から外れるように耐摩耗ホース10の管軸周りの回転が可能かどうかを判断し(ステップ29)、可能と判断した場合には、耐摩耗ホース10の寿命を延伸する上で最も効果的な管軸周りの回転角度を選定(ステップ30)した後、輸送管10を選定した回転角度分だけ回転させ(ステップ31)、ステップ22に戻って稼働を継続した。
他方、ステップ29において、管軸周りに耐摩耗ホース10を回転させた場合に試験の継続が不可能と判断した場合には、それ以上の耐摩耗ホース10の回転は行わず、そのままステップ22に戻って摩耗試験を継続することとした。最終的に、ステップ23において内管11の摩耗が限界に達したと判断された時点(本試験の場合は螺旋状ライナーの破断が確認された時点)で摩耗試験は終了とし、それまでの摩耗試験経過時間をもって耐摩耗ホース10の寿命と定義した。
In the test of the operation method according to the third embodiment, as steps 26 and 28 of the flowchart shown in FIG. 3, the wear-resistant hose 10 is removed and the inside is observed every 4 hours of the test time, and the inside is locally spiraled. If an abnormality such as wear, deformation, or floating of the shape liner is found, the wear-resistant hose 10 does not move to step 27 in which the wear-resistant hose 10 is rotated by a predetermined angle around the pipe axis, and the wear-resistant hose 10 including the abnormal portion is included. Whether or not the wear-resistant hose 10 can rotate around the pipe axis so that the angle range around the pipe axis of the hose is as far as possible from the position on the vertically lower side (wear progress region X where wear due to simulated ore is predicted to be the most severe). If it is determined (step 29) and it is determined that it is possible, the most effective rotation angle around the pipe axis for extending the life of the wear-resistant hose 10 is selected (step 30), and then the transport pipe 10 is selected. The rotation was performed by the rotation angle (step 31), and the operation was continued by returning to step 22.
On the other hand, if it is determined in step 29 that the test cannot be continued when the wear-resistant hose 10 is rotated around the pipe axis, the wear-resistant hose 10 is not rotated any further, and the process proceeds to step 22 as it is. It was decided to go back and continue the wear test. Finally, when it is determined in step 23 that the wear of the inner tube 11 has reached the limit (in the case of this test, when the breakage of the spiral liner is confirmed), the wear test is completed and the wear up to that point is completed. The elapsed time of the test was defined as the life of the wear resistant hose 10.

第三実施例による運用方法を用いた摩耗試験では、角度位置(7)を耐摩耗ホース10の鉛直上側とした試験が終了し、積算の試験時間が28時間となった時点における耐摩耗ホース10の内部観察で、角度位置(5)及び(6)を含む角度範囲の螺旋状ライナーの変形、浮きが認められたが、耐摩耗ホース10を管軸周りに回転させて稼働を継続することはまだ可能と判断し(ステップ29)、角度位置(8)を鉛直上側にするのが耐摩耗ホース10の寿命を延伸する上で最も効果的と判断し(ステップ30)、管軸周りに耐摩耗ホース10を回転してから試験を継続した(ステップ31)。その後、角度位置(8)を鉛直上側にした試験が終了し、積算の試験時間が32時間となった時点における耐摩耗ホース10の内部観察で、角度位置(5)及び(6)を含む角度範囲に加え、その他の角度範囲でも螺旋状ライナーの変形、浮きが認められたが、耐摩耗ホース10を管軸周りに回転させて稼働を継続することはまだ可能と判断し(ステップ29)、角度位置(1)を鉛直上側にするのが耐摩耗ホース10の寿命を延伸する上で最も効果的と判断し(ステップ30)、管軸周りに耐摩耗ホース10を回転してから試験を継続した(ステップ31)。その後、積算の試験時間が36時間となった時点で、上流側のホース端から76.2cm下流側に離れた位置の鉛直下側(角度位置(2)付近)で螺旋状ライナーが破断した。工業用内視鏡による螺旋状ライナーの破断箇所の観察写真を図14に示す。 In the wear test using the operation method according to the third embodiment, the test with the angle position (7) on the vertical upper side of the wear resistant hose 10 is completed, and the wear resistant hose 10 at the time when the integrated test time reaches 28 hours. In the internal observation of, deformation and floating of the spiral liner in the angle range including the angle positions (5) and (6) were observed, but the wear-resistant hose 10 could be rotated around the pipe axis to continue the operation. It was judged that it was still possible (step 29), and it was judged that setting the angle position (8) to the vertical upper side was the most effective in extending the life of the wear resistant hose 10 (step 30), and it was judged that the wear resistance around the pipe axis was reached. The test was continued after rotating the hose 10 (step 31). After that, when the test with the angle position (8) on the vertical upper side was completed and the integrated test time reached 32 hours, the internal observation of the wear-resistant hose 10 showed the angle including the angle positions (5) and (6). In addition to the range, deformation and floating of the spiral liner were observed in other angle ranges, but it was judged that it was still possible to continue the operation by rotating the wear-resistant hose 10 around the pipe axis (step 29). It is judged that setting the angular position (1) to the vertical upper side is the most effective in extending the life of the wear-resistant hose (step 30), and the test is continued after rotating the wear-resistant hose 10 around the pipe axis. (Step 31). Then, when the integrated test time reached 36 hours, the spiral liner broke on the vertically lower side (near the angle position (2)) at a position 76.2 cm downstream from the hose end on the upstream side. FIG. 14 shows an observation photograph of the broken portion of the spiral liner with an industrial endoscope.

上記した従来の運用方法(比較例)と第三実施例による運用方法の比較検証を行った。
表1に、スラリー循環式摩耗試験結果の比較を示す。耐摩耗ホース10を固定したまま回転させない輸送管の運用方法(図24に示すフローチャート)に従って試験した比較例と、管軸周りに耐摩耗ホース10を適宜回転させる輸送管の運用方法(図3に示すフローチャート)に従って試験した第三実施例とでは、螺旋状ライナーが破断するまでの摩耗試験時間は、比較例が18時間、第三実施例が36時間となり、第三実施例による輸送管の運用方法では、耐摩耗ホース10の寿命が比較例の2倍に延伸されることが判明した。

Figure 0006984876
We compared and verified the above-mentioned conventional operation method (comparative example) and the operation method according to the third embodiment.
Table 1 shows a comparison of slurry circulation type wear test results. A comparative example tested according to an operation method of a transport pipe in which the wear-resistant hose 10 is fixed and not rotated (the flowchart shown in FIG. 24), and an operation method of a transport pipe in which the wear-resistant hose 10 is appropriately rotated around the pipe axis (FIG. 3). In the third embodiment tested according to (the flowchart shown), the wear test time until the spiral liner breaks is 18 hours in the comparative example and 36 hours in the third embodiment, and the operation of the transport pipe according to the third embodiment is performed. The method was found to extend the life of the wear resistant hose 10 to twice that of the comparative example.
Figure 0006984876

次に、本実施形態による摩耗検知機能をもつ輸送管、輸送管の製造方法、及び摩耗検知方法について説明する。本実施形態による摩耗検知機能をもつ輸送管、及び摩耗検知方法は、上記した本実施形態による輸送管の運用方法に用いることができる。 Next, a transport pipe having a wear detection function, a method for manufacturing the transport pipe, and a wear detection method according to the present embodiment will be described. The transport pipe having the wear detection function according to the present embodiment and the wear detection method can be used for the operation method of the transport pipe according to the present embodiment described above.

図15は本実施形態による輸送管の内管に設けた摩耗検知線及び共通線の形状を示す図であり、図15(a)は摩耗検知線及び共通線を管軸方向に見た図、図15(b)は摩耗検知線及び共通線を斜め上方向から見た図、図15(c)は摩耗検知線及び共通線を管軸直交方向に見た図、図15(d)は摩耗検知線及び共通線を斜め横方向から見た図である。
図16は図15を見やすくした参考図であり、図16(a)は図15(c)を管軸方向に伸ばした図、図16(b)は図15(d)を管軸方向に伸ばした図、図16(c)は図15(e)を管軸方向に伸ばした図である。
図17は同輸送管の内管に設けた摩耗検知線及び共通線の形状と内管を示す図であり、図17(a)は摩耗検知線及び共通線の形状と内管を斜め横方向から見た図、図17(b)は(a)の内管を透明化した図である。
図18は図17を見やすくした参考図であり、図18(a)は図17(a)を管軸方向に伸ばした図、図18(b)は図17(b)を管軸方向に伸ばした図である。
図19は同輸送管の内管の成形方法を示す図である。
FIG. 15 is a diagram showing the shapes of the wear detection line and the common line provided in the inner pipe of the transport pipe according to the present embodiment, and FIG. 15 (a) is a view of the wear detection line and the common line viewed in the pipe axis direction. 15 (b) is a view of the wear detection line and the common line viewed from diagonally above, FIG. 15 (c) is a view of the wear detection line and the common line in the direction orthogonal to the pipe axis, and FIG. 15 (d) is a view of wear. It is the figure which looked at the detection line and the common line diagonally from the lateral direction.
16 is a reference diagram that makes it easy to see FIG. 15, FIG. 16 (a) is a view in which FIG. 15 (c) is extended in the tube axis direction, and FIG. 16 (b) is a view in which FIG. 15 (d) is extended in the tube axis direction. FIG. 16 (c) is a view of FIG. 15 (e) extended in the pipe axis direction.
FIG. 17 is a diagram showing the shape of the wear detection line and the common line provided on the inner pipe of the transport pipe and the inner pipe, and FIG. 17 (a) shows the shape of the wear detection line and the common line and the inner pipe in the diagonal lateral direction. 17 (b) is a transparent view of the inner tube of (a).
FIG. 18 is a reference view that makes it easy to see FIG. 17, FIG. 18 (a) is a view in which FIG. 17 (a) is extended in the tube axis direction, and FIG. 18 (b) is a view in which FIG. 17 (b) is extended in the tube axis direction. It is a figure.
FIG. 19 is a diagram showing a method of molding the inner pipe of the transport pipe.

本実施形態による摩耗検知機能をもつ輸送管10は、内管11の外周及び内部に、摩耗検知線A、B、C、D及び共通線(Common)Eが5条の螺旋状に巻回されている。摩耗検知線A〜D及び共通線Eは、金属等の電導体である。なお、摩耗検知線A〜D及び共通線Eは、導電塗膜で形成することもできる。図15〜18では、摩耗検知線Aを「Line_A」、摩耗検知線Bを「Line_B」、摩耗検知線Cを「Line_C」、摩耗検知線Dを「Line_D」、共通線Eを「Common」と表示し、図17〜18では、内管11を「Inner_pipe」と表示している。
摩耗検知線A〜D及び共通線Eを内管11に螺旋状に巻回して配置することで、輸送管10の曲率が大きい場所でも摩耗検知線A〜D及び共通線Eが断線し難くなり、特に大きな曲がり部を有する輸送管10に適用した場合に信頼性を高めることができる。
なお、螺旋状に巻回するのではなく、所定の角度範囲内で円周方向に往復を繰り返しながら管軸方向に延びる配置としてもよい。
In the transport pipe 10 having the wear detection function according to the present embodiment, the wear detection lines A, B, C, D and the common line (Common) E are spirally wound around the outer circumference and the inside of the inner pipe 11. ing. The wear detection lines A to D and the common line E are conductors such as metal. The wear detection lines A to D and the common line E can also be formed of a conductive coating film. In FIGS. 15 to 18, the wear detection line A is referred to as “Line_A”, the wear detection line B is referred to as “Line_B”, the wear detection line C is referred to as “Line_C”, the wear detection line D is referred to as “Line_D”, and the common line E is referred to as “Common”. In FIGS. 17 to 18, the inner pipe 11 is displayed as "Inner_pipe".
By spirally winding the wear detection lines A to D and the common line E around the inner pipe 11 and arranging them, the wear detection lines A to D and the common line E are less likely to be disconnected even in a place where the curvature of the transport pipe 10 is large. , Especially when applied to a transport pipe 10 having a large bend, the reliability can be improved.
In addition, instead of winding in a spiral shape, it may be arranged to extend in the pipe axis direction while repeating reciprocation in the circumferential direction within a predetermined angle range.

図15に示すように、摩耗検知線A〜Dは、管軸周りの角度範囲に応じて配置されている。各摩耗検知線A〜Dが内管11の内部を通る位置はそれぞれ異なり、管軸周りの角度範囲90度ごとに各摩耗検知線A〜Dが割り振られている。すなわち、摩耗検知線A〜Dは、担当する角度範囲では相対的に内管11の内面に近い位置(内部)を通り、担当外の角度範囲では内管11の外周を通るように配置されている。
このように摩耗検知線A〜Dを配置することで、摩耗検知線A〜Dごとに摩耗検知を担当する角度範囲の部分を明確に区分けすることができ、内管11に摩耗損傷が生じた場合に、摩耗損傷個所の管軸周りの角度範囲を特定することができる。なお、共通線Eは、内管11の外周のみに巻回されている。摩耗損傷個所の管軸周りの角度範囲の特定に当たっては、複数の摩耗検知線A〜Dと共通線Eに電圧を印加し摩耗検知線A〜Dの摩耗又は断線を電気的変化として検知する。この際、摩耗検知線A〜Dのいずれかが破断して導通が無くなったことの検知も、また摩耗検知線A〜Dのいずれかが摩耗して抵抗が変化したことの検知も、どちらとも可能である。
As shown in FIG. 15, the wear detection lines A to D are arranged according to the angle range around the pipe axis. The positions where the wear detection lines A to D pass through the inside of the inner pipe 11 are different from each other, and the wear detection lines A to D are assigned every 90 degrees in the angle range around the pipe axis. That is, the wear detection lines A to D are arranged so as to pass through a position (inside) relatively close to the inner surface of the inner pipe 11 in the angle range in charge and to pass through the outer periphery of the inner pipe 11 in the angle range outside the charge. There is.
By arranging the wear detection lines A to D in this way, it is possible to clearly divide the portion of the angle range in charge of wear detection for each wear detection line A to D, and the inner pipe 11 is damaged by wear. In some cases, the angular range around the tube axis at the wear-damaged part can be specified. The common line E is wound only around the outer circumference of the inner pipe 11. In specifying the angle range around the pipe axis at the wear-damaged part, a voltage is applied to the plurality of wear detection lines A to D and the common line E, and the wear or disconnection of the wear detection lines A to D is detected as an electrical change. At this time, both the detection that one of the wear detection lines A to D is broken and the continuity is lost, and the detection that any one of the wear detection lines A to D is worn and the resistance is changed are both detected. It is possible.

内管11の両端のうち、他方の端部10bにおいて摩耗検知線A〜Dをすべて共通線Eに結線してある。よって、一方の端部10aにおいて各摩耗検知線A〜Dと共通線Eとの導通をそれぞれ検査することにより、各摩耗検知線A〜Dの破断の有無を検知することができる。すなわち、輸送管10のある位置において摩耗性物質2の衝突等により内管11が内側から摩耗し、その摩耗位置を含む管軸周りの角度範囲において内管11の内部を通る摩耗検知線A〜Dのいずれかが破断すると、導通検査により破断した摩耗検知線A〜Dが特定され、内管11のうち摩耗が進行している管軸周りの角度範囲を特定することができる。
また、複数の摩耗検知線A〜Dが結線される共通線Eを有することで、輸送管10の一方の端部10aだけで導通検査を行うことができるため、作業効率が向上する。また、一方の端部10aだけで導通検査を行う場合に、例えば複数の摩耗検知線A〜Dのそれぞれに戻り線を設ける必要が無くなり、戻り線を共通線Eで共用化できる。
Of both ends of the inner pipe 11, the wear detection lines A to D are all connected to the common line E at the other end 10b. Therefore, by inspecting the continuity between the wear detection lines A to D and the common line E at one end 10a, it is possible to detect the presence or absence of breakage of the wear detection lines A to D. That is, the inner pipe 11 is worn from the inside due to the collision of the wearable substance 2 at a certain position of the transport pipe 10, and the wear detection line A to pass through the inside of the inner pipe 11 in the angle range around the pipe axis including the wear position. When any of D is broken, the broken wear detection lines A to D are specified by the continuity inspection, and the angle range around the pipe axis in which the wear is progressing can be specified in the inner pipe 11.
Further, by having the common line E to which the plurality of wear detection lines A to D are connected, the continuity inspection can be performed only at one end 10a of the transport pipe 10, so that the work efficiency is improved. Further, when the continuity inspection is performed only at one end portion 10a, it is not necessary to provide a return line for each of the plurality of wear detection lines A to D, and the return line can be shared by the common line E.

また、共通線Eを内管11の外周に巻回しているため、共通線Eのみの導通を輸送管10の両端10a、10bで測定することにより、内管11の摩耗限界を検知することができる。すなわち、共通線Eが断線するほど深く内管11が摩耗した時点を、摩耗限界(使用不能)と判断することができる。 Further, since the common wire E is wound around the outer circumference of the inner pipe 11, the wear limit of the inner pipe 11 can be detected by measuring the continuity of only the common wire E at both ends 10a and 10b of the transport pipe 10. can. That is, the time when the inner pipe 11 is worn so deep that the common line E is broken can be determined as the wear limit (unusable).

なお、図23(a)では局所的摩耗の発生が予想される箇所が複数あるが、管軸方向の局所的摩耗の発生が予想される箇所が一箇所に絞り込める場合には、摩耗検知線A〜Dのうち検知を担当する管軸周りの角度範囲が隣り合う2本(摩耗検知線Aと摩耗検知線B、摩耗検知線Bと摩耗検知線Cなど)が、同時もしくは相次いで破断した時点で、摩耗検知線A〜Dのうち破断した2本が担当する管軸周りの角度範囲の境界近傍が局所的に摩耗したことを検知することができる。 In FIG. 23A, there are a plurality of locations where local wear is expected to occur, but when the locations where local wear is expected to occur in the pipe axis direction can be narrowed down to one location, the wear detection line Two of A to D (wear detection line A and wear detection line B, wear detection line B and wear detection line C, etc.) with adjacent angle ranges around the tube axis in charge of detection broke at the same time or one after another. At this point, it is possible to detect that the vicinity of the boundary of the angular range around the tube axis in charge of the two broken lines A to D is locally worn.

また、本実施形態では、4本の摩耗検知線A〜Dが管軸周りの角度範囲90度ごとに摩耗検知を担当するようにしたが、摩耗検知線を内管11に配置する角度範囲及び本数は、輸送管10の用途や使用条件によって適宜選択することが望ましい。例えば、輸送管10の用途や使用条件に応じて、2本の摩耗検知線を用いて管軸周りの角度範囲180度ごとに検知を担当させたり、6本の摩耗検知線を用いて管軸周りの角度範囲60度ごとに検知を担当させたりする。 Further, in the present embodiment, the four wear detection lines A to D are in charge of wear detection every 90 degrees in the angle range around the pipe axis, but the angle range in which the wear detection lines are arranged in the inner pipe 11 and It is desirable to appropriately select the number of pipes depending on the intended use and usage conditions of the transport pipe 10. For example, depending on the application and usage conditions of the transport pipe 10, two wear detection lines may be used to take charge of detection every 180 degrees in an angle range around the pipe axis, or six wear detection lines may be used to take charge of detection. It is in charge of detection every 60 degrees of the surrounding angle range.

また、本実施形態では共通線Eを設けて、輸送管10の一方の端部10aからだけで導通検査をできるようにしたが、摩耗検知線A〜Dの導通を輸送管10の両端10a、10bで計測する場合には共通線Eを省略してもよい。 Further, in the present embodiment, a common line E is provided so that the continuity can be inspected only from one end 10a of the transport pipe 10, but the continuity of the wear detection lines A to D can be conducted at both ends 10a of the transport pipe 10. When measuring at 10b, the common line E may be omitted.

ここで、本実施形態による摩耗検知機能をもつ輸送管10の製造方法について説明する。
図19に示すように棒状又は板状の内管材料11Aを螺旋形に巻回して内管11を成形する場合は、図17(a)に示すように1本の棒状又は板状の内管材料11Aに対して金属等の電導体からなる4本の摩耗検知線A〜D及び1本の共通線Eをあてがうように配置し、これらを一体として螺旋形に巻回し、内管材料11Aの隣接側面を順次接着していくことにより輸送管10が完成する。
本実施形態による製造方法によれば、効率良く5条螺旋の摩耗検知線A〜D及び共通線E付き内管11を有する輸送管10を製造することができる。なお、摩耗検知線が2本、共通線Eが1本の場合は、3条螺旋となる。
Here, a method of manufacturing the transport pipe 10 having the wear detection function according to the present embodiment will be described.
When the rod-shaped or plate-shaped inner tube material 11A is spirally wound to form the inner tube 11 as shown in FIG. 19, one rod-shaped or plate-shaped inner tube is formed as shown in FIG. 17 (a). Four wear detection lines A to D and one common line E made of conductors such as metal are arranged so as to be applied to the material 11A, and these are integrally wound in a spiral shape to form the inner tube material 11A. The transport pipe 10 is completed by sequentially adhering the adjacent side surfaces.
According to the manufacturing method according to the present embodiment, the transport pipe 10 having the wear detection lines A to D of the five-row spiral and the inner pipe 11 with the common line E can be efficiently manufactured. When there are two wear detection lines and one common line E, it is a three-row spiral.

また、摩耗検知線A〜D及び共通線Eを導電塗膜で形成する場合は、図20に示すように、1本の棒状又は板状の内管材料11Aの側面に、導電塗料を摩耗検知範囲(担当する管軸周りの角度範囲)に応じて塗布位置を変えながら塗布することにより、摩耗検知線A〜D及び共通線Eを導電塗膜として形成し、導電塗膜の塗布された内管材料11Aを螺旋形に巻回し、内管材料11Aの隣接側面を順次接着していくことにより、輸送管10の内管11と摩耗検知線A〜D及び共通線Eを一括して成形することができる。なお、図20では、図を見やすくするために、摩耗検知線C、D及びそれらを形成する内管材料11Aを省略している。なお、導電塗料の塗布は、内管材料11Aの側面に各種の塗装方法や印刷等により予め塗布しておくことも、内管材料11Aの巻回時に塗布することもできる。
さらに、図20に示すように、導電塗膜の塗膜面が内管11の内面と略直交する方向に形成されるように、すなわち導電塗膜の塗膜面が内管11の深さ方向に所定の幅をもって形成されるように、導電塗料を塗布している。内管11が厚肉の場合には、摩耗検知範囲の摩耗が深さ方向に進行するにつれて導電塗膜の導通面積が次第に減じていくため、摩耗検知層を単層とした場合であっても、摩耗検知線A〜Dの抵抗値を連続的に測定して導電塗膜の導通面積の減少による抵抗値の変化を検出することにより、内管11に発生した摩耗検知範囲の摩耗の深さ方向への進行度(摩耗度)を定量的に把握することができる。また、摩耗の深さ方向への進行度と抵抗値変化の関係が比例的になり、検出が容易となる。
When the wear detection lines A to D and the common line E are formed of the conductive coating film, wear detection is performed on the side surface of one rod-shaped or plate-shaped inner tube material 11A as shown in FIG. By applying while changing the coating position according to the range (angle range around the tube axis in charge), the wear detection lines A to D and the common line E are formed as a conductive coating film, and the inside of the coating of the conductive coating film. By winding the pipe material 11A in a spiral shape and sequentially adhering the adjacent side surfaces of the inner pipe material 11A, the inner pipe 11 of the transport pipe 10, the wear detection lines A to D, and the common line E are integrally formed. be able to. In FIG. 20, the wear detection lines C and D and the inner pipe material 11A forming them are omitted in order to make the figure easier to see. The conductive paint can be applied to the side surface of the inner tube material 11A in advance by various coating methods, printing, or the like, or can be applied at the time of winding the inner tube material 11A.
Further, as shown in FIG. 20, the coating film surface of the conductive coating film is formed in a direction substantially orthogonal to the inner surface of the inner tube 11, that is, the coating film surface of the conductive coating film is in the depth direction of the inner tube 11. A conductive paint is applied so as to be formed with a predetermined width. When the inner tube 11 is thick, the conduction area of the conductive coating film gradually decreases as the wear in the wear detection range progresses in the depth direction, so that even when the wear detection layer is a single layer. By continuously measuring the resistance values of the wear detection lines A to D and detecting the change in the resistance value due to the decrease in the conduction area of the conductive coating film, the depth of wear in the wear detection range generated in the inner tube 11 The degree of progress (wear degree) in the direction can be quantitatively grasped. In addition, the relationship between the degree of progress of wear in the depth direction and the change in resistance value becomes proportional, facilitating detection.

また、内管11の外周に巻回した摩耗検知線A〜Dや共通線Eが破断すると内管11の摩耗を正しく検知できなくなるので、摩耗検知線A〜D及び共通線Eの外側には、適当な保護層または補強層を設けることが好ましい。
この場合、保護層または補強層の外面は、各摩耗検知線A〜Dの摩耗検知範囲(担当する管軸周りの角度範囲)と対応づけて色分けしておくことが好ましい。このように色分けすることにより、摩耗検知線A〜Dの破断(非導通)で検知された内管11の摩耗位置を含む管軸周りの角度範囲を、輸送管10の外側からでも対応色を視認することにより容易に特定可能となる。
さらに、摩耗検知線A〜Dや共通線Eは必ずしも被覆しておく必要は無いが、保護層又は補強層を設け、保護層又は補強層の外面に各摩耗検知線A〜Dの摩耗検知範囲と対応づけて色分けする場合は、摩耗検知線A〜Dの破断(非導通)で検知された内管11の摩耗位置を含む管軸周りの角度範囲との対応づけを容易にするため、保護層又は補強層外面の色分けと同じ色に被覆しておくことが好ましい。
Further, if the wear detection lines A to D wound around the outer circumference of the inner pipe 11 and the common line E are broken, the wear of the inner pipe 11 cannot be detected correctly. , It is preferable to provide a suitable protective layer or reinforcing layer.
In this case, it is preferable that the outer surface of the protective layer or the reinforcing layer is color-coded in association with the wear detection range (angle range around the pipe axis in charge) of each wear detection line A to D. By color-coding in this way, the angle range around the pipe axis including the wear position of the inner pipe 11 detected by the breakage (non-conduction) of the wear detection lines A to D can be changed to the corresponding color even from the outside of the transport pipe 10. It can be easily identified by visual inspection.
Further, although it is not always necessary to cover the wear detection lines A to D and the common line E, a protective layer or a reinforcing layer is provided, and the wear detection range of each wear detection line A to D is provided on the outer surface of the protective layer or the reinforcing layer. When color-coded in association with, it is protected to facilitate the association with the angle range around the tube axis including the wear position of the inner tube 11 detected by the breakage (non-conduction) of the wear detection lines A to D. It is preferable to cover the outer surface of the layer or the reinforcing layer with the same color as the color coding.

なお、本実施形態では、担当外の範囲にある摩耗検知線A〜D及び共通線Eを内管11の外周に巻回したが、担当外の範囲にある摩耗検知線A〜D及び共通線Eを担当内の範囲にある摩耗検知線A〜Dと相対的に内管11の内面から遠い位置、すなわち、内管11の外周ではなく外周から若干内側に入った位置に埋め込むように巻回することで、内管11の最外層を保護層又は補強層としてもよい。 In this embodiment, the wear detection lines A to D and the common line E in the range outside the charge are wound around the outer periphery of the inner pipe 11, but the wear detection lines A to D and the common line in the range outside the charge are wound. Winding E so as to be embedded in a position relatively far from the inner surface of the inner pipe 11 with the wear detection lines A to D in the range in charge, that is, a position slightly inside from the outer circumference instead of the outer circumference of the inner pipe 11. By doing so, the outermost layer of the inner pipe 11 may be used as a protective layer or a reinforcing layer.

また、本実施形態では、図15及び図17に示す通り、内管11の外周及び内管11の内部に螺旋状に巻回された4本の摩耗検知線A〜Dと1本の共通線Eが、全体として一定の厚みを持った単層の摩耗検知層を形成しているが、これを2層、3層等、多層の摩耗検知層を形成するようにし、各層についてそれぞれ摩耗検知線A〜Dの導通を検査するようにすれば、内管11に発生した摩耗の深さ方向への進行度(摩耗度)を検知することができる。
なお、図21では、2層の摩耗検知層を形成した場合を示している。図21(a)は2層の摩耗検知層を管軸方向に見た図、図21(b)は2層の摩耗検知層を斜め上方向から見た図である。
Further, in the present embodiment, as shown in FIGS. 15 and 17, four wear detection lines A to D spirally wound around the outer periphery of the inner tube 11 and the inside of the inner tube 11 and one common line. E forms a single-layer wear detection layer having a certain thickness as a whole, but the wear detection line is formed for each layer by forming a multi-layered wear detection layer such as two layers and three layers. By inspecting the continuity of A to D, it is possible to detect the degree of progress (degree of wear) of the wear generated in the inner pipe 11 in the depth direction.
Note that FIG. 21 shows a case where two wear detection layers are formed. FIG. 21 (a) is a view of the two wear detection layers viewed in the pipe axis direction, and FIG. 21 (b) is a view of the two layers of wear detection layers viewed from diagonally above.

また、本実施形態では、管軸周りの角度範囲に応じて摩耗検知線A〜Dを輸送管10の断面中心寄りの位置(深さ)に通すことで内管11の摩耗を検知しているが、摩耗検知線及A〜D及び共通線Eを輸送管10の最外層(保護層)の内側の層に設け、管軸周りの角度範囲に応じて摩耗検知線A〜Dを輸送管10の外周面寄りの位置に通すことで、外部の物体等と擦れ合う最外層の摩耗を検知することができる。 Further, in the present embodiment, the wear of the inner pipe 11 is detected by passing the wear detection lines A to D through the position (depth) near the center of the cross section of the transport pipe 10 according to the angle range around the pipe axis. However, the wear detection lines A to D and the common line E are provided in the inner layer of the outermost layer (protective layer) of the transport pipe 10, and the wear detection lines A to D are provided in the transport pipe 10 according to the angle range around the pipe axis. By passing it through a position closer to the outer peripheral surface, it is possible to detect wear of the outermost layer that rubs against an external object or the like.

図22は、本実施形態による摩耗検知機能をもつ輸送管の配置例を示す図である。
摩耗検知機能をもつ輸送管10Aは、必ずしも輸送管10の全長に亘って配置する必要はなく、図22に斜線で示した部分のように輸送管10のなかでも曲率が大きい部分等、予め局所的な摩耗の進行が予想されるような部分にのみ配置することも可能である。
このように部分的に摩耗検知機能をもつ輸送管10Aを配置することにより、内管11の摩耗箇所の管軸周りの角度範囲を特定するのみならず、管軸方向の位置範囲を特定することができる。また、摩耗検知に用いる輸送管10Aの総長も節約できる。
なお、図22に斜線で示した部分(摩耗検知機能をもつ輸送管10A)以外の輸送管10Bに、摩耗検知線A〜D等を配置しない通常の輸送管を用いた場合は、摩耗検知機能をもつ輸送管10Aの導通検査は各々の箇所について個別に行う。
また、図22に斜線で示した部分(摩耗検知機能をもつ輸送管10A)以外の輸送管10Bに、摩耗検知線A〜Dを共通線Eと同じ深さに巻回した接続用輸送管を用いた場合は、接続用輸送管は内管11の摩耗検知機能はもたないが、連結された摩耗検知機能をもつ輸送管10Aの摩耗検知線A〜D及び共通線Eを接続する機能を有する。この場合、摩耗検知機能をもつ輸送管10Aの導通検査は輸送管全体に対して行うことができる。
FIG. 22 is a diagram showing an arrangement example of a transport pipe having a wear detection function according to the present embodiment.
The transport pipe 10A having a wear detection function does not necessarily have to be arranged over the entire length of the transport pipe 10. It is also possible to place it only in the part where the progress of wear is expected.
By arranging the transport pipe 10A partially having a wear detection function in this way, not only the angle range around the pipe axis of the worn part of the inner pipe 11 can be specified, but also the position range in the pipe axis direction can be specified. Can be done. In addition, the total length of the transport pipe 10A used for wear detection can be saved.
When a normal transport pipe in which the wear detection lines A to D and the like are not arranged is used for the transport pipe 10B other than the portion shown by the diagonal line in FIG. 22 (transport pipe 10A having the wear detection function), the wear detection function is used. The continuity inspection of the transport pipe 10A having the above is performed individually for each location.
Further, a connecting transport pipe in which wear detection lines A to D are wound to the same depth as the common line E is provided around the transport pipe 10B other than the portion shown by the diagonal line in FIG. 22 (transport pipe 10A having a wear detection function). When used, the connecting transport pipe does not have the wear detection function of the inner pipe 11, but has the function of connecting the wear detection lines A to D and the common line E of the transport pipe 10A having the connected wear detection function. Have. In this case, the continuity inspection of the transport pipe 10A having the wear detection function can be performed on the entire transport pipe.

本発明を適用することで、海底で掘削した鉱石等を海上の船舶に輸送する輸送管や各種プラントにおいて粉体、ペレット等の摩耗性物質、又はスラリーの輸送に用いる輸送管等の摩耗の検知や寿命の延伸ができ、作業の効率化及び作業費の削減につながる。 By applying the present invention, it is possible to detect wear of wearable substances such as powders and pellets, or transport pipes used for transporting slurries in transport pipes for transporting ores excavated on the seabed to ships on the sea and in various plants. It is possible to extend the life and work efficiency and reduce the work cost.

2 摩耗性物質
10 輸送管
11 内管
11A 内管材料
60 浮力発生手段
A 摩耗検知線
B 摩耗検知線
C 摩耗検知線
D 摩耗検知線
E 共通線
2 Abrasionable material 10 Transport pipe 11 Inner pipe 11A Inner pipe material 60 Buoyancy generating means A Wear detection line B Wear detection line C Wear detection line D Wear detection line E Common line

Claims (28)

摩耗性物質と液体の混合したスラリー又は前記摩耗性物質の輸送に用いる輸送管であって、前記輸送管の内管の内部、又は前記内管の外周及び内部に、管軸周りの角度範囲に応じて複数の摩耗検知線を配置した構造を備え、複数の前記摩耗検知線を、担当する前記角度範囲では相対的に前記内管の内面に近い位置を通り、担当外の前記角度範囲では相対的に前記内管の前記内面から遠い位置又は前記内管の前記外周を通るように配置したことを特徴とする摩耗検知機能をもつ輸送管。 A transport pipe used for transporting a slurry in which a wearable substance and a liquid are mixed or the wearable substance, in an angle range around the pipe axis, inside the inner pipe of the transport pipe, or inside the outer circumference and inside of the inner pipe. It is provided with a structure in which a plurality of wear detection lines are arranged accordingly, and the plurality of wear detection lines pass through a position relatively close to the inner surface of the inner pipe in the angle range in charge, and are relative in the angle range outside the charge. A transport pipe having a wear detection function, characterized in that it is arranged so as to pass through a position far from the inner surface of the inner pipe or the outer periphery of the inner pipe. 摩耗性物質と液体の混合したスラリー又は前記摩耗性物質の輸送に用いる輸送管であって、前記輸送管の内管の内部、又は前記内管の外周及び内部に、管軸周りの角度範囲に応じて複数の摩耗検知線を配置した構造を備え、前記摩耗検知線が、導電塗膜で形成されていることを特徴とする摩耗検知機能をもつ輸送管。A transport pipe used for transporting a slurry in which a wearable substance and a liquid are mixed or the wearable substance, in an angle range around the pipe axis, inside the inner pipe of the transport pipe, or inside the outer circumference and inside of the inner pipe. A transport pipe having a structure in which a plurality of wear detection lines are arranged according to the wear detection line, and having a wear detection function, wherein the wear detection lines are formed of a conductive coating film. 前記摩耗検知線を、螺旋状に巻回して配置したことを特徴とする請求項1又は請求項2に記載の摩耗検知機能をもつ輸送管。 The transport pipe having the wear detection function according to claim 1 or 2 , wherein the wear detection wire is spirally wound and arranged. 複数の前記摩耗検知線が結線される共通線を有したことを特徴とする請求項1から請求項3のうちの1項に記載の摩耗検知機能をもつ輸送管。 The transport pipe having a wear detection function according to claim 1, wherein the transport pipe has a common line to which a plurality of the wear detection lines are connected. 前記内管の外側に保護層又は補強層を設けたことを特徴とする請求項1から請求項4のうちの1項に記載の摩耗検知機能をもつ輸送管。 The transport pipe having the wear detection function according to claim 1 to claim 4, wherein a protective layer or a reinforcing layer is provided on the outer side of the inner pipe. 複数の前記摩耗検知線が配置された管軸周りの前記角度範囲に応じて、前記保護層又は前記補強層を複数の色に色分けして形成したことを特徴とする請求項5に記載の摩耗検知機能をもつ輸送管。 The wear according to claim 5, wherein the protective layer or the reinforcing layer is color-coded into a plurality of colors according to the angle range around the pipe axis in which the plurality of wear detection lines are arranged. A transport pipe with a detection function. 複数の前記摩耗検知線が、前記複数の色の前記色分けに対応した色の被覆を有したことを特徴とする請求項6に記載の摩耗検知機能をもつ輸送管。 The transport pipe having a wear detection function according to claim 6, wherein the plurality of wear detection lines have a color coating corresponding to the color coding of the plurality of colors. 前記内管と前記摩耗検知線を多層に配置し、深さ方向への摩耗の進行を検出可能としたことを特徴とする請求項1から請求項7のうちの1項に記載の摩耗検知機能をもつ輸送管。 The wear detection function according to claim 1, wherein the inner tube and the wear detection line are arranged in multiple layers so that the progress of wear in the depth direction can be detected. Transport pipe with. 前記導電塗膜の塗膜面が、前記内管の内面と略直交する方向に形成されていることを特徴とする請求項に記載の摩耗検知機能をもつ輸送管。 The transport tube having a wear detection function according to claim 2 , wherein the coating film surface of the conductive coating film is formed in a direction substantially orthogonal to the inner surface of the inner tube. 請求項1から請求項のうちの1項に記載の摩耗検知機能をもつ輸送管の製造方法であって、棒状又は板状の内管材料に複数の前記摩耗検知線を配置し、前記内管材料と複数の前記摩耗検知線を巻回し、前記内管材料の隣接側面を順次接着していくことにより前記輸送管を完成することを特徴とする輸送管の製造方法。 The method for manufacturing a transport pipe having the wear detection function according to claim 1 to claim 9 , wherein a plurality of the wear detection lines are arranged on a rod-shaped or plate-shaped inner pipe material. A method for manufacturing a transport pipe, which comprises winding a pipe material and a plurality of the wear detection wires, and sequentially adhering adjacent side surfaces of the inner pipe material to complete the transport pipe. 請求項2又は請求項9に記載の摩耗検知機能をもつ輸送管の製造方法であって、棒状又は板状の内管材料に複数の前記摩耗検知線を配置し、前記内管材料と複数の前記摩耗検知線を巻回し、前記内管材料の隣接側面を順次接着していくことにより前記輸送管を完成し、前記内管材料の側面に導電塗料を、管軸周りの前記角度範囲に応じて塗布して前記導電塗膜を形成したことを特徴とする輸送管の製造方法。 The method for manufacturing a transport pipe having the wear detection function according to claim 2 or 9, wherein a plurality of the wear detection lines are arranged on a rod-shaped or plate-shaped inner pipe material, and the inner pipe material and a plurality of the same. The transport pipe is completed by winding the wear detection wire and sequentially adhering the adjacent side surfaces of the inner pipe material, and conductive paint is applied to the side surfaces of the inner pipe material according to the angle range around the pipe axis. transportation pipe production method by coating you characterized in that the formation of the conductive coating Te. 請求項1から請求項のうちの1項に記載の摩耗検知機能をもつ輸送管を用いた摩耗検知方法であって、複数の前記摩耗検知線に電圧を印加し前記摩耗検知線の摩耗又は断線を電気的変化として検知することにより、摩耗のあった前記内管の管軸周りの前記角度範囲を特定することを特徴とする摩耗検知方法。 The wear detection method using the transport pipe having the wear detection function according to claim 1 to claim 9 , wherein a voltage is applied to a plurality of the wear detection lines to wear the wear detection lines. A wear detection method comprising detecting a broken wire as an electrical change to specify the angle range around the pipe axis of the worn inner pipe. 請求項9に記載の摩耗検知機能をもつ輸送管を用いた摩耗検知方法であって、複数の前記摩耗検知線に電圧を印加し前記摩耗検知線の摩耗又は断線を電気的変化として検知することにより、摩耗のあった前記内管の管軸周りの前記角度範囲を特定するにあたり、前記導電塗膜の導通面積の減少による抵抗値の変化を検出して前記摩耗を検知することを特徴とする摩耗検知方法。 The wear detection method using a transport pipe having a wear detection function according to claim 9, wherein a voltage is applied to a plurality of the wear detection lines to detect wear or disconnection of the wear detection lines as an electrical change. In order to specify the angle range around the tube axis of the inner tube that has been worn, the wear is detected by detecting the change in the resistance value due to the decrease in the conduction area of the conductive coating film. wear detection method that. 請求項1から請求項9のうちの1項に記載の摩耗検知機能をもつ輸送管を用いた摩耗検知方法であって、複数の前記摩耗検知線に電圧を印加し前記摩耗検知線の摩耗又は断線を電気的変化として検知することにより、摩耗のあった前記内管の管軸周りの前記角度範囲を特定するにあたり、複数の前記摩耗検知線のうち前記角度範囲が隣り合う2本の前記摩耗検知線の同時、又は相次ぐ前記電気的変化を検知することにより、2つの前記角度範囲の境界領域が摩耗したことを検知することを特徴とする摩耗検知方法。 The wear detection method using the transport pipe having the wear detection function according to claim 1 to claim 9, wherein a voltage is applied to a plurality of the wear detection lines to wear or wear the wear detection lines. In identifying the angle range around the tube axis of the inner tube that has been worn by detecting the disconnection as an electrical change, the two wears of the plurality of wear detection lines whose angle ranges are adjacent to each other. simultaneous detection line, or successive by detecting the electrical change, wear sensing how to characterized in that the boundary region between two of the angular range to detect that it has worn. 請求項1から請求項のうちの1項に記載の摩耗検知機能をもつ輸送管を用いた摩耗検知方法であって、輸送系統の摩耗の想定される箇所にのみ前記輸送管を用いたことを特徴とする摩耗検知方法。 The wear detection method using the transport pipe having the wear detection function according to claim 1 to claim 9 , wherein the transport pipe is used only in a place where wear of the transport system is expected. A wear detection method characterized by. 請求項12から請求項15のうちの1項に記載の摩耗検知方法を用いた輸送管の運用方法であって、管軸周りの特定した前記角度範囲を、前記角度範囲とは異なる角度範囲に移動させることを特徴とする輸送管の運用方法。 A method of operating a transport pipe using the wear detection method according to claim 12 to claim 15 , wherein the specified angle range around the pipe axis is set to an angle range different from the angle range. An operation method for transport pipes, which is characterized by being moved. 前記異なる角度範囲に移動させるように、管軸周りに前記輸送管を回転させることを特徴とする請求項16に記載の輸送管の運用方法。 The method of operating a transport pipe according to claim 16 , wherein the transport pipe is rotated around a pipe axis so as to be moved to the different angle range. 前記異なる角度範囲に移動させるように、前記輸送管を可撓性を持たせて構成し、前記輸送管に外力を加えて変形させることを特徴とする請求項16に記載の輸送管の運用方法。 The method for operating a transport pipe according to claim 16 , wherein the transport pipe is configured to have flexibility so as to be moved to the different angle range, and the transport pipe is deformed by applying an external force. .. 前記外力は、浮力発生手段による浮力であることを特徴とする請求項18に記載の輸送管の運用方法。 The method of operating a transport pipe according to claim 18 , wherein the external force is buoyancy by a buoyancy generating means. 前記外力は、懸吊機、架台を含む機構手段による機構的外力であることを特徴とする請求項18に記載の輸送管の運用方法。 The method for operating a transport pipe according to claim 18 , wherein the external force is a mechanical external force by a mechanical means including a suspension machine and a gantry. 前記異なる角度範囲の選定に当って、前記輸送管の移動履歴を考慮して選定することを特徴とする請求項16から請求項20のうちの1項に記載の輸送管の運用方法。 It said different angular ranges when designing, selecting, and operating method of the transport tube according to one of claims 16 to claim 20, characterized in that selected in consideration of the movement history of the transport pipe. 前記移動履歴を考慮して、前記輸送管の寿命を延伸する上で最も効果的な角度範囲に前記異なる角度範囲を設定することを特徴とする請求項21に記載の輸送管の運用方法。 21. The method of operating a transport pipe according to claim 21, wherein the different angle range is set to the most effective angle range for extending the life of the transport pipe in consideration of the movement history. 前記移動履歴を考慮しても前記異なる角度範囲の選定ができない場合は、元の前記角度範囲に留めることを特徴とする請求項21に記載の輸送管の運用方法。 The operation method of a transport pipe according to claim 21 , wherein if the different angle range cannot be selected even in consideration of the movement history, the angle range is kept in the original angle range. 前記輸送管の摩耗を分散させ前記摩耗検知線の摩耗又は断線が検知されるまでの時間を延伸させるために、所定の稼働時間が経過したら、所定の範囲だけ前記輸送管を移動させることを特徴とする請求項16から請求項23のうちの1項に記載の輸送管の運用方法。 In order to disperse the wear of the transport pipe and extend the time until the wear or disconnection of the wear detection line is detected , the transport pipe is moved by a predetermined range after a predetermined operating time has elapsed. The operation method of the transport pipe according to claim 1 of claim 16 to 23. 前記輸送管の摩耗を分散させ前記摩耗検知線の摩耗又は断線が検知されるまでの時間を延伸させるために、前記輸送管を常時、低速で移動させることを特徴とする請求項16から請求項23のうちの1項に記載の輸送管の運用方法。 Claim 16 to claim 16, wherein the transport pipe is constantly moved at a low speed in order to disperse the wear of the transport pipe and extend the time until the wear or disconnection of the wear detection line is detected. The method of operating a transport pipe according to item 1 of 23. 管軸周りに前記輸送管を回転させるに当り、電動機を含む駆動手段を用いて回転させることを特徴とする請求項17を引用する請求項21から請求項25のうちの1項に記載の輸送管の運用方法。 The transport according to claim 21 to claim 25 , which cites claim 17 , wherein the transport pipe is rotated around a pipe shaft by using a driving means including an electric motor. How to operate the pipe. 管軸周りに前記輸送管を回転させたときの回転角度を、前記輸送管を管軸周りに回転可能とする回転管継手に設けた回転角度把握手段により把握することを特徴とする請求項26に記載の輸送管の運用方法。 26. Operation method of the transportation pipe described in. 前記輸送管の摩耗限界を判断し、前記輸送管の稼働を停止することを特徴とする請求項16から請求項27のうちの1項に記載の輸送管の運用方法。 Determining the wear limit of the transport pipe, an operation method of the transport tube according to one of claims 27 claim 16, characterized in that stopping the operation of the transport pipe.
JP2017202388A 2016-11-11 2017-10-19 Transport pipes with wear detection function, transport pipe manufacturing method, wear detection method, and transport pipe operation method Active JP6984876B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016220869 2016-11-11
JP2016220869 2016-11-11

Publications (2)

Publication Number Publication Date
JP2018084326A JP2018084326A (en) 2018-05-31
JP6984876B2 true JP6984876B2 (en) 2021-12-22

Family

ID=62238283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017202388A Active JP6984876B2 (en) 2016-11-11 2017-10-19 Transport pipes with wear detection function, transport pipe manufacturing method, wear detection method, and transport pipe operation method

Country Status (1)

Country Link
JP (1) JP6984876B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624628A (en) * 2021-07-30 2021-11-09 湖南三一智能控制设备有限公司 Abrasion detection method and device for conveying pipe, conveying pipe and engineering machinery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660828B2 (en) * 2009-01-08 2011-03-30 東拓工業株式会社 Transportation hose with wear detection function
US20120175005A1 (en) * 2011-01-07 2012-07-12 Andersen Holdings, LLC. Conduit and systems
US9689771B2 (en) * 2013-06-13 2017-06-27 Progressive Products, Inc. Pipe and conduit wear detection system
JP6161200B2 (en) * 2013-09-11 2017-07-12 株式会社トヨックス Tube
US20150325988A1 (en) * 2014-05-12 2015-11-12 SYNCRUDE CANADA LTD. in trust for the owners of the Syncrude Project, as such owners exist now and Sectioned continuity wire system in conduits

Also Published As

Publication number Publication date
JP2018084326A (en) 2018-05-31

Similar Documents

Publication Publication Date Title
US10060567B2 (en) Tool, method, and system for in-line inspection or treatment of a pipeline
JP7018190B2 (en) Transport pipe with wear detection function, wear detection method, and operation method of transport pipe
EP3390883B1 (en) Inspecting a length of pipe, and inspection pig
EP2864748B1 (en) Assembly and seal test
JP6984876B2 (en) Transport pipes with wear detection function, transport pipe manufacturing method, wear detection method, and transport pipe operation method
US9784716B2 (en) Scanning method and apparatus
Tkaczyk et al. Fatigue and fracture of mechanically lined pipes installed by reeling
WO2014001249A1 (en) Monitoring apparatus and method
EP3298396B1 (en) Pipe pig for inspecting a pipeline
CN107896504B (en) Apparatus and method for terminating flexible pipe body
Alnaimi et al. Design of a multi-diameter in-line cleaning and fault detection pipe pigging device
Carneval et al. Flexible line inspection
EP3063520B1 (en) Detection apparatus and method
AU2013260663A1 (en) Integrity testing
JP2007263908A (en) Deterioration diagnosis method of hydraulic hose
US20190219199A1 (en) Sacrificial shielding
JP6675122B2 (en) Method for improving wear resistance of flexible hose using spiral liner, flexible hose, and method for manufacturing flexible hose
JP5340714B2 (en) Hose damage detection method and wear resistant hose
CN104180092B (en) With the rubber short tube of warning device
CN113167413B (en) Plumbing fixture, method of monitoring plumbing fixture, and method of forming plumbing fixture
CN109488889A (en) The online test method of in-service metallic conduit insulated liner layer status
Mekha et al. Comprehensive qualification program for the browse 24 inch high temperature flexible joint prototype
US20150325988A1 (en) Sectioned continuity wire system in conduits
CA2852362C (en) Sectioned continuity wire system in conduits
Marmonier et al. Improved Pipelay Equipment Settings Methodology for Rigid Pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211117

R150 Certificate of patent or registration of utility model

Ref document number: 6984876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150