JP6984706B1 - Vacuum capacitor type instrument transformer - Google Patents

Vacuum capacitor type instrument transformer Download PDF

Info

Publication number
JP6984706B1
JP6984706B1 JP2020149712A JP2020149712A JP6984706B1 JP 6984706 B1 JP6984706 B1 JP 6984706B1 JP 2020149712 A JP2020149712 A JP 2020149712A JP 2020149712 A JP2020149712 A JP 2020149712A JP 6984706 B1 JP6984706 B1 JP 6984706B1
Authority
JP
Japan
Prior art keywords
insulating cylinder
voltage
grounding
axial direction
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020149712A
Other languages
Japanese (ja)
Other versions
JP2022044196A (en
Inventor
修 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2020149712A priority Critical patent/JP6984706B1/en
Priority to PCT/JP2021/025709 priority patent/WO2022049891A1/en
Priority to TW110130274A priority patent/TWI772149B/en
Application granted granted Critical
Publication of JP6984706B1 publication Critical patent/JP6984706B1/en
Publication of JP2022044196A publication Critical patent/JP2022044196A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/24Voltage transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

【課題】電磁力を遮蔽して高精度の測定が可能な小型のコンデンサ形計器用変圧器を提供する。【解決手段】主コンデンサ(または、主コンデンサの一部)を構成する真空コンデンサ2と、分圧コンデンサと、を備え、当該真空コンデンサ2および分圧コンデンサの分圧により、所望の電圧計測を行うことが可能な構成とする。真空コンデンサ2においては、絶縁筒4における軸心方向の一方側の絶縁筒開口部4aを高圧部5により閉塞し、当該軸心方向の他方側の絶縁筒開口部4bを接地部6により閉塞して、真空容器20を構成する。接地部6における真空容器20内側で高圧部5と対向する位置には、前記軸心方向に延在した筒状の絶縁性支持部7を介して、分圧部8を絶縁支持する。これにより、真空コンデンサ2の高圧部5,接地部6,分圧部8がそれぞれ互いに絶縁され、当該分圧部8の外周側が当該高圧部5および接地部6により覆われた状態となる。【選択図】図2PROBLEM TO BE SOLVED: To provide a small capacitor type instrument transformer capable of shielding electromagnetic force and performing high-precision measurement. SOLUTION: A vacuum capacitor 2 constituting a main capacitor (or a part of the main capacitor) and a voltage dividing capacitor are provided, and a desired voltage measurement is performed by dividing the pressure of the vacuum capacitor 2 and the voltage dividing capacitor. The configuration is such that it is possible. In the vacuum capacitor 2, the insulating cylinder opening 4a on one side in the axial direction of the insulating cylinder 4 is closed by the high-voltage portion 5, and the insulating cylinder opening 4b on the other side in the axial direction is closed by the grounding portion 6. The vacuum vessel 20 is configured. A pressure dividing portion 8 is insulatedly supported at a position of the grounding portion 6 inside the vacuum vessel 20 facing the high pressure portion 5 via a tubular insulating support portion 7 extending in the axial direction. As a result, the high-voltage portion 5, the grounding portion 6, and the voltage dividing portion 8 of the vacuum capacitor 2 are insulated from each other, and the outer peripheral side of the voltage dividing portion 8 is covered by the high-voltage portion 5 and the grounding portion 6. [Selection diagram] Fig. 2

Description

本発明は、一次側の主コンデンサと二次側の分圧コンデンサとの分圧により電圧を計測することが可能なコンデンサ形計測器用変圧器に関するものである。 The present invention relates to a transformer for a capacitor type measuring instrument capable of measuring a voltage by dividing a voltage between a main capacitor on the primary side and a voltage dividing capacitor on the secondary side.

周知のように計器用変圧器(VT:Voltage Transformers)は、分圧回路により高電圧を安全な電圧に変換させ、電圧計などの計測器や保護継電器などに入力するために使用される。この計器用変圧器には、巻線形,コンデンサ形,抵抗形などのいくつかの方式が使用されている。 As is well known, a voltage transformer (VT: Voltage Transformers) is used to convert a high voltage into a safe voltage by a voltage dividing circuit and input it to a measuring instrument such as a voltmeter or a protective relay. Several methods such as winding type, capacitor type, and resistance type are used for this instrument transformer.

コンデンサ形計器用変圧器(CVT)は、コンデンサ分圧を利用した計器用変圧器として定義され、一次線路側端子と分圧点(分圧部)の間の主コンデンサと、分圧点と接地部との間の分圧コンデンサと、を備え、分圧コンデンサに直接又は共振リアクトルを通して、並列に接続して使用するCVTの変圧機(CVT変圧器)により分圧電圧を得られるように構成されている。このコンデンサ形計器用変圧器については、例えば特許文献1や非特許文献1が公知となっている。 A capacitor type voltage transformer (CVT) is defined as an instrument transformer that utilizes a capacitor voltage divider, and is defined as a main capacitor between the primary line side terminal and the voltage divider point (voltage divider), and the voltage divider and ground. It is equipped with a voltage dividing capacitor between the parts and is configured so that the voltage dividing voltage can be obtained by a CVT transformer (CVT transformer) used by connecting directly to the voltage dividing capacitor or through a resonance reactor and connecting them in parallel. ing. As for this capacitor type instrument transformer, for example, Patent Document 1 and Non-Patent Document 1 are known.

特許第5476524号公報Japanese Patent No. 5476524

「計器用変成器」JEC−1201−2007、株式会社 電気書院、2007年、p.75−76"Instrument transformer" JEC-1201-2007, Denki Shoin Co., Ltd., 2007, p. 75-76 P.Spolaore, G. Bisoffi, F. Cervellera, R. Pengo , F. Scarpa, The Large Gap Case for HV Insulation in Vacuum, IEEE Transactions on Dielectrics and Electrical Insulation Vol. 4 No. 4, August 1997P.Spolaore, G. Bisoffi, F. Cervellera, R. Pengo, F. Scarpa, The Large Gap Case for HV Insulation in Vacuum, IEEE Transactions on Dielectrics and Electrical Insulation Vol. 4 No. 4, August 1997

従来のコンデンサ形計器用変圧器は、分圧部が金属に覆われていないため、例えば外部からの電磁波が分圧部に影響し、高精度な計測が困難なおそれがある。一方、高精度計測のために、例えば分圧部の外周側を別途金属で覆った構造とすると、外径方向の小型化と高耐電圧化とを両立することが困難となる場合がある。 Since the voltage dividing portion of the conventional capacitor-type instrument transformer is not covered with metal, for example, an electromagnetic wave from the outside may affect the voltage dividing portion, making high-precision measurement difficult. On the other hand, for high-precision measurement, for example, if the outer peripheral side of the voltage dividing portion is separately covered with metal, it may be difficult to achieve both miniaturization in the outer diameter direction and high withstand voltage.

本発明は、このような従来の問題を解決するためになされ、電磁力を遮蔽して高精度の測定が可能で小型化に貢献可能コンデンサ形計器用変圧器を提供することを解決課題としている。 The present invention has been made to solve such a conventional problem, and an object of the present invention is to provide a transformer for a capacitor type instrument that can shield electromagnetic force and perform high-precision measurement and contribute to miniaturization. ..

この発明に係るコンデンサ形計器用変圧器は、前記の課題の解決に貢献できるものであり、その一態様は、一次側の真空コンデンサと二次側のコンデンサとを備え、当該両コンデンサの分圧により電圧計測することが可能なコンデンサ形の計測器用変圧器である。 The capacitor-type voltage transformer according to the present invention can contribute to solving the above-mentioned problems, and one aspect thereof includes a vacuum capacitor on the primary side and a capacitor on the secondary side, and the voltage division of both capacitors is provided. It is a capacitor-type voltage transformer for measuring instruments that can measure voltage by means of.

真空コンデンサは、絶縁筒における軸心方向の一方側の絶縁筒開口部が高圧部により閉塞され、当該軸心方向の他方側の絶縁筒開口部が接地部により閉塞されている真空容器と、前記接地部における真空容器内側で前記高圧部と対向する位置に、前記軸心方向に延在した筒状の絶縁性支持部を介して支持されている分圧部と、を有している。 The vacuum capacitor includes a vacuum vessel in which the opening of the insulating cylinder on one side in the axial direction of the insulating cylinder is closed by a high-pressure portion and the opening of the insulating cylinder on the other side in the axial direction is closed by a grounding portion. It has a pressure dividing portion supported by a tubular insulating support portion extending in the axial direction at a position facing the high pressure portion inside the vacuum vessel in the grounding portion.

前記高圧部は、前記一方側の絶縁筒開口部を閉塞する高圧端子と、前記高圧端子の真空容器内側から前記軸心方向の他方側に延出し、前記絶縁筒の内周側を前記軸心方向に貫通している高圧電極と、を有している。 The high-voltage portion extends from the inside of the vacuum container of the high-voltage terminal to the other side in the axial direction, and the inner peripheral side of the insulating cylinder is the axial center. It has a high voltage electrode that penetrates in the direction.

前記接地部は、前記他方側の絶縁筒開口部に対し前記絶縁筒と同軸状に連設され、前記高圧電極の延出方向側の先端部の外周側および前記分圧部の外周側を囲繞している接地筒と、前記接地筒における前記軸心方向の他方側の接地筒開口部を閉塞する接地端子と、を有している。 The grounding portion is connected coaxially with the insulating cylinder to the opening of the insulating cylinder on the other side, and surrounds the outer peripheral side of the tip end portion on the extension direction side of the high voltage electrode and the outer peripheral side of the voltage dividing portion. It has a grounding cylinder and a grounding terminal for closing the opening of the grounding cylinder on the other side in the axial direction of the grounding cylinder.

そして、前記分圧部は、前記絶縁性支持部における前記軸心方向の一方側の支持部開口部を閉塞する分圧電極と、前記分圧電極から前記軸心方向の他方側に延出し、前記絶縁性支持部の内周側および接地端子を前記軸心方向に貫通している分圧端子と、を有していることを特徴とするものである。 Then, the pressure dividing portion includes a pressure dividing electrode that closes the opening of the supporting portion on one side in the axial center direction of the insulating support portion, and extends from the pressure dividing electrode to the other side in the axial center direction. It is characterized by having a voltage dividing terminal that penetrates the inner peripheral side of the insulating support portion and the ground terminal in the axial direction.

また、前記高圧電極の外周側および前記分圧部の外周側の両者を囲繞している筒状の絶縁筒側シールド部を、備えており、絶縁筒側シールド部は、前記両者と前記接地筒との間に位置し、前記絶縁筒に支持されていることを特徴しても良い。 Further, a tubular insulating cylinder side shield portion that surrounds both the outer peripheral side of the high voltage electrode and the outer peripheral side of the pressure dividing portion is provided, and the insulating cylinder side shield portion includes both of the above and the grounding cylinder. It may be characterized in that it is located between and supported by the insulating cylinder.

また、前記絶縁筒は、前記軸心方向に対し複数個の筒状体に分割された多段構造であり、前記絶縁筒側シールド部は、当該絶縁筒側シールド部から外周側に突出した支持部を有し、当該支持部が前記絶縁筒における隣接する2つの筒状体間に挟持されていることを特徴としても良い。 Further, the insulating cylinder has a multi-stage structure divided into a plurality of tubular bodies in the axial direction, and the insulating cylinder side shield portion is a support portion protruding from the insulating cylinder side shield portion to the outer peripheral side. The support portion may be characterized in that it is sandwiched between two adjacent tubular bodies in the insulating cylinder.

また、それぞれ径の異なる2個以上の前記絶縁筒側シールド部が、前記両者と前記接地筒との間において互いに非接触で同心状に配置され、前記絶縁筒は、前記筒状体の個数が絶縁筒側シールド部よりも多い多段構造であり、各絶縁筒側シールド部の支持部が、前記絶縁筒における異なる筒状体間にそれぞれ挟持されていることを特徴としても良い。 Further, two or more insulating cylinder-side shield portions having different diameters are arranged concentrically between the two and the grounding cylinder in a non-contact manner, and the insulating cylinder has the number of tubular bodies. It has a multi-stage structure having more than the shield portion on the insulating cylinder side, and may be characterized in that the support portion of each shield portion on the insulating cylinder side is sandwiched between different tubular bodies in the insulating cylinder.

また、前記接地筒の前記軸心方向の一方側から前記絶縁筒の内周面に沿って当該軸心方向の一方側に延出している筒状の接地筒側シールド部が、前記絶縁筒と絶縁筒側シールド部との間に非接触で介在していることを特徴としても良い。 Further, the tubular grounding cylinder side shield portion extending from one side of the grounding cylinder in the axial direction to one side in the axial direction along the inner peripheral surface of the insulating cylinder is the insulating cylinder. It may be characterized in that it is interposed with the shield portion on the insulating cylinder side in a non-contact manner.

また、前記接地部における真空容器内側で分圧部の外周側には、当該接地部から前記軸心方向の一方側に延出し当該分圧部を囲繞している筒状の分圧部側シールド部が、設けられていることを特徴としても良い。 Further, on the outer peripheral side of the voltage dividing portion inside the vacuum vessel in the grounding portion, a tubular pressure dividing portion side shield extending from the grounding portion to one side in the axial direction and surrounding the voltage dividing portion. It may be characterized in that the portion is provided.

また、前記絶縁筒側シールド部における前記軸心方向の他方側は、リング状または当該他方側が外周側に折曲された形状に形成されていることを特徴としても良い。 Further, the other side of the shield portion on the insulating cylinder side in the axial direction may be characterized in that it is formed in a ring shape or in a shape in which the other side is bent toward the outer peripheral side.

以上示したように本発明によれば、電磁力を遮蔽して高精度の測定が可能な小型のコンデンサ形計器用変圧器を提供することが可能となる。 As shown above, according to the present invention, it is possible to provide a small capacitor-type instrument transformer capable of shielding electromagnetic force and performing high-precision measurement.

実施例による真空コンデンサ形計器用変圧器1の概略構成を概略外観図(筐体30を断面した外観図)。Schematic external view of the schematic configuration of the vacuum capacitor type instrument transformer 1 according to the embodiment (external view with a cross section of the housing 30). 真空コンデンサ2の概略構成を示す縦断面図(真空容器20の軸心方向の縦断面図)。A vertical cross-sectional view showing a schematic configuration of the vacuum condenser 2 (a vertical cross-sectional view in the axial direction of the vacuum vessel 20). 真空コンデンサ形計器用変圧器1を説明するための等価回路図(絶縁筒側シールド部91を設けた場合の等価回路図)。An equivalent circuit diagram for explaining the vacuum capacitor type instrument transformer 1 (equivalent circuit diagram when the shield portion 91 on the insulating cylinder side is provided).

本発明の実施形態による真空コンデンサ形計器用変圧器は、例えば単に分圧部の外周側を別途金属で覆ったような構造とは全く異なるものである。 The vacuum capacitor type instrument transformer according to the embodiment of the present invention is completely different from a structure in which, for example, the outer peripheral side of the voltage dividing portion is separately covered with metal.

すなわち、本実施形態の真空コンデンサ形計器用変圧器は、一次側の真空コンデンサと二次側のコンデンサとを備え、当該両コンデンサの分圧により電圧計測することが可能な構成である。真空コンデンサにおいては、絶縁筒における軸心方向(以下、単に軸心方向と適宜称する)の一方側(以下、単に軸心一方側と適宜称する)の絶縁筒開口部が高圧部により閉塞され、当該軸心方向の他方側(以下、軸心他方側と適宜称する)の絶縁筒開口部が接地部により閉塞されている真空容器を、備えたものとする。そして、前記接地部における真空容器内側で前記高圧部と対向する位置に、軸心方向に延在した筒状の絶縁性支持部を介して、分圧部を絶縁支持した構成とする。 That is, the vacuum capacitor type instrument transformer of the present embodiment includes a vacuum capacitor on the primary side and a capacitor on the secondary side, and has a configuration capable of measuring voltage by dividing the voltage of both capacitors. In the vacuum capacitor, the opening of the insulating cylinder on one side (hereinafter, simply referred to as one side of the axial center) in the insulating cylinder in the axial center direction (hereinafter, simply referred to as the axial center direction) is closed by the high pressure portion. It is assumed that a vacuum vessel is provided in which the opening of the insulating cylinder on the other side in the axial direction (hereinafter, appropriately referred to as the other side of the axial center) is closed by the grounding portion. Then, the pressure dividing portion is insulated and supported via a cylindrical insulating support portion extending in the axial direction at a position facing the high pressure portion inside the vacuum vessel in the grounding portion.

このような構成の真空コンデンサ形計器用変圧器によれば、真空コンデンサの高圧部,接地部,分圧部がそれぞれ互いに絶縁され、当該分圧部の外周側が当該高圧部および接地部により覆われた状態となる。これにより、例えば真空容器の外部から侵入し得る電磁波(以下、単に外部電磁波と適宜称する)の影響(例えば分圧部に対する影響)を抑制することができ、高精度の計測が可能となる。 According to the vacuum capacitor type instrument transformer having such a configuration, the high voltage part, the grounding part, and the voltage dividing part of the vacuum capacitor are insulated from each other, and the outer peripheral side of the voltage dividing part is covered by the high voltage part and the grounding part. It will be in a state of being. As a result, for example, the influence of electromagnetic waves that can enter from the outside of the vacuum container (hereinafter, simply referred to as external electromagnetic waves) (for example, the influence on the voltage dividing portion) can be suppressed, and high-precision measurement becomes possible.

その結果、分圧部の外周側を別途金属で覆った構造にしなくても、小型で大きな静電容量が得られて高電圧の電磁破による影響を抑制することができ、この点で小型化と高耐電圧化の両立が可能となる。 As a result, even if the outer peripheral side of the voltage dividing portion is not separately covered with metal, a small size and a large capacitance can be obtained, and the influence of high voltage electromagnetic rupture can be suppressed, and in this respect, the size is reduced. And high withstand voltage can be achieved at the same time.

本実施形態の真空コンデンサ形計器用変圧器は、前述のように真空コンデンサの高圧部,接地部,分圧部がそれぞれ互いに絶縁され、当該高圧部および接地部により当該分圧部の外周側が覆われた状態となる態様であれば良く、種々の分野(例えば、変圧器,計測器,保護継電器,真空コンデンサ等の分野)の技術常識を適宜適用し、必要に応じて先行技術文献等を適宜参照して設計変形することが可能であり、その一例として以下の実施例が挙げられる。なお、図1〜図3においては、互いに同様の内容について同一符号を引用する等により、詳細な説明を適宜省略する。 In the vacuum capacitor type voltage transformer of the present embodiment, as described above, the high voltage portion, the grounding portion, and the voltage dividing portion of the vacuum capacitor are insulated from each other, and the outer peripheral side of the voltage dividing portion is covered by the high voltage portion and the grounding portion. Any aspect may be used as long as it is in a broken state, and technical common knowledge in various fields (for example, fields such as transformers, measuring instruments, protective relays, vacuum capacitors, etc.) is appropriately applied, and prior art documents and the like are appropriately referred to as necessary. It is possible to modify the design with reference to it, and the following examples can be given as an example. In FIGS. 1 to 3, detailed description will be omitted as appropriate by quoting the same reference numerals for the same contents.

≪実施例≫
<真空コンデンサ形計器用変圧器の構成例>
図1は、実施例による真空コンデンサ形計器用変圧器1の概略構成を説明するものである。この真空コンデンサ形計器用変圧器1は、主コンデンサ(または、主コンデンサの一部)を構成する真空コンデンサ2と、分圧コンデンサ3と、を備えており、当該真空コンデンサ2および分圧コンデンサ3の分圧により、所望の電圧計測を行うことが可能となっている。
<< Example >>
<Configuration example of vacuum capacitor type instrument transformer>
FIG. 1 illustrates a schematic configuration of a vacuum capacitor type instrument transformer 1 according to an embodiment. The vacuum capacitor type voltage transformer 1 includes a vacuum capacitor 2 constituting a main capacitor (or a part of the main capacitor) and a voltage dividing capacitor 3, and the vacuum capacitor 2 and the voltage dividing capacitor 3 are provided. By dividing the voltage, it is possible to measure the desired voltage.

分圧コンデンサ3は、例えば、真空コンデンサやフィルムコンデンサ等であり、筐体30内に設けられている。また、真空コンデンサ2と分圧コンデンサ3の共通接続点には、出力端子31が接続されている。図示省略しているが、分圧コンデンサ3と並列に共振リアクトルや変圧器、または電圧検出部が適宜装備され、これらの出力を必要な出力形態に変換する変成装置部においても適宜装備される。 The voltage dividing capacitor 3 is, for example, a vacuum capacitor, a film capacitor, or the like, and is provided in the housing 30. Further, an output terminal 31 is connected to a common connection point between the vacuum capacitor 2 and the voltage dividing capacitor 3. Although not shown, a resonance reactor, a transformer, or a voltage detection unit is appropriately equipped in parallel with the voltage dividing capacitor 3, and a transformation device unit that converts these outputs into a required output form is also appropriately equipped.

<真空コンデンサ2の構成例>
図2は、真空コンデンサ2の概略構成を説明するものである。図2の真空コンデンサ2は、絶縁筒4における軸心一方側の絶縁筒開口部4aが高圧部5により閉塞され、軸心他方側の絶縁筒開口部4bが接地部6により閉塞されて、真空状態を保つことが可能な真空容器20が構成されている。
<Vacuum capacitor 2 configuration example>
FIG. 2 illustrates the schematic configuration of the vacuum capacitor 2. In the vacuum capacitor 2 of FIG. 2, the insulating cylinder opening 4a on one side of the shaft center of the insulating cylinder 4 is closed by the high pressure portion 5, and the insulating cylinder opening 4b on the other side of the shaft center is closed by the grounding portion 6 to form a vacuum. A vacuum vessel 20 capable of maintaining the state is configured.

図中の真空容器20の場合、絶縁筒開口部4bの開口縁面が後述の縮径部6aと接合されており、これにより軸心一方側から軸心他方側に向かって階段状に拡径されている外観形状を成している。 In the case of the vacuum vessel 20 in the figure, the opening edge surface of the insulating cylinder opening 4b is joined to the reduced diameter portion 6a described later, whereby the diameter is gradually expanded from one side of the axis to the other side of the axis. It has the appearance shape that is being used.

図中の絶縁筒4の場合、軸心方向に対し複数個の筒状体40(図2では2個の筒状体40a,40b)に分割され、当該各筒状体40が同軸状で軸心方向に連設された多段構造となっている。これにより、隣接する2つの筒状体40間によって、後述の絶縁筒側シールド部91を挟持できる構成となっている。 In the case of the insulating cylinder 4 in the figure, it is divided into a plurality of tubular bodies 40 (two tubular bodies 40a and 40b in FIG. 2) in the axial direction, and each of the tubular bodies 40 is coaxial and has a shaft. It has a multi-stage structure that is connected in the direction of the center. As a result, the insulating cylinder side shield portion 91, which will be described later, can be sandwiched between the two adjacent tubular bodies 40.

高圧部5は、絶縁筒開口部4aを閉塞する平板状の高圧端子51と、その高圧端子51の真空容器20内側から軸心他方側に延出した高圧電極52と、を有している。この高圧電極52においては、絶縁筒4の内周側を軸心方向に貫通し、当該高圧電極52の延出方向側の先端部52aが、当該絶縁筒4の内周側から突出した構成となっている。図中の先端部52aの場合、高圧電極52における当該先端部52a以外よりも拡径された球状となっている。高圧端子51においては、例えば図外の母線等が接続される。 The high-voltage portion 5 has a flat plate-shaped high-voltage terminal 51 that closes the insulating cylinder opening 4a, and a high-voltage electrode 52 that extends from the inside of the vacuum vessel 20 of the high-voltage terminal 51 to the other side of the axis. The high-voltage electrode 52 has a configuration in which the inner peripheral side of the insulating cylinder 4 is penetrated in the axial direction, and the tip portion 52a on the extending direction side of the high-voltage electrode 52 protrudes from the inner peripheral side of the insulating cylinder 4. It has become. In the case of the tip portion 52a in the figure, the diameter of the high-voltage electrode 52 is larger than that of the tip portion 52a other than the tip portion 52a. In the high voltage terminal 51, for example, a bus or the like (not shown) is connected.

接地部6は、絶縁筒開口部4bに対し絶縁筒4と同軸状に連設された接地筒61と、その接地筒61における軸心他方側の接地筒開口部6bを閉塞する平板状の接地端子62と、を有している。接地筒61は、高圧電極52の先端部52aの外周側および後述の分圧部8の外周側を囲繞(非接触で囲繞)するように構成されている。 The grounding portion 6 is a flat plate-shaped grounding portion that closes the grounding cylinder 61 coaxially connected to the insulating cylinder 4 with respect to the insulating cylinder opening 4b and the grounding cylinder opening 6b on the other side of the axis of the grounding cylinder 61. It has a terminal 62 and. The grounding cylinder 61 is configured to surround (non-contactly surround) the outer peripheral side of the tip portion 52a of the high voltage electrode 52 and the outer peripheral side of the voltage dividing portion 8 described later.

図中の接地筒61の場合、当該接地筒61における軸心一方側に、真空容器20の径方向(軸心方向と公差する方向;以下、単に径方向と適宜称する)の内側に縮径された縮径部6aが形成されている。この縮径部6aと絶縁筒開口部4bとが接合されて、当該絶縁筒開口部4bが閉塞されている。 In the case of the grounding cylinder 61 in the figure, the diameter is reduced to the inside of the vacuum vessel 20 in the radial direction (the direction tolerate the axial center direction; hereinafter, simply referred to as the radial direction) on one side of the axial center of the grounding cylinder 61. A reduced diameter portion 6a is formed. The reduced diameter portion 6a and the insulating cylinder opening 4b are joined to close the insulating cylinder opening 4b.

接地端子62における真空容器20内側で高圧部5と対向した位置には、後述の分圧端子82を軸心方向に貫通可能な形状の貫通孔62aが、設けられている。この貫通孔62aにおける真空容器20内側の開口縁面には、軸心方向に延在した筒状の絶縁性支持部7が、当該貫通孔62aと同軸状に設けられている。この絶縁性支持部7を介して、分圧部8が、接地端子62における真空容器20内側に絶縁支持されている。 A through hole 62a having a shape capable of penetrating the voltage dividing terminal 82 described later in the axial direction is provided at a position of the ground terminal 62 inside the vacuum vessel 20 facing the high voltage portion 5. On the opening edge surface inside the vacuum vessel 20 in the through hole 62a, a tubular insulating support portion 7 extending in the axial direction is provided coaxially with the through hole 62a. The pressure dividing portion 8 is insulatedly supported inside the vacuum vessel 20 in the ground terminal 62 via the insulating support portion 7.

この分圧部8は、絶縁性支持部7における軸心一方側の支持部開口部7aを閉塞する分圧電極81と、その分圧電極81から軸心他方側に延出した分圧端子82と、を有している。分圧端子82は、絶縁性支持部7の内周側および貫通孔62aを軸心方向に貫通して真空容器20外周側に突出し、分圧コンデンサ3や出力端子31に対して接続可能な構成となっている。 The pressure dividing portion 8 includes a pressure dividing electrode 81 that closes the support opening 7a on one side of the axial center in the insulating support portion 7, and a pressure dividing terminal 82 extending from the pressure dividing electrode 81 to the other side of the axial center. And have. The voltage dividing terminal 82 penetrates the inner peripheral side of the insulating support portion 7 and the through hole 62a in the axial direction and protrudes to the outer peripheral side of the vacuum vessel 20, and can be connected to the voltage dividing capacitor 3 and the output terminal 31. It has become.

この分圧部8は、高圧部5の高圧電極52から所定距離を隔てて位置し、これにより当該高圧部5との間が真空によって絶縁されている。そして、高圧部5と分圧部8との間には、真空コンデンサ2の主コンデンサ(後述の図3では主コンデンサC1)が形成される。 The pressure dividing portion 8 is located at a predetermined distance from the high voltage electrode 52 of the high voltage portion 5, so that the pressure dividing portion 8 is insulated from the high voltage portion 5 by a vacuum. Then, a main capacitor of the vacuum capacitor 2 (main capacitor C1 in FIG. 3 described later) is formed between the high voltage portion 5 and the voltage dividing portion 8.

以上のような真空コンデンサ2により、高圧部5,接地部6,分圧部8をそれぞれ互いに絶縁し、当該分圧部8の外周側を当該高圧部5および接地部6により覆った状態とすることができる。これにより、分圧部8に対する外部電磁波の影響を抑制できる。 The high-voltage section 5, the grounding section 6, and the voltage dividing section 8 are insulated from each other by the vacuum capacitor 2 as described above, and the outer peripheral side of the voltage dividing section 8 is covered by the high-voltage section 5 and the grounding section 6. be able to. As a result, the influence of the external electromagnetic wave on the voltage dividing portion 8 can be suppressed.

<各種シールド部の構成例>
真空コンデンサ2の真空容器20内の絶縁破壊電圧は、電界強度の他に、例えば当該真空容器20における電極間距離に依存する。この電極間距離が所定の数値範囲内では、絶縁破壊電圧は当該電極間距離に比例して変化するものとされている。
<Configuration examples of various shields>
The breakdown voltage in the vacuum vessel 20 of the vacuum capacitor 2 depends on, for example, the distance between the electrodes in the vacuum vessel 20 in addition to the electric field strength. When the distance between the electrodes is within a predetermined numerical range, the breakdown voltage is assumed to change in proportion to the distance between the electrodes.

しかしながら、当該電極間距離が所定の数値範囲を超えた場合には、前記比例関係を保持できなくなる。すなわち、電極間距離が所定の数値範囲を超えて大きくなるに連れて、絶縁破壊電圧の増加度合いは次第に小さくなり、絶縁破壊電界強度が低下する傾向になることが知られている(例えば非特許文献2の図3参照)。 However, when the distance between the electrodes exceeds a predetermined numerical range, the proportional relationship cannot be maintained. That is, it is known that as the distance between electrodes increases beyond a predetermined numerical range, the degree of increase in the dielectric breakdown voltage gradually decreases, and the dielectric breakdown electric field strength tends to decrease (for example, non-patented). See FIG. 3 of Document 2).

そこで、このような傾向がある場合には、真空容器20内に種々のシールド部を適宜配置して電極間距離を適宜短縮し、電界特性の向上を図ることが挙げられる。その一例としては、図2に示すような絶縁筒側シールド部91,接地筒側シールド部92,分圧部側シールド部93等を設けることが挙げられる。 Therefore, when there is such a tendency, various shield portions may be appropriately arranged in the vacuum vessel 20 to appropriately shorten the distance between the electrodes to improve the electric field characteristics. As an example thereof, the insulating cylinder side shield portion 91, the grounding cylinder side shield portion 92, the voltage dividing portion side shield portion 93, and the like as shown in FIG. 2 may be provided.

図2の絶縁筒側シールド部91は、高圧電極52の外周側および分圧部8の外周側の両者(以下、単に高圧部・分圧部外周側と適宜称する)を囲繞する筒状であって、当該高圧部・分圧部外周側と接地筒61との間に非接触で介在し、絶縁筒4によって絶縁支持された構成となっている。 The shield portion 91 on the insulating cylinder side in FIG. 2 has a tubular shape that surrounds both the outer peripheral side of the high voltage electrode 52 and the outer peripheral side of the voltage dividing portion 8 (hereinafter, simply referred to as the high voltage portion and the outer peripheral side of the voltage dividing portion). Therefore, the high-voltage portion / partial pressure portion is interposed between the outer peripheral side and the grounding cylinder 61 in a non-contact manner, and is insulated and supported by the insulating cylinder 4.

図中の絶縁筒側シールド部91の場合、当該絶縁筒側シールド部91の軸心一方側において、径方向外側に突出した形状の支持部91aが設けられている。この支持部91aを、隣接する2つの筒状体間によって挟持することにより、絶縁筒側シールド部91が絶縁支持されている。 In the case of the insulating cylinder side shield portion 91 in the figure, a support portion 91a having a shape protruding outward in the radial direction is provided on one side of the axis of the insulating cylinder side shield portion 91. By sandwiching the support portion 91a between two adjacent tubular bodies, the insulating cylinder side shield portion 91 is insulatedly supported.

このような絶縁筒側シールド部91を設けた場合、高圧部・分圧部外周側と接地筒61との両者に係る電極間距離を短縮できると共に、絶縁筒側シールド部91を設けない場合と同様の電界強度を得ることが可能となる。 When such an insulating cylinder side shield portion 91 is provided, the distance between the electrodes related to both the high voltage portion / voltage dividing portion outer peripheral side and the grounding cylinder 61 can be shortened, and the insulating cylinder side shield portion 91 is not provided. It is possible to obtain the same electric field strength.

この絶縁筒側シールド部91を設けた場合の真空コンデンサ形計器用変圧器1においては、例えば図3に示すような等価回路を構成することとなる。図3に示すように、高圧部5と分圧部8との間には、真空コンデンサ2の主コンデンサC1が形成される。また、絶縁筒側シールド部91においては、高圧部5,接地部6,分圧部8との間にそれぞれ静電容量C2,C3,C4が形成される他に、空間静電容量C0が形成される。 In the vacuum capacitor type instrument transformer 1 when the insulating cylinder side shield portion 91 is provided, for example, an equivalent circuit as shown in FIG. 3 is configured. As shown in FIG. 3, the main capacitor C1 of the vacuum capacitor 2 is formed between the high voltage portion 5 and the voltage dividing portion 8. Further, in the shield portion 91 on the insulating cylinder side, the capacitances C2, C3, and C4 are formed between the high voltage portion 5, the ground contact portion 6, and the voltage dividing portion 8, respectively, and the space capacitance C0 is formed. Will be done.

ここで、絶縁筒側シールド部91においては、高圧部5,接地部6との間の静電容量C2,C3により分圧され、中間の電位となる。したがって、静電容量C2,C3を空間静電容量C0より大きくすることにより、外部電磁波の影響を抑制することができ、高精度の計測の実現に貢献可能となる。 Here, in the shield portion 91 on the insulating cylinder side, the voltage is divided by the capacitances C2 and C3 between the high voltage portion 5 and the grounding portion 6, and the potential becomes an intermediate potential. Therefore, by making the capacitances C2 and C3 larger than the spatial capacitance C0, the influence of external electromagnetic waves can be suppressed, which can contribute to the realization of highly accurate measurement.

次に、接地筒側シールド部92においては、接地筒61の軸心一方側の縮径部6aから絶縁筒4の内周面に沿って軸心一方側に延出した筒状であって、絶縁筒4と絶縁筒側シールド部91との間に非接触で介在した構成となっている。 Next, the grounding cylinder side shield portion 92 has a tubular shape extending from the diameter-reduced portion 6a on one side of the shaft center of the grounding cylinder 61 to one side of the shaft center along the inner peripheral surface of the insulating cylinder 4. It is configured to be interposed between the insulating cylinder 4 and the shield portion 91 on the insulating cylinder side in a non-contact manner.

このような接地筒側シールド部92を設けた場合、絶縁筒側シールド部91に対する外部電磁波の影響を抑制し、より高精度の計測の実現に貢献可能となる。 When such a grounding cylinder side shield portion 92 is provided, it is possible to suppress the influence of external electromagnetic waves on the insulating cylinder side shield portion 91 and contribute to the realization of more accurate measurement.

次に、分圧部側シールド部93においては、接地端子62における真空容器20内側から軸心一方側に延出して分圧部8の外周側を囲繞する筒状の構成となっている。この分圧部側シールド部93は、当該分圧部側シールド部93における軸心一方側が、絶縁筒側シールド部91における軸心他方側の内周側に挿入され、互いに非接触で軸心方向に重畳している。 Next, the pressure dividing portion side shield portion 93 has a tubular structure that extends from the inside of the vacuum container 20 in the ground terminal 62 to one side of the axis and surrounds the outer peripheral side of the pressure dividing portion 8. In the pressure dividing portion side shield portion 93, one side of the shaft center of the pressure dividing portion side shield portion 93 is inserted into the inner peripheral side of the other side of the shaft center of the insulating cylinder side shield portion 91, and the shield portion 93 is not in contact with each other and is in the axial center direction. It is superimposed on.

このような分圧部側シールド部93を設けた場合、分圧部8と絶縁筒側シールド部91との間の静電容量を減らすことができ、更なる高精度の計測の実現に貢献可能となる。 When such a pressure dividing portion side shield portion 93 is provided, the capacitance between the pressure dividing portion 8 and the insulating cylinder side shield portion 91 can be reduced, which can contribute to the realization of higher accuracy measurement. Will be.

以上のような各シールド部91〜93においては、目的とする真空コンデンサ形計器用変圧器1に応じて(例えば高圧部5の電圧に応じて)、種々の態様で適用することが可能であり、例えば当該各種シールド部91〜93の何れかを増設あるいは省略したり、種々の形状を適用することが可能である。 Each of the shield portions 91 to 93 as described above can be applied in various modes depending on the target vacuum capacitor type instrument transformer 1 (for example, depending on the voltage of the high voltage portion 5). For example, any of the various shield portions 91 to 93 can be added or omitted, and various shapes can be applied.

具体例としては、それぞれ径の異なる複数個の絶縁筒側シールド部91を、高圧部・分圧部外周側と接地筒61との間において互いに非接触で同心状に配置することが挙げられる。 As a specific example, a plurality of insulating cylinder-side shield portions 91 having different diameters may be arranged concentrically with each other in a non-contact manner between the outer peripheral side of the high-voltage portion / voltage dividing portion and the grounding cylinder 61.

この場合、絶縁筒4においては、筒状体40の個数が絶縁筒側シールド部91よりも多い多段構造にする。これにより、隣接する2つの筒状体40間が、複数個(絶縁筒側シールド部91の個数以上)存在することとなり、各絶縁筒側シールド部の支持部をそれぞれ異なる筒状体40間によって挟持して絶縁支持することが可能となる。 In this case, the insulating cylinder 4 has a multi-stage structure in which the number of tubular bodies 40 is larger than that of the insulating cylinder side shield portion 91. As a result, there are a plurality of adjacent two tubular bodies 40 (more than the number of the insulating cylinder side shield portions 91), and the support portions of the insulating cylinder side shield portions are supported by different tubular bodies 40. It can be sandwiched and supported by insulation.

また、絶縁筒側シールド部91における軸心他方側の先端部は、リング状または当該他方側(先端部)を径方向外側に折曲(曲げて丸く)した形状にすることが挙げられる。 Further, the tip portion on the other side of the axis of the shield portion 91 on the insulating cylinder side may have a ring shape or a shape in which the other side (tip portion) is bent (bent and rounded) outward in the radial direction.

前記のように絶縁筒側シールド部91における軸心他方側の先端部がリング状等になっている場合、電界強度が高くなり、放電時に放電アークを絶縁筒側シールド91と接地部6とに生じさせ、分圧部8から放電アークを遠ざけることで、高電圧にならないようにできる。 When the tip of the shield portion 91 on the insulating cylinder side on the other side of the axis is ring-shaped or the like as described above, the electric field strength becomes high, and the discharge arc is applied to the shield 91 on the insulating cylinder side and the grounding portion 6 at the time of discharge. By generating it and keeping the discharge arc away from the voltage dividing unit 8, it is possible to prevent the high voltage from becoming high.

<その他>
真空コンデンサ2の各構成要素の材料や接合構成は、種々の態様を適用することが可能であり、特に限定されるものではない。例えば、当該各構成要素においては、ロウ付け等により適宜接合することが挙げられる。絶縁筒4や絶縁性支持部7においては、絶縁性を有する材料、例えばセラミック材等を適用することが挙げられる。
<Others>
Various aspects can be applied to the material and the joining configuration of each component of the vacuum capacitor 2, and the material is not particularly limited. For example, each component may be appropriately joined by brazing or the like. In the insulating cylinder 4 and the insulating support portion 7, an insulating material such as a ceramic material may be applied.

また、高圧部5,接地部6,分圧部8の一部あるいは全体の部品を、磁性体とすることで、より強い電磁対策を行うことができる。例えば、高圧部5,接地部6,分圧部8の一部あるいは全体の部品を、鉄,ステンレス,ニッケル合金等の公知の軟磁性体で形成することで、十分な磁気シールド効果を得ることができる。 Further, by using a magnetic material for a part or the whole component of the high-voltage portion 5, the grounding portion 6, and the voltage dividing portion 8, stronger electromagnetic countermeasures can be taken. For example, a sufficient magnetic shielding effect can be obtained by forming a part or all of the high-pressure portion 5, the ground portion 6, and the partial pressure division 8 with a known soft magnetic material such as iron, stainless steel, and nickel alloy. Can be done.

また、高圧部5,接地部6,分圧部8の一部あるいは全体の部品を、軟磁性体かつ電気抵抗の低い材料で形成することで、磁気シールド効果がさらに向上する。なお、メッキ等により高圧部5,接地部6,分圧部8にこれら磁性体の薄膜を形成しても同様の効果を得ることができる。 Further, by forming a part or the whole component of the high voltage portion 5, the grounding portion 6, and the voltage dividing portion 8 with a soft magnetic material and a material having low electric resistance, the magnetic shielding effect is further improved. The same effect can be obtained by forming a thin film of these magnetic materials on the high-pressure portion 5, the ground contact portion 6, and the pressure-dividing portion 8 by plating or the like.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変更等が可能であることは、当業者にとって明白なことであり、このような変更等が特許請求の範囲に属することは当然のことである。 Although the above description has been made in detail only for the specific examples described in the present invention, it is clear to those skilled in the art that various changes and the like can be made within the scope of the technical idea of the present invention. It goes without saying that such changes belong to the scope of claims.

1…真空コンデンサ形計器用変圧器
2…真空コンデンサ
20…真空容器
3…分圧コンデンサ
4…絶縁筒
5…高圧部
6…接地部
7…絶縁性支持部
8…分圧部
91〜93…シールド部
1 ... Vacuum capacitor type Instrument transformer 2 ... Vacuum capacitor 20 ... Vacuum container 3 ... Pressure dividing capacitor 4 ... Insulation cylinder 5 ... High voltage part 6 ... Grounding part 7 ... Insulating support part 8 ... Pressure dividing part 91-93 ... Shield Department

Claims (7)

一次側の真空コンデンサと二次側のコンデンサとを備え、当該両コンデンサの分圧により電圧計測することが可能なコンデンサ形の計測器用変圧器であって、
真空コンデンサは、
絶縁筒における軸心方向の一方側の絶縁筒開口部が高圧部により閉塞され、当該軸心方向の他方側の絶縁筒開口部が接地部により閉塞されている真空容器と、
前記接地部における真空容器内側で前記高圧部と対向する位置に、前記軸心方向に延在した筒状の絶縁性支持部を介して支持されている分圧部と、を有し、
前記高圧部は、
前記一方側の絶縁筒開口部を閉塞する高圧端子と、
前記高圧端子の真空容器内側から前記軸心方向の他方側に延出し、前記絶縁筒の内周側を前記軸心方向に貫通している高圧電極と、を有し、
前記接地部は、
前記他方側の絶縁筒開口部に対し前記絶縁筒と同軸状に連設され、前記高圧電極の延出方向側の先端部の外周側および前記分圧部の外周側を囲繞している接地筒と、
前記接地筒における前記軸心方向の他方側の接地筒開口部を閉塞する接地端子と、を有し、
前記分圧部は、
前記絶縁性支持部における前記軸心方向の一方側の支持部開口部を閉塞する分圧電極と、
前記分圧電極から前記軸心方向の他方側に延出し、前記絶縁性支持部の内周側および接地端子を前記軸心方向に貫通している分圧端子と、を有していることを特徴とする真空コンデンサ形計器用変圧器。
It is a capacitor-type measuring instrument transformer that has a vacuum capacitor on the primary side and a capacitor on the secondary side and can measure voltage by dividing the voltage of both capacitors.
The vacuum condenser is
A vacuum vessel in which the opening of the insulating cylinder on one side in the axial direction of the insulating cylinder is closed by the high-pressure portion and the opening of the insulating cylinder on the other side in the axial direction is closed by the grounding portion.
The grounded portion has a pressure dividing portion supported by a tubular insulating support portion extending in the axial direction at a position facing the high pressure portion inside the vacuum vessel.
The high pressure part is
A high-voltage terminal that closes the opening of the insulating cylinder on one side,
It has a high-voltage electrode extending from the inside of the vacuum vessel of the high-voltage terminal to the other side in the axial direction and penetrating the inner peripheral side of the insulating cylinder in the axial direction.
The grounding part is
A grounding cylinder that is connected coaxially with the insulating cylinder to the opening of the insulating cylinder on the other side and surrounds the outer peripheral side of the tip end portion on the extension direction side of the high voltage electrode and the outer peripheral side of the voltage dividing portion. When,
It has a grounding terminal that closes the opening of the grounding cylinder on the other side in the axial direction of the grounding cylinder.
The pressure dividing part is
A voltage dividing electrode that closes the opening of the support portion on one side in the axial direction of the insulating support portion, and a pressure dividing electrode.
It has a voltage dividing terminal extending from the voltage dividing electrode to the other side in the axial center direction and penetrating the inner peripheral side of the insulating support portion and the grounding terminal in the axial center direction. A featured vacuum capacitor type instrument transformer.
前記高圧電極の外周側および前記分圧部の外周側の両者を囲繞している筒状の絶縁筒側シールド部を、備えており、
絶縁筒側シールド部は、前記両者と前記接地筒との間に位置し、前記絶縁筒に支持されていることを特徴とする請求項1記載の真空コンデンサ形計器用変圧器。
It is provided with a cylindrical insulating cylinder-side shield portion that surrounds both the outer peripheral side of the high-voltage electrode and the outer peripheral side of the voltage dividing portion.
The vacuum capacitor type instrument transformer according to claim 1, wherein the shield portion on the insulating cylinder side is located between the two and the grounding cylinder and is supported by the insulating cylinder.
前記絶縁筒は、前記軸心方向に対し複数個の筒状体に分割された多段構造であり、
前記絶縁筒側シールド部は、当該絶縁筒側シールド部から外周側に突出した支持部を有し、当該支持部が前記絶縁筒における隣接する2つの筒状体間に挟持されていることを特徴とする請求項2記載の真空コンデンサ形計器用変圧器。
The insulating cylinder has a multi-stage structure divided into a plurality of tubular bodies in the axial direction.
The insulating cylinder side shield portion has a support portion protruding from the insulating cylinder side shield portion to the outer peripheral side, and the support portion is sandwiched between two adjacent tubular bodies in the insulating cylinder. The vacuum capacitor type instrument transformer according to claim 2.
それぞれ径の異なる2個以上の前記絶縁筒側シールド部が、前記両者と前記接地筒との間において互いに非接触で同心状に配置され、
前記絶縁筒は、前記筒状体の個数が絶縁筒側シールド部よりも多い多段構造であり、
各絶縁筒側シールド部の支持部が、前記絶縁筒における異なる筒状体間にそれぞれ挟持されていることを特徴とする請求項3記載の真空コンデンサ形計器用変圧器。
Two or more shields on the insulating cylinder side having different diameters are arranged concentrically with each other in a non-contact manner between the two and the grounding cylinder.
The insulating cylinder has a multi-stage structure in which the number of tubular bodies is larger than that of the shield portion on the insulating cylinder side.
The vacuum capacitor type instrument transformer according to claim 3, wherein the support portion of each insulating cylinder side shield portion is sandwiched between different tubular bodies in the insulating cylinder.
前記接地筒の前記軸心方向の一方側から前記絶縁筒の内周面に沿って当該軸心方向の一方側に延出している筒状の接地筒側シールド部が、前記絶縁筒と絶縁筒側シールド部との間に非接触で介在していることを特徴とする請求項〜4の何れかに記載の真空コンデンサ形計器用変圧器。 The tubular grounding cylinder side shield portion extending from one side of the grounding cylinder in the axial direction to one side in the axial direction along the inner peripheral surface of the insulating cylinder is the insulating cylinder and the insulating cylinder. The transformer for a vacuum capacitor type instrument according to any one of claims 2 to 4, wherein the transformer is interposed with the side shield portion in a non-contact manner. 前記絶縁筒側シールド部における前記軸心方向の他方側は、リング状または当該他方側が外周側に折曲された形状に形成されていることを特徴とする請求項の何れかに記載の真空コンデンサ形計器用変圧器。 The invention according to any one of claims 2 to 5 , wherein the other side of the shield portion on the insulating cylinder side in the axial direction is formed in a ring shape or a shape in which the other side is bent toward the outer peripheral side. Vacuum capacitor type instrument transformer. 前記接地部における真空容器内側で分圧部の外周側には、当該接地部から前記軸心方向の一方側に延出し当該分圧部を囲繞している筒状の分圧部側シールド部が、設けられていることを特徴とする請求項1〜の何れかに記載の真空コンデンサ形計器用変圧器。 Inside the vacuum vessel in the grounding portion, on the outer peripheral side of the voltage dividing portion, there is a tubular pressure dividing portion side shield portion extending from the grounding portion to one side in the axial direction and surrounding the voltage dividing portion. The vacuum capacitor type instrument transformer according to any one of claims 1 to 6, wherein the transformer is provided.
JP2020149712A 2020-09-07 2020-09-07 Vacuum capacitor type instrument transformer Active JP6984706B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020149712A JP6984706B1 (en) 2020-09-07 2020-09-07 Vacuum capacitor type instrument transformer
PCT/JP2021/025709 WO2022049891A1 (en) 2020-09-07 2021-07-08 Vacuum-capacitor-type voltage transformer
TW110130274A TWI772149B (en) 2020-09-07 2021-08-17 Vacuum Capacitor Voltage Comparator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020149712A JP6984706B1 (en) 2020-09-07 2020-09-07 Vacuum capacitor type instrument transformer

Publications (2)

Publication Number Publication Date
JP6984706B1 true JP6984706B1 (en) 2021-12-22
JP2022044196A JP2022044196A (en) 2022-03-17

Family

ID=79193343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020149712A Active JP6984706B1 (en) 2020-09-07 2020-09-07 Vacuum capacitor type instrument transformer

Country Status (3)

Country Link
JP (1) JP6984706B1 (en)
TW (1) TWI772149B (en)
WO (1) WO2022049891A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476524B2 (en) * 2009-09-02 2014-04-23 株式会社明電舎 Vacuum capacitor type instrument transformer
CN205246733U (en) * 2015-12-21 2016-05-18 中国西电电气股份有限公司 Inversion formula capacitive voltage divider
JP2020113723A (en) * 2019-01-17 2020-07-27 株式会社明電舎 Vacuum capacitor type instrument transformer

Also Published As

Publication number Publication date
TW202213406A (en) 2022-04-01
JP2022044196A (en) 2022-03-17
TWI772149B (en) 2022-07-21
WO2022049891A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
JP3914278B2 (en) Discharge measuring device
JPS6053860A (en) Local discharge measuring device in high-tension switching facility
US4837515A (en) Radio frequency coil for nuclear magnetic resonance imaging
WO2018114661A1 (en) Bushing with integrated voltage sensor
JP6984706B1 (en) Vacuum capacitor type instrument transformer
US11324104B2 (en) Magnetic probe device
US3783419A (en) Resonator for gyromagnetic-resonance spectrometer
JP4156512B2 (en) Device for suppressing electromagnetic coupling phenomenon
JP7040297B2 (en) Vacuum capacitor type instrument transformer
JP2020113723A (en) Vacuum capacitor type instrument transformer
JP2018049768A (en) Plasma generation device and rf power source
JP2021086867A (en) Vacuum capacitor type instrument transformer
JP2005503223A6 (en) Device for suppressing electromagnetic coupling phenomenon
JP6089573B2 (en) Vacuum capacitor type instrument transformer
US3419769A (en) Low capacitance condenser for use as a secondary standard
WO2015049725A1 (en) Partial discharge sensor
WO2023100963A1 (en) Vacuum interrupter
US3829744A (en) Gas filled measuring condenser
KR100811384B1 (en) Magnetron
JP4896280B1 (en) Instrument transformer
CN103808990B (en) There is the capacitive probe device reducing electric field distortion function
US2957151A (en) Current transformer
JP4712128B1 (en) Gas insulated switchgear
JP2023082241A (en) vacuum interrupter
SU306510A1 (en) DEVICE FOR THE DEVELOPMENT OF THE BEAM OF THE ELECTRON-BEAM PIPE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210714

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6984706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150