JP6984643B2 - Variable magnification optical system, optical device - Google Patents

Variable magnification optical system, optical device Download PDF

Info

Publication number
JP6984643B2
JP6984643B2 JP2019219609A JP2019219609A JP6984643B2 JP 6984643 B2 JP6984643 B2 JP 6984643B2 JP 2019219609 A JP2019219609 A JP 2019219609A JP 2019219609 A JP2019219609 A JP 2019219609A JP 6984643 B2 JP6984643 B2 JP 6984643B2
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
variable magnification
magnification optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019219609A
Other languages
Japanese (ja)
Other versions
JP2020034955A (en
Inventor
昭彦 小濱
雅史 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018151636A external-priority patent/JP6662419B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2019219609A priority Critical patent/JP6984643B2/en
Publication of JP2020034955A publication Critical patent/JP2020034955A/en
Priority to JP2021188655A priority patent/JP2022023239A/en
Application granted granted Critical
Publication of JP6984643B2 publication Critical patent/JP6984643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。 The present invention relates to a variable magnification optical system, an optical device, and a method for manufacturing a variable magnification optical system.

従来、カメラ用の交換レンズ、デジタルカメラ、ビデオカメラ等に好適な変倍光学系として、最も物体側のレンズ群が正の屈折力を有するものが数多く提案されている(例えば、特許文献1を参照。)。 Conventionally, many variable magnification optical systems suitable for interchangeable lenses for cameras, digital cameras, video cameras, etc. have been proposed in which the lens group on the most object side has a positive refractive power (for example, Patent Document 1). reference.).

特開2010−237455号公報Japanese Unexamined Patent Publication No. 2010-237455

しかしながら、上述のような従来の変倍光学系は、小型化を図ろうとすれば、十分に高い光学性能を得ることが困難であるという問題があった。 However, the conventional variable magnification optical system as described above has a problem that it is difficult to obtain sufficiently high optical performance in order to reduce the size.

そこで本発明は上記問題点に鑑みてなされたものであり、小型で、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a variable magnification optical system, an optical device, and a method for manufacturing a variable magnification optical system which are small in size and have high optical performance.

上記課題を解決するために本発明は
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とにより実質的に4個のレンズ群からなり、又は、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とにより実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍時に、隣り合うレンズ群の間隔が変化し、
以下の条件式を満足するレンズを少なくとも1つ有し、
1.928 < ndh
29.37 ≦ νdh
但し、
ndh:前記レンズのd線(波長587.6nm)に対する屈折率
νdh:前記レンズのd線(波長587.6nm)に対するアッベ数
前記第4レンズ群が負の屈折力を有する前記レンズを少なくとも1つ有することを特徴とする変倍光学系を提供する
The present invention for solving the above-
From the object side, the first lens group having a positive refractive force, the second lens group having a negative refractive force, the third lens group having a positive refractive force, and the fourth lens having a positive refractive force. The group consists of substantially four lens groups, or has a first lens group having a positive refractive force, a second lens group having a negative refractive force, and a third lens group having a positive refractive force. The fourth lens group having a negative refractive force and the fifth lens group having a positive refractive force are substantially composed of five lens groups.
When scaling from the wide-angle end state to the telephoto end state, the distance between adjacent lens groups changes,
Having at least one lens that satisfies the following conditional expression,
1.928 <ndh
29.37 ≤ νdh
However,
ndh: Refractive index with respect to the d-line (wavelength 587.6 nm) of the lens νdh: Abbe number with respect to the d-line (wavelength 587.6 nm) of the lens The fourth lens group has at least one of the lenses having a negative refractive power. Provided is a variable magnification optical system characterized by having .

また本発明は、
前記変倍光学系を有することを特徴とする光学装置を提供する。
Further, the present invention
Provided is an optical device characterized by having the variable magnification optical system.

本発明によれば、小型で、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することができる。 According to the present invention, it is possible to provide a variable magnification optical system, an optical device, and a method for manufacturing a variable magnification optical system which are small in size and have high optical performance.

(a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are cross-sectional views of the variable magnification optical system according to the first embodiment of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various aspects of the variable magnification optical system according to the first embodiment of the present application at the time of focusing on an infinite object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are cross-sectional views of the variable magnification optical system according to the second embodiment of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various aspects of the variable magnification optical system according to the second embodiment of the present application at the time of focusing on an infinite object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are cross-sectional views of the variable magnification optical system according to the third embodiment of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various aspects of the variable magnification optical system according to the third embodiment of the present application at the time of focusing on an infinite object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. (a)、(b)、及び(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are cross-sectional views of the variable magnification optical system according to the fourth embodiment of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various aspects of the variable magnification optical system according to the fourth embodiment of the present application at the time of focusing on an infinite object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. (a)、(b)、及び(c)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are cross-sectional views of the variable magnification optical system according to the fifth embodiment of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various aspects of the variable magnification optical system according to the fifth embodiment of the present application at the time of focusing on an infinite object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is an aberration diagram. 本願の変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera which provided the variable magnification optical system of this application. 本願の変倍光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the variable magnification optical system of this application.

以下、本願の変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化することを特徴としている。この構成により、本願の変倍光学系は、広角端状態から望遠端状態への変倍を実現し、変倍に伴う歪曲収差の変動を抑えることができる。
Hereinafter, the variable magnification optical system, the optical device, and the method for manufacturing the variable magnification optical system of the present application will be described.
In the variable magnification optical system of the present application, in order from the object side, a first lens group having a positive refractive force, a second lens group having a negative refractive force, a third lens group having a positive refractive force, and a positive lens group. It has a fourth lens group having a refractive force of the above, and when the magnification is changed from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the second lens group and the first lens group. It is characterized in that the distance between the three lens groups and the distance between the third lens group and the fourth lens group changes. With this configuration, the variable magnification optical system of the present application can realize the scaling from the wide-angle end state to the telephoto end state, and can suppress the fluctuation of the distortion aberration due to the scaling.

また、本願の変倍光学系は、以下の条件式(1)、(2)を満足するレンズを少なくとも1つ有することを特徴としている。
(1) 1.928 < ndh
(2) 28.60 < νdh
但し、
ndh:前記レンズのd線(波長587.6nm)に対する屈折率
νdh:前記レンズのd線(波長587.6nm)に対するアッベ数
Further, the variable magnification optical system of the present application is characterized by having at least one lens satisfying the following conditional expressions (1) and (2).
(1) 1.928 <ndh
(2) 28.60 <νdh
However,
ndh: Refractive index with respect to the d-line (wavelength 587.6 nm) of the lens νdh: Abbe number with respect to the d-line (wavelength 587.6 nm) of the lens

条件式(1)は、前記レンズの最適な屈折率を規定するものである。本願の変倍光学系は、条件式(1)を満足することにより、小型化を達成しつつ、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、変倍時に球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1)の下限値を1.940とすることがより好ましい。
なお、本願の効果をより確実にするために、条件式(1)の上限値を2.800とすることがより好ましい。本願の変倍光学系の条件式(1)の対応値が2.800より小さくなることにより、前記レンズの材料に対する可視光線の透過率を十分に確保することができる。
The conditional expression (1) defines the optimum refractive index of the lens. By satisfying the conditional expression (1), the variable magnification optical system of the present application can suppress fluctuations in spherical aberration and astigmatism during scaling while achieving miniaturization.
When the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application falls below the lower limit, it becomes difficult to suppress the fluctuation of spherical aberration and the fluctuation of astigmatism at the time of scaling, and high optical performance is realized. Can no longer be done. In addition, in order to further ensure the effect of the present application, it is more preferable to set the lower limit value of the conditional expression (1) to 1.940.
In addition, in order to further ensure the effect of the present application, it is more preferable to set the upper limit value of the conditional expression (1) to 2.800. When the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application is smaller than 2.800, the transmittance of visible light to the material of the lens can be sufficiently secured.

条件式(2)は、前記レンズの最適なアッベ数を規定するものである。本願の変倍光学系は、条件式(2)を満足することにより、小型化を達成しつつ、変倍時に軸上色収差の変動や倍率色収差の変動を抑えることができる。
本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、変倍時に軸上色収差の変動や倍率色収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の下限値を29.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2)の下限値を30.00とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2)の下限値を32.00とすることがより好ましい。
なお、本願の効果をより確実にするために、条件式(2)の上限値を50.00とすることがより好ましい。本願の変倍光学系の条件式(2)の対応値が50.00より小さくなることにより、変倍時に前記レンズ以外のレンズで発生する軸上色収差の変動や倍率色収差の変動を抑えることができ、高い光学性能を実現することができる。
以上の構成により、小型で、高い光学性能を有する変倍光学系を実現することができる。
The conditional expression (2) defines the optimum Abbe number of the lens. By satisfying the conditional expression (2), the variable magnification optical system of the present application can suppress fluctuations in axial chromatic aberration and fluctuations in chromatic aberration of magnification at the time of scaling while achieving miniaturization.
If the corresponding value of the conditional expression (2) of the variable magnification optical system of the present application falls below the lower limit, it becomes difficult to suppress the fluctuation of the axial chromatic aberration and the fluctuation of the chromatic aberration of magnification at the time of scaling, and high optical performance is realized. Can no longer be done. In addition, in order to further ensure the effect of the present application, it is more preferable to set the lower limit value of the conditional expression (2) to 29.00. Further, in order to further ensure the effect of the present application, it is more preferable to set the lower limit value of the conditional expression (2) to 30.00. Further, in order to further ensure the effect of the present application, it is more preferable to set the lower limit value of the conditional expression (2) to 32.00.
In addition, in order to further ensure the effect of the present application, it is more preferable to set the upper limit value of the conditional expression (2) to 50.00. By making the corresponding value of the conditional equation (2) of the variable magnification optical system of the present application smaller than 50.00, it is possible to suppress fluctuations in axial chromatic aberration and fluctuations in chromatic aberration of magnification that occur in lenses other than the lens at the time of scaling. It is possible to realize high optical performance.
With the above configuration, it is possible to realize a variable magnification optical system that is compact and has high optical performance.

また本願の変倍光学系は、前記第1レンズ群が前記レンズを少なくとも1つ有することが望ましい。この構成により、変倍時に第1レンズ群で発生する球面収差、非点収差、軸上色収差、及び倍率色収差のそれぞれの変動を抑えることができる。 Further, in the variable magnification optical system of the present application, it is desirable that the first lens group has at least one lens. With this configuration, it is possible to suppress fluctuations in spherical aberration, astigmatism, axial chromatic aberration, and chromatic aberration of magnification that occur in the first lens group during scaling.

また本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 5.50 < f1/(−f2) < 15.00
但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (3).
(3) 5.50 <f1 / (-f2) <15.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group

条件式(3)は、第1レンズ群と第2レンズ群の焦点距離比の適切な範囲を規定するものである。本願の変倍光学系は、条件式(3)を満足することにより、高変倍比を維持しつつ変倍時に非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、広角端状態において非点収差が大きく発生し、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3)の下限値を5.60とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3)の下限値を5.90とすることがより好ましい。
一方、本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、変倍時に第2レンズ群で発生する非点収差の変動を抑えることが困難になってしまう。なお、本願の効果をより確実にするために、条件式(3)の上限値を11.50とすることがより好ましい。また、本願の効果をより確実にするために、条件式(3)の上限値を10.20とすることがより好ましい。
The conditional expression (3) defines an appropriate range of the focal length ratio between the first lens group and the second lens group. By satisfying the conditional equation (3), the variable magnification optical system of the present application can suppress fluctuations in astigmatism during scaling while maintaining a high magnification ratio.
If the corresponding value of the conditional expression (3) of the variable magnification optical system of the present application is less than the lower limit value, astigmatism is greatly generated in the wide-angle end state, and high optical performance cannot be realized. In addition, in order to further ensure the effect of the present application, it is more preferable to set the lower limit value of the conditional expression (3) to 5.60. Further, in order to further ensure the effect of the present application, it is more preferable to set the lower limit value of the conditional expression (3) to 5.90.
On the other hand, if the corresponding value of the conditional expression (3) of the variable magnification optical system of the present application exceeds the upper limit value, it becomes difficult to suppress the fluctuation of astigmatism generated in the second lens group at the time of magnification change. In addition, in order to further ensure the effect of the present application, it is more preferable to set the upper limit value of the conditional expression (3) to 11.50. Further, in order to further ensure the effect of the present application, it is more preferable to set the upper limit value of the conditional expression (3) to 10.20.

また本願の変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 0.220 < (−f2)/f3 < 0.530
但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (4).
(4) 0.220 <(-f2) / f3 <0.530
However,
f2: Focal length of the second lens group f3: Focal length of the third lens group

条件式(4)は、第2レンズ群と第3レンズ群の焦点距離比の適切な範囲を規定するものである。本願の変倍光学系は、条件式(4)を満足することにより、高変倍比を維持しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(4)の対応値が下限値を下回ると、変倍時に第2レンズ群で発生する非点収差の変動を抑えることが困難になってしまう。なお、本願の効果をより確実にするために、条件式(4)の下限値を0.270とすることがより好ましい。
一方、本願の変倍光学系の条件式(4)の対応値が上限値を上回ると、変倍時に第3レンズ群で発生する球面収差の変動を抑えることが困難になってしまう。なお、本願の効果をより確実にするために、条件式(4)の上限値を0.490とすることがより好ましい。さらに、本願の効果をより確実にするために、条件式(4)の上限値を0.450とすることがより好ましい。
The conditional expression (4) defines an appropriate range of the focal length ratio of the second lens group and the third lens group. By satisfying the conditional equation (4), the variable magnification optical system of the present application can suppress fluctuations in spherical aberration and astigmatism during scaling while maintaining a high magnification ratio.
If the corresponding value of the conditional expression (4) of the variable magnification optical system of the present application is less than the lower limit value, it becomes difficult to suppress the fluctuation of astigmatism generated in the second lens group at the time of magnification change. In addition, in order to further ensure the effect of the present application, it is more preferable to set the lower limit value of the conditional expression (4) to 0.270.
On the other hand, if the corresponding value of the conditional expression (4) of the variable magnification optical system of the present application exceeds the upper limit value, it becomes difficult to suppress the fluctuation of the spherical aberration generated in the third lens group at the time of scaling. In addition, in order to further ensure the effect of the present application, it is more preferable to set the upper limit value of the conditional expression (4) to 0.490. Further, in order to further ensure the effect of the present application, it is more preferable to set the upper limit value of the conditional expression (4) to 0.450.

また本願の変倍光学系は、前記第1レンズ群が以下の条件式(5)を満足する前記レンズを少なくとも1つ有することが望ましい。
(5) 0.450 < |fh/f1| < 1.400
但し、
fh:前記第1レンズ群中の前記レンズの焦点距離
f1:前記第1レンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present application has at least one lens in which the first lens group satisfies the following conditional expression (5).
(5) 0.450 << | fh / f1 | <1.40
However,
fh: Focal length of the lens in the first lens group f1: Focal length of the first lens group

条件式(5)は、第1レンズ群中の前記レンズの最適な焦点距離範囲を規定するものである。なお、前記レンズが他のレンズと接合されている場合、fhは前記レンズ単体の焦点距離を表す。本願の変倍光学系は、条件式(5)を満足することにより、変倍時に球面収差、非点収差、軸上色収差、及び倍率色収差のそれぞれの変動を抑えることができる。 The conditional expression (5) defines the optimum focal length range of the lens in the first lens group. When the lens is joined to another lens, fh represents the focal length of the lens alone. By satisfying the conditional equation (5), the variable magnification optical system of the present application can suppress fluctuations of spherical aberration, astigmatism, axial chromatic aberration, and chromatic aberration of magnification at the time of scaling.

ここで、条件式(5)について、前記レンズが正の屈折力を有する場合と負の屈折力を有する場合に分けて説明する。
前記レンズが正の屈折力を有する場合、本願の変倍光学系の条件式(5)の対応値が下限値を下回ると、変倍時に前記レンズで発生する軸上色収差の変動や倍率色収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。一方、本願の変倍光学系の条件式(5)の対応値が上限値を上回ると、望遠端状態において第2レンズ群で発生する正の球面収差を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。
Here, the conditional expression (5) will be described separately for the case where the lens has a positive refractive power and the case where the lens has a negative refractive power.
When the lens has a positive refractive power and the corresponding value of the conditional expression (5) of the variable magnification optical system of the present application falls below the lower limit value, the fluctuation of the axial chromatic aberration and the chromatic aberration of magnification generated in the lens at the time of magnification change It becomes difficult to suppress fluctuations, and it becomes impossible to achieve high optical performance. On the other hand, if the corresponding value of the conditional expression (5) of the variable magnification optical system of the present application exceeds the upper limit value, it becomes difficult to suppress the positive spherical aberration generated in the second lens group in the telephoto end state, and high optical performance is achieved. Will not be possible.

前記レンズが負の屈折力を有する場合、本願の変倍光学系の条件式(5)の対応値が下限値を下回ると、変倍時に前記レンズで発生する非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。一方、本願の変倍光学系の条件式(5)の対応値が上限値を上回ると、変倍時に前記レンズ以外のレンズで発生する軸上色収差の変動や倍率色収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。
なお、本願の効果をより確実にするために、条件式(5)の下限値を0.620とすることがより好ましい。また、本願の効果をより確実にするために、条件式(5)の上限値を1.290とすることがより好ましい。
When the lens has a negative refractive power and the corresponding value of the conditional expression (5) of the variable magnification optical system of the present application is less than the lower limit value, the fluctuation of astigmatism generated in the lens at the time of magnification change can be suppressed. It becomes difficult and it becomes impossible to realize high optical performance. On the other hand, if the corresponding value of the conditional expression (5) of the variable magnification optical system of the present application exceeds the upper limit value, it is difficult to suppress fluctuations in axial chromatic aberration and fluctuations in chromatic aberration of magnification that occur in lenses other than the lens at the time of scaling. Therefore, it becomes impossible to realize high optical performance.
In addition, in order to further ensure the effect of the present application, it is more preferable to set the lower limit value of the conditional expression (5) to 0.620. Further, in order to further ensure the effect of the present application, it is more preferable to set the upper limit value of the conditional expression (5) to 1.290.

また本願の変倍光学系は、前記第4レンズ群が前記レンズを少なくとも1つ有することが望ましい。この構成により、第4レンズ群で発生する球面収差、非点収差、軸上色収差、及び倍率色収差を広角端状態から望遠端状態にわたって抑えることができる。 Further, in the variable magnification optical system of the present application, it is desirable that the fourth lens group has at least one lens. With this configuration, spherical aberration, astigmatism, axial chromatic aberration, and magnifying chromatic aberration generated in the fourth lens group can be suppressed from the wide-angle end state to the telephoto end state.

また本願の変倍光学系は、前記第2レンズ群が前記レンズを少なくとも1つ有することが望ましい。この構成により、変倍時に第2レンズ群で発生する球面収差、非点収差、軸上色収差、及び倍率色収差のそれぞれの変動を広角端状態から望遠端状態にわたって抑えることができる。 Further, in the variable magnification optical system of the present application, it is desirable that the second lens group has at least one lens. With this configuration, fluctuations of spherical aberration, astigmatism, axial chromatic aberration, and chromatic aberration of magnification generated in the second lens group at the time of scaling can be suppressed from the wide-angle end state to the telephoto end state.

また本願の変倍光学系は、前記第3レンズ群が前記レンズを少なくとも1つ有することが望ましい。この構成により、変倍時に第3レンズ群で発生する球面収差、非点収差、軸上色収差、及び倍率色収差のそれぞれの変動を広角端状態から望遠端状態にわたって抑えることができる。 Further, in the variable magnification optical system of the present application, it is desirable that the third lens group has at least one lens. With this configuration, fluctuations of spherical aberration, astigmatism, axial chromatic aberration, and chromatic aberration of magnification generated in the third lens group at the time of scaling can be suppressed from the wide-angle end state to the telephoto end state.

また本願の変倍光学系は、前記第1レンズ群が負の屈折力を有する前記レンズを少なくとも1つ有することが望ましい。この構成により、変倍時に第1レンズ群で発生する非点収差の変動や球面収差の変動、倍率色収差の変動、特に2次色収差の変動を抑えることができ、高い光学性能を実現することができる。 Further, it is desirable that the variable magnification optical system of the present application has at least one lens having a negative refractive power in the first lens group. With this configuration, it is possible to suppress fluctuations in astigmatism, spherical aberration, and chromatic aberration of magnification, especially secondary chromatic aberration, which occur in the first lens group during scaling, and high optical performance can be realized. can.

また本願の変倍光学系は、前記第4レンズ群が負の屈折力を有する前記レンズを少なくとも1つ有することが望ましい。この構成により、変倍時に第4レンズ群で発生する非点収差の変動や球面収差の変動、軸上色収差の変動を抑えることができ、高い光学性能を実現することができる。 Further, it is desirable that the variable magnification optical system of the present application has at least one of the lenses having a negative refractive power in the fourth lens group. With this configuration, it is possible to suppress fluctuations in astigmatism, spherical aberration, and axial chromatic aberration that occur in the fourth lens group during scaling, and high optical performance can be realized.

また本願の変倍光学系は、前記第4レンズ群が以下の条件式(6)を満足する前記レンズを少なくとも1つ有することが望ましい。
(6) 31.60 < νdh4
但し、
νdh4:前記第4レンズ群中の前記レンズのd線(波長587.6nm)に対するアッベ数
Further, it is desirable that the variable magnification optical system of the present application has at least one lens in which the fourth lens group satisfies the following conditional expression (6).
(6) 31.60 <νdh4
However,
νdh4: Abbe number with respect to the d-line (wavelength 587.6 nm) of the lens in the fourth lens group.

条件式(6)は、第4レンズ群中の前記レンズの最適なアッベ数を規定するものである。本願の変倍光学系は、条件式(6)を満足することにより、軸上色収差や倍率色収差を抑えることができる。
本願の変倍光学系の条件式(6)の対応値が下限値を下回ると、第4レンズ群において、前記レンズ以外のレンズで発生する軸上色収差や倍率色収差を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。
The conditional expression (6) defines the optimum Abbe number of the lens in the fourth lens group. The variable magnification optical system of the present application can suppress axial chromatic aberration and chromatic aberration of magnification by satisfying the conditional expression (6).
When the corresponding value of the conditional expression (6) of the variable magnification optical system of the present application is less than the lower limit value, it becomes difficult to suppress the axial chromatic aberration and the chromatic aberration of magnification generated in the lens other than the lens in the fourth lens group. It will not be possible to achieve high optical performance.

また本願の変倍光学系は、前記第2レンズ群が負の屈折力を有する前記レンズを少なくとも1つ有することが望ましい。この構成により、第2レンズ群で発生する軸上色収差や倍率色収差、特に2次色収差を抑えることができ、高い光学性能を実現することができる。 Further, it is desirable that the variable magnification optical system of the present application has at least one lens having a negative refractive power in the second lens group. With this configuration, axial chromatic aberration and chromatic aberration of magnification, particularly secondary chromatic aberration, which occur in the second lens group can be suppressed, and high optical performance can be realized.

また本願の変倍光学系は、前記第3レンズ群が負の屈折力を有する前記レンズを少なくとも1つ有することが望ましい。この構成により、第3レンズ群で発生する軸上色収差、特に2次色収差を抑えることができ、高い光学性能を実現することができる。 Further, it is desirable that the variable magnification optical system of the present application has at least one lens in which the third lens group has a negative refractive power. With this configuration, axial chromatic aberration, particularly secondary chromatic aberration, which occurs in the third lens group can be suppressed, and high optical performance can be realized.

また本願の変倍光学系は、前記第1レンズ群が以下の条件式(7)を満足する正レンズを有することが望ましい。
(7) 75.00 < νdp1
但し、
νdp1:前記第1レンズ群中の前記正レンズのd線(波長587.6nm)に対するアッベ数
Further, it is desirable that the variable magnification optical system of the present application has a positive lens in which the first lens group satisfies the following conditional expression (7).
(7) 75.00 <νdp1
However,
νdp1: Abbe number with respect to the d-line (wavelength 587.6 nm) of the positive lens in the first lens group.

条件式(7)は、第1レンズ群中の前記正レンズの最適なアッベ数を規定するものである。本願の変倍光学系は、条件式(7)を満足することにより、変倍時に軸上色収差の変動や倍率色収差の変動を抑えることができる。
本願の変倍光学系の条件式(7)の対応値が下限値を下回ると、変倍時に軸上色収差の変動や倍率色収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。
なお、本願の効果をより確実にするために、条件式(7)の上限値を99.00とすることがより好ましい。本願の変倍光学系の条件式(7)の対応値が99.00より小さくなることにより、変倍時に前記正レンズ以外のレンズで発生する軸上色収差の変動や倍率色収差の変動を抑えることができ、高い光学性能を実現することができる。
The conditional expression (7) defines the optimum Abbe number of the positive lens in the first lens group. By satisfying the conditional expression (7), the variable magnification optical system of the present application can suppress fluctuations in axial chromatic aberration and fluctuations in chromatic aberration of magnification at the time of scaling.
When the corresponding value of the conditional expression (7) of the variable magnification optical system of the present application falls below the lower limit, it becomes difficult to suppress the fluctuation of the axial chromatic aberration and the fluctuation of the chromatic aberration of magnification at the time of scaling, and high optical performance is realized. Can no longer be done.
In addition, in order to further ensure the effect of the present application, it is more preferable to set the upper limit value of the conditional expression (7) to 99.00. By making the corresponding value of the conditional equation (7) of the variable magnification optical system of the present application smaller than 99.00, it is possible to suppress fluctuations in axial chromatic aberration and fluctuations in chromatic aberration of magnification that occur in lenses other than the positive lens at the time of scaling. And high optical performance can be realized.

また本願の変倍光学系は、前記第4レンズ群が以下の条件式(8)を満足する正レンズを有することが望ましい。
(8) 75.00 < νdp4
但し、
νdp4:前記第4レンズ群中の前記正レンズのd線(波長587.6nm)に対するアッベ数
Further, it is desirable that the variable magnification optical system of the present application has a positive lens in which the fourth lens group satisfies the following conditional expression (8).
(8) 75.00 <νdp4
However,
νdp4: Abbe number with respect to the d-line (wavelength 587.6 nm) of the positive lens in the fourth lens group.

条件式(8)は、第4レンズ群中の前記正レンズの最適なアッベ数を規定するものである。本願の変倍光学系は、条件式(8)を満足することにより、変倍時に軸上色収差の変動や倍率色収差の変動を抑えることができる。
本願の変倍光学系の条件式(8)の対応値が下限値を下回ると、変倍時に軸上色収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。
なお、本願の効果をより確実にするために、条件式(8)の上限値を99.00とすることがより好ましい。本願の変倍光学系の条件式(8)の対応値が99.00より小さくなることにより、前記正レンズ以外のレンズで発生する軸上色収差を抑えることができ、高い光学性能を実現することができる。
The conditional expression (8) defines the optimum Abbe number of the positive lens in the fourth lens group. By satisfying the conditional expression (8), the variable magnification optical system of the present application can suppress fluctuations in axial chromatic aberration and fluctuations in chromatic aberration of magnification at the time of scaling.
If the corresponding value of the conditional expression (8) of the variable magnification optical system of the present application is less than the lower limit, it becomes difficult to suppress the fluctuation of the axial chromatic aberration at the time of scaling, and it becomes impossible to realize high optical performance. ..
In addition, in order to further ensure the effect of the present application, it is more preferable to set the upper limit value of the conditional expression (8) to 99.00. By making the corresponding value of the conditional expression (8) of the variable magnification optical system of the present application smaller than 99.00, it is possible to suppress the axial chromatic aberration that occurs in lenses other than the positive lens, and to realize high optical performance. Can be done.

また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することが望ましい。この構成により、第1レンズ群の焦点距離と第2レンズ群の焦点距離を適切なものにすることができる。そして、各レンズ群で発生する球面収差や非点収差を抑え、変倍時に球面収差の変動や非点収差の変動を抑えることができる。 Further, in the variable magnification optical system of the present application, it is desirable that the distance between the first lens group and the second lens group increases when the magnification is changed from the wide-angle end state to the telephoto end state. With this configuration, the focal length of the first lens group and the focal length of the second lens group can be made appropriate. Then, it is possible to suppress the fluctuation of spherical aberration and astigmatism generated in each lens group, and to suppress the fluctuation of spherical aberration and the fluctuation of astigmatism at the time of scaling.

また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することが望ましい。この構成により、第2レンズ群の焦点距離と第3レンズ群の焦点距離を適切なものにすることができる。そして、各レンズ群で発生する球面収差や非点収差を抑え、変倍時に球面収差の変動や非点収差の変動を抑えることができる。 Further, in the variable magnification optical system of the present application, it is desirable that the distance between the second lens group and the third lens group is reduced when the magnification is changed from the wide-angle end state to the telephoto end state. With this configuration, the focal length of the second lens group and the focal length of the third lens group can be made appropriate. Then, it is possible to suppress the fluctuation of spherical aberration and astigmatism generated in each lens group, and to suppress the fluctuation of spherical aberration and the fluctuation of astigmatism at the time of scaling.

また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第3レンズ群と前記第4レンズ群との間隔が増加することが望ましい。この構成により、変倍時に第3レンズ群及び第4レンズ群で発生する球面収差の変動や非点収差の変動を抑えることができる。 Further, in the variable magnification optical system of the present application, it is desirable that the distance between the third lens group and the fourth lens group increases when the magnification is changed from the wide-angle end state to the telephoto end state. With this configuration, it is possible to suppress fluctuations in spherical aberration and astigmatism that occur in the third lens group and the fourth lens group during scaling.

本願の光学装置は、上述した構成の変倍光学系を有することを特徴としている。これにより、小型で、高い光学性能を有する光学装置を実現することができる。 The optical device of the present application is characterized by having a variable magnification optical system having the above-described configuration. This makes it possible to realize an optical device that is small in size and has high optical performance.

本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、以下の条件式(1)、(2)を満足するレンズを少なくとも1つ有するようにし、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化するようにすることを特徴としている。これにより、小型で、高い光学性能を有する変倍光学系を製造することができる。
(1) 1.928 < ndh
(2) 28.60 < νdh
但し、
ndh:前記レンズのd線(波長587.6nm)に対する屈折率
νdh:前記レンズのd線(波長587.6nm)に対するアッベ数
The method for manufacturing the variable magnification optical system of the present application is a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power in order from the object side. It is a method for manufacturing a variable magnification optical system having a fourth lens group having a positive refractive force, and has at least one lens satisfying the following conditional equations (1) and (2), and has a wide angle. When scaling from the end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group and the above. It is characterized in that the distance from the fourth lens group is changed. This makes it possible to manufacture a variable magnification optical system that is small in size and has high optical performance.
(1) 1.928 <ndh
(2) 28.60 <νdh
However,
ndh: Refractive index with respect to the d-line (wavelength 587.6 nm) of the lens νdh: Abbe number with respect to the d-line (wavelength 587.6 nm) of the lens

以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。なお、後述する第2、3、5実施例は本願の参考例である。
(第1実施例)
図1(a)、図1(b)、及び図1(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
Hereinafter, the variable magnification optical system according to the numerical embodiment of the present application will be described with reference to the attached drawings. The second, third, and fifth embodiments described later are reference examples of the present application.
(First Example)
1 (a), 1 (b), and 1 (c) are cross-sectional views of the variable magnification optical system according to the first embodiment of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. Is.
In the variable magnification optical system according to the present embodiment, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It is composed of a lens group G3 and a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
The first lens group G1 is composed of a junction lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, in order from the object side. Become.
The second lens group G2 has a negative meniscus lens L21 with a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface facing the object side in order from the object side. It consists of a negative meniscus lens L24. The negative meniscus lens L21 is a glass-molded aspherical lens having an aspherical lens surface on the object side.
The third lens group G3 is composed of a junction lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 in order from the object side. An aperture diaphragm S is provided on the object side of the third lens group G3.

第4レンズ群G4は、物体側から順に、負の屈折力を有する前群G4Fと、正の屈折力を有する後群G4Rとからなる。
前群G4Fは、物体側から順に、両凸形状の正レンズL401と両凹形状の負レンズL402との接合レンズと、両凹形状の負レンズL403と物体側に凸面を向けた正メニスカスレンズL404との接合レンズとからなる。なお、負レンズL403は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
後群G4Rは、物体側から順に、両凸形状の正レンズL405と、両凸形状の正レンズL406と物体側に凹面を向けた負メニスカスレンズL407との接合レンズと、物体側に凸面を向けた負メニスカスレンズL408と両凸形状の正レンズL409との接合レンズと、像側に凸面を向けた負メニスカスレンズL410とからなる。なお、負メニスカスレンズL410は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
The fourth lens group G4 is composed of a front group G4F having a negative refractive power and a rear group G4R having a positive refractive power in order from the object side.
The front group G4F includes a junction lens of a biconvex positive lens L401 and a biconcave negative lens L402, a biconcave negative lens L403, and a positive meniscus lens L404 with a convex surface facing the object side, in order from the object side. It consists of a junction lens with. The negative lens L403 is a glass-molded aspherical lens having an aspherical shape on the lens surface on the object side.
In the rear group G4R, the biconvex positive lens L405, the biconvex positive lens L406, and the negative meniscus lens L407 with the concave surface facing the object side are joined in order from the object side, and the convex surface is directed toward the object side. It is composed of a junction lens of a negative meniscus lens L408 and a biconvex positive lens L409, and a negative meniscus lens L410 with a convex surface facing the image side. The negative meniscus lens L410 is a glass-molded aspherical lens having an aspherical shape on the lens surface on the image side.
In the variable magnification optical system according to the present embodiment, a low-pass filter, a cover glass for a sensor, or the like may be arranged between the fourth lens group G4 and the image plane I.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加し、開口絞りSと第3レンズ群G3との空気間隔が減少するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動し、開口絞りSは第4レンズ群G4の前群G4Fと一体的に移動する。詳細には、第1レンズ群G1と第3レンズ群G3は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から中間焦点距離状態まで物体側へ移動し、中間焦点距離状態から望遠端状態まで像側へ移動する。第4レンズ群G4においては、広角端状態から望遠端状態への変倍時に、前群G4Fと後群G4Rとの空気間隔が減少するように、前群G4Fと後群G4Rが、広角端状態から中間焦点距離状態まで物体側へ移動し、中間焦点距離状態から望遠端状態まで像側へ移動する。 Under the above configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telescopic end state. The air gap between the 2 lens group G2 and the 3rd lens group G3 decreases, the air gap between the 3rd lens group G3 and the 4th lens group G4 increases, and the air gap between the aperture aperture S and the 3rd lens group G3. The first to fourth lens groups G1 to G4 move along the optical axis, and the aperture aperture S moves integrally with the front group G4F of the fourth lens group G4 so as to decrease. Specifically, the first lens group G1 and the third lens group G3 move to the object side at the time of scaling. The second lens group G2 moves toward the object from the wide-angle end state to the intermediate focal length state, and moves toward the image side from the intermediate focal length state to the telephoto end state. In the fourth lens group G4, the front group G4F and the rear group G4R are in the wide-angle end state so that the air gap between the front group G4F and the rear group G4R decreases when the magnification is changed from the wide-angle end state to the telephoto end state. It moves to the object side from the intermediate focal length state to the image side from the intermediate focal length state to the telephoto end state.

以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に*を付して曲率半径rの欄に近軸曲率半径の値を示している。空気の屈折率nd=1.000000の記載は省略している。
Table 1 below lists the values of the specifications of the variable magnification optical system according to this embodiment.
In Table 1, f indicates the focal length, and BF indicates the back focus (the distance on the optical axis between the lens surface on the image side and the image surface I).
In [plane data], the plane number is the order of the optical planes counted from the object side, r is the radius of curvature, d is the plane spacing (distance between the nth plane (n is an integer) and the n + 1th plane), and nd is. The refractive index for the d-line (wavelength 587.6 nm) and νd indicate the Abbe number for the d-line (wavelength 587.6 nm). Further, the object surface is an object surface, the variable is a variable surface spacing, the aperture S is an aperture stop S, and the image surface is an image surface I. The radius of curvature r = ∞ indicates a plane. For aspherical surfaces, * is added to the surface number and the value of the paraxial radius of curvature is shown in the column of radius of curvature r. The description of the refractive index nd of air = 1.000000 is omitted.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2
+A4h+A6h+A8h+A10h10
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8,A10を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(nは整数)は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Aspherical surface data] shows the aspherical surface coefficient and the conical constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1 + {1-κ (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10
Here, h is the height in the direction perpendicular to the optical axis, x is the distance (sag amount) along the optical axis direction from the tangent plane of the apex of the aspherical surface to the aspherical surface at height h, and κ is the conical constant. , A4, A6, A8, A10 are the aspherical surface coefficients, and r is the radius of curvature of the reference sphere (near-axis radius of curvature). In addition, "E −n" (n is an integer) indicates “× 10 −n ”, and for example, “1.234E-05” indicates “1.234 × 10 −5 ”. The second-order aspherical coefficient A2 is 0, and the description is omitted.

[各種データ]において、FNOはFナンバー、ωは半画角(単位は「°」)、Yは像高、TLは変倍光学系の全長(無限遠物体合焦時の第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔、φは開口絞りSの絞り径をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
In [Various data], FNO is F number, ω is half angle of view (unit is "°"), Y is image height, and TL is the total length of the variable magnification optical system (image from the first plane when focusing on an infinity object). The distance on the optical axis to the plane I), dn is the variable distance between the nth plane and the n + 1th plane, and φ is the diaphragm diameter of the aperture stop S. W indicates a wide-angle end state, M indicates an intermediate focal length state, and T indicates a telephoto end state.
[Lens group data] shows the start surface and focal length of each lens group.
[Conditional expression corresponding value] shows the corresponding value of each conditional expression of the variable magnification optical system according to this embodiment.

ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, "mm" is generally used as the unit of the focal length f, the radius of curvature r and other lengths shown in Table 1. However, the optical system is not limited to this because the same optical performance can be obtained even if the optical system is proportionally expanded or contracted.
The reference numerals in Table 1 described above shall be used in the same manner in the tables of the respective examples described later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 104.5118 1.6000 2.003300 28.27
2 39.3751 7.4000 1.497820 82.57
3 -463.5701 0.1000
4 40.3116 5.4000 1.834810 42.73
5 241.9089 可変

*6 79.9711 1.0000 1.851350 40.10
7 8.1252 4.8500
8 -14.2116 1.0000 1.883000 40.66
9 124.9279 0.1000
10 30.8124 3.3500 1.808090 22.74
11 -15.1873 0.3000
12 -13.2222 1.0000 1.883000 40.66
13 -23.0302 可変

14(絞りS) ∞ 可変

15 26.1923 1.0000 1.954000 33.46
16 12.2483 2.8500 1.719990 50.27
17 -43.5073 可変

18 14.5527 2.8500 1.497820 82.57
19 -40.3302 1.0000 1.950000 29.37
20 173.4596 2.1500
*21 -105.0156 1.0000 1.806100 40.71
22 10.9037 2.2000 1.808090 22.74
23 28.6084 可変

24 30.6882 2.8500 1.579570 53.74
25 -18.3905 0.1000
26 18.8919 3.6000 1.518230 58.82
27 -13.1344 1.0000 2.000690 25.46
28 -2198.5412 0.7500
29 412.2295 1.0000 1.954000 33.46
30 12.8823 3.5000 1.755200 27.57
31 -23.7185 1.1500
32 -16.1296 1.0000 1.806100 40.71
*33 -97.3104 BF

像面 ∞

[非球面データ]
第6面
κ -8.7294
A4 4.64796E-05
A6 -4.09659E-07
A8 2.44519E-09
A10 -9.90503E-12

第21面
κ -1.5760
A4 1.72590E-05
A6 9.45415E-08
A8 -1.00397E-09
A10 0.00000E+00

第33面
κ -19.8082
A4 -1.67719E-05
A6 -2.11776E-07
A8 -4.15932E-10
A10 -1.15008E-11

[各種データ]
変倍比 9.42

W T
f 10.30 〜 97.00
FNO 4.09 〜 5.81
ω 40.21 〜 4.76°
Y 8.19 〜 8.19

W M T
f 10.30000 50.00013 97.00039
ω 40.21337 9.15519 4.75685
FNO 4.09 5.78 5.81
φ 7.68 8.50 9.20
TL 100.29944 130.25093 139.59967
d5 2.10000 28.50000 39.66696
d13 17.38897 3.31447 2.00000
d14 4.87082 3.98262 1.60000
d17 2.59389 3.48209 5.86471
d23 5.29632 3.42829 3.30000
BF 13.94944 33.44346 33.06800

[レンズ群データ]
群 始面 f
1 1 64.38705
2 6 -9.57903
3 15 29.91408
4 18 58.41425(W)、61.26584(M)、61.47193(T)
4F 18 -81.48313
4R 24 28.77173

[条件式対応値]
(1) ndh = 1.954(L31)、1.950(L402)、1.954(L408)
(2) νdh = 33.46(L31)、29.37(L402)、33.46(L408)
(3) f1/(−f2) = 6.72
(4) (−f2)/f3 = 0.320
(6) νdh4 = 33.46(L408)
(7) νdp1 = 82.57(L12)
(8) νdp4 = 82.57(L401)
(Table 1) First Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞

1 104.5118 1.6000 2.003300 28.27
2 39.3751 7.4000 1.497820 82.57
3 -463.5701 0.1000
4 40.3116 5.4000 1.834810 42.73
5 241.9089 Variable

* 6 79.9711 1.0000 1.851350 40.10
7 8.1252 4.8500
8 -14.2116 1.0000 1.883000 40.66
9 124.9279 0.1000
10 30.8124 3.3500 1.808090 22.74
11 -15.1873 0.3000
12 -13.2222 1.0000 1.883000 40.66
13 -23.0302 Variable

14 (Aperture S) ∞ Variable

15 26.1923 1.0000 1.954000 33.46
16 12.2483 2.8500 1.719990 50.27
17 -43.5073 Variable

18 14.5527 2.8500 1.497820 82.57
19 -40.3302 1.0000 1.950000 29.37
20 173.4596 2.1500
* 21 -105.0156 1.0000 1.806100 40.71
22 10.9037 2.2000 1.808090 22.74
23 28.6084 Variable

24 30.6882 2.8500 1.579570 53.74
25 -18.3905 0.1000
26 18.8919 3.6000 1.518230 58.82
27 -13.1344 1.0000 2.000690 25.46
28 -2198.5412 0.7500
29 412.2295 1.0000 1.954000 33.46
30 12.8823 3.5000 1.755200 27.57
31 -23.7185 1.1500
32 -16.1296 1.0000 1.806100 40.71
* 33 -97.3104 BF

Image plane ∞

[Aspherical data]
Side 6 κ -8.7294
A4 4.64796E-05
A6 -4.09659E-07
A8 2.44519E-09
A10 -9.90503E-12

Side 21 κ -1.5760
A4 1.72590E-05
A6 9.45415E-08
A8 -1.00397 E-09
A10 0.00000E + 00

Side 33 κ -19.8082
A4 -1.67719E-05
A6 -2.11776E-07
A8 -4.15932E-10
A10 -1.15008E-11

[Various data]
Scale ratio 9.42

WT
f 10.30 ~ 97.00
FNO 4.09 ~ 5.81
ω 40.21 ~ 4.76 °
Y 8.19 ~ 8.19

WMT
f 10.30000 50.00013 97.00039
ω 40.21337 9.15519 4.75685
FNO 4.09 5.78 5.81
φ 7.68 8.50 9.20
TL 100.29944 130.25093 139.59967
d5 2.10000 28.50000 39.66696
d13 17.38897 3.31447 2.00000
d14 4.87082 3.98262 1.60000
d17 2.59389 3.48209 5.86471
d23 5.29632 3.42829 3.30000
BF 13.94944 33.44346 33.06800

[Lens group data]
Group starting surface f
1 1 64.38705
2 6 -9.57903
3 15 29.91408
4 18 58.41425 (W), 61.26584 (M), 61.47193 (T)
4F 18 -81.48313
4R 24 28.77173

[Conditional expression correspondence value]
(1) ndh = 1.954 (L31), 1.950 (L402), 1.954 (L408)
(2) νdh = 33.46 (L31), 29.37 (L402), 33.46 (L408)
(3) f1 / (-f2) = 6.72
(4) (-f2) / f3 = 0.320
(6) νdh4 = 33.46 (L408)
(7) νdp1 = 82.57 (L12)
(8) νdp4 = 82.57 (L401)

図2(a)、図2(b)、及び図2(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。 2 (a), 2 (b), and 2 (c) are infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first embodiment of the present application, respectively. It is a diagram of various aberrations at the time of focusing on an object.

各収差図において、FNOはFナンバー、Aは光線入射角即ち半画角(単位は「°」)をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示し、d、gの記載のないものはd線における収差を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。 In each aberration diagram, FNO indicates an F number, and A indicates a ray incident angle, that is, a half angle of view (unit: “°”). d indicates an aberration at the d line (wavelength 587.6 nm), g indicates an aberration at the g line (wavelength 435.8 nm), and those without d and g indicate an aberration at the d line. In the astigmatism diagram, the solid line shows the sagittal image plane and the broken line shows the meridional image plane. In the aberration diagram of each embodiment described later, the same reference numerals as those of this embodiment are used.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。 From each aberration diagram, it can be seen that the variable magnification optical system according to this embodiment has high optical performance with various aberrations satisfactorily corrected from the wide-angle end state to the telephoto end state.

(第2実施例)
図3(a)、図3(b)、及び図3(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Second Example)
3 (a), 3 (b), and 3 (c) are cross-sectional views of the variable magnification optical system according to the second embodiment of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. Is.
In the variable magnification optical system according to the present embodiment, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It is composed of a lens group G3 and a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
The first lens group G1 is composed of a junction lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, in order from the object side. Become.
The second lens group G2 includes a biconcave negative lens L21, a biconcave negative lens L22, a biconvex positive lens L23, and a negative meniscus lens L24 with a concave surface facing the object side, in order from the object side. It consists of.
The third lens group G3 is composed of a junction lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 in order from the object side. An aperture diaphragm S is provided on the object side of the third lens group G3.

第4レンズ群G4は、物体側から順に、負の屈折力を有する前群G4Fと、正の屈折力を有する後群G4Rとからなる。
前群G4Fは、物体側から順に、両凸形状の正レンズL401と両凹形状の負レンズL402との接合レンズと、両凹形状の負レンズL403と物体側に凸面を向けた正メニスカスレンズL404との接合レンズとからなる。なお、負レンズL403は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
後群G4Rは、物体側から順に、両凸形状の正レンズL405と、物体側に凹面を向けた正メニスカスレンズL406と物体側に凹面を向けた負メニスカスレンズL407との接合レンズとからなる。なお、正レンズL405は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
The fourth lens group G4 is composed of a front group G4F having a negative refractive power and a rear group G4R having a positive refractive power in order from the object side.
The front group G4F includes a junction lens of a biconvex positive lens L401 and a biconcave negative lens L402, a biconcave negative lens L403, and a positive meniscus lens L404 with a convex surface facing the object side, in order from the object side. It consists of a junction lens with. The negative lens L403 is a glass-molded aspherical lens having an aspherical shape on the lens surface on the object side.
The rear group G4R is composed of a biconvex positive lens L405, a positive meniscus lens L406 with a concave surface facing the object side, and a negative meniscus lens L407 with a concave surface facing the object side, in this order from the object side. The positive lens L405 is a glass-molded aspherical lens having an aspherical shape on the lens surface on the object side.
In the variable magnification optical system according to the present embodiment, a low-pass filter, a cover glass for a sensor, or the like may be arranged between the fourth lens group G4 and the image plane I.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加し、開口絞りSと第3レンズ群G3との空気間隔が減少するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動し、開口絞りSは第4レンズ群G4の前群G4Fと一体的に移動する。詳細には、第1レンズ群G1と第3レンズ群G3は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から中間焦点距離状態まで物体側へ移動し、中間焦点距離状態から望遠端状態まで像側へ移動する。第4レンズ群G4においては、広角端状態から望遠端状態への変倍時に、前群G4Fと後群G4Rとの空気間隔が減少するように、前群G4Fと後群G4Rが物体側へ移動する。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
Under the above configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telescopic end state. The air gap between the 2 lens group G2 and the 3rd lens group G3 decreases, the air gap between the 3rd lens group G3 and the 4th lens group G4 increases, and the air gap between the aperture aperture S and the 3rd lens group G3. The first to fourth lens groups G1 to G4 move along the optical axis, and the aperture aperture S moves integrally with the front group G4F of the fourth lens group G4 so as to decrease. Specifically, the first lens group G1 and the third lens group G3 move to the object side at the time of scaling. The second lens group G2 moves toward the object from the wide-angle end state to the intermediate focal length state, and moves toward the image side from the intermediate focal length state to the telephoto end state. In the fourth lens group G4, the front group G4F and the rear group G4R move to the object side so that the air gap between the front group G4F and the rear group G4R decreases when the magnification is changed from the wide-angle end state to the telephoto end state. do.
Table 2 below lists the values of the specifications of the variable magnification optical system according to this embodiment.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 251.8446 1.6000 1.950000 29.37
2 36.8495 7.9000 1.497820 82.57
3 -162.8867 0.1000
4 41.6898 5.7500 1.883000 40.66
5 7827.2710 可変

6 -808.8261 1.0000 1.883000 40.66
7 9.5148 3.6000
8 -15.5435 1.0000 1.883000 40.66
9 143.0303 0.1000
10 28.6318 3.0500 1.808090 22.74
11 -13.3111 0.2500
12 -12.1771 1.0000 1.834810 42.73
13 -36.4394 可変

14(絞りS) ∞ 可変

15 27.0772 1.0000 2.000690 25.46
16 15.7705 2.5000 1.744000 44.80
17 -35.2142 可変

18 12.6941 2.9500 1.497820 82.57
19 -24.8876 1.0000 1.846660 23.80
20 775.1758 2.1500
*21 -227.6550 1.0000 1.806100 40.97
22 8.8217 2.2000 1.846660 23.80
23 19.5840 可変

*24 15.0000 3.1500 1.583130 59.42
25 -23.9888 0.1000
26 -509.6518 4.2000 1.581440 40.98
27 -7.8594 1.0000 1.954000 33.46
28 -200.0000 BF

像面 ∞

[非球面データ]
第21面
κ -20.0000
A4 1.61374E-05
A6 -2.79859E-08
A8 -1.22068E-09
A10 0.00000E+00

第24面
κ 3.6281
A4 -1.21377E-04
A6 -7.10924E-07
A8 1.36403E-08
A10 -4.10781E-10

[各種データ]
変倍比 9.42

W T
f 10.30 〜 97.00
FNO 4.12 〜 6.48
ω 43.07 〜 4.70°
Y 8.19 〜 8.19

W M T
f 10.30000 50.00001 96.99995
ω 43.07103 9.11914 4.70123
FNO 4.12 5.81 6.48
φ 6.80 7.90 7.90
TL 90.80323 122.13334 131.09941
d5 2.28937 28.97477 38.62002
d13 13.12572 3.71901 2.00000
d14 6.29895 3.32684 1.40000
d17 2.43367 5.40578 7.33262
d23 6.60623 3.30000 3.30000
BF 13.44928 30.80693 31.84677

[レンズ群データ]
群 始面 f
1 1 59.94630
2 6 -8.99248
3 15 24.34092
4 18 71.07089(W)、75.48860(M)、75.48860(T)
4F 18 -112.21259
4R 24 35.78226

[条件式対応値]
(1) ndh = 1.950(L11)、1.954(L407)
(2) νdh = 29.37(L11)、33.46(L407)
(3) f1/(−f2) = 6.67
(4) (−f2)/f3 = 0.369
(5) |fh/f1| = 0.761(L11)
(6) νdh4 = 33.46(L407)
(7) νdp1 = 82.57(L12)
(8) νdp4 = 82.57(L401)
(Table 2) Second Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞

1 251.8446 1.6000 1.950000 29.37
2 36.8495 7.9000 1.497820 82.57
3 -162.8867 0.1000
4 41.6898 5.7500 1.883000 40.66
5 7827.2710 Variable

6 -808.8261 1.0000 1.883000 40.66
7 9.5148 3.6000
8 -15.5435 1.0000 1.883000 40.66
9 143.0303 0.1000
10 28.6318 3.0500 1.808090 22.74
11 -13.3111 0.2500
12 -12.1771 1.0000 1.834810 42.73
13 -36.4394 Variable

14 (Aperture S) ∞ Variable

15 27.0772 1.0000 2.000690 25.46
16 15.7705 2.5000 1.744000 44.80
17 -35.2142 Variable

18 12.6941 2.9500 1.497820 82.57
19 -24.8876 1.0000 1.846660 23.80
20 775.1758 2.1500
* 21 -227.6550 1.0000 1.806100 40.97
22 8.8217 2.2000 1.846660 23.80
23 19.5840 Variable

* 24 15.0000 3.1500 1.583130 59.42
25 -23.9888 0.1000
26 -509.6518 4.2000 1.581440 40.98
27 -7.8594 1.0000 1.954000 33.46
28 -200.0000 BF

Image plane ∞

[Aspherical data]
Side 21 κ -20.0000
A4 1.61374E-05
A6 -2.79859E-08
A8 -1.22068E-09
A10 0.00000E + 00

Side 24 κ 3.6281
A4 -1.21377E-04
A6 -7.10924E-07
A8 1.36403E-08
A10 -4.10781E-10

[Various data]
Scale ratio 9.42

WT
f 10.30 ~ 97.00
FNO 4.12 ~ 6.48
ω 43.07 ~ 4.70 °
Y 8.19 ~ 8.19

WMT
f 10.30000 50.00001 96.99995
ω 43.07103 9.11914 4.70123
FNO 4.12 5.81 6.48
φ 6.80 7.90 7.90
TL 90.80323 122.13334 131.09941
d5 2.28937 28.97477 38.62002
d13 13.12572 3.71901 2.00000
d14 6.29895 3.32684 1.40000
d17 2.43367 5.40578 7.33262
d23 6.60623 3.30000 3.30000
BF 13.44928 30.80693 31.84677

[Lens group data]
Group starting surface f
1 1 59.94630
2 6 -8.99248
3 15 24.34092
4 18 71.07089 (W), 75.48860 (M), 75.48860 (T)
4F 18 -112.21259
4R 24 35.78226

[Conditional expression correspondence value]
(1) ndh = 1.950 (L11), 1.954 (L407)
(2) νdh = 29.37 (L11), 33.46 (L407)
(3) f1 / (-f2) = 6.67
(4) (-f2) / f3 = 0.369
(5) | fh / f1 | = 0.761 (L11)
(6) νdh4 = 33.46 (L407)
(7) νdp1 = 82.57 (L12)
(8) νdp4 = 82.57 (L401)

図4(a)、図4(b)、及び図4(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。 4 (a), 4 (b), and 4 (c) are infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second embodiment of the present application, respectively. It is a diagram of various aberrations at the time of focusing on an object.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。 From each aberration diagram, it can be seen that the variable magnification optical system according to this embodiment has high optical performance with various aberrations satisfactorily corrected from the wide-angle end state to the telephoto end state.

(第3実施例)
図5(a)、図5(b)、及び図5(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Third Example)
5 (a), 5 (b), and 5 (c) are cross-sectional views of the variable magnification optical system according to the third embodiment of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. Is.
In the variable magnification optical system according to the present embodiment, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It is composed of a lens group G3 and a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
The first lens group G1 is composed of a junction lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, in order from the object side. Become.
The second lens group G2 has a negative meniscus lens L21 with a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface facing the object side in order from the object side. It consists of a negative meniscus lens L24. The negative meniscus lens L21 is a glass-molded aspherical lens having an aspherical lens surface on the object side.
The third lens group G3 is composed of a junction lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 in order from the object side. An aperture diaphragm S is provided on the object side of the third lens group G3.

第4レンズ群G4は、物体側から順に、負の屈折力を有する前群G4Fと、正の屈折力を有する後群G4Rとからなる。
前群G4Fは、物体側から順に、両凸形状の正レンズL401と像側に凸面を向けた負メニスカスレンズL402との接合レンズと、両凹形状の負レンズL403と物体側に凸面を向けた正メニスカスレンズL404との接合レンズとからなる。なお、負レンズL403は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
後群G4Rは、物体側から順に、両凸形状の正レンズL405と、両凸形状の正レンズL406と物体側に凹面を向けた負メニスカスレンズL407との接合レンズとからなる。なお、正レンズL405は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
The fourth lens group G4 is composed of a front group G4F having a negative refractive power and a rear group G4R having a positive refractive power in order from the object side.
In the front group G4F, in order from the object side, the junction lens of the biconvex positive lens L401 and the negative meniscus lens L402 with the convex surface facing the image side, and the biconcave negative lens L403 and the convex surface facing the object side. It consists of a junction lens with a positive meniscus lens L404. The negative lens L403 is a glass-molded aspherical lens having an aspherical shape on the lens surface on the object side.
The rear group G4R is composed of a biconvex positive lens L405, a biconvex positive lens L406, and a negative meniscus lens L407 with a concave surface facing the object side, in this order from the object side. The positive lens L405 is a glass-molded aspherical lens having an aspherical shape on the lens surface on the object side.
In the variable magnification optical system according to the present embodiment, a low-pass filter, a cover glass for a sensor, or the like may be arranged between the fourth lens group G4 and the image plane I.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加し、開口絞りSと第3レンズ群G3との空気間隔が減少するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動し、開口絞りSは第4レンズ群G4の前群G4Fと一体的に移動する。詳細には、第1レンズ群G1と第3レンズ群G3は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から中間焦点距離状態まで物体側へ移動し、中間焦点距離状態から望遠端状態まで像側へ移動する。第4レンズ群G4においては、広角端状態から望遠端状態への変倍時に、前群G4Fと後群G4Rとの空気間隔が減少するように、前群G4Fと後群G4Rが物体側へ移動する。
以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
Under the above configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telescopic end state. The air gap between the 2 lens group G2 and the 3rd lens group G3 decreases, the air gap between the 3rd lens group G3 and the 4th lens group G4 increases, and the air gap between the aperture aperture S and the 3rd lens group G3. The first to fourth lens groups G1 to G4 move along the optical axis, and the aperture aperture S moves integrally with the front group G4F of the fourth lens group G4 so as to decrease. Specifically, the first lens group G1 and the third lens group G3 move to the object side at the time of scaling. The second lens group G2 moves toward the object from the wide-angle end state to the intermediate focal length state, and moves toward the image side from the intermediate focal length state to the telephoto end state. In the fourth lens group G4, the front group G4F and the rear group G4R move to the object side so that the air gap between the front group G4F and the rear group G4R decreases when the magnification is changed from the wide-angle end state to the telephoto end state. do.
Table 3 below lists the values of the specifications of the variable magnification optical system according to this embodiment.

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 149.8692 1.6000 1.949665 27.56
2 44.3736 6.8398 1.497820 82.51
3 -243.5058 0.1000
4 45.3756 5.3508 1.867900 41.78
5 311.4136 可変

*6 89.0243 1.2000 1.834810 42.73
7 8.4900 3.7581
8 -15.7255 1.0000 1.834810 42.73
9 250.0000 0.1000
10 25.2749 3.2925 1.808090 22.74
11 -17.4750 0.5480
12 -12.6196 1.0000 1.816000 46.59
13 -33.4252 可変

14(絞りS) ∞ 可変

15 29.1681 1.0000 1.889044 39.77
16 18.2404 3.2071 1.593125 66.16
17 -26.5261 可変

18 14.2857 3.5654 1.497820 82.51
19 -21.9776 1.0000 1.902000 25.23
20 -82.8398 2.2052
*21 -52.3071 1.0000 1.848976 43.01
22 9.1414 2.6915 1.950000 29.37
23 25.8642 可変

*24 35.4414 3.3350 1.589130 61.22
25 -21.3191 0.3000
26 42.3100 4.4029 1.581440 40.98
27 -10.1979 1.2000 1.954000 33.46
28 -300.4717 BF

像面 ∞

[非球面データ]
第6面
κ 1.0000
A4 3.45801E-05
A6 -1.38520E-07
A8 -5.59965E-11
A10 1.26030E-11

第21面
κ 1.0000
A4 1.74477E-06
A6 1.28096E-07
A8 -2.63692E-09
A10 0.00000E+00

第24面
κ 1.0000
A4 -1.22983E-05
A6 1.47314E-07
A8 -5.48742E-10
A10 0.00000E+00

[各種データ]
変倍比 9.42

W T
f 10.30 〜 97.00
FNO 3.50 〜 5.62
ω 39.90 〜 4.69°
Y 8.19 〜 8.19

W M T
f 10.30001 49.99971 96.99932
ω 39.90076 9.01930 4.68610
FNO 3.50 5.20 5.62
φ 8.99 8.81 9.00
TL 99.25773 129.21001 139.67596
d5 1.99991 30.68218 41.26022
d13 18.53440 4.14191 2.00000
d14 3.76478 2.96318 1.40000
d17 3.54181 4.34341 5.90655
d23 8.01786 3.30678 3.30001
BF 14.70262 35.07621 37.11281

[レンズ群データ]
群 始面 f
1 1 66.85483
2 6 -9.36043
3 15 27.88295
4 18 53.04244(W)、55.61603(M)、55.61991(T)
4F 18 -160.91663
4R 24 33.55859

[条件式対応値]
(1) ndh = 1.950(L404)、1.954(L407)
(2) νdh = 29.37(L404)、33.46(L407)
(3) f1/(−f2) = 7.14
(4) (−f2)/f3 = 0.336
(6) νdh4 = 33.46(L407)
(7) νdp1 = 82.51(L12)
(8) νdp4 = 82.51(L401)
(Table 3) Third Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞

1 149.8692 1.6000 1.949665 27.56
2 44.3736 6.8398 1.497820 82.51
3-243.5058 0.1000
4 45.3756 5.3508 1.867900 41.78
5 311.4136 Variable

* 6 89.0243 1.2000 1.834810 42.73
7 8.4900 3.7581
8 -15.7255 1.0000 1.834810 42.73
9 250.0000 0.1000
10 25.2749 3.2925 1.808090 22.74
11 -17.4750 0.5480
12 -12.6196 1.0000 1.816000 46.59
13 -33.4252 Variable

14 (Aperture S) ∞ Variable

15 29.1681 1.0000 1.889044 39.77
16 18.2404 3.2071 1.593125 66.16
17 -26.5261 Variable

18 14.2857 3.5654 1.497820 82.51
19 -21.9776 1.0000 1.902000 25.23
20 -82.8398 2.2052
* 21 -52.3071 1.0000 1.848976 43.01
22 9.1414 2.6915 1.950000 29.37
23 25.8642 Variable

* 24 35.4414 3.3350 1.589130 61.22
25 -21.3191 0.3000
26 42.3100 4.4029 1.581440 40.98
27 -10.1979 1.2000 1.954000 33.46
28 -300.4717 BF

Image plane ∞

[Aspherical data]
Side 6 κ 1.0000
A4 3.45801E-05
A6 -1.38520E-07
A8 -5.59965E-11
A10 1.26030E-11

Side 21 κ 1.0000
A4 1.74477E-06
A6 1.28096E-07
A8 -2.63692E-09
A10 0.00000E + 00

Side 24 κ 1.0000
A4 -1.22983E-05
A6 1.47314E-07
A8 -5.48742E-10
A10 0.00000E + 00

[Various data]
Scale ratio 9.42

WT
f 10.30 ~ 97.00
FNO 3.50 ~ 5.62
ω 39.90 ~ 4.69 °
Y 8.19 ~ 8.19

WMT
f 10.30001 49.99971 96.99932
ω 39.90076 9.01930 4.68610
FNO 3.50 5.20 5.62
φ 8.99 8.81 9.00
TL 99.25773 129.21001 139.67596
d5 1.99991 30.68218 41.26022
d13 18.53440 4.14191 2.00000
d14 3.76478 2.96318 1.40000
d17 3.54181 4.34341 5.90655
d23 8.01786 3.30678 3.30001
BF 14.70262 35.07621 37.11281

[Lens group data]
Group starting surface f
1 1 66.85483
2 6 -9.36043
3 15 27.88295
4 18 53.04244 (W), 55.61603 (M), 55.61991 (T)
4F 18 -160.91663
4R 24 33.55859

[Conditional expression correspondence value]
(1) ndh = 1.950 (L404), 1.954 (L407)
(2) νdh = 29.37 (L404), 33.46 (L407)
(3) f1 / (-f2) = 7.14
(4) (-f2) / f3 = 0.336
(6) νdh4 = 33.46 (L407)
(7) νdp1 = 82.51 (L12)
(8) νdp4 = 82.51 (L401)

図6(a)、図6(b)、及び図6(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。 6 (a), 6 (b), and 6 (c) are infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third embodiment of the present application, respectively. It is a diagram of various aberrations at the time of focusing on an object.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。 From each aberration diagram, it can be seen that the variable magnification optical system according to this embodiment has high optical performance with various aberrations satisfactorily corrected from the wide-angle end state to the telephoto end state.

(第4実施例)
図7(a)、図7(b)、及び図7(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Fourth Example)
7 (a), 7 (b), and 7 (c) are cross-sectional views of the variable magnification optical system according to the fourth embodiment of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. Is.
In the variable magnification optical system according to the present embodiment, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It is composed of a lens group G3 and a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
The first lens group G1 is composed of a junction lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, in order from the object side. Become.
The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a negative meniscus lens L22 having a concave surface facing the object side, a biconvex positive lens L23, and an object side in order from the object side. It consists of a negative meniscus lens L24 with a concave surface facing. The negative meniscus lens L21 is a glass-molded aspherical lens having an aspherical lens surface on the object side.
The third lens group G3 is composed of a junction lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 in order from the object side. An aperture diaphragm S is provided on the object side of the third lens group G3.

第4レンズ群G4は、物体側から順に、両凸形状の正レンズL401と像側に凸面を向けた負メニスカスレンズL402との接合レンズと、物体側に凹面を向けた正メニスカスレンズL403と両凹形状の負レンズL404との接合レンズと、両凸形状の正レンズL405と、物体側に凹面を向けた正メニスカスレンズL406と両凹形状の負レンズL407との接合レンズと、物体側に凸面を向けた負メニスカスレンズL408と両凸形状の正レンズL409との接合レンズと、物体側に凹面を向けた負メニスカスレンズL410とからなる。なお、正メニスカスレンズL403は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、負メニスカスレンズL410は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
The fourth lens group G4 includes, in order from the object side, a junction lens of a biconvex positive lens L401 and a negative meniscus lens L402 with a convex surface facing the image side, and a positive meniscus lens L403 with a concave surface facing the object side. A junction lens with a concave negative lens L404, a biconvex positive lens L405, a positive meniscus lens L406 with a concave surface facing the object side, and a junction lens with a biconcave negative lens L407, and a convex surface toward the object side. It is composed of a junction lens of a negative meniscus lens L408 facing the lens and a biconvex positive lens L409, and a negative meniscus lens L410 with a concave surface facing the object side. The positive meniscus lens L403 is a glass-molded aspherical lens having an aspherical shape on the lens surface on the object side, and the negative meniscus lens L410 is a glass-molded aspherical lens having an aspherical shape on the lens surface on the image side.
In the variable magnification optical system according to the present embodiment, a low-pass filter, a cover glass for a sensor, or the like may be arranged between the fourth lens group G4 and the image plane I.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加し、開口絞りSと第3レンズ群G3との空気間隔が減少するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動し、開口絞りSは第4レンズ群G4と一体的に移動する。詳細には、第1レンズ群G1、第3レンズ群G3、及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から中間焦点距離状態まで物体側へ移動し、中間焦点距離状態から望遠端状態まで像側へ移動する。
以下の表4に、本実施例に係る変倍光学系の諸元の値を掲げる。
Under the above configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telescopic end state. The air gap between the 2 lens group G2 and the 3rd lens group G3 decreases, the air gap between the 3rd lens group G3 and the 4th lens group G4 increases, and the air gap between the aperture aperture S and the 3rd lens group G3. The first to fourth lens groups G1 to G4 move along the optical axis, and the aperture aperture S moves integrally with the fourth lens group G4 so that Specifically, the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side at the time of scaling. The second lens group G2 moves toward the object from the wide-angle end state to the intermediate focal length state, and moves toward the image side from the intermediate focal length state to the telephoto end state.
Table 4 below lists the values of the specifications of the variable magnification optical system according to this embodiment.

(表4)第4実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 134.9416 1.6000 2.001000 29.14
2 37.4620 7.6500 1.497820 82.57
3 -339.5674 0.1000
4 41.6639 5.5500 1.883000 40.66
5 520.6025 可変

*6 2429.7649 1.0000 1.851350 40.10
7 8.6673 5.7500
8 -10.8429 1.0000 1.487490 70.31
9 -45.5363 0.8500
10 52.5147 3.1000 1.808090 22.74
11 -17.4657 0.3000
12 -16.1357 1.0000 1.954000 33.46
13 -39.2793 可変

14(絞りS) ∞ 可変

15 29.3843 1.0000 1.902650 35.73
16 14.8567 2.8000 1.719990 50.27
17 -55.5590 可変

18 13.5564 3.3500 1.497820 82.57
19 -24.9755 1.0000 1.950000 29.37
20 -183.0794 2.1500
*21 -145.2052 2.2500 1.802440 25.55
22 -14.7800 1.0000 1.766840 46.78
23 23.7425 2.8000
24 25.8106 3.0000 1.516800 63.88
25 -15.0644 0.1000
26 -568.8377 3.0000 1.568830 56.00
27 -9.3137 1.0000 1.954000 33.46
28 98.3635 0.1000
29 15.0059 1.0000 1.950000 29.37
30 7.0809 4.2500 1.647690 33.73
31 -21.2496 1.4500
32 -11.4669 1.0000 1.743300 49.32
*33 -29.8012 BF

像面 ∞

[非球面データ]
第6面
κ -20.0000
A4 9.19258E-05
A6 -6.71049E-07
A8 3.76181E-09
A10 -1.11659E-11

第21面
κ -13.2727
A4 1.25451E-05
A6 1.56196E-07
A8 -2.20815E-09
A10 0.00000E+00

第33面
κ -0.9208
A4 -8.91367E-05
A6 -1.72158E-06
A8 2.40673E-08
A10 -6.77013E-10

[各種データ]
変倍比 9.42

W T
f 10.30 〜 97.00
FNO 4.08 〜 5.83
ω 40.21 〜 4.78°
Y 8.19 〜 8.19

W M T
f 10.30000 50.00021 97.00042
ω 40.21108 9.16962 4.78008
FNO 4.08 5.79 5.83
φ 8.40 9.20 10.10
TL 102.69006 133.09448 142.59913
d5 2.10000 29.30442 39.87067
d13 19.87565 4.17251 2.00000
d14 4.49060 3.80672 1.60000
d17 3.02442 3.70831 5.91502
BF 14.04941 32.95254 34.06346

[レンズ群データ]
群 始面 f
1 1 63.95755
2 6 -10.21809
3 15 32.27954
4 18 70.96006

[条件式対応値]
(1) ndh = 2.001(L11)、1.954(L24)、1.950(L402)、1.954(L407)、1.950(L408)
(2) νdh = 29.14(L11)、33.46(L24)、29.37(L402)、33.46(L407)、29.37(L408)
(3) f1/(−f2) = 6.26
(4) (−f2)/f3 = 0.317
(5) |fh/f1| = 0.817(L11)
(6) νdh4 = 33.46(L407)
(7) νdp1 = 82.57(L12)
(8) νdp4 = 82.57(L401)
(Table 4) Fourth Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞

1 134.9416 1.6000 2.001000 29.14
2 37.4620 7.6500 1.497820 82.57
3 -339.5674 0.1000
4 41.6639 5.5500 1.883000 40.66
5 520.6025 Variable

* 6 2429.7649 1.0000 1.851350 40.10
7 8.6673 5.7500
8 -10.8429 1.0000 1.487490 70.31
9 -45.5363 0.8500
10 52.5147 3.1000 1.808090 22.74
11 -17.4657 0.3000
12 -16.1357 1.0000 1.954000 33.46
13 -39.2793 Variable

14 (Aperture S) ∞ Variable

15 29.3843 1.0000 1.902650 35.73
16 14.8567 2.8000 1.719990 50.27
17 -55.5590 Variable

18 13.5564 3.3500 1.497820 82.57
19 -24.9755 1.0000 1.950000 29.37
20 -183.0794 2.1500
* 21 -145.2052 2.2500 1.802440 25.55
22 -14.7800 1.0000 1.766840 46.78
23 23.7425 2.8000
24 25.8106 3.0000 1.516800 63.88
25 -15.0644 0.1000
26 -568.8377 3.0000 1.568830 56.00
27 -9.3137 1.0000 1.954000 33.46
28 98.3635 0.1000
29 15.0059 1.0000 1.950000 29.37
30 7.0809 4.2500 1.647690 33.73
31 -21.2496 1.4500
32 -11.4669 1.0000 1.743300 49.32
* 33 -29.8012 BF

Image plane ∞

[Aspherical data]
Side 6 κ -20.0000
A4 9.19258E-05
A6 -6.71049E-07
A8 3.76181E-09
A10 -1.11659E-11

Side 21 κ -13.2727
A4 1.25451E-05
A6 1.56196E-07
A8 -2.20815E-09
A10 0.00000E + 00

Side 33 κ -0.9208
A4 -8.91367E-05
A6 -1.72158E-06
A8 2.40673E-08
A10 -6.77013E-10

[Various data]
Scale ratio 9.42

WT
f 10.30 ~ 97.00
FNO 4.08 ~ 5.83
ω 40.21 ~ 4.78 °
Y 8.19 ~ 8.19

WMT
f 10.30000 50.00021 97.00042
ω 40.21108 9.16962 4.78008
FNO 4.08 5.79 5.83
φ 8.40 9.20 10.10
TL 102.69006 133.09448 142.59913
d5 2.10000 29.30442 39.87067
d13 19.87565 4.17251 2.00000
d14 4.49060 3.80672 1.60000
d17 3.02442 3.70831 5.91502
BF 14.04941 32.95254 34.06346

[Lens group data]
Group starting surface f
1 1 63.95755
2 6 -10.21809
3 15 32.27954
4 18 70.96006

[Conditional expression correspondence value]
(1) ndh = 2.001 (L11), 1.954 (L24), 1.950 (L402), 1.954 (L407), 1.950 (L408)
(2) νdh = 29.14 (L11), 33.46 (L24), 29.37 (L402), 33.46 (L407), 29.37 (L408)
(3) f1 / (-f2) = 6.26
(4) (-f2) / f3 = 0.317
(5) | fh / f1 | = 0.817 (L11)
(6) νdh4 = 33.46 (L407)
(7) νdp1 = 82.57 (L12)
(8) νdp4 = 82.57 (L401)

図8(a)、図8(b)、及び図8(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。 8 (a), 8 (b), and 8 (c) are infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth embodiment of the present application, respectively. It is a diagram of various aberrations at the time of focusing on an object.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。 From each aberration diagram, it can be seen that the variable magnification optical system according to this embodiment has high optical performance with various aberrations satisfactorily corrected from the wide-angle end state to the telephoto end state.

(第5実施例)
図9(a)、図9(b)、及び図9(c)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Fifth Example)
9 (a), 9 (b), and 9 (c) are cross-sectional views of the variable magnification optical system according to the fifth embodiment of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. Is.
In the variable magnification optical system according to the present embodiment, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It is composed of a lens group G3 and a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた平凸形状の正レンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる複合型非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。
The first lens group G1 is a junction lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 in order from the object side, and a plano-convex positive lens having a convex surface facing the object side. It consists of L13.
The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a negative meniscus lens L22 having a concave surface facing the object side, a biconvex positive lens L23, and a concave surface toward the object side in order from the object side. It consists of a junction lens with a negative meniscus lens L24. The negative meniscus lens L21 is a composite aspherical lens formed by forming a resin layer provided on the glass surface on the object side in an aspherical shape.
The third lens group G3 is composed of a junction lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32 in order from the object side.

第4レンズ群G4は、物体側から順に、両凸形状の正レンズL401と像側に凸面を向けた負メニスカスレンズL402との接合レンズと、物体側に凹面を向けた正メニスカスレンズL403と両凹形状の負レンズL404との接合レンズと、両凸形状の正レンズL405と、両凸形状の正レンズL406と両凹形状の負レンズL407との接合レンズと、両凸形状の正レンズL408と像側に凸面を向けた負メニスカスレンズL409との接合レンズと、物体側に凹面を向けた負メニスカスレンズL410とからなる。なお、負レンズL404は像側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、負メニスカスレンズL410は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
The fourth lens group G4 includes, in order from the object side, a junction lens of a biconvex positive lens L401 and a negative meniscus lens L402 with a convex surface facing the image side, and a positive meniscus lens L403 with a concave surface facing the object side. A junction lens with a concave negative lens L404, a biconvex positive lens L405, a junction lens between a biconvex positive lens L406 and a biconcave negative lens L407, and a biconvex positive lens L408. It is composed of a junction lens with a negative meniscus lens L409 having a convex surface facing the image side and a negative meniscus lens L410 having a concave surface facing the object side. The negative lens L404 is a glass-molded aspherical lens having an aspherical shape on the image side lens surface, and the negative meniscus lens L410 is a glass-molded aspherical lens having an aspherical shape on the image side lens surface.
In the variable magnification optical system according to the present embodiment, a low-pass filter, a cover glass for a sensor, or the like may be arranged between the fourth lens group G4 and the image plane I.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が広角端状態から中間焦点距離状態まで減少し中間焦点距離状態から望遠端状態まで増加し、開口絞りSと第3レンズ群G3との空気間隔が広角端状態から中間焦点距離状態まで増加し中間焦点距離状態から望遠端状態まで減少するように、第1〜第4レンズ群G1〜G4が光軸に沿って物体側へそれぞれ移動し、開口絞りSは第4レンズ群G4と一体的に移動する。
以下の表5に、本実施例に係る変倍光学系の諸元の値を掲げる。
Under the above configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telescopic end state. The air gap between the 2 lens group G2 and the 3rd lens group G3 decreases, and the air gap between the 3rd lens group G3 and the 4th lens group G4 decreases from the wide-angle end state to the intermediate focal length state, and from the intermediate focal length state. The first to first lenses increase to the telephoto end state, and the air gap between the aperture aperture S and the third lens group G3 increases from the wide-angle end state to the intermediate focal length state and decreases from the intermediate focal length state to the telephoto end state. The four lens groups G1 to G4 move toward the object along the optical axis, and the aperture aperture S moves integrally with the fourth lens group G4.
Table 5 below lists the values of the specifications of the variable magnification optical system according to this embodiment.

(表5)第5実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 145.1831 1.7000 2.001000 29.14
2 36.6390 8.1000 1.497820 82.57
3 -399.3519 0.1000
4 43.2076 6.0000 1.883000 40.66
5 ∞ 可変

*6 436.5967 0.1000 1.553890 38.09
7 87.0031 1.1000 1.834810 42.73
8 8.3001 5.3500
9 -12.6073 1.0000 1.755000 52.34
10 -32.7993 0.8000
11 41.1197 2.9500 1.808090 22.74
12 -19.6043 0.9000 1.883000 40.66
13 -73.1316 可変

14(絞りS) ∞ 可変

15 22.3725 0.9000 1.902650 35.73
16 12.2299 3.4500 1.670030 47.14
17 -59.6992 可変

18 13.7390 3.6000 1.497820 82.57
19 -24.8201 0.9000 2.000690 25.46
20 -270.0138 2.2000
21 -117.0547 2.0500 1.846660 23.80
22 -15.9850 1.0000 1.773770 47.25
*23 24.1750 2.0836
24 66.3654 2.8000 1.568830 56.00
25 -15.4473 0.1000
26 44.9939 2.7500 1.517420 52.20
27 -15.2012 0.9000 1.903660 31.27
28 29.9926 0.3000
29 14.6093 5.0500 1.672700 32.19
30 -9.1997 0.9000 2.000690 25.46
31 -24.3892 1.4000
32 -12.8617 1.0000 1.851350 40.10
*33 -27.4946 BF

像面 ∞

[非球面データ]
第6面
κ 20.0000
A4 9.17458E-05
A6 -6.51986E-07
A8 2.69890E-09
A10 -1.23751E-11

第23面
κ 0.4823
A4 -7.24815E-06
A6 -3.60139E-07
A8 4.05630E-09
A10 0.00000E+00

第33面
κ -20.0000
A4 -1.22780E-04
A6 8.28360E-07
A8 -6.05245E-09
A10 -9.88805E-11

[各種データ]
変倍比 9.42

W T
f 10.30 〜 96.99
FNO 4.12 〜 5.81
ω 40.44 〜 4.73°
Y 8.19 〜 8.19

W M T
f 10.30260 30.00000 96.99284
ω 40.44283 14.85841 4.72723
FNO 4.12 5.48 5.81
φ 8.12 8.12 9.70
TL 103.02710 121.37977 143.32397
d5 2.10606 20.13084 40.20889
d13 19.66416 6.24359 1.80000
d14 4.27874 4.97381 1.80000
d17 3.43763 2.74256 5.91637
BF 14.05688 27.80535 34.11509

[レンズ群データ]
群 始面 f
1 1 64.09778
2 6 -10.16794
3 15 31.06055
4 18 67.05869

[条件式対応値]
(1) ndh = 2.001(L11)
(2) νdh = 29.14(L11)
(3) f1/(−f2) = 6.31
(4) (−f2)/f3 = 0.327
(5) |fh/f1| = 0.770(L11)
(7) νdp1 = 82.57(L12)
(8) νdp4 = 82.57(L401)
(Table 5) Fifth Example
[Surface data]
Surface number r d nd ν d
Paraboloid ∞

1 145.1831 1.7000 2.001000 29.14
2 36.6390 8.1000 1.497820 82.57
3 -399.3519 0.1000
4 43.2076 6.0000 1.883000 40.66
5 ∞ variable

* 6 436.5967 0.1000 1.553890 38.09
7 87.0031 1.1000 1.834810 42.73
8 8.3001 5.3500
9 -12.6073 1.0000 1.755000 52.34
10 -32.7993 0.8000
11 41.1197 2.9500 1.808090 22.74
12 -19.6043 0.9000 1.883000 40.66
13 -73.1316 Variable

14 (Aperture S) ∞ Variable

15 22.3725 0.9000 1.902650 35.73
16 12.2299 3.4500 1.670030 47.14
17 -59.6992 Variable

18 13.7390 3.6000 1.497820 82.57
19 -24.8201 0.9000 2.000690 25.46
20 -270.0138 2.2000
21 -117.0547 2.0500 1.846660 23.80
22 -15.9850 1.0000 1.773770 47.25
* 23 24.1750 2.0836
24 66.3654 2.8000 1.568830 56.00
25 -15.4473 0.1000
26 44.9939 2.7500 1.517420 52.20
27 -15.2012 0.9000 1.903660 31.27
28 29.9926 0.3000
29 14.6093 5.0500 1.672700 32.19
30 -9.1997 0.9000 2.000690 25.46
31 -24.3892 1.4000
32 -12.8617 1.0000 1.851350 40.10
* 33 -27.4946 BF

Image plane ∞

[Aspherical data]
Side 6 κ 20.0000
A4 9.17458E-05
A6 -6.51986E-07
A8 2.69890E-09
A10 -1.23751E-11

Side 23 κ 0.4823
A4 -7.24815E-06
A6 -3.60139E-07
A8 4.05630E-09
A10 0.00000E + 00

Side 33 κ -20.0000
A4 -1.22780E-04
A6 8.28360E-07
A8 -6.05245E-09
A10 -9.88805E-11

[Various data]
Scale ratio 9.42

WT
f 10.30 ~ 96.99
FNO 4.12 ~ 5.81
ω 40.44 ~ 4.73 °
Y 8.19 ~ 8.19

WMT
f 10.30260 30.00000 96.99284
ω 40.44283 14.85841 4.72723
FNO 4.12 5.48 5.81
φ 8.12 8.12 9.70
TL 103.02710 121.37977 143.32397
d5 2.10606 20.13084 40.20889
d13 19.66416 6.24359 1.80000
d14 4.27874 4.97381 1.80000
d17 3.43763 2.74256 5.91637
BF 14.05688 27.80535 34.11509

[Lens group data]
Group starting surface f
1 1 64.09778
2 6 -10.16794
3 15 31.06055
4 18 67.05869

[Conditional expression correspondence value]
(1) ndh = 2.001 (L11)
(2) νdh = 29.14 (L11)
(3) f1 / (-f2) = 6.31
(4) (-f2) / f3 = 0.327
(5) | fh / f1 | = 0.770 (L11)
(7) νdp1 = 82.57 (L12)
(8) νdp4 = 82.57 (L401)

図10(a)、図10(b)、及び図10(c)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。 10 (a), 10 (b), and 10 (c) are infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth embodiment of the present application, respectively. It is a diagram of various aberrations at the time of focusing on an object.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。 From each aberration diagram, it can be seen that the variable magnification optical system according to this embodiment has high optical performance with various aberrations satisfactorily corrected from the wide-angle end state to the telephoto end state.

上記各実施例によれば、小型で、高い光学性能を有する変倍光学系を実現することができる。なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。 According to each of the above embodiments, it is possible to realize a variable magnification optical system that is compact and has high optical performance. It should be noted that each of the above examples shows a specific example of the invention of the present application, and the invention of the present application is not limited thereto. The following contents can be appropriately adopted as long as the optical performance of the variable magnification optical system of the present application is not impaired.

本願の変倍光学系の数値実施例として4群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、5群、6群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。 As a numerical example of the variable magnification optical system of the present application, a four-group configuration is shown, but the present application is not limited to this, and other group configurations (for example, 5 groups, 6 groups, etc.) are configured. You can also do it. Specifically, a lens or a lens group may be added to the most object side or the most image side of the variable magnification optical system of the present application. The lens group refers to a portion having at least one lens separated by an air interval that changes at the time of scaling.

また、本願の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群の少なくとも一部又は第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。 Further, in the variable magnification optical system of the present application, in order to focus from an infinity object to a short-range object, a part of a lens group, one lens group as a whole, or a plurality of lens groups are used as an in-focus lens group. It may be configured to move in the axial direction. In particular, it is preferable that at least a part of the second lens group, at least a part of the third lens group, or at least a part of the fourth lens group be the focusing lens group. Further, such a focusing lens group can be applied to autofocus, and is also suitable for driving by a motor for autofocus, for example, an ultrasonic motor.

また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることもできる。特に、本願の変倍光学系では第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。 Further, in the variable magnification optical system of the present application, the entire lens group or a part thereof is moved as an anti-vibration lens group so as to include a component in the direction perpendicular to the optical axis, or a surface including the optical axis. By rotating (swinging) inward, it is possible to correct the image blur caused by camera shake or the like. In particular, in the variable magnification optical system of the present application, it is preferable that at least a part of the third lens group or at least a part of the fourth lens group is an anti-vibration lens group.

また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 Further, the lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface or a flat surface, or may be an aspherical surface. When the lens surface is spherical or flat, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented, which is preferable. Further, even if the image plane is displaced, the deterioration of the depiction performance is small, which is preferable. When the lens surface is an aspherical surface, it can be either an aspherical surface formed by grinding, a glass mold aspherical surface formed by molding glass into an aspherical shape, or a composite aspherical surface formed by forming a resin provided on the glass surface into an aspherical shape. good. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.

また、本願の変倍光学系において開口絞りは第3レンズ群中又は第3レンズ群の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
Further, in the variable magnification optical system of the present application, the aperture diaphragm is preferably arranged in the third lens group or in the vicinity of the third lens group, and the lens frame substitutes the role of the aperture diaphragm without providing a member. May be good.
Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. As a result, flare and ghost can be reduced, and high-contrast and high optical performance can be achieved.

次に、本願の変倍光学系を備えたカメラを図11に基づいて説明する。
図11は、本願の変倍光学系を備えたカメラの構成を示す図である。
図11に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
Next, a camera provided with the variable magnification optical system of the present application will be described with reference to FIG.
FIG. 11 is a diagram showing a configuration of a camera provided with the variable magnification optical system of the present application.
As shown in FIG. 11, the camera 1 is a so-called mirrorless camera with an interchangeable lens provided with the variable magnification optical system according to the first embodiment as the photographing lens 2.
In the present camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and passed through an OLPF (Optical low pass filter) (not shown) on the image pickup surface of the image pickup unit 3. Form a subject image. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the image pickup unit 3, and the image of the subject is generated. This image is displayed on an EVF (Electronic viewfinder) 4 provided in the camera 1. This allows the photographer to observe the subject via the EVF4.
Further, when the photographer presses the release button (not shown), the image of the subject generated by the image pickup unit 3 is stored in the memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、小型で、高い光学性能を有する変倍光学系である。したがって本カメラ1は、小型化を図りながら、高い光学性能を実現することができる。なお、上記第2〜第5実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。 Here, the variable magnification optical system according to the first embodiment mounted on the camera 1 as a photographing lens 2 is a small size variable magnification optical system having high optical performance. Therefore, the present camera 1 can realize high optical performance while reducing the size. Even if a camera equipped with the variable magnification optical system according to the second to fifth embodiments is configured as the photographing lens 2, the same effect as that of the camera 1 can be obtained. Further, even when the single-lens reflex type camera having a quick return mirror and observing the subject by the finder optical system is equipped with the variable magnification optical system according to each of the above embodiments, the same effect as that of the camera 1 can be obtained. can.

最後に、本願の変倍光学系の製造方法の概略を図12に基づいて説明する。
図12に示す本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1、S2を含むものである。
Finally, the outline of the manufacturing method of the variable magnification optical system of the present application will be described with reference to FIG.
The method for manufacturing the variable magnification optical system of the present application shown in FIG. 12 has a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power in order from the object side. It is a method for manufacturing a variable magnification optical system having a third lens group and a fourth lens group having a positive refractive power, and includes the following steps S1 and S2.

ステップS1:以下の条件式(1)、(2)を満足するレンズを変倍光学系が少なくとも1つ有するようにし、各レンズ群をレンズ鏡筒内に物体側から順に配置する。
(1) 1.928 < ndh
(2) 28.60 < νdh
但し、
ndh:前記レンズのd線(波長587.6nm)に対する屈折率
νdh:前記レンズのd線(波長587.6nm)に対するアッベ数
Step S1: The variable magnification optical system has at least one lens satisfying the following conditional equations (1) and (2), and each lens group is arranged in the lens barrel in order from the object side.
(1) 1.928 <ndh
(2) 28.60 <νdh
However,
ndh: Refractive index with respect to the d-line (wavelength 587.6 nm) of the lens νdh: Abbe number with respect to the d-line (wavelength 587.6 nm) of the lens

ステップS2:レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群との間隔、第2レンズ群と第3レンズ群との間隔、及び第3レンズ群と第4レンズ群との間隔が変化するようにする。 Step S2: By providing a known moving mechanism in the lens barrel, the distance between the first lens group and the second lens group, the distance between the second lens group and the second lens group at the time of scaling from the wide-angle end state to the telephoto end state, etc. The distance between the three lens groups and the distance between the third lens group and the fourth lens group are changed.

斯かる本願の変倍光学系の製造方法によれば、小型で、高い光学性能を有する変倍光学系を製造することができる。 According to the method for manufacturing a variable magnification optical system of the present application, it is possible to manufacture a small size variable magnification optical system having high optical performance.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G4F 前群
G4R 後群
S 開口絞り
I 像面
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G4F Front group G4R Rear group S Aperture aperture I Image plane

Claims (14)

物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とにより実質的に4個のレンズ群からなり、又は、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とにより実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍時に、隣り合うレンズ群の間隔が変化し、
以下の条件式を満足するレンズを少なくとも1つ有し、
1.928 < ndh
29.37 ≦ νdh
但し、
ndh:前記レンズのd線(波長587.6nm)に対する屈折率
νdh:前記レンズのd線(波長587.6nm)に対するアッベ数
前記第4レンズ群が負の屈折力を有する前記レンズを少なくとも1つ有することを特徴とする変倍光学系。
From the object side, the first lens group having a positive refractive force, the second lens group having a negative refractive force, the third lens group having a positive refractive force, and the fourth lens having a positive refractive force. The group consists of substantially four lens groups, or has a first lens group having a positive refractive force, a second lens group having a negative refractive force, and a third lens group having a positive refractive force. The fourth lens group having a negative refractive force and the fifth lens group having a positive refractive force are substantially composed of five lens groups.
When scaling from the wide-angle end state to the telephoto end state, the distance between adjacent lens groups changes,
Having at least one lens that satisfies the following conditional expression,
1.928 <ndh
29.37 ≤ νdh
However,
ndh: Refractive index with respect to the d-line (wavelength 587.6 nm) of the lens νdh: Abbe number with respect to the d-line (wavelength 587.6 nm) of the lens The fourth lens group has at least one of the lenses having a negative refractive power. A variable magnification optical system characterized by having.
前記第4レンズ群が前記レンズを少なくとも1つ有することを特徴とする請求項1に記載の変倍光学系。 The variable magnification optical system according to claim 1, wherein the fourth lens group has at least one lens. 以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の変倍光学系。
5.50 < f1/(−f2) < 15.00
但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
The variable magnification optical system according to claim 1 or 2, wherein the variable magnification optical system satisfies the following conditional expression.
5.50 <f1 / (-f2) <15.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
以下の条件式を満足することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。
0.220 < (−f2)/f3 < 0.530
但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
The variable magnification optical system according to any one of claims 1 to 3 , wherein the variable magnification optical system satisfies the following conditional expression.
0.220 <(-f2) / f3 <0.530
However,
f2: Focal length of the second lens group f3: Focal length of the third lens group
前記第2レンズ群が前記レンズを少なくとも1つ有することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 4 , wherein the second lens group has at least one lens. 前記第3レンズ群が前記レンズを少なくとも1つ有することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 5 , wherein the third lens group has at least one lens. 前記第2レンズ群が負の屈折力を有する前記レンズを少なくとも1つ有することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 6 , wherein the second lens group has at least one lens having a negative refractive power. 前記第3レンズ群が負の屈折力を有する前記レンズを少なくとも1つ有することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 7 , wherein the third lens group has at least one lens having a negative refractive power. 前記第1レンズ群が以下の条件式を満足する正レンズを有することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。
75.00 < νdp1
但し、
νdp1:前記第1レンズ群中の前記正レンズのd線(波長587.6nm)に対するアッベ数
The variable magnification optical system according to any one of claims 1 to 8 , wherein the first lens group has a positive lens satisfying the following conditional expression.
75.00 <νdp1
However,
νdp1: Abbe number with respect to the d-line (wavelength 587.6 nm) of the positive lens in the first lens group.
前記第4レンズ群が以下の条件式を満足する正レンズを有することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。
75.00 < νdp4
但し、
νdp4:前記第4レンズ群中の前記正レンズのd線(波長587.6nm)に対するアッベ数
The variable magnification optical system according to any one of claims 1 to 9 , wherein the fourth lens group has a positive lens satisfying the following conditional expression.
75.00 <νdp4
However,
νdp4: Abbe number with respect to the d-line (wavelength 587.6 nm) of the positive lens in the fourth lens group.
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することを特徴とする請求項1から請求項10のいずれか一項に記載の変倍光学系。 The aspect according to any one of claims 1 to 10 , wherein the distance between the first lens group and the second lens group increases when the magnification is changed from the wide-angle end state to the telephoto end state. Variable magnification optical system. 広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することを特徴とする請求項1から請求項11のいずれか一項に記載の変倍光学系。 The aspect according to any one of claims 1 to 11 , wherein the distance between the second lens group and the third lens group is reduced when the magnification is changed from the wide-angle end state to the telephoto end state. Variable magnification optical system. 広角端状態から望遠端状態への変倍時に、前記第3レンズ群と前記第4レンズ群との間隔が増加することを特徴とする請求項1から請求項12のいずれか一項に記載の変倍光学系。 The invention according to any one of claims 1 to 12 , wherein the distance between the third lens group and the fourth lens group increases when the magnification is changed from the wide-angle end state to the telephoto end state. Variable magnification optical system. 請求項1から請求項13のいずれか一項に記載の変倍光学系を有することを特徴とする光学装置。 An optical device comprising the variable magnification optical system according to any one of claims 1 to 13.
JP2019219609A 2018-08-10 2019-12-04 Variable magnification optical system, optical device Active JP6984643B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019219609A JP6984643B2 (en) 2018-08-10 2019-12-04 Variable magnification optical system, optical device
JP2021188655A JP2022023239A (en) 2018-08-10 2021-11-19 Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018151636A JP6662419B2 (en) 2018-08-10 2018-08-10 Variable power optical system, optical device
JP2019219609A JP6984643B2 (en) 2018-08-10 2019-12-04 Variable magnification optical system, optical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018151636A Division JP6662419B2 (en) 2018-08-10 2018-08-10 Variable power optical system, optical device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021188655A Division JP2022023239A (en) 2018-08-10 2021-11-19 Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system

Publications (2)

Publication Number Publication Date
JP2020034955A JP2020034955A (en) 2020-03-05
JP6984643B2 true JP6984643B2 (en) 2021-12-22

Family

ID=79193361

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019219609A Active JP6984643B2 (en) 2018-08-10 2019-12-04 Variable magnification optical system, optical device
JP2021188655A Ceased JP2022023239A (en) 2018-08-10 2021-11-19 Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021188655A Ceased JP2022023239A (en) 2018-08-10 2021-11-19 Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system

Country Status (1)

Country Link
JP (2) JP6984643B2 (en)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108698A (en) * 2005-09-13 2007-04-26 Olympus Imaging Corp Imaging optical system and electronic imaging device having it
JP4151719B2 (en) * 2005-10-18 2008-09-17 カシオ計算機株式会社 Zoom lens and projector device
JP5028104B2 (en) * 2007-02-19 2012-09-19 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2008203471A (en) * 2007-02-20 2008-09-04 Nikon Corp Zoom lens, optical equipment and imaging method
JP2008257022A (en) * 2007-04-06 2008-10-23 Konica Minolta Opto Inc Zoom lens
JP2009031635A (en) * 2007-07-30 2009-02-12 Konica Minolta Opto Inc Zoom lens
JP5084446B2 (en) * 2007-10-29 2012-11-28 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5242192B2 (en) * 2008-02-20 2013-07-24 オリンパスイメージング株式会社 Zoom lens and imaging apparatus using the same
JP5432472B2 (en) * 2008-04-30 2014-03-05 オリンパス株式会社 Imaging optical system and electronic imaging apparatus having the same
JP5209367B2 (en) * 2008-04-30 2013-06-12 オリンパス株式会社 Imaging optical system and electronic imaging apparatus having the same
JP5521496B2 (en) * 2009-11-04 2014-06-11 株式会社ニコン Variable magnification optical system, optical device
JP2012048199A (en) * 2010-07-28 2012-03-08 Panasonic Corp Zoom lens system, image pickup device, and camera
JP5485840B2 (en) * 2010-09-14 2014-05-07 Hoya株式会社 High magnification zoom lens system and electronic imaging apparatus using the same
JP5751991B2 (en) * 2011-08-30 2015-07-22 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5675680B2 (en) * 2012-03-15 2015-02-25 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5911359B2 (en) * 2012-04-13 2016-04-27 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2013228450A (en) * 2012-04-24 2013-11-07 Canon Inc Zoom lens and imaging apparatus including the same
JP5959294B2 (en) * 2012-04-27 2016-08-02 オリンパス株式会社 Image pickup apparatus having a zoom lens
JP5936439B2 (en) * 2012-05-21 2016-06-22 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5959994B2 (en) * 2012-08-24 2016-08-02 株式会社シグマ Zoom lens system
JP5973292B2 (en) * 2012-08-31 2016-08-23 株式会社シグマ Zoom lens system
JP6205702B2 (en) * 2012-10-23 2017-10-04 株式会社ニコン Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Also Published As

Publication number Publication date
JP2022023239A (en) 2022-02-07
JP2020034955A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP5493308B2 (en) Zoom lens system and optical apparatus provided with the zoom lens system
JP5309553B2 (en) Zoom lens and optical apparatus provided with the zoom lens
WO2014065264A1 (en) Variable magnification optical system, optical device, and method for producing variable magnification optical system
JP5403315B2 (en) Zoom lens system and optical apparatus provided with the zoom lens system
JP5403316B2 (en) Zoom lens system and optical apparatus provided with the zoom lens system
JP6182868B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6205702B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP7254271B2 (en) Variable magnification optical system, optical equipment
JP6060616B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6098176B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6102269B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6662419B2 (en) Variable power optical system, optical device
JP6268697B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6160060B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6504189B2 (en) Variable power optical system, optical device, manufacturing method of variable power optical system
JP6984643B2 (en) Variable magnification optical system, optical device
JP6070055B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
WO2014065266A1 (en) Variable magnification optical system, optical device, and method for producing variable magnification optical system
JP6897733B2 (en) Variable magnification optical system, optical device
JP6060615B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6943265B2 (en) Variable magnification optical system, optical device
JP5386868B2 (en) Zoom lens, optical equipment
JP7207478B2 (en) variable magnification optical system, optical device
JP6424414B2 (en) Variable magnification optical system, optical device
JP6060614B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6984643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150