JP6984581B2 - Equipment insulation method - Google Patents

Equipment insulation method Download PDF

Info

Publication number
JP6984581B2
JP6984581B2 JP2018243119A JP2018243119A JP6984581B2 JP 6984581 B2 JP6984581 B2 JP 6984581B2 JP 2018243119 A JP2018243119 A JP 2018243119A JP 2018243119 A JP2018243119 A JP 2018243119A JP 6984581 B2 JP6984581 B2 JP 6984581B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
heat
wall
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018243119A
Other languages
Japanese (ja)
Other versions
JP2020106172A (en
Inventor
康雅 福島
恒治 片山
亮太 池▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018243119A priority Critical patent/JP6984581B2/en
Publication of JP2020106172A publication Critical patent/JP2020106172A/en
Application granted granted Critical
Publication of JP6984581B2 publication Critical patent/JP6984581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Tunnel Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Thermal Insulation (AREA)

Description

本発明は、燃焼炉、加熱炉、溶融金属容器等であってその外壁の温度が、50℃以上となる設備(以下、高温設備)において、外壁からの放熱を低減する断熱方法に関する。 The present invention relates to a heat insulating method for reducing heat dissipation from an outer wall in a combustion furnace, a heating furnace, a molten metal container, or the like, in which the temperature of the outer wall thereof is 50 ° C. or higher (hereinafter referred to as high temperature equipment).

前記高温設備の外壁は高温となるために放熱が大きく、外壁温度が50℃以上では高温になるほど人体の熱傷と近傍の配管配線や弁の駆動装置などの周辺設備の損傷の危険が増すので外壁温度の低下が望まれる。 Since the outer wall of the high-temperature equipment becomes hot, heat dissipation is large, and when the outer wall temperature is 50 ° C or higher, the higher the temperature, the greater the risk of human body burns and damage to peripheral equipment such as nearby piping wiring and valve drive devices. It is desirable to lower the temperature.

又、放熱が大きい場合、高温設備の内部を一定の温度に維持するために燃料の消費量が増加し、燃料費用が増加するという問題も発生する。断熱により放熱の低減を図る場合、それに費やすコストは、放熱の低減による前記燃料費用の低減額を下回る範囲であることが求められる。 Further, when the heat dissipation is large, the fuel consumption increases in order to maintain the inside of the high temperature equipment at a constant temperature, which causes a problem that the fuel cost increases. When reducing heat dissipation by heat insulation, the cost spent on it is required to be within the range of the reduction amount of the fuel cost due to the reduction of heat dissipation.

特許文献1では、高温設備の外面に接着シ−ル性断熱材及びその上の複合断熱材からなる無機質断熱材層を設けて、高温設備からの放熱の低減を防止したシ−ル構造が提案されている。しかしこのように高温設備外面に接着シール材を設ける方法では、高温設備外面の近傍に設置された配管配線や弁の駆動装置などが障壁となり、高温設備外面に接着シール材を設ける作業に長時間を要する課題があった。 Patent Document 1 proposes a seal structure in which an inorganic heat insulating material layer made of an adhesive seal heat insulating material and a composite heat insulating material is provided on the outer surface of the high temperature equipment to prevent reduction of heat dissipation from the high temperature equipment. Has been done. However, in this method of providing the adhesive sealing material on the outer surface of the high temperature equipment, the piping wiring and valve drive device installed near the outer surface of the high temperature equipment become barriers, and it takes a long time to install the adhesive sealing material on the outer surface of the high temperature equipment. There was a problem that required.

特許文献2では、放射率の低い塗料を用いて放射熱を低減する技術が提案されている。しかしこの方法では、高温で垂直な外壁面に沿って上昇対流する外気への放熱を低減することはできず、効果は小さい。 Patent Document 2 proposes a technique for reducing radiant heat by using a paint having a low emissivity. However, this method cannot reduce heat dissipation to the outside air that rises and convects along the vertical outer wall surface at high temperature, and the effect is small.

特開平3−115388号公報Japanese Unexamined Patent Publication No. 3-115388 特開2012−31392号公報Japanese Unexamined Patent Publication No. 2012-31392

本発明は、高温設備において、燃料費用低減メリットの範囲内の費用で、短期間の施工で実施可能であり、外気温度を充分に低下させる断熱方法を実現することを課題とする。 It is an object of the present invention to realize a heat insulating method that can be carried out in a short period of time at a cost within the range of the merit of reducing fuel cost in high temperature equipment and sufficiently lowers the outside air temperature.

本発明は以下の手段により、前記課題を解決する。
〔1〕外壁が50℃以上となる設備において、25〜400℃の温度範囲における熱伝導率が0.2W/(m・K)以下である断熱材を、該外壁の外側に吊り下げる、設備の断熱方法。
〔2〕前記断熱材の上端において、前記断熱材と前記外壁間の間隙をシールする、〔1〕に記載の設備の断熱方法。
〔3〕前記外壁に、25〜400℃の温度範囲における熱伝導率が0.2W/(m・K)以下である断熱塗料を塗布または吹付け、その外側に前記断熱材を吊り下げる、〔1〕または〔2〕に記載の設備の断熱方法。
〔4〕前記外壁に、塗布または吹付けた後の表面の放射率が0.6以下である断熱塗料を塗布または吹付け、その外側に前記断熱材を吊り下げる、〔1〕または〔2〕に記載の設備の断熱方法。
〔5〕前記設備がコークス炉の蓄熱室である、〔1〕〜〔4〕のいずれかに記載の設備の断熱方法。
The present invention solves the above problems by the following means.
[1] In equipment where the outer wall is 50 ° C or higher, a heat insulating material having a thermal conductivity of 0.2 W / (m · K) or less in the temperature range of 25 to 400 ° C is suspended outside the outer wall. Insulation method.
[2] The method for insulating equipment according to [1], wherein the gap between the heat insulating material and the outer wall is sealed at the upper end of the heat insulating material.
[3] A heat insulating paint having a thermal conductivity of 0.2 W / (m · K) or less in a temperature range of 25 to 400 ° C. is applied or sprayed on the outer wall, and the heat insulating material is suspended on the outside thereof. The method for insulating equipment according to 1] or [2].
[4] The outer wall is coated or sprayed with a heat insulating paint having a surface emissivity of 0.6 or less after being applied or sprayed, and the heat insulating material is suspended outside the heat insulating material [1] or [2]. Insulation method for equipment described in.
[5] The method for insulating equipment according to any one of [1] to [4], wherein the equipment is a heat storage chamber of a coke oven.

本発明により、高温設備において、燃料費用低減メリットの範囲内の費用で、短期間の施工で実施可能であり、外気温度を充分に低下させる断熱方法を実現することができた。 INDUSTRIAL APPLICABILITY According to the present invention, in high temperature equipment, it is possible to carry out construction in a short period of time at a cost within the range of the merit of reducing fuel cost, and it is possible to realize a heat insulating method that sufficiently lowers the outside air temperature.

図1(a)、(c)から(f)は本発明の一実施形態を示す図である。図1(b)は断熱材が吊り下げられていない比較例である。1 (a), (c) to (f) are views showing an embodiment of the present invention. FIG. 1B is a comparative example in which the heat insulating material is not suspended.

高温設備の外壁からの放熱は、外気への放熱(対流伝熱と呼ばれる)と電磁波の放射による放熱(放射伝熱または輻射伝熱と呼ばれる)に分けられるが、外気への放熱と電磁波の放射による放熱のいずれも、外壁の温度が高くなるほど増加する。特に、電磁波の放射による放熱は温度の上昇にともなって加速度的に増加し、約100℃を超えると外気への放熱に匹敵する量となり、放熱の合計量も加速度的に増加する。 Heat dissipation from the outer wall of high-temperature equipment is divided into heat dissipation to the outside air (called convection heat transfer) and heat dissipation by radiation of electromagnetic waves (called radiant heat transfer or radiant heat transfer). Both of the heat radiated by the above increases as the temperature of the outer wall increases. In particular, heat dissipation due to the radiation of electromagnetic waves increases at an accelerating rate as the temperature rises, and when the temperature exceeds about 100 ° C., the amount is comparable to heat dissipation to the outside air, and the total amount of heat dissipation also increases at an accelerating rate.

また、高温設備の外壁上またはその近傍には、配管、配線や弁の駆動装置などの周辺設備が配置されており、外壁と周辺設備との近接距離が1000mm以下しかなく従来の断熱施工に時間がかかる場所や、外壁と周辺設備との近接距離が100mm程度しかなく従来の断熱施工ができない場所がある。特に、コークス炉の蓄熱室は外壁の近傍に数百mm
ピッチで排ガス弁やそれに付随する作動チェーンなどが多数設置されており、外壁のほぼ全面において断熱材を設置する作業には長時間を要する。
In addition, peripheral equipment such as piping, wiring, and valve drive devices are arranged on or near the outer wall of high-temperature equipment, and the close distance between the outer wall and peripheral equipment is only 1000 mm or less, so it takes time for conventional heat insulation construction. There are places where the conventional heat insulation work cannot be performed because the distance between the outer wall and the surrounding equipment is only about 100 mm. In particular, the heat storage chamber of the coke oven is several hundred mm near the outer wall.
A large number of exhaust gas valves and associated operating chains are installed at the pitch, and it takes a long time to install the heat insulating material on almost the entire outer wall.

排ガス弁はコークス炉稼働中に周期的に動作するので、近接しての作業は危険であり、断熱材を設置する作業を行う場合、作業の間は稼働を停止する必要が有る。稼働の停止と再稼働に伴う温度の変化は耐火物の熱応力割れを招くので、稼働の停止時間は6時間以下として耐火物の冷却を抑制する事が望ましく、断熱材を設置する作業も5時間以下であることが要求される。 Since the exhaust gas valve operates periodically during the operation of the coke oven, it is dangerous to work in close proximity, and when the work of installing the heat insulating material is performed, it is necessary to stop the operation during the work. Since the temperature change due to the stoppage and restart of the operation causes thermal stress cracking of the refractory, it is desirable to suppress the cooling of the refractory by setting the operation stop time to 6 hours or less, and the work of installing the heat insulating material is also 5 It is required to be less than an hour.

そこで、発明者らは、高温設備の外壁の外側に断熱材を吊り下げることで外壁近傍での作業を軽減できると着想した。外壁に断熱材を吊り下げるにあたっては、施工個所に近接する周辺設備の近接距離による施工可否の観点からは断熱材の厚さは薄い方が望ましく、現地で吊り下げる施工の作業性の観点からは断熱材の重さは軽い方が望ましい。しかし断熱材の厚さは断熱性能に直結するため、薄い断熱材を用いると断熱性能が低下するという問題が生じる。この問題を解決するためには、熱伝導率が小さい断熱材を用いることが有効である。 Therefore, the inventors have conceived that the work in the vicinity of the outer wall can be reduced by suspending the heat insulating material on the outside of the outer wall of the high temperature equipment. When suspending the heat insulating material on the outer wall, it is desirable that the thickness of the heat insulating material is thin from the viewpoint of whether or not the heat insulating material can be constructed depending on the close distance of the peripheral equipment close to the construction site, and from the viewpoint of the workability of the construction to be suspended on site. It is desirable that the weight of the heat insulating material is light. However, since the thickness of the heat insulating material is directly related to the heat insulating performance, there is a problem that the heat insulating performance is deteriorated when a thin heat insulating material is used. In order to solve this problem, it is effective to use a heat insulating material having a low thermal conductivity.

一般に、鋼の熱伝導率は40W/(m・K)程度、耐火物の熱伝導率は2W/(m・K)程度である。以降この熱伝導率を規定する温度範囲は、一般的な作業環境である25℃を下限とし、高温設備の設計上用いられる400℃を上限とする。断熱材の熱伝導率を一般的な耐火物の10分の1である0.2W/(m・K)とすれば、断熱材の厚さの200倍の厚さの鋼筐体、または、断熱材の厚さの10倍の厚さの耐火物、を追加して施工するのと同等の断熱効果を得られ、周辺設備が近接している場所への吊り下げ施工が可能である。筐体と周辺設備との近接距離は100mm程度の箇所が多くあり、ここに厚さ50mmの断熱材を吊り下げることで、500mmの耐火物の厚さを2倍にしたのと同じ効果が得られる。断熱材の熱伝導率をさらに下げれば、断熱効果をより高めたり、厚さをより薄くすることが可能となる。 Generally, the thermal conductivity of steel is about 40 W / (m · K), and the thermal conductivity of refractories is about 2 W / (m · K). Hereinafter, the temperature range that defines this thermal conductivity is set to 25 ° C, which is a general working environment, as the lower limit, and 400 ° C, which is used in the design of high-temperature equipment, as the upper limit. If the thermal conductivity of the heat insulating material is 0.2 W / (m · K), which is one tenth of the general refractory, a steel housing 200 times thicker than the heat insulating material, or It is possible to obtain the same heat insulating effect as adding a refractory material with a thickness 10 times the thickness of the heat insulating material, and to suspend it to a place where peripheral equipment is close. There are many places where the close distance between the housing and peripheral equipment is about 100 mm, and by hanging a heat insulating material with a thickness of 50 mm here, the same effect as doubling the thickness of a refractory of 500 mm can be obtained. Be done. If the thermal conductivity of the heat insulating material is further lowered, the heat insulating effect can be further enhanced and the thickness can be made thinner.

このようにして断熱材を薄くすることで、断熱材の重量も軽減することができ、吊り下げる作業が容易になるとともに、吊り下げるための筐体側の吊りピースも小型軽量とすることができ、筐体への吊りピース取り付け作業も軽減される。 By thinning the heat insulating material in this way, the weight of the heat insulating material can be reduced, the hanging work can be facilitated, and the hanging piece on the housing side for hanging can be made small and lightweight. The work of attaching the hanging piece to the housing is also reduced.

断熱材の材質としては、特に限定されないが、空隙率の高い耐火物、セラミックファイバーやセラミック粒子をボード状またはブランケット状にしたもの、ミクロンオーダー以下のセラミック微粒子の成形物であるマイクロポーラス材質を用いることができる。さらに、外壁が比較的低温である場合には、真空断熱材を用いることもできる。 The material of the heat insulating material is not particularly limited, but a refractory material having a high porosity, a board-shaped or blanket-shaped ceramic fiber or ceramic particles, or a microporous material which is a molded product of ceramic fine particles of micron order or less is used. be able to. Further, if the outer wall is relatively cold, a vacuum heat insulating material can be used.

一方、断熱材の耐熱温度は適用部位の温度以上である必要が有るとともに、吊り下げるにあたっては、セラミック粒子を弱く成形した物やブランケット状のものは吊り位置や断熱材本体の強度に注意が必要であり、必要に応じて断熱材の吊り位置や端辺に補強のための薄い鋼材を添えることもできる。 On the other hand, the heat-resistant temperature of the heat insulating material must be higher than the temperature of the application site, and when suspending, it is necessary to pay attention to the suspension position and the strength of the insulating material body for those with weakly molded ceramic particles or blanket-shaped materials. Therefore, if necessary, a thin steel material for reinforcement can be attached to the suspension position and the edge of the heat insulating material.

断熱材は一体であっても分割であっても良く、前記の薄い鋼材で枠組みを作り、その枠組みに単数または複数枚を収めても良い。また、高温設備の外壁と周辺設備との近接距離によって、厚さや寸法が異なる断熱材を用いることもできる。 The heat insulating material may be integrated or divided, and a framework may be made of the above-mentioned thin steel material, and one or more sheets may be contained in the framework. Further, it is also possible to use heat insulating materials having different thicknesses and dimensions depending on the close distance between the outer wall of the high temperature equipment and the peripheral equipment.

図1(a)は本発明の一実施形態を示す図であり、外壁に断熱材を吊り下げた例である。 FIG. 1A is a diagram showing an embodiment of the present invention, and is an example in which a heat insulating material is suspended from an outer wall.

断熱材は外壁から離しても密着させても良い。断熱の観点からは密着させると外壁から断熱材への直接伝熱が起こるために不利である。しかし断熱材は一般に空隙率が高いものや、粒子やファイバーを成形したものであるので、断熱材を外壁に密着させても接触箇所は点接触に近い状態なので接触面積は小さく、外壁から断熱材への直接伝熱は、対流伝熱や放射伝熱にくらべて小さい。 The heat insulating material may be separated from the outer wall or adhered to the outer wall. From the viewpoint of heat insulation, it is disadvantageous to make them adhere to each other because heat transfer directly from the outer wall to the heat insulating material occurs. However, since the heat insulating material generally has a high void ratio or is formed by molding particles or fibers, even if the heat insulating material is brought into close contact with the outer wall, the contact point is close to point contact, so the contact area is small and the heat insulating material is applied from the outer wall. Direct heat transfer to is smaller than convection heat transfer and radiant heat transfer.

一方、断熱材を外壁から離して吊り下げる場合は、外壁と断熱材との間の間隙の空気が熱対流で上昇して断熱材の範囲外に流出し、放熱が増加することがある。このような空気の熱対流による放熱は、断熱材と外壁との間の間隙が大きく外壁の温度が高いほど起こり易いと考えられるが、特に影響するのは断熱材の上下方向の寸法であり、断熱材の上下方向の寸法が800mm以上になると、煙突効果により空気の流出が激しくなることが観察される。 On the other hand, when the heat insulating material is suspended away from the outer wall, the air in the gap between the outer wall and the heat insulating material may rise due to heat convection and flow out of the range of the heat insulating material, resulting in increased heat dissipation. It is thought that such heat dissipation due to heat convection of air is more likely to occur as the gap between the heat insulating material and the outer wall is large and the temperature of the outer wall is high, but the vertical dimension of the heat insulating material has a particular effect. When the vertical dimension of the heat insulating material is 800 mm or more, it is observed that the outflow of air becomes severe due to the chimney effect.

断熱材の上端において、断熱材と外壁との間の間隙をシールすれば、この熱対流による放熱を低減できる。断熱材の上端と外壁との間をシールする方法としては、鋼材の溶接などによる完全な気密でもよいが、作業スペースが限られる場合には気密性の低い布状やウール状の材質を上端の間隙に充填するだけでも良い。金属テープやポリイミトなどの耐熱性樹脂のフィルムを被せたり、充填してもよい。 If the gap between the heat insulating material and the outer wall is sealed at the upper end of the heat insulating material, heat dissipation due to this heat convection can be reduced. As a method of sealing between the upper end of the heat insulating material and the outer wall, completely airtightness such as welding of steel material may be used, but if the work space is limited, a cloth-like or wool-like material having low airtightness may be used at the upper end. You may just fill the gap. It may be covered with or filled with a film of a heat-resistant resin such as metal tape or polyimite.

図1(f)は断熱材の上端において、断熱材と外壁との間の間隙をシールした例である。 FIG. 1F is an example in which the gap between the heat insulating material and the outer wall is sealed at the upper end of the heat insulating material.

本発明は、断熱したい設備の外壁に周辺設備が近接しており断熱の施工が困難である場合に特に効果が大きい。外壁の近傍に数百mm周期で排ガス弁やそれに付随する作動チェーンなどが設置されているコークス炉の蓄熱室では特に顕著な効果が有り、現地での施工時間が数分の一に短縮するのみならず、従来は施工が出来なかった箇所にも断熱施工をすることができる。 The present invention is particularly effective when the peripheral equipment is close to the outer wall of the equipment to be insulated and it is difficult to construct the insulation. It has a particularly remarkable effect in the heat storage chamber of a coke oven in which an exhaust gas valve and an operating chain attached to it are installed in the vicinity of the outer wall at intervals of several hundred mm, and the construction time on site is only reduced to a fraction. In addition, heat insulation can be applied to places that could not be installed in the past.

狭い施工場所への断熱材の施工方法としては、本発明以外には外壁への断熱塗料の塗布または吹付けが考えられる。ところが、塗布や吹付けでは断熱塗料の厚さを十分に取れず、十分な断熱効果が得られない。本発明は、断熱材を外壁の外側に吊り下げるため、単独では断熱効果が不足した断熱塗料の塗布または吹付けとの併用が可能であり、組み合わせることでより大きな断熱効果を得ることができる。外壁へ塗布または吹付けする断熱塗料は特に制限されず、耐熱温度や熱伝導度や施工性が用途の条件を満たせばよい。 As a method of applying the heat insulating material to a narrow construction place, it is conceivable to apply or spray the heat insulating paint on the outer wall other than the present invention. However, the thickness of the heat insulating paint cannot be sufficiently obtained by coating or spraying, and a sufficient heat insulating effect cannot be obtained. In the present invention, since the heat insulating material is suspended from the outside of the outer wall, it can be used in combination with the application or spraying of a heat insulating paint having a insufficient heat insulating effect by itself, and a larger heat insulating effect can be obtained by combining them. The heat insulating paint applied or sprayed on the outer wall is not particularly limited, and the heat resistant temperature, thermal conductivity, and workability may satisfy the conditions of use.

図1(b)は外壁に断熱塗料を塗布した比較例である。 FIG. 1B is a comparative example in which a heat insulating paint is applied to the outer wall.

図1(c)〜(e)は断熱塗料と断熱材を組み合わせた本発明例である。 1 (c) to 1 (e) are examples of the present invention in which a heat insulating paint and a heat insulating material are combined.

外壁へ塗布または吹付けする断熱塗料には、塗布または吹付けた後の表面の放射率が0.6以下である断熱塗料を用いることにより高い断熱効果が得られる。これは、前述のように外壁からの放熱は、外気への放熱(対流伝熱と呼ばれる)と電磁波の放射による放熱(放射伝熱または輻射伝熱と呼ばれる)に分けられるが、電磁波の放射による放熱は温度の上昇にともなって加速度的に増加し、約100℃を超えると外気への放熱に匹敵する量となるため、外壁から断熱ボード外面の範囲で最も温度が高い外壁に放射率が低い断熱塗料を塗布または吹付けすることにより、放熱をより効果的に低減できるからである。 As the heat insulating paint applied or sprayed on the outer wall, a high heat insulating effect can be obtained by using a heat insulating paint having a surface emissivity of 0.6 or less after being applied or sprayed. As mentioned above, heat dissipation from the outer wall is divided into heat dissipation to the outside air (called convection heat transfer) and heat dissipation by radiation of electromagnetic waves (called radiant heat transfer or radiant heat transfer), but it is due to radiation of electromagnetic waves. The heat radiation increases at an accelerating rate as the temperature rises, and when it exceeds about 100 ° C, the amount of heat heat is comparable to the heat heat to the outside air. This is because heat dissipation can be reduced more effectively by applying or spraying the heat insulating paint.

ところが、放射率の低い物質は一般に熱伝導率が高いため、断熱塗料の放射率を一般的な断熱材に対して十分に低くしないと、高い熱伝導率と相殺されて効果を得られない。一般的な断熱材の放射率は0.95程度であり、断熱塗料の放射率を0.6以下とすると電磁波の放射による放熱低減効果が改善し、高温になるほど放熱の低減率が向上する。この放射率を規定する温度範囲は、一般的な作業環境である25℃とし、高温設備の設計上用いられる400℃を上限とする。ここで、断熱塗料の放射率の値が材質の仕様として提示されていない場合や表面の凹凸などの性状が変化する場合には、JIS A 1423 (1983)によって測定することができる。断熱材の内面や外面に放射率が低い断熱塗料を塗布することも放熱を低減する効果が有ると思われるが、外壁への塗布にくらべて効果は小さい。 However, since a substance having a low emissivity generally has a high thermal conductivity, unless the emissivity of the heat insulating paint is sufficiently lower than that of a general heat insulating material, it is offset by the high thermal conductivity and no effect can be obtained. The emissivity of a general heat insulating material is about 0.95, and when the emissivity of the heat insulating paint is 0.6 or less, the effect of reducing heat radiation due to the radiation of electromagnetic waves is improved, and the higher the temperature, the higher the emissivity of heat radiation. The temperature range that defines this emissivity is 25 ° C, which is a general working environment, and the upper limit is 400 ° C, which is used in the design of high-temperature equipment. Here, when the value of the emissivity of the heat insulating paint is not presented as the specification of the material or when the properties such as the unevenness of the surface change, it can be measured by JIS A 1423 (1983). Applying a heat insulating paint with a low emissivity to the inner and outer surfaces of the heat insulating material seems to have the effect of reducing heat dissipation, but the effect is smaller than that of applying it to the outer wall.

外壁と周辺設備との間隔が50mm程度であるのが一般的で、施工のために工具や手を入れる間隙を考慮すると断熱材の厚さは30mm以下が求められる。断熱塗料の熱伝導率が高いと断熱効果を確保するために断熱材の厚みを厚くする必要があり、前記30mm以上としなければならない場合が発生する。断熱塗料は、塗布又は吹付け等で外壁に事前に施工できるため、この断熱塗料の熱伝導率を0.2W(mK)以下とすることにより断熱材の厚みの増加を回避できる。温度範囲については、上記断熱塗料と同じ理由で、25〜400℃とする。 Generally, the distance between the outer wall and the peripheral equipment is about 50 mm, and the thickness of the heat insulating material is required to be 30 mm or less in consideration of the gap for inserting tools and hands for construction. If the thermal conductivity of the heat insulating paint is high, it is necessary to increase the thickness of the heat insulating material in order to secure the heat insulating effect, and there are cases where the thickness must be 30 mm or more. Since the heat insulating paint can be applied to the outer wall in advance by coating or spraying, it is possible to avoid an increase in the thickness of the heat insulating material by setting the thermal conductivity of the heat insulating paint to 0.2 W / (m · K) or less. The temperature range is 25 to 400 ° C. for the same reason as the above-mentioned heat insulating paint.

一例として、コークス炉の蓄熱室の外壁に断熱施工を各種実施した。断熱の効果は、コークス炉の蓄熱室の外壁から100mm離れた場所の雰囲気温度を測定して評価した。 As an example, various heat insulation works were carried out on the outer wall of the heat storage chamber of the coke oven. The effect of heat insulation was evaluated by measuring the atmospheric temperature at a place 100 mm away from the outer wall of the heat storage chamber of the coke oven.

施工時間を5時間以下、外気温度140℃以下、従来方法よりもコストが削減できることを判断基準とした。 The criteria were that the construction time was 5 hours or less, the outside air temperature was 140 ° C or less, and the cost could be reduced compared to the conventional method.

実施例1は熱伝達率が0.03W/(m・K)と極めて小さい断熱材を用いることにより、断熱費用が増加したが、その断熱効果により放熱が減少し外気温度が低下した。放熱の減少による燃料費用の削減額は断熱費用の増加額を上回り、トータルコストの削減が実現できた。 In Example 1, by using a heat insulating material having an extremely small heat transfer coefficient of 0.03 W / (m · K), the heat insulating cost increased, but the heat insulating effect reduced the heat dissipation and lowered the outside air temperature. The amount of reduction in fuel cost due to the decrease in heat dissipation exceeded the amount of increase in heat insulation cost, and the total cost could be reduced.

実施例2〜5は熱伝達率0.2W/(m・K)の断熱材を用いた。 In Examples 2 to 5, a heat insulating material having a heat transfer coefficient of 0.2 W / (m · K) was used.

5時間以下の施工時間により140℃以下の外気温度が実現でき、燃料費用の削減額は断熱費用の増加額を上回り、トータルコストの削減が実現できた。 With a construction time of 5 hours or less, an outside air temperature of 140 ° C or less could be realized, the reduction in fuel cost exceeded the increase in heat insulation cost, and the total cost could be reduced.

実施例4は外壁に低熱伝導率断熱塗料を塗布し、さらにその外側に断熱材を吊り下げた。実施例3に対して外気温度は30℃低下し断熱塗料単独よりも大きな相乗効果が得られた。これは断熱塗料によりその外側の断熱材の温度が下がり、断熱材の熱伝導率が低下したことによると考えられる。 In Example 4, a low thermal conductivity heat insulating paint was applied to the outer wall, and a heat insulating material was hung on the outside thereof. The outside air temperature was lowered by 30 ° C. with respect to Example 3, and a greater synergistic effect was obtained as compared with the heat insulating paint alone. It is considered that this is because the temperature of the heat insulating material on the outside is lowered by the heat insulating paint and the thermal conductivity of the heat insulating material is lowered.

実施例5は外壁に低放射率断熱塗料を塗布し、さらにその外側に断熱材を吊り下げた。実施例3に対して外気温度は45℃低下し断熱塗料単独よりも大きな相乗効果が得られた。これは断熱塗料によりその外側の断熱材の温度が下がり、断熱材の熱伝導率が低下したことと、断熱材により断熱塗料の温度が上がり、放射低減効果の寄与度が増加したことによると考えられる。 In Example 5, a low emissivity heat insulating paint was applied to the outer wall, and a heat insulating material was hung on the outside thereof. The outside air temperature was lowered by 45 ° C. with respect to Example 3, and a greater synergistic effect was obtained as compared with the heat insulating paint alone. It is thought that this is because the heat insulating paint lowered the temperature of the heat insulating material on the outside and the thermal conductivity of the heat insulating material decreased, and the heat insulating material raised the temperature of the heat insulating paint and the contribution of the radiation reduction effect increased. Be done.

実施例6は予め断熱塗料を断熱材の外側に、実施例7は予め断熱塗料を断熱材の内側に塗布した後、外壁の外側に吊り下げた。断熱材および断熱塗料の双方を採用したため外気温度は実施例1〜3よりも低下することができた。同等の断熱費用を掛けた実施例5、6、7の中では実施例5が外気温度を最も低下することができたが、これは、実施例5が、より高温で放熱防止効果を発揮する低放射率塗料を最も高温の部位に塗布したために、外壁からの放熱をより減少させるからと考えられる。 In Example 6, the heat insulating paint was applied to the outside of the heat insulating material in advance, and in Example 7, the heat insulating paint was applied to the inside of the heat insulating material in advance and then hung on the outside of the outer wall. Since both the heat insulating material and the heat insulating paint were adopted, the outside air temperature could be lower than in Examples 1 to 3. Among Examples 5, 6 and 7 with the same heat insulation cost, Example 5 was able to lower the outside air temperature most, but this is because Example 5 exerts a heat dissipation prevention effect at a higher temperature. It is considered that the heat dissipation from the outer wall is further reduced because the low emissivity paint is applied to the hottest part.

比較例2は断熱材の吊り下げではなく、外壁への接着を採用したため施工時間が大きく不適となった。これは、作業場所が狭隘であることに起因する。 In Comparative Example 2, the construction time was large and unsuitable because the heat insulating material was not suspended but adhered to the outer wall. This is due to the small work space.

比較例3は断熱材としてれんがを用いた。普通れんがを予めフレームにセットしてパネル状としたものを外壁の外側に吊り下げた。熱伝達率が0.6W/(m・K)と大きいことから厚さを65mmとしたにもかかわらず外気温度が140℃以下とならなかった。又、断熱材が厚く重いため施工に6時間を要した。 In Comparative Example 3, brick was used as a heat insulating material. Ordinary bricks were set in advance on the frame and made into a panel, which was hung on the outside of the outer wall. Since the heat transfer coefficient is as large as 0.6 W / (m · K), the outside air temperature did not fall below 140 ° C. even though the thickness was set to 65 mm. Also, it took 6 hours construction for heavy thick cross heated material.

比較例4は断熱塗料のみを用いて断熱材を用いていないため、放熱が大きく、外気温度が高くなり、燃料費用の削減量も小さく、不適となった。 In Comparative Example 4, since only the heat insulating paint was used and no heat insulating material was used, heat dissipation was large, the outside air temperature was high, and the amount of fuel cost reduction was small, which was unsuitable.

Figure 0006984581
Figure 0006984581

Claims (4)

外壁が50℃以上となる設備において、25〜400℃の温度範囲における熱伝導率が0.2W/(m・K)以下である断熱材の表面に断熱塗料を塗布した後、前記断熱材を前記外壁の外側に吊り下げ、前記断熱材の上端において前記断熱材と前記外壁間の間隙をシールする、設備の断熱方法。 In equipment where the outer wall is 50 ° C or higher, the heat insulating material is applied after applying the heat insulating paint to the surface of the heat insulating material having a thermal conductivity of 0.2 W / (m · K) or less in the temperature range of 25 to 400 ° C. A method for insulating equipment by suspending it from the outside of the outer wall and sealing the gap between the heat insulating material and the outer wall at the upper end of the heat insulating material. 前記外壁に、25〜400℃の温度範囲における熱伝導率が0.2W/(m・K)以下である断熱塗料を塗布または吹付け、その外側に前記断熱材を吊り下げる、請求項に記載の設備の断熱方法。 To the outer wall, only coating or spraying a heat insulating coating thermal conductivity in the temperature range of 25 to 400 ° C. is 0.2W / (m · K) or less, hanging the heat insulating material on its outside, in claim 1 Insulation method for the equipment described. 前記外壁に、塗布または吹付けた後の表面の放射率が0.6以下である断熱塗料を塗布または吹付け、その外側に前記断熱材を吊り下げる、請求項に記載の設備の断熱方法。 The method for insulating equipment according to claim 1 , wherein the outer wall is coated with or sprayed with a heat insulating paint having a surface emissivity of 0.6 or less after being applied or sprayed, and the heat insulating material is hung on the outside thereof. .. 前記設備がコークス炉の蓄熱室である、請求項1〜のいずれかに記載の設備の断熱方法。 The method for insulating equipment according to any one of claims 1 to 3 , wherein the equipment is a heat storage chamber of a coke oven.
JP2018243119A 2018-12-26 2018-12-26 Equipment insulation method Active JP6984581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018243119A JP6984581B2 (en) 2018-12-26 2018-12-26 Equipment insulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243119A JP6984581B2 (en) 2018-12-26 2018-12-26 Equipment insulation method

Publications (2)

Publication Number Publication Date
JP2020106172A JP2020106172A (en) 2020-07-09
JP6984581B2 true JP6984581B2 (en) 2021-12-22

Family

ID=71448712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243119A Active JP6984581B2 (en) 2018-12-26 2018-12-26 Equipment insulation method

Country Status (1)

Country Link
JP (1) JP6984581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7269468B2 (en) * 2019-02-13 2023-05-09 日本製鉄株式会社 Vacuum insulation panel manufacturing method and vacuum insulation panel

Also Published As

Publication number Publication date
JP2020106172A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US20160116214A1 (en) Multilayer cooling panel and electric arc furnace
JP6984581B2 (en) Equipment insulation method
WO2009146306A8 (en) Biomass combustion chamber and refractory components
WO2013179409A1 (en) Crown structure
PH12020551769A1 (en) Wall structure and assembly method for the same
EP3332203B1 (en) Radiant tube with corrugated radiant tube back support
KR102208382B1 (en) Channel inductor
JP4421506B2 (en) Intermediate Stoke Manufacturing Method
JP5062637B2 (en) Intermediate Stoke Manufacturing Method
CN210364351U (en) Thermal protection structure
CN104177094A (en) High heat sensitive energy saving environmental protection refractory material
RU139748U1 (en) Blast furnace air lance
JP4793055B2 (en) Furnace wall structure
US20160178281A1 (en) Refractory ceramic lining brick and corresponding refractory ceramic lining
CA3012536C (en) Wall system with refractory bricks
CN210220670U (en) High-efficiency heat radiation refractory substrate assembly
WO2018184259A1 (en) High temperature furnace wall protection system
CN208139834U (en) A kind of heat insulating device of small evaporator furnace
CN209910390U (en) Heating furnace with good heat insulation effect for forging and pressing
US20140190094A1 (en) Method and Apparatus for Insulating Panels
RU2300065C2 (en) Guard for movable bottom
CN212509861U (en) Heat insulation structure of conveying pipeline
CN210638503U (en) Refractory fiber veneering block for kiln
US20230114230A1 (en) Furnace roller, roller hearth furnace, use of the furnace roller and process for production of a hot-formed and at least partly press-hardened vehicle component
CN207702995U (en) A kind of stove water cooling ceramic welding rifle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6984581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150