JP6981885B2 - Anomaly detection method and device for capacitive pressure sensor - Google Patents

Anomaly detection method and device for capacitive pressure sensor Download PDF

Info

Publication number
JP6981885B2
JP6981885B2 JP2018008635A JP2018008635A JP6981885B2 JP 6981885 B2 JP6981885 B2 JP 6981885B2 JP 2018008635 A JP2018008635 A JP 2018008635A JP 2018008635 A JP2018008635 A JP 2018008635A JP 6981885 B2 JP6981885 B2 JP 6981885B2
Authority
JP
Japan
Prior art keywords
diaphragm
index
pressure
pressure sensor
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018008635A
Other languages
Japanese (ja)
Other versions
JP2019128190A (en
Inventor
卓也 石原
将 添田
正志 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2018008635A priority Critical patent/JP6981885B2/en
Priority to CN201910012669.5A priority patent/CN110068421B/en
Priority to KR1020190003094A priority patent/KR20190089729A/en
Priority to US16/251,437 priority patent/US11054331B2/en
Publication of JP2019128190A publication Critical patent/JP2019128190A/en
Application granted granted Critical
Publication of JP6981885B2 publication Critical patent/JP6981885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/007Malfunction diagnosis, i.e. diagnosing a sensor defect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/002Calibrating, i.e. establishing true relation between transducer output value and value to be measured, zeroing, linearising or span error determination
    • G01L27/005Apparatus for calibrating pressure sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0075Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Ceramic Engineering (AREA)
  • Measuring Fluid Pressure (AREA)

Description

本発明は、被測定媒体の圧力に応じた静電容量を検出するダイアフラム構造のセンサ素子を備えた静電容量型圧力センサの異常検知方法および装置に関する。 The present invention relates to an abnormality detection method and an apparatus of a capacitance type pressure sensor provided with a sensor element having a diaphragm structure for detecting a capacitance according to the pressure of a medium to be measured.

従来より、半導体製造設備等において使用される真空計を始めとする圧力センサにおいては、いわゆるMEMS(Micro Electro Mechanical Systems)技術を用いて小型のダイアフラムを有するセンサ素子を採用することが多い。このセンサ素子は、ダイアフラムで圧力媒体を受圧し、これによりダイアフラムに生じた変位や応力を何らかの信号へ変換することをその主な検出原理としている。 Conventionally, pressure sensors such as vacuum gauges used in semiconductor manufacturing equipment often employ a sensor element having a small diaphragm by using so-called MEMS (Micro Electro Mechanical Systems) technology. The main detection principle of this sensor element is to receive a pressure medium with a diaphragm and convert the displacement or stress generated in the diaphragm into some kind of signal.

例えば、この種のセンサ素子を用いた圧力センサとして、被測定媒体の圧力を受けて撓むダイアフラム(隔膜)の変位を静電容量の変化(電極間の容量の変化)として検出する静電容量型圧力センサが広く知られている。 For example, as a pressure sensor using this type of sensor element, the capacitance that detects the displacement of the diaphragm (diaphragm) that bends under the pressure of the medium to be measured as a change in capacitance (change in capacitance between electrodes). Type pressure sensors are widely known.

この静電容量型圧力センサは、ガス種依存性がないことから、半導体設備を始め工業用途でよく使用されている。例えば、半導体製造装置などにおける製造プロセス中の気体の圧力を計測するために利用されており、この用途で言えば上記の静電容量型圧力センサを静電容量型の隔膜真空計と呼んでいる。また、被測定媒体の圧力を受けて撓むダイアフラムは、感圧ダイアフラムと呼ばれたり、センサダイアフラムと呼ばれたりしている(例えば、特許文献1,2,3参照)。 Since this capacitance type pressure sensor does not depend on the gas type, it is often used in industrial applications such as semiconductor equipment. For example, it is used to measure the pressure of gas during the manufacturing process in semiconductor manufacturing equipment, and in this application, the above-mentioned capacitive pressure sensor is called a capacitive diaphragm vacuum gauge. .. Further, the diaphragm that bends under the pressure of the medium to be measured is called a pressure-sensitive diaphragm or a sensor diaphragm (see, for example, Patent Documents 1, 2 and 3).

このガス種に依存しない隔膜真空計の主たるアプリケーションとして、半導体製造プロセス等におけるCVD(chemical vapor deposition)、ALD(Atomic Layer Deposition)、スパッタ等の成膜もしくはプラズマを用いたエッチングプロセスがあることが知られている。成膜プロセスでは、基板上に堆積させる膜やそれに類似した不完全な膜が、エッチングプロセスでは、レジストの残渣や基板がエッチングされる際に生成される副生成物等が、チャンバーや配管、ポンプ内部に多かれ少なかれ堆積し、様々なトラブルを引き起こす。 It is known that the main applications of this gas type-independent diaphragm vacuum meter are CVD (chemical vapor deposition), ALD (Atomic Layer Deposition), deposition such as sputtering, or etching processes using plasma in semiconductor manufacturing processes. Has been done. In the film formation process, the film deposited on the substrate and similar incomplete films, and in the etching process, the residue of the resist and the by-products generated when the substrate is etched are the chambers, pipes, and pumps. It accumulates more or less inside and causes various troubles.

その中でもプロセス中のガスの圧力を計測・制御する隔膜真空計、とりわけ圧力を感知するダイアフラム(隔膜)への上記物質の堆積は、その応力によりダイアフラムに計測圧力に無関係な撓みを生じさせ、これは真空に引き切ってもゼロを示さない零点のシフトをもたらしてしまう。 Among them, the deposition of the above substances on a diaphragm vacuum gauge that measures and controls the pressure of gas in the process, especially on the diaphragm that senses pressure, causes the diaphragm to bend independently of the measured pressure due to the stress. Will result in a shift of zeros that does not show zero when drawn to vacuum.

また、堆積する膜質にもよるがダイアフラムは見掛け上その厚みが増えることになるので、同等の圧力を印加しても撓みが小さくなり、これは圧力感度の低下を引き起こす。他にも堆積した物質に粘性がある場合などはダイアフラムの動きに遅れを生じさせることがあり、これはセンサ応答の遅れに直結する。 Further, although the thickness of the diaphragm is apparently increased depending on the quality of the deposited film, the deflection becomes small even when the same pressure is applied, which causes a decrease in pressure sensitivity. In addition, if the deposited material is viscous, the movement of the diaphragm may be delayed, which is directly linked to the delay in the sensor response.

このような真空計内部への堆積に起因する出力の零点のシフトや圧力感度の変化は、当然のことながらこれを主たる制御パラメータとする成膜やエッチングの品質に大きな影響を与えてしまうことが知られている。 As a matter of course, the shift of the zero point of the output and the change of the pressure sensitivity due to the accumulation inside the vacuum gauge may have a great influence on the quality of film formation and etching with this as the main control parameter. Are known.

そこで、従来においては、ある定められた規定値よりも零点がシフトした場合、下記のような調整を実施している。
調整(1):装置全体を真空に引き切って零点を調整する。
調整(2):調整(1)で真空に引き切れない場合等は装置から真空計を外して再校正を行う。
Therefore, in the past, when the zero point shifts from a certain specified value, the following adjustments are made.
Adjustment (1): The entire device is evacuated to adjust the zero point.
Adjustment (2): If the vacuum cannot be drawn by adjustment (1), remove the vacuum gauge from the device and recalibrate.

特開2010−236949号公報Japanese Unexamined Patent Publication No. 2010-236949 特開2000−105164号公報Japanese Unexamined Patent Publication No. 2000-105164 特開2006−3234号公報Japanese Unexamined Patent Publication No. 2006-3234 特開2015−184064号公報Japanese Unexamined Patent Publication No. 2015-184064

しかしながら、真空への引き切りの圧力は、ポンプの吸引能力や配管の配置等にも依存し、実際に真空度が悪化していて真空計に問題がない場合もある。このため、上述した調整(1),(2)の手法では、下記のような問題が生じる。 However, the pressure for pulling out to the vacuum depends on the suction capacity of the pump, the arrangement of the pipes, and the like, and the degree of vacuum may actually deteriorate and there may be no problem with the vacuum gauge. Therefore, the above-mentioned methods of adjustment (1) and (2) cause the following problems.

調整(1)の問題点:正しい真空計に不要な零点調整を実施し、むしろ誤った圧力計測にしてしまう。
調整(2)の問題点:装置から真空計を外せば、不要な零点調整のために長時間装置が停止する。
Problem of adjustment (1): Unnecessary zero point adjustment is performed on the correct vacuum gauge, and rather the pressure measurement is incorrect.
Problem of adjustment (2): If the vacuum gauge is removed from the device, the device will stop for a long time due to unnecessary zero point adjustment.

この様な調整の回数をなるべく少なくすることが、装置の稼働率の向上に役立つが、実際に圧力が変化している場合(零点調整が必要でない場合)と堆積物等によってシフトしている場合(零点調整が必要な場合)とを見分けることは非常に難しい。 Reducing the number of such adjustments as much as possible helps to improve the operating rate of the equipment, but when the pressure is actually changing (when zero point adjustment is not necessary) and when there is a shift due to deposits, etc. It is very difficult to distinguish from (when zero adjustment is required).

なお、特許文献4では、ダイアフラムの圧力導入室側の面の周縁部と中央部との間に段部を設け、この段部を境界として中央部側の領域(薄い領域)と周縁部側の領域(厚い領域)とに分け、ダイアフラムの段部の近傍(周縁部側の領域)にその開口部を位置させるようにして複数の圧力導入孔を台座プレートに設けることにより、零点シフトを抑制するようにしている。しかし、この方法は、あくまでも零点シフトの抑制に留まる。 In Patent Document 4, a step portion is provided between the peripheral portion and the central portion of the surface of the diaphragm on the pressure introduction chamber side, and the central portion side region (thin region) and the peripheral portion side are provided with this step portion as a boundary. The pedestal plate is divided into regions (thick regions), and the pedestal plate is provided with a plurality of pressure introduction holes so that the openings are located near the stepped portion of the diaphragm (region on the peripheral edge side) to suppress the zero shift. I am doing it. However, this method is limited to suppressing the zero shift.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、圧力による出力変化と、堆積物などによる圧力以外の出力変化とを見分け、不要な零点調整を低減することが可能な静電容量型圧力センサの異常検知方法および装置を提供することにある。 The present invention has been made to solve such a problem, and an object thereof is to distinguish between an output change due to pressure and an output change other than pressure due to deposits, etc., and reduce unnecessary zero point adjustment. It is an object of the present invention to provide a method and an apparatus for detecting an abnormality of a capacitive pressure sensor.

このような目的を達成するために本発明は、被測定媒体の圧力に応じて撓むダイアフラム(101)の変位に応じてその電極間の容量が変化する複数の電極対(D1,D2)を備えた静電容量型圧力センサ(100)の異常を検知する静電容量型圧力センサの異常検知方法であって、被測定媒体の真空引き時の複数の電極対の容量(Cx,Cr)の変化から異常検知の指標(α)を算出する指標算出ステップ(S201)と、指標算出ステップによって算出された異常検知の指標と正常時の当該指標を示す基準値(αref)とを比較することによってダイアフラムに圧力以外の要因による撓みが生じているか否かを判断する状態判断ステップ(S202)とを備えることを特徴とする。 In order to achieve such an object, the present invention provides a plurality of electrode pairs (D1, D2) in which the capacitance between the electrodes changes according to the displacement of the diaphragm (101) that bends according to the pressure of the medium to be measured. It is an abnormality detection method of the capacitance type pressure sensor for detecting the abnormality of the capacitance type pressure sensor (100) provided, and is a method of detecting the capacitance (Cx, Cr) of a plurality of electrode pairs at the time of vacuuming the test medium. By comparing the index calculation step (S201) for calculating the abnormality detection index (α) from the change, the abnormality detection index calculated by the index calculation step, and the reference value (αref) indicating the index at normal times. It is characterized by including a state determination step (S202) for determining whether or not the diaphragm is bent due to a factor other than pressure.

この発明では、被測定媒体の真空引き時の複数の電極対の容量の変化から異常検知の指標を算出し、この算出した異常検知の指標と正常時の当該指標を示す基準値とを比較することによって、ダイアフラムに圧力以外の要因による撓みが生じているか否かを判断する。例えば、ダイアフラムの中央部に感圧容量Cxを形成する電極対を第1の電極対、ダイアフラムの外周部に参照容量Crを形成する電極対を第2の電極対とした場合、感圧容量Cxの変化ΔCxと参照容量Crの変化ΔCrとの比ΔCx/ΔCrを異常検知の指標αとして算出し、この算出した異常検知の指標αと正常時の当該指標を示す基準値αrefとを比較することによって、ダイアフラムに圧力以外の要因による撓みが生じているか否かを判断する。 In the present invention, an abnormality detection index is calculated from a change in the capacitance of a plurality of electrode pairs when the measured medium is evacuated, and the calculated abnormality detection index is compared with a reference value indicating the index at normal times. By doing so, it is determined whether or not the diaphragm is bent due to a factor other than pressure. For example, when the electrode pair forming the pressure-sensitive capacitance Cx in the central portion of the diaphragm is the first electrode pair and the electrode pair forming the reference capacitance Cr in the outer peripheral portion of the diaphragm is the second electrode pair, the pressure-sensitive capacitance Cx The ratio ΔCx / ΔCr between the change ΔCx and the change ΔCr of the reference capacitance Cr is calculated as the index α for abnormality detection, and the calculated index α for abnormality detection is compared with the reference value αref indicating the index at normal times. Determines whether or not the diaphragm is bent due to factors other than pressure.

これにより、圧力による出力変化と、堆積物などによる圧力以外の出力変化とを見分け、不要な零点調整を低減することが可能となる。 This makes it possible to distinguish between output changes due to pressure and output changes other than pressure due to deposits, etc., and to reduce unnecessary zero point adjustment.

なお、ダイアフラムへの被測定媒体の導入口に対応する位置に堆積感知容量Cdを形成する電極対を設け、この電極対を第1の電極対とし、堆積感知容量Cdの変化ΔCdと参照容量Crの変化ΔCrとの比ΔCd/ΔCrを異常検知の指標βとして算出し、この算出した異常検知の指標βと正常時の当該指標を示す基準値βrefとを比較することによって、ダイアフラムに圧力以外の要因による撓みが生じているか否かを判断するようにしてもよい。 An electrode pair forming the deposition sensing capacity Cd is provided at a position corresponding to the inlet of the medium to be measured into the diaphragm, and this electrode pair is used as the first electrode pair, and the change ΔCd of the deposition sensing capacity Cd and the reference capacity Cr are used. By calculating the ratio ΔCd / ΔCr with the change ΔCr as the index β for abnormality detection and comparing the calculated index β for abnormality detection with the reference value βref indicating the index at normal times, the diaphragm has a pressure other than the pressure. It may be determined whether or not the bending is caused by a factor.

また、ダイアフラムへの被測定媒体の導入口に対応する位置に堆積感知容量Cdを形成する電極対を設け、この電極対を第3の電極対とし、感圧容量Cxの変化ΔCxと参照容量Crの変化ΔCrとの比ΔCx/ΔCrおよび堆積感知容量Cdの変化ΔCdと参照容量Crの変化ΔCrとの比ΔCd/ΔCrを異常検知の指標αおよびβとして算出し、この算出した異常検知の指標α,βと正常時の当該指標を示す基準値αref,βrefとを比較することによって、ダイアフラムに圧力以外の要因による撓みが生じているか否かを判断するようにしてもよい。 Further, an electrode pair forming a deposit sensing capacity Cd is provided at a position corresponding to the introduction port of the medium to be measured into the diaphragm, and this electrode pair is used as a third electrode pair, and the change ΔCx of the pressure-sensitive capacity Cx and the reference capacity Cr are used. The ratio ΔCx / ΔCr to the change ΔCr and the change ΔCd of the deposition sensing capacity Cd and the ratio ΔCd / ΔCr to the change ΔCr of the reference capacity Cr were calculated as the abnormality detection indexes α and β, and the calculated abnormality detection index α , Β may be compared with the reference values αref and βref indicating the index at normal times to determine whether or not the diaphragm is bent due to a factor other than pressure.

なお、上記説明では、一例として、発明の構成要素に対応する図面上の構成要素を、括弧を付した参照符号によって示している。 In the above description, as an example, the components on the drawing corresponding to the components of the invention are shown by reference numerals in parentheses.

以上説明したように、本発明によれば、被測定媒体の真空引き時の複数の電極対の容量の変化から異常検知の指標を算出し、この算出した異常検知の指標と正常時の当該指標を示す基準値とを比較することによって、ダイアフラムに圧力以外の要因による撓みが生じているか否かを判断するようにしたので、圧力による出力変化と、堆積物などによる圧力以外の出力変化とを見分け、不要な零点調整を低減することが可能となる。 As described above, according to the present invention, an abnormality detection index is calculated from the change in the capacitance of a plurality of electrode pairs when the test medium is evacuated, and the calculated abnormality detection index and the normal time index are calculated. By comparing with the reference value indicating, it is determined whether or not the diaphragm is bent due to factors other than pressure, so the output change due to pressure and the output change other than pressure due to sediment etc. can be determined. It is possible to distinguish and reduce unnecessary zero point adjustment.

図1は、圧力が加えられた時の均等厚の円形ダイアフラムの撓み曲線を示す図である。FIG. 1 is a diagram showing a deflection curve of a circular diaphragm having a uniform thickness when pressure is applied. 図2は、本発明を適用しようとする静電容量型圧力センサの一例の要部の構成を示す図である。FIG. 2 is a diagram showing a configuration of a main part of an example of a capacitance type pressure sensor to which the present invention is applied. 図3は、この静電容量型圧力センサにおけるセンサ台座に形成された感圧側固定電極および参照側固定電極の配置を圧力導入孔の位置と合わせて示す図である。FIG. 3 is a diagram showing the arrangement of the pressure-sensitive side fixed electrode and the reference side fixed electrode formed on the sensor pedestal in this capacitance type pressure sensor together with the positions of the pressure introduction holes. 図4は、この静電容量型圧力センサのダイアフラムに堆積膜が形成されている状態を示す図である。FIG. 4 is a diagram showing a state in which a deposit film is formed on the diaphragm of the capacitance type pressure sensor. 図5は、図4のような堆積が生じた際にこの静電容量型圧力センサのダイアフラムの中央部が堆積膜によって大きく撓む計算結果(1/4モデル)を示す図である。FIG. 5 is a diagram showing a calculation result (1/4 model) in which the central portion of the diaphragm of the capacitance type pressure sensor is greatly deflected by the deposition film when the deposition as shown in FIG. 4 occurs. 図6は、この静電容量型圧力センサにおける感圧側電極対および参照側電極対の配置を示す図である。FIG. 6 is a diagram showing the arrangement of the pressure-sensitive side electrode pair and the reference side electrode pair in this capacitance type pressure sensor. 図7は、印加圧力に対する感圧容量Cxおよび参照容量Crの計算値を示す図である。FIG. 7 is a diagram showing calculated values of the pressure-sensitive capacity Cx and the reference capacity Cr with respect to the applied pressure. 図8は、印加圧力に対するCx−Crの計算値を示す図である。FIG. 8 is a diagram showing the calculated value of Cx—Cr with respect to the applied pressure. 図9は、100Paをフルスケールとしたときの10%FS(フルスケール)に相当する10Pa以下の領域において感圧容量Cxの変化ΔCxと参照容量Crの変化ΔCrとの比ΔCx/ΔCrが堆積膜が成膜された状態と成膜されていない状態で大きく異なることを説明する図である。In FIG. 9, the ratio ΔCx / ΔCr between the change ΔCx of the pressure sensitive capacity Cx and the change ΔCr of the reference capacity Cr is the deposited film in the region of 10 Pa or less corresponding to 10% FS (full scale) when 100 Pa is set to full scale. It is a figure explaining that there is a big difference between the state where the film is formed and the state where the film is not formed. 図10は、本発明の実施の形態1に係る静電容量型圧力センサの異常検知装置の要部の構成を示すブロック図である。FIG. 10 is a block diagram showing a configuration of a main part of an abnormality detection device for a capacitance type pressure sensor according to the first embodiment of the present invention. 図11は、実施の形態1の異常検知装置における運用前の処理を示すフローチャートである。FIG. 11 is a flowchart showing a pre-operation process in the abnormality detection device of the first embodiment. 図12は、実施の形態1の異常検知装置における運用中の処理を示すフローチャートである。FIG. 12 is a flowchart showing a process during operation in the abnormality detection device of the first embodiment. 図13は、本発明を適用しようとする静電容量型圧力センサの他の例の要部の構成を示す図である。FIG. 13 is a diagram showing a configuration of a main part of another example of a capacitive pressure sensor to which the present invention is applied. 図14は、この静電容量型圧力センサにおけるセンサ台座に形成された感圧側固定電極および参照側固定電極の配置を圧力導入孔の位置と合わせて示す図である。FIG. 14 is a diagram showing the arrangement of the pressure-sensitive side fixed electrode and the reference side fixed electrode formed on the sensor pedestal in this capacitance type pressure sensor together with the positions of the pressure introduction holes. 図15は、この静電容量型圧力センサのダイアフラムに堆積膜が形成されている状態を示す図である。FIG. 15 is a diagram showing a state in which a deposit film is formed on the diaphragm of the capacitance type pressure sensor. 図16は、図15のような堆積が生じた際にこの静電容量型圧力センサのダイアフラムの周縁部側の領域域に位置する圧力導入孔に対応する部分が大きく撓む計算結果(1/4モデル)を示す図である。FIG. 16 shows a calculation result (1 /) in which the portion corresponding to the pressure introduction hole located in the region on the peripheral edge side of the diaphragm of the capacitive pressure sensor is greatly bent when the deposition as shown in FIG. 15 occurs. It is a figure which shows 4 models). 図17は、この静電容量型圧力センサにおける感圧側電極対、参照側電極対および堆積感知電極対の配置を示す図であるFIG. 17 is a diagram showing the arrangement of the pressure sensitive side electrode pair, the reference side electrode pair, and the deposition sensing electrode pair in this capacitance type pressure sensor. 図18は、本発明の実施の形態2に係る静電容量型圧力センサの異常検知装置の要部の構成を示すブロック図である。FIG. 18 is a block diagram showing a configuration of a main part of an abnormality detection device for a capacitance type pressure sensor according to the second embodiment of the present invention. 図19は、実施の形態2の異常検知装置における運用前の処理を示すフローチャートである。FIG. 19 is a flowchart showing a process before operation in the abnormality detection device of the second embodiment. 図20は、実施の形態2の異常検知装置における運用中の処理を示すフローチャートである。FIG. 20 is a flowchart showing a process during operation in the abnormality detection device of the second embodiment.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。先ず、実施の形態の説明に入る前に、本発明の原理について説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, the principle of the present invention will be described before going into the description of the embodiments.

〔発明の原理〕
発明者は、圧力によるダイアフラムの撓み(適切な撓み)と、堆積物などの圧力以外の要因によるダイアフラムの撓み(不適切な撓み)とでは、撓みの形状が異なることを突き止めた。通常、センサダイアフラムの圧力を受けた時の形状は均等圧力を受けた周辺固定された円板の撓みw(r)として、下記(1)式で示されるように定式化されており、圧力pが加えられた時の撓みwはダイアフラム中心からの距離rの4次関数となる(図1参照)。
[Principle of invention]
The inventor has found that the shape of the deflection differs between the deflection of the diaphragm due to pressure (appropriate deflection) and the deflection of the diaphragm due to factors other than pressure such as deposits (inappropriate deflection). Normally, the shape of the sensor diaphragm when it receives pressure is formulated as the deflection w (r) of the peripherally fixed disk that has received uniform pressure, as shown by the following equation (1), and the pressure p. The deflection w when is added is a quartic function of the distance r from the center of the diaphragm (see FIG. 1).

Figure 0006981885
Figure 0006981885

多くの場合、静電容量型圧力センサの出力は、キャビティ内に感圧容量Cxおよび参照容量Crを配置し、熱膨張・収縮に由来する温度特性の抑制や電気ノイズの低減、キャビティ内の誘電率の変化の影響の除去などを目的として差分Cx−Crを出力(センサ出力)としている。 In many cases, the output of a capacitive pressure sensor has a pressure-sensitive capacitance Cx and a reference capacitance Cr arranged in the cavity to suppress thermal characteristics derived from thermal expansion and contraction, reduce electrical noise, and permittivity in the cavity. The difference Cx-Cr is used as an output (sensor output) for the purpose of removing the influence of the change in the rate.

図2に、本発明を適用しようとする静電容量型圧力センサの一例の要部の構成を示す。この静電容量型圧力センサ100は、被測定媒体の圧力に応じて変位するダイアフラム101と、このダイアフラム101の周縁部を支持するダイアフラム支持部102とを備えるダイアフラム構成部材103と、ダイアフラム支持部102に接合され、ダイアフラム101と共に基準真空室(キャビティ)104を形成するセンサ台座105と、ダイアフラム支持部102のセンサ台座105とは反対側に接合され、ダイアフラム101と共に圧力導入室106を形成する台座プレート107とを備えている。 FIG. 2 shows the configuration of a main part of an example of a capacitive pressure sensor to which the present invention is applied. The capacitance type pressure sensor 100 includes a diaphragm component 103 having a diaphragm 101 that is displaced according to the pressure of the medium to be measured, and a diaphragm support portion 102 that supports a peripheral portion of the diaphragm 101, and a diaphragm support portion 102. A pedestal plate that is joined to the sensor pedestal 105 that forms a reference vacuum chamber (cavity) 104 together with the diaphragm 101 and a pedestal plate that is joined to the side opposite to the sensor pedestal 105 of the diaphragm support 102 and forms a pressure introduction chamber 106 together with the diaphragm 101. It is equipped with 107.

この静電容量型圧力センサ100において、センサ台座105の基準真空室104側の面には感圧側固定電極108および参照側固定電極109が形成され、ダイアフラム101の基準真空室104側の面には感圧側可動電極110および参照側可動電極111が形成されている。感圧側固定電極108と感圧側可動電極110とは互いに対向するようにダイアフラム101の中央部に設けられており、参照側固定電極109と参照側可動電極111とは互いに対向するようにダイアフラム101の外周部に設けられている。また、台座プレート107には、そのプレートの中央部(ダイアフラム101の中心に位置する部分)に圧力導入孔112が形成されている。 In the capacitance type pressure sensor 100, a pressure-sensitive fixed electrode 108 and a reference-side fixed electrode 109 are formed on the surface of the sensor pedestal 105 on the reference vacuum chamber 104 side, and on the surface of the diaphragm 101 on the reference vacuum chamber 104 side. The pressure-sensitive side movable electrode 110 and the reference side movable electrode 111 are formed. The pressure-sensitive fixed electrode 108 and the pressure-sensitive movable electrode 110 are provided in the central portion of the diaphragm 101 so as to face each other, and the reference-side fixed electrode 109 and the reference-side movable electrode 111 of the diaphragm 101 face each other. It is provided on the outer peripheral portion. Further, the pedestal plate 107 is formed with a pressure introduction hole 112 in the central portion (a portion located at the center of the diaphragm 101) of the plate.

図3に、センサ台座105に形成された感圧側固定電極108および参照側固定電極109の配置を圧力導入孔112の位置と合わせて示す。平面視略円形の感圧側固定電極108は、その中心がダイアフラム101の中心とほぼ一致するように、基準真空室104側のセンサ台座105の面に形成されている。平面視略円弧状の参照側固定電極109は、感圧側固定電極108の外側に略同心円状に配置されるように、基準真空室104側のセンサ台座105の面に形成されている。感圧側固定電極108は、センサ台座105に形成された配線113を介してセンサ外部の信号処理装置(不図示)と電気的に接続される。同様に、参照側固定電極109は、センサ台座105に形成された配線114を介して信号処理装置と電気的に接続される。 FIG. 3 shows the arrangement of the pressure-sensitive fixed electrode 108 and the reference-side fixed electrode 109 formed on the sensor pedestal 105 together with the positions of the pressure introduction holes 112. The pressure-sensitive fixed electrode 108 having a substantially circular shape in a plan view is formed on the surface of the sensor pedestal 105 on the reference vacuum chamber 104 side so that the center thereof substantially coincides with the center of the diaphragm 101. The reference side fixed electrode 109 having a substantially arc shape in a plan view is formed on the surface of the sensor pedestal 105 on the reference vacuum chamber 104 side so as to be arranged substantially concentrically on the outside of the pressure sensitive side fixed electrode 108. The pressure-sensitive fixed electrode 108 is electrically connected to a signal processing device (not shown) outside the sensor via a wiring 113 formed on the sensor pedestal 105. Similarly, the reference-side fixed electrode 109 is electrically connected to the signal processing device via the wiring 114 formed on the sensor pedestal 105.

ダイアフラム101側の可動電極の構成も固定電極と同様である。すなわち、平面視略円形の感圧側可動電極110は、感圧側固定電極108と対向するように、基準真空室104側のダイアフラム101の面に形成されている。感圧側可動電極110の中心は、ダイアフラム101の中心とほぼ一致している。平面視略円弧状の参照側可動電極111は、参照側固定電極109と対向するように、基準真空室104側のダイアフラム101の面に形成されている。参照側可動電極111は、感圧側可動電極110の外側に略同心円状に配置される。感圧側可動電極110は、ダイアフラム101に形成された配線(不図示)を介してセンサ外部の信号処理装置と電気的に接続される。同様に、参照側可動電極111は、ダイアフラム101に形成された配線(不図示)を介して信号処理装置と電気的に接続される。 The configuration of the movable electrode on the diaphragm 101 side is the same as that of the fixed electrode. That is, the pressure-sensitive movable electrode 110 having a substantially circular shape in a plan view is formed on the surface of the diaphragm 101 on the reference vacuum chamber 104 side so as to face the pressure-sensitive fixed electrode 108. The center of the pressure-sensitive movable electrode 110 substantially coincides with the center of the diaphragm 101. The reference side movable electrode 111 having a substantially arc shape in a plan view is formed on the surface of the diaphragm 101 on the reference vacuum chamber 104 side so as to face the reference side fixed electrode 109. The reference-side movable electrode 111 is arranged substantially concentrically on the outside of the pressure-sensitive side movable electrode 110. The pressure-sensitive movable electrode 110 is electrically connected to a signal processing device outside the sensor via wiring (not shown) formed in the diaphragm 101. Similarly, the reference-side movable electrode 111 is electrically connected to the signal processing device via a wiring (not shown) formed in the diaphragm 101.

感圧側固定電極108と感圧側可動電極110とからなる静電容量は、圧力に対して高感度であって、圧力測定を行う役目を果たす。参照側固定電極109と参照側可動電極111とからなる静電容量は、圧力に対して低感度であって電極間の誘電率を補正する役目等を果たす。以下、感圧側固定電極108と感圧側可動電極110との電極対を感圧側電極対D1とし、参照側固定電極109と参照側可動電極111との電極対を参照側電極対D2とする。感圧側電極対D1はダイアフラム101の中央部に感圧容量Cxを形成し、参照側電極対D2はダイアフラム101の外周部に参照容量Crを形成する。 The capacitance composed of the pressure-sensitive fixed electrode 108 and the pressure-sensitive movable electrode 110 is highly sensitive to pressure and serves to measure pressure. The capacitance composed of the reference-side fixed electrode 109 and the reference-side movable electrode 111 has low sensitivity to pressure and serves to correct the dielectric constant between the electrodes. Hereinafter, the electrode pair of the pressure-sensitive fixed electrode 108 and the pressure-sensitive movable electrode 110 is referred to as a pressure-sensitive electrode pair D1, and the electrode pair of the reference-side fixed electrode 109 and the reference-side movable electrode 111 is referred to as a reference-side electrode pair D2. The pressure-sensitive electrode pair D1 forms a pressure-sensitive capacitance Cx in the central portion of the diaphragm 101, and the reference-side electrode pair D2 forms a reference capacitance Cr in the outer peripheral portion of the diaphragm 101.

この静電容量型圧力センサ100において、ダイアフラム101の面と交差する方向(この例では、ダイアフラム101の面と垂直な方向)から被測定媒体が圧力導入孔112を介して圧力導入室106に導入されると、被測定媒体の圧力に応じてダイアフラム101が変形する。ダイアフラム101が変形すると、センサ台座105とダイアフラム101の距離(基準真空室104の高さ)が変化し、感圧側電極対D1が形成する感圧容量Cxおよび参照側電極対D2が形成する参照容量Crが変化する。図示しない信号処理装置は、Cx−Crとしてセンサ出力を算出し、このセンサ出力(容量値)を圧力値に換算する。 In the capacitance type pressure sensor 100, the medium to be measured is introduced into the pressure introduction chamber 106 through the pressure introduction hole 112 from the direction intersecting the surface of the diaphragm 101 (in this example, the direction perpendicular to the surface of the diaphragm 101). Then, the diaphragm 101 is deformed according to the pressure of the medium to be measured. When the diaphragm 101 is deformed, the distance between the sensor pedestal 105 and the diaphragm 101 (height of the reference vacuum chamber 104) changes, and the pressure-sensitive capacity Cx formed by the pressure-sensitive electrode pair D1 and the reference capacity formed by the reference-side electrode pair D2. Cr changes. A signal processing device (not shown) calculates a sensor output as Cx-Cr, and converts this sensor output (capacity value) into a pressure value.

なお、この静電容量型圧力センサ100を構成する基材は、すなわちダイアフラム構成部材103やセンサ台座105,台座プレート107は、例えば、サファイアやアルミナセラミック、ガラス、シリコン、ニッケル合金、ステンレスなどの耐熱耐食性を有する材料から構成されている。 The base material constituting the capacitance type pressure sensor 100, that is, the diaphragm component 103, the sensor pedestal 105, and the pedestal plate 107 are heat resistant such as sapphire, alumina ceramic, glass, silicon, nickel alloy, and stainless steel. It is composed of a corrosion-resistant material.

この静電容量型圧力センサ100において、感圧容量Cxおよび参照容量Crは、下記の(2−1)式および(2−2)式で与えられる。 In this capacitance type pressure sensor 100, the pressure sensitive capacitance Cx and the reference capacitance Cr are given by the following equations (2-1) and (2-2).

Figure 0006981885
Figure 0006981885

この(2−1)式および(2−2)式において、圧力による撓みw(r)は上記(1)式として厳密に定義され、圧力によるそれぞれの容量の変化の比率(感圧容量Cxの変化ΔCxと参照容量Crの変化ΔCrとの比)ΔCx/ΔCrは、零点調整の対象となる撓みwが小さい範囲でほぼ一定値となる。 In the equations (2-1) and (2-2), the deflection w (r) due to pressure is strictly defined as the equation (1) above, and the ratio of the change in each capacitance due to pressure (pressure sensitive capacitance Cx). Ratio of change ΔCx to change ΔCr of reference capacitance Cr) ΔCx / ΔCr has a substantially constant value in a range where the deflection w to be adjusted at the zero point is small.

これに対し、圧力以外の要因によるシフト、とりわけプロセス中の膜の堆積によるシフトはこの比率で発生するとは限らない。例えば、図4に示すように、圧力導入孔112の位置によって、ダイアフラム101上に堆積する膜(堆積膜)115の厚みが変化し、それによって発生する撓みwも様々に変化することになる。 On the other hand, shifts due to factors other than pressure, especially shifts due to membrane deposition during the process, do not always occur at this ratio. For example, as shown in FIG. 4, the thickness of the film (deposited film) 115 deposited on the diaphragm 101 changes depending on the position of the pressure introduction hole 112, and the bending w generated by the change also changes in various ways.

すなわち、図4に示されるように、圧力導入孔112の直下(ダイアフラム101の中央部)に膜115が厚く堆積すれば、その部分が膜応力によって大きく撓むので(図5参照)、Cx、Crの変化の比率(ΔCx/ΔCr)は圧力を受けた場合とは異なる値を取ることが予想される。 That is, as shown in FIG. 4, if the film 115 is thickly deposited just below the pressure introduction hole 112 (the central portion of the diaphragm 101), that portion is greatly flexed by the film stress (see FIG. 5). The rate of change in Cr (ΔCx / ΔCr) is expected to take a different value than when pressure is applied.

こようなことから、発明者は、被測定媒体の圧力に応じて撓むダイアフラムの変位に応じてその電極間の容量が変化する複数の電極対からの信号のパターンに基づき、適切な撓み形状による信号と不適切な撓み形状による信号を識別(あるいは分離)することで、不要な零点調整を低減できることに想到した。 Therefore, the inventor has an appropriate deflection shape based on the pattern of signals from a plurality of electrode pairs in which the capacitance between the electrodes changes according to the displacement of the diaphragm that bends according to the pressure of the medium to be measured. By distinguishing (or separating) the signal due to the above and the signal due to the improper deflection shape, it was conceived that unnecessary zero point adjustment can be reduced.

具体的には、被測定媒体の真空引き時の複数の電極対の容量の変化から異常検知の指標を算出し、この算出した異常検知の指標と正常時の当該指標を示す基準値とを比較することによって、ダイアフラムに圧力以外の要因による撓みが生じているか否かを判断できることに想到した。 Specifically, an anomaly detection index is calculated from the change in the capacitance of a plurality of electrode pairs when the test medium is evacuated, and the calculated anomaly detection index is compared with the reference value indicating the index at normal times. By doing so, I came up with the idea that it is possible to determine whether or not the diaphragm is bent due to factors other than pressure.

〔実施の形態の概要〕
実施の形態では、基本的な要件として、下記の様な機能を備えるものとする。
1.キャビティ内に複数個の容量を配置。
2.単純な容量値の増減による出力だけでなく、ダイアフラムの撓み形状に基づいた信号を計測・記憶できる機構を備える。
3.事前に各圧力印加によるダイアフラムの撓み形状(適切な撓み)に基づく「複数対の電極からの信号パターン(参照パターン)」を計測、記憶しておく。(例:均等厚みの円板なら、圧力印加による撓みは厚みの4次関数)
4.ダイアフラムへの堆積等、圧力以外の要因による零点シフトが予想される実プロセス適用時に、「複数対の電極からの信号パターン(実測パターン)」を取得する。
5.参照パターンと実測パターンに基づき、適切な撓み形状による信号と不適切な撓み形状による信号を識別し、適・不適を通知する。
[Outline of Embodiment]
In the embodiment, the following functions are provided as basic requirements.
1. 1. Place multiple capacities in the cavity.
2. 2. It is equipped with a mechanism that can measure and store signals based on the deflection shape of the diaphragm, as well as the output by simply increasing or decreasing the capacitance value.
3. 3. The "signal pattern from a plurality of pairs of electrodes (reference pattern)" based on the bending shape (appropriate bending) of the diaphragm due to the application of each pressure is measured and stored in advance. (Example: For a disk of uniform thickness, the deflection due to pressure application is a quartic function of thickness)
4. The "signal pattern from multiple pairs of electrodes (actual measurement pattern)" is acquired when applying an actual process in which a zero shift is expected due to factors other than pressure, such as deposition on the diaphragm.
5. Based on the reference pattern and the measured pattern, the signal due to the appropriate deflection shape and the signal due to the inappropriate deflection shape are discriminated, and the suitability / unsuitability is notified.

以下、実施の形態として、ダイアフラムの面の中央部に対して圧力導入孔が設けられている静電容量型圧力センサ(図2に示した構造の静電容量型圧力センサ100)と、ダイアフラムの面の中央部を避けた位置に分散して複数個の圧力導入孔が設けられている静電容量型圧力センサ(後述する図13に示した構造の静電容量型圧力センサ100’)とを例にとり、図2に示した構造の静電容量型圧力センサ100への適用例を実施の形態1として、図13に示した構造の静電容量型圧力センサ100’への適用例を実施の形態2として説明する。 Hereinafter, as an embodiment, a capacitance type pressure sensor (capacitance type pressure sensor 100 having the structure shown in FIG. 2) in which a pressure introduction hole is provided in the central portion of the surface of the diaphragm, and a diaphragm. Capacitance type pressure sensor (capacitance type pressure sensor 100'with the structure shown in FIG. 13 to be described later) having a plurality of pressure introduction holes dispersed in a position avoiding the central part of the surface. As an example, as the first embodiment of the application example to the capacitance type pressure sensor 100 having the structure shown in FIG. 2, the application example to the capacitance type pressure sensor 100'with the structure shown in FIG. 13 is carried out. The second embodiment will be described.

〔実施の形態1:通常のCx、Crを用いて信号処理する例〕
図2に示した構造の静電容量型圧力センサ100において、具体的な例として下記の様な寸法、材料パラメータを与えると、感圧側電極対D1および参照側電極対D2の配置は図6の様な形状となる。
[Embodiment 1: Example of signal processing using ordinary Cx and Cr]
In the capacitance type pressure sensor 100 having the structure shown in FIG. 2, when the following dimensions and material parameters are given as specific examples, the arrangement of the pressure-sensitive side electrode pair D1 and the reference side electrode pair D2 is shown in FIG. It has a similar shape.

〔寸法、材料パラメータ〕
ダイアフラムのヤング率E:350GPa、ダイアフラムのポアソン比ν:0.25、ダイアフラム厚みh:50um、ダイアフラム半径a:5mm、キャビティ深さd0:2um、真空の誘電率:8.854e-12F/m、Cx径:2.005mm、Cr内径:3.997mm、Cr外形:4.471mm。
[Dimensions, material parameters]
Young's modulus of diaphragm E: 350 GPa, Poisson's ratio of diaphragm: 0.25, diaphragm thickness h: 50 um, diaphragm radius a: 5 mm, cavity depth d 0 : 2 um, vacuum permittivity: 8.854e-12F / m, Cx diameter : 2.005 mm, Cr inner diameter: 3.997 mm, Cr outer diameter: 4.471 mm.

この場合、上述した(2−1)式および(2−2)式に基づいて、印加圧力に対する感圧容量Cxおよび参照容量Crを計算すると、図7に示すようなCxおよびCrの値が得られる。また、図8に示すようなCx−Crの値が得られる。 In this case, when the pressure-sensitive capacitance Cx and the reference capacitance Cr with respect to the applied pressure are calculated based on the above-mentioned equations (2-1) and (2-2), the values of Cx and Cr as shown in FIG. 7 are obtained. Be done. Further, the value of Cx−Cr as shown in FIG. 8 can be obtained.

例えば、ここで100Paをセンサのフルスケールとすれば、零点調整をするか否かが問題となるのは10%FS(フルスケール)程度の0〜10Paの範囲である。今、Cx、Crの各容量に関して各圧力を印加したときの容量値から圧力を印加しないときの容量値の差分を取り、すなわち感圧容量Cxの変化ΔCxと参照容量Crの変化ΔCrを取り、その比ΔCx/ΔCrを圧力に対してプロットすると図9に示す特性Iのようになる。 For example, assuming that 100 Pa is the full scale of the sensor, whether or not to adjust the zero point becomes a problem in the range of 0 to 10 Pa of about 10% FS (full scale). Now, for each capacitance of Cx and Cr, the difference between the capacitance value when each pressure is applied and the capacitance value when no pressure is applied, that is, the change ΔCx of the pressure-sensitive capacitance Cx and the change ΔCr of the reference capacitance Cr are taken. When the ratio ΔCx / ΔCr is plotted against the pressure, the characteristic I shown in FIG. 9 is obtained.

図9には、特性II,IIIとして、ダイアフラム101に堆積膜115が生じている状態(図4)で圧力を印加したときのシミュレーション結果の容量値の差分の比ΔCx/ΔCrも示している。特性IIは圧力導入孔112の径が1.0mmの場合を示し、特性IIIは圧力導入孔112の径が2.0mmの場合を示している。なお、図9には、特性IVとして、図13に示した構造の静電容量型圧力センサ100’において、圧力導入孔112を4つとした場合も合わせて示している。 FIG. 9 also shows the ratio ΔCx / ΔCr of the difference between the capacitance values of the simulation results when the pressure is applied in the state where the deposition film 115 is formed on the diaphragm 101 (FIG. 4) as the characteristics II and III. The characteristic II shows the case where the diameter of the pressure introduction hole 112 is 1.0 mm, and the characteristic III shows the case where the diameter of the pressure introduction hole 112 is 2.0 mm. Note that FIG. 9 also shows the case where the capacitance type pressure sensor 100'with the structure shown in FIG. 13 has four pressure introduction holes 112 as the characteristic IV.

この結果からすると、10%FSに相当する10Pa以下では比ΔCx/ΔCrはほぼ一定値となり、圧力依存性は小さく、成膜されている状態(堆積物あり)と成膜されていない状態(堆積物なし)とでは大きく異なる値をとることがわかる。従って、この比ΔCx/ΔCrを圧力によるダイアフラム101の撓み形状に基づいた信号とすれば、圧力以外の要因による撓みによる零点シフトを見分けることが可能となる。 From this result, the ratio ΔCx / ΔCr is almost constant at 10 Pa or less, which corresponds to 10% FS, and the pressure dependence is small. It can be seen that the value is significantly different from that of (without objects). Therefore, if this ratio ΔCx / ΔCr is a signal based on the bending shape of the diaphragm 101 due to pressure, it is possible to distinguish the zero shift due to bending due to a factor other than pressure.

具体的には、例えば図9に示すように、正常時の比ΔCx/ΔCrを基準値αrefとし、この基準値αrefに対して±thの範囲(点線で示す範囲)を定め、真空計の零点がずれた時にポンプ引き切り時(真空引き時)の比α=ΔCx/ΔCrがαref±thの範囲に入っていなければ、堆積物等によるシフトが発生したとみなすことができる。すなわち、ダイアフラム101に圧力以外の要因による撓みが生じているとみなすことができる。 Specifically, for example, as shown in FIG. 9, the normal ratio ΔCx / ΔCr is set as the reference value αref, the range of ± th (the range indicated by the dotted line) is defined with respect to this reference value αref, and the zero point of the vacuum gauge is set. If the ratio α = ΔCx / ΔCr when the pump is pulled off (during vacuum pulling) is not within the range of αref ± th when the pump is displaced, it can be considered that a shift due to deposits or the like has occurred. That is, it can be considered that the diaphragm 101 is bent due to a factor other than the pressure.

図10は、本発明の実施の形態1に係る静電容量型圧力センサの異常検知装置200の要部の構成を示すブロック図である。この異常検知装置200は、プロセッサや記憶装置からなるハードウェアと、これらのハードウェアと協働して各種機能を実現させるプログラムとによって実現され、センサ部1と、容量出力部2と、特性計測部3と、基準値記憶部4と、閾値記憶部5と、状態判断部6と、警報出力部7とを備えている。 FIG. 10 is a block diagram showing a configuration of a main part of the abnormality detection device 200 of the capacitance type pressure sensor according to the first embodiment of the present invention. The abnormality detection device 200 is realized by hardware including a processor and a storage device, and a program that realizes various functions in cooperation with these hardware, and is realized by a sensor unit 1, a capacitance output unit 2, and characteristic measurement. A unit 3, a reference value storage unit 4, a threshold value storage unit 5, a state determination unit 6, and an alarm output unit 7 are provided.

なお、この異常検知装置200において、センサ部1は図2に示した静電容量型圧力センサ100における感圧側電極対D1および参照側電極対D2とする。また、この異常検知装置200は、静電容量型圧力センサ100に付設される信号処理装置に組み込まれる。 In this abnormality detection device 200, the sensor unit 1 is a pressure-sensitive side electrode pair D1 and a reference side electrode pair D2 in the capacitance type pressure sensor 100 shown in FIG. Further, the abnormality detection device 200 is incorporated in a signal processing device attached to the capacitance type pressure sensor 100.

以下、図11および図12に示すフローチャートを参照しながら、容量出力部2、特性計測部3、基準値記憶部4、閾値記憶部5、状態判断部6および警報出力部7の機能について、その動作を交えながら説明する。 Hereinafter, with reference to the flowcharts shown in FIGS. 11 and 12, the functions of the capacity output unit 2, the characteristic measurement unit 3, the reference value storage unit 4, the threshold value storage unit 5, the state determination unit 6, and the alarm output unit 7 are described. I will explain it with the operation.

本実施の形態では、静電容量型圧力センサ100の出荷前(運用前)、センサのキャラクタリゼーションを実施する際に、単純にセンサ出力Cx−Crを記憶するだけではなく、異常検知の指標となる計測レンジ内の圧力印加時の感圧容量Cxの変化ΔCxと参照容量Crの変化ΔCrとの比ΔCx/ΔCrの値も記録する。 In this embodiment, before the capacitance type pressure sensor 100 is shipped (before operation), when the sensor is characterized, the sensor output Cx-Cr is not only stored but also used as an index for detecting an abnormality. The value of the ratio ΔCx / ΔCr between the change ΔCx of the pressure-sensitive capacitance Cx and the change ΔCr of the reference capacitance Cr when the pressure is applied in the measurement range is also recorded.

具体的には、計測レンジ内の圧力を印加した状態で、センサ部1から発せられた信号を容量出力部2で感圧容量Cxおよび参照容量Crに変換し、特性計測部3において感圧容量Cxの変化ΔCxと参照容量Crの変化ΔCrとの比ΔCx/ΔCrを正常時の比ΔCx/ΔCrとして算出し(図11:ステップS101)、この算出した正常時の比ΔCx/ΔCrを基準値αrefとして基準値記憶部4に記憶させておく(ステップS102)。 Specifically, with the pressure in the measurement range applied, the signal emitted from the sensor unit 1 is converted into the pressure-sensitive capacity Cx and the reference capacity Cr by the capacity output unit 2, and the pressure-sensitive capacity is converted by the characteristic measurement unit 3. The ratio ΔCx / ΔCr between the change ΔCx of Cx and the change ΔCr of the reference capacitance Cr is calculated as the ratio ΔCx / ΔCr in the normal state (FIG. 11: step S101), and the calculated ratio ΔCx / ΔCr in the normal state is the reference value αref. Is stored in the reference value storage unit 4 (step S102).

次に、実際のプロセスを経てセンサのシフトが発生し、それが圧力の悪化によるものかどうか判断する際は(運用中)、ポンプの引き切りにより真空とした状態で、センサ部1から発せられた信号を容量出力部2で感圧容量Cxおよび参照容量Crに変換し、特性計測部3において感圧容量Cxの変化ΔCxと参照容量Crの変化ΔCrとの比ΔCx/ΔCrを異常検知の指標αとして算出する(図12:ステップS201)。この特性計測部3によって計測された異常検知の指標αは状態判断部6へ送られる。 Next, when the shift of the sensor occurs through the actual process and it is judged whether it is due to the deterioration of the pressure (during operation), it is emitted from the sensor unit 1 in a state of being evacuated by pulling off the pump. The signal is converted into the pressure-sensitive capacitance Cx and the reference capacitance Cr by the capacitance output unit 2, and the ratio ΔCx / ΔCr of the change ΔCx of the pressure-sensitive capacitance Cx and the change ΔCr of the reference capacitance Cr is used as an index for abnormality detection in the characteristic measurement unit 3. Calculated as α (FIG. 12: step S201). The abnormality detection index α measured by the characteristic measurement unit 3 is sent to the state determination unit 6.

状態判断部6は、特性計測部3からの異常検知の指標αと基準値記憶部4に記憶されている基準値αrefとを比較することによって、具体的には閾値記憶部5に記憶されている閾値thを読み出し、異常検知の指標αがαref±thの範囲に入っているか否かを確認することによって、静電容量型圧力センサ100のダイアフラム101に圧力以外の要因による撓みが生じているか否かを判断する(ステップS202)。 The state determination unit 6 is specifically stored in the threshold value storage unit 5 by comparing the index α for detecting an abnormality from the characteristic measurement unit 3 with the reference value αref stored in the reference value storage unit 4. By reading out the threshold value th and confirming whether or not the abnormality detection index α is within the range of αref ± th, is the diaphragm 101 of the capacitance type pressure sensor 100 bent due to a factor other than pressure? It is determined whether or not (step S202).

この場合、状態判断部6は、異常検知の指標αがαref±thの範囲に入っている場合にはダイアフラム101に圧力以外の要因による撓みは生じていないと判断し(ステップS202の「正常」)、異常検知の指標αがαref±thの範囲から外れている場合にはダイアフラム101に圧力以外の要因による撓みが生じていると判断する(ステップS202の「異常」)。この状態判断部6での判断結果は警報出力部7へ送られる。 In this case, the state determination unit 6 determines that the diaphragm 101 is not bent due to a factor other than the pressure when the abnormality detection index α is within the range of αref ± th (“normal” in step S202). ), When the abnormality detection index α is out of the range of αref ± th, it is determined that the diaphragm 101 is bent due to a factor other than the pressure (“abnormality” in step S202). The determination result in the state determination unit 6 is sent to the alarm output unit 7.

警報出力部7は、ダイアフラム101に圧力以外の要因による撓みが生じている旨の判断結果が送られてきた場合、すなわち異常である旨の判断結果が送られてきた場合、警報を発令する(ステップS203)。 The alarm output unit 7 issues an alarm when a determination result indicating that the diaphragm 101 is bent due to a factor other than pressure is sent, that is, when a determination result indicating that the diaphragm 101 is abnormal is sent ( Step S203).

〔実施の形態2:通常のCx、Cr以外の容量を用いて信号処理する例〕
図13に示した構造の静電容量型圧力センサ100’では、ダイアフラム101の圧力導入室106側の面の周縁部と中央部との間に段部116を設け、この段部116を境界として中央部側の領域(薄い領域)S1と周縁部側の領域(厚い領域)S2とに分け、ダイアフラム101の段部116の近傍(周縁部側の領域S2)にその開口部を位置させるようにして複数の圧力導入孔112を台座プレート107に設けている。
[Embodiment 2: Example of signal processing using a capacitance other than normal Cx and Cr]
In the capacitance type pressure sensor 100'having the structure shown in FIG. 13, a step portion 116 is provided between the peripheral portion and the central portion of the surface of the diaphragm 101 on the pressure introduction chamber 106 side, and the step portion 116 is used as a boundary. It is divided into a central region (thin region) S1 and a peripheral region (thick region) S2, and the opening is positioned near the step 116 of the diaphragm 101 (peripheral region S2). A plurality of pressure introduction holes 112 are provided in the pedestal plate 107.

図14に、この静電容量型圧力センサ100’におけるセンサ台座105に形成された感圧側固定電極108および参照側固定電極109の配置を圧力導入孔112の位置と合わせて示す。この例では、感圧側固定電極108と参照側固定電極109との間に位置するように、圧力導入孔112が等角度間隔で4つ設けられている。この場合、図15に示すように、等角度間隔で設けられた4つの圧力導入孔112の直下に膜115が厚く堆積し、ダイアフラム101は、図16に示すように、周縁部側の領域に位置する圧力導入孔112に対応する部分が大きく撓むと予想される。 FIG. 14 shows the arrangement of the pressure-sensitive fixed electrode 108 and the reference-side fixed electrode 109 formed on the sensor pedestal 105 in the capacitance type pressure sensor 100'in accordance with the positions of the pressure introduction holes 112. In this example, four pressure introduction holes 112 are provided at equal intervals so as to be located between the pressure-sensitive fixed electrode 108 and the reference-side fixed electrode 109. In this case, as shown in FIG. 15, the film 115 is thickly deposited directly under the four pressure introduction holes 112 provided at equal intervals, and the diaphragm 101 is formed in the peripheral region side region as shown in FIG. It is expected that the portion corresponding to the located pressure introduction hole 112 will bend significantly.

そこで、このような構造の静電容量型圧力センサ100’では、図17に示すように、感圧側電極対D1と参照側電極対D2との間に位置する圧力導入孔112に対応する位置に、第3の電極対として堆積感知容量Cdを形成する堆積感知電極対D3を設けるようにする。 Therefore, in the capacitance type pressure sensor 100'with such a structure, as shown in FIG. 17, at a position corresponding to the pressure introduction hole 112 located between the pressure sensitive side electrode pair D1 and the reference side electrode pair D2. , The deposit sensing electrode pair D3 forming the deposit sensing capacity Cd is provided as the third electrode pair.

そして、真空引き時の堆積感知容量Cdの変化ΔCdと参照容量Crの変化ΔCrとの比ΔCd/ΔCrを異常検知の指標βとして算出し、この算出した異常検知の指標βと正常時の当該指標を示す基準値βrefとを比較することによって、ダイアフラム101に圧力以外の要因による撓みが生じているか否かを判断するようにする。 Then, the ratio ΔCd / ΔCr of the change ΔCd of the accumulation detection capacity Cd at the time of evacuation and the change ΔCr of the reference capacity Cr is calculated as the index β of the abnormality detection, and the calculated index β of the abnormality detection and the index at the time of normal operation are calculated. By comparing with the reference value βref indicating, it is determined whether or not the diaphragm 101 is bent due to a factor other than the pressure.

この実施の形態2において、異常発報の手順は実施の形態1に従う。図18に図10に対応する図を、図19に図11に対応する図を、図20に図12に対応する図を示す。実施の形態1でも、静電容量型圧力センサ100’のダイアフラム101に圧力以外の要因による撓みが生じているか否かを判断することは可能であるが、実施の形態2の方法を採用することにより、異常検知の感度を高めることができる。 In the second embodiment, the procedure for reporting an abnormality follows the first embodiment. 18 shows a diagram corresponding to FIG. 10, FIG. 19 shows a diagram corresponding to FIG. 11, and FIG. 20 shows a diagram corresponding to FIG. 12. Also in the first embodiment, it is possible to determine whether or not the diaphragm 101 of the capacitance type pressure sensor 100'is bent due to a factor other than the pressure, but the method of the second embodiment is adopted. Therefore, the sensitivity of abnormality detection can be increased.

なお、実施の形態2において、真空引き時の感圧容量Cxの変化ΔCxと参照容量Crの変化ΔCrとの比ΔCx/ΔCrおよび堆積感知容量Cdの変化ΔCdと参照容量Crの変化ΔCrとの比ΔCd/ΔCrを異常検知の指標αおよびβとして算出し、異常検知の指標αが基準値αref±thから外れた場合、もしくは異常検知の指標βが基準βref±thから外れた場合、警報を発するようにしてもよい。 In the second embodiment, the ratio of the change ΔCx of the pressure-sensitive capacity Cx and the change ΔCr of the reference capacity Cr at the time of evacuation ΔCx / ΔCr and the ratio of the change ΔCd of the deposition sensing capacity Cd and the change ΔCr of the reference capacity Cr. ΔCd / ΔCr is calculated as the abnormality detection indexes α and β, and an alarm is issued when the abnormality detection index α deviates from the reference value αref ± th or when the abnormality detection index β deviates from the reference βref ± th. You may do so.

〔実施の形態の拡張〕
以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
[Extension of Embodiment]
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the structure and details of the present invention within the scope of the technical idea of the present invention.

1…センサ部、2…容量出力部、3…特性計測部、4…基準値記憶部、5…閾値記憶部、6…状態判断部、7…警報出力部、100,100’…静電容量型圧力センサ、101…ダイアフラム、102…ダイアフラム支持部、103…ダイアフラム構成部材、104…基準真空室(キャビティ)、105…センサ台座、106…圧力導入室、107…台座プレート、108…感圧側固定電極、109…参照側固定電極、110…感圧側可動電極、111…参照側可動電極、112…圧力導入孔、115…膜(堆積膜)、200,200’…異常検知装置、Cx…感圧容量、Cr…参照容量、Cd…堆積感知容量、D1…感圧側電極対、D2…参照側電極対、D3…堆積感知電極対。 1 ... Sensor unit, 2 ... Capacity output unit, 3 ... Characteristic measurement unit, 4 ... Reference value storage unit, 5 ... Threshold storage unit, 6 ... Status determination unit, 7 ... Alarm output unit, 100, 100'... Electrostatic capacity Type pressure sensor, 101 ... Diaphragm, 102 ... Diaphragm support, 103 ... Diaphragm component, 104 ... Reference vacuum chamber (cavity), 105 ... Sensor pedestal, 106 ... Pressure introduction chamber, 107 ... Pedestal plate, 108 ... Pressure-sensitive side fixed Electrode, 109 ... Reference side fixed electrode, 110 ... Pressure sensitive side movable electrode, 111 ... Reference side movable electrode, 112 ... Pressure introduction hole, 115 ... Film (deposited film), 200, 200'... Abnormality detection device, Cx ... Pressure sensitive Capacity, Cr ... Reference capacity, Cd ... Accumulation sensing capacity, D1 ... Pressure-sensitive electrode pair, D2 ... Reference side electrode pair, D3 ... Accumulation sensing electrode pair.

Claims (8)

被測定媒体の圧力に応じて撓むダイアフラムの変位に応じてその電極間の容量が変化する複数の電極対を備えた静電容量型圧力センサの異常を検知する静電容量型圧力センサの異常検知方法であって、
前記被測定媒体の真空引き時の前記複数の電極対の容量の変化から異常検知の指標を算出する指標算出ステップと、
前記指標算出ステップによって算出された異常検知の指標と正常時の当該指標を示す基準値とを比較することによって前記ダイアフラムに圧力以外の要因による撓みが生じているか否かを判断する状態判断ステップと、を備え、
前記静電容量型圧力センサは、前記複数の電極対として第1および第2の電極対を備え、
前記第1の電極対は、前記ダイアフラムの中央部に感圧容量Cxを形成し、
前記第2の電極対は、前記ダイアフラムの外周部に参照容量Crを形成し、
前記指標算出ステップは、前記感圧容量Cxの変化ΔCxと前記参照容量Crの変化ΔCrとの比ΔCx/ΔCrを前記異常検知の指標として算出する
ことを特徴とする静電容量型圧力センサの異常検知方法。
Abnormality of the capacitive pressure sensor that detects abnormalities of the capacitive pressure sensor with multiple electrode pairs whose capacitance between the electrodes changes according to the displacement of the diaphragm that bends according to the pressure of the medium to be measured. It ’s a detection method,
An index calculation step for calculating an abnormality detection index from changes in the capacitances of the plurality of electrode pairs when the test medium is evacuated.
A state determination step for determining whether or not the diaphragm is bent due to a factor other than pressure by comparing the abnormality detection index calculated by the index calculation step with the reference value indicating the index at normal times. , Equipped with
The capacitance type pressure sensor includes first and second electrode pairs as the plurality of electrode pairs.
The first electrode pair forms a pressure-sensitive capacitance Cx in the central portion of the diaphragm.
The second electrode pair forms a reference capacitance Cr on the outer peripheral portion of the diaphragm.
The index calculation step is characterized in that the ratio ΔCx / ΔCr of the change ΔCx of the pressure-sensitive capacity Cx and the change ΔCr of the reference capacity Cr is calculated as the index for detecting the abnormality. Detection method.
被測定媒体の圧力に応じて撓むダイアフラムの変位に応じてその電極間の容量が変化する複数の電極対を備えた静電容量型圧力センサの異常を検知する静電容量型圧力センサの異常検知方法であって、
前記被測定媒体の真空引き時の前記複数の電極対の容量の変化から異常検知の指標を算出する指標算出ステップと、
前記指標算出ステップによって算出された異常検知の指標と正常時の当該指標を示す基準値とを比較することによって前記ダイアフラムに圧力以外の要因による撓みが生じているか否かを判断する状態判断ステップと、を備え、
前記静電容量型圧力センサは、前記複数の電極対として第1および第2の電極対を備え、
前記第1の電極対は、前記ダイアフラムへの前記被測定媒体の導入口に対応する位置に堆積感知容量Cdを形成し、
前記第2の電極対は、前記ダイアフラムの外周部に参照容量Crを形成し、
前記指標算出ステップは、前記堆積感知容量Cdの変化ΔCdと前記参照容量Crの変化ΔCrとの比ΔCd/ΔCrを前記異常検知の指標として算出する
ことを特徴とする静電容量型圧力センサの異常検知方法。
Abnormality of the capacitive pressure sensor that detects abnormalities of the capacitive pressure sensor with multiple electrode pairs whose capacitance between the electrodes changes according to the displacement of the diaphragm that bends according to the pressure of the medium to be measured. It ’s a detection method,
An index calculation step for calculating an abnormality detection index from changes in the capacitances of the plurality of electrode pairs when the test medium is evacuated.
A state determination step for determining whether or not the diaphragm is bent due to a factor other than pressure by comparing the abnormality detection index calculated by the index calculation step with the reference value indicating the index at normal times. , Equipped with
The capacitance type pressure sensor includes first and second electrode pairs as the plurality of electrode pairs.
The first electrode pair forms a deposition sensing capacity Cd at a position corresponding to the introduction port of the medium to be measured into the diaphragm.
The second electrode pair forms a reference capacitance Cr on the outer peripheral portion of the diaphragm.
The index calculation step is characterized in that the ratio ΔCd / ΔCr of the change ΔCd of the deposition sensing capacity Cd and the change ΔCr of the reference capacity Cr is calculated as the index of the abnormality detection. Detection method.
被測定媒体の圧力に応じて撓むダイアフラムの変位に応じてその電極間の容量が変化する複数の電極対を備えた静電容量型圧力センサの異常を検知する静電容量型圧力センサの異常検知方法であって、
前記被測定媒体の真空引き時の前記複数の電極対の容量の変化から異常検知の指標を算出する指標算出ステップと、
前記指標算出ステップによって算出された異常検知の指標と正常時の当該指標を示す基準値とを比較することによって前記ダイアフラムに圧力以外の要因による撓みが生じているか否かを判断する状態判断ステップと、を備え、
前記静電容量型圧力センサは、前記複数の電極対として第1、第2および第3の電極対を備え、
前記第1の電極対は、前記ダイアフラムの中央部に感圧容量Cxを形成し、
前記第2の電極対は、前記ダイアフラムの外周部に参照容量Crを形成し、
前記第3の電極対は、前記ダイアフラムへの前記被測定媒体の導入口に対応する位置に堆積感知容量Cdを形成し、
前記指標算出ステップは、前記感圧容量Cxの変化ΔCxと前記参照容量Crの変化ΔCrとの比ΔCx/ΔCrおよび前記堆積感知容量Cdの変化ΔCdと前記参照容量Crの変化ΔCrとの比ΔCd/ΔCrを前記異常検知の指標として算出する
ことを特徴とする静電容量型圧力センサの異常検知方法。
Abnormality of the capacitive pressure sensor that detects abnormalities of the capacitive pressure sensor with multiple electrode pairs whose capacitance between the electrodes changes according to the displacement of the diaphragm that bends according to the pressure of the medium to be measured. It ’s a detection method,
An index calculation step for calculating an abnormality detection index from changes in the capacitances of the plurality of electrode pairs when the test medium is evacuated.
A state determination step for determining whether or not the diaphragm is bent due to a factor other than pressure by comparing the abnormality detection index calculated by the index calculation step with the reference value indicating the index at normal times. , Equipped with
The capacitance type pressure sensor includes first, second and third electrode pairs as the plurality of electrode pairs.
The first electrode pair forms a pressure-sensitive capacitance Cx in the central portion of the diaphragm.
The second electrode pair forms a reference capacitance Cr on the outer peripheral portion of the diaphragm.
The third electrode pair forms a deposition sensing capacity Cd at a position corresponding to the introduction port of the medium to be measured into the diaphragm.
In the index calculation step, the ratio ΔCx / ΔCr of the change ΔCx of the pressure-sensitive capacity Cx and the change ΔCr of the reference capacity Cr and the ratio ΔCd / of the change ΔCd of the deposition sensing capacity Cd and the change ΔCr of the reference capacity Cr. An abnormality detection method for a capacitance type pressure sensor, characterized in that ΔCr is calculated as an index for detecting the abnormality.
請求項1〜の何れか1項に記載された静電容量型圧力センサの異常検知方法において、
前記状態判断ステップによって前記ダイアフラムに圧力以外の要因による撓みが生じていると判断された場合、警報を出力する警報出力ステップ
を備えることを特徴とする静電容量型圧力センサの異常検知方法。
In the method for detecting an abnormality in a capacitance type pressure sensor according to any one of claims 1 to 3.
A method for detecting an abnormality in a capacitance type pressure sensor, which comprises an alarm output step for outputting an alarm when it is determined by the state determination step that the diaphragm is bent due to a factor other than pressure.
請求項1〜の何れか1項に記載された静電容量型圧力センサの異常検知方法において、
前記静電容量型圧力センサを構成する基材は、サファイア、又はアルミナセラミック、又はガラス、又はシリコン、又はニッケル合金、又はステンレスである
ことを特徴とする静電容量型圧力センサの異常検知方法。
In the method for detecting an abnormality in a capacitance type pressure sensor according to any one of claims 1 to 4.
A method for detecting an abnormality in a capacitance type pressure sensor, wherein the base material constituting the capacitance type pressure sensor is sapphire, alumina ceramic, glass, silicon, nickel alloy, or stainless steel.
被測定媒体の圧力に応じて撓むダイアフラムの変位に応じてその電極間の容量が変化する複数の電極対を備えた静電容量型圧力センサの異常を検知する静電容量型圧力センサの異常検知装置であって、
前記被測定媒体の真空引き時の前記複数の電極対の容量の変化から異常検知の指標を算出するように構成された指標算出部と、
前記指標算出部によって算出された異常検知の指標と正常時の当該指標を示す基準値とを比較することによって前記ダイアフラムに圧力以外の要因による撓みが生じているか否かを判断するように構成された状態判断部とを備え、
前記静電容量型圧力センサは、前記複数の電極対として第1および第2の電極対を備え、
前記第1の電極対は、前記ダイアフラムの中央部に感圧容量Cxを形成し、
前記第2の電極対は、前記ダイアフラムの外周部に参照容量Crを形成し、
前記指標算出部は、前記感圧容量Cxの変化ΔCxと前記参照容量Crの変化ΔCrとの比ΔCx/ΔCrを前記異常検知の指標として算出する
ことを特徴とする静電容量型圧力センサの異常検知装置。
Abnormality of the capacitive pressure sensor that detects abnormalities of the capacitive pressure sensor with multiple electrode pairs whose capacitance between the electrodes changes according to the displacement of the diaphragm that bends according to the pressure of the medium to be measured. It ’s a detector,
An index calculation unit configured to calculate an abnormality detection index from changes in the capacitances of the plurality of electrode pairs when the test medium is evacuated.
By comparing the anomaly detection index calculated by the index calculation unit with the reference value indicating the index at normal times, it is configured to determine whether or not the diaphragm is bent due to a factor other than pressure. a state determination unit was provided with,
The capacitance type pressure sensor includes first and second electrode pairs as the plurality of electrode pairs.
The first electrode pair forms a pressure-sensitive capacitance Cx in the central portion of the diaphragm.
The second electrode pair forms a reference capacitance Cr on the outer peripheral portion of the diaphragm.
The index calculation unit calculates the ratio ΔCx / ΔCr of the change ΔCx of the pressure-sensitive capacity Cx and the change ΔCr of the reference capacity Cr as the index for detecting the abnormality, which is an abnormality of the capacitance type pressure sensor. Detection device.
被測定媒体の圧力に応じて撓むダイアフラムの変位に応じてその電極間の容量が変化する複数の電極対を備えた静電容量型圧力センサの異常を検知する静電容量型圧力センサの異常検知装置であって、Abnormality of the capacitive pressure sensor that detects abnormalities of the capacitive pressure sensor with multiple electrode pairs whose capacitance between the electrodes changes according to the displacement of the diaphragm that bends according to the pressure of the medium to be measured. It ’s a detector,
前記被測定媒体の真空引き時の前記複数の電極対の容量の変化から異常検知の指標を算出するように構成された指標算出部と、An index calculation unit configured to calculate an abnormality detection index from changes in the capacitances of the plurality of electrode pairs when the test medium is evacuated.
前記指標算出部によって算出された異常検知の指標と正常時の当該指標を示す基準値とを比較することによって前記ダイアフラムに圧力以外の要因による撓みが生じているか否かを判断するように構成された状態判断部と、を備え、By comparing the anomaly detection index calculated by the index calculation unit with the reference value indicating the index at normal times, it is configured to determine whether or not the diaphragm is bent due to a factor other than pressure. Equipped with a state judgment unit
前記静電容量型圧力センサは、前記複数の電極対として第1および第2の電極対を備え、The capacitance type pressure sensor includes first and second electrode pairs as the plurality of electrode pairs.
前記第1の電極対は、前記ダイアフラムへの前記被測定媒体の導入口に対応する位置に堆積感知容量Cdを形成し、The first electrode pair forms a deposition sensing capacity Cd at a position corresponding to the introduction port of the medium to be measured into the diaphragm.
前記第2の電極対は、前記ダイアフラムの外周部に参照容量Crを形成し、The second electrode pair forms a reference capacitance Cr on the outer peripheral portion of the diaphragm.
前記指標算出部は、前記堆積感知容量Cdの変化ΔCdと前記参照容量Crの変化ΔCrとの比ΔCd/ΔCrを前記異常検知の指標として算出するThe index calculation unit calculates the ratio ΔCd / ΔCr of the change ΔCd of the deposition sensing capacity Cd and the change ΔCr of the reference capacity Cr as the index of the abnormality detection.
ことを特徴とする静電容量型圧力センサの異常検知装置。An abnormality detection device for a capacitive pressure sensor.
被測定媒体の圧力に応じて撓むダイアフラムの変位に応じてその電極間の容量が変化する複数の電極対を備えた静電容量型圧力センサの異常を検知する静電容量型圧力センサの異常検知装置であって、Abnormality of the capacitive pressure sensor that detects abnormalities of the capacitive pressure sensor with multiple electrode pairs whose capacitance between the electrodes changes according to the displacement of the diaphragm that bends according to the pressure of the medium to be measured. It ’s a detector,
前記被測定媒体の真空引き時の前記複数の電極対の容量の変化から異常検知の指標を算出するように構成された指標算出部と、An index calculation unit configured to calculate an abnormality detection index from changes in the capacitances of the plurality of electrode pairs when the test medium is evacuated.
前記指標算出部によって算出された異常検知の指標と正常時の当該指標を示す基準値とを比較することによって前記ダイアフラムに圧力以外の要因による撓みが生じているか否かを判断するように構成された状態判断部と、を備え、By comparing the anomaly detection index calculated by the index calculation unit with the reference value indicating the index at normal times, it is configured to determine whether or not the diaphragm is bent due to a factor other than pressure. Equipped with a state judgment unit
前記静電容量型圧力センサは、前記複数の電極対として第1、第2および第3の電極対を備え、The capacitance type pressure sensor includes first, second and third electrode pairs as the plurality of electrode pairs.
前記第1の電極対は、前記ダイアフラムの中央部に感圧容量Cxを形成し、The first electrode pair forms a pressure-sensitive capacitance Cx in the central portion of the diaphragm.
前記第2の電極対は、前記ダイアフラムの外周部に参照容量Crを形成し、The second electrode pair forms a reference capacitance Cr on the outer peripheral portion of the diaphragm.
前記第3の電極対は、前記ダイアフラムへの前記被測定媒体の導入口に対応する位置に堆積感知容量Cdを形成し、The third electrode pair forms a deposition sensing capacity Cd at a position corresponding to the introduction port of the medium to be measured into the diaphragm.
前記指標算出部は、前記感圧容量Cxの変化ΔCxと前記参照容量Crの変化ΔCrとの比ΔCx/ΔCrおよび前記堆積感知容量Cdの変化ΔCdと前記参照容量Crの変化ΔCrとの比ΔCd/ΔCrを前記異常検知の指標として算出するIn the index calculation unit, the ratio ΔCx / ΔCr between the change ΔCx of the pressure-sensitive capacity Cx and the change ΔCr of the reference capacity Cr and the ratio ΔCd / of the change ΔCd of the deposition sensing capacity Cd and the change ΔCr of the reference capacity Cr. Calculate ΔCr as an index for detecting the abnormality.
ことを特徴とする静電容量型圧力センサの異常検知装置。An abnormality detection device for a capacitive pressure sensor.
JP2018008635A 2018-01-23 2018-01-23 Anomaly detection method and device for capacitive pressure sensor Active JP6981885B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018008635A JP6981885B2 (en) 2018-01-23 2018-01-23 Anomaly detection method and device for capacitive pressure sensor
CN201910012669.5A CN110068421B (en) 2018-01-23 2019-01-07 Method and device for detecting abnormality of capacitive pressure sensor
KR1020190003094A KR20190089729A (en) 2018-01-23 2019-01-10 Method and apparatus for detecting abnormality of capacitance type pressure sensor
US16/251,437 US11054331B2 (en) 2018-01-23 2019-01-18 Method and device for detecting malfunction of electrostatic-capacitance pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018008635A JP6981885B2 (en) 2018-01-23 2018-01-23 Anomaly detection method and device for capacitive pressure sensor

Publications (2)

Publication Number Publication Date
JP2019128190A JP2019128190A (en) 2019-08-01
JP6981885B2 true JP6981885B2 (en) 2021-12-17

Family

ID=67298117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018008635A Active JP6981885B2 (en) 2018-01-23 2018-01-23 Anomaly detection method and device for capacitive pressure sensor

Country Status (4)

Country Link
US (1) US11054331B2 (en)
JP (1) JP6981885B2 (en)
KR (1) KR20190089729A (en)
CN (1) CN110068421B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029790A1 (en) * 2016-08-09 2018-02-15 株式会社 トライフォース・マネジメント Force sensor
JP6815221B2 (en) * 2017-02-17 2021-01-20 アズビル株式会社 Capacitive pressure sensor
IT201700073763A1 (en) * 2017-07-05 2019-01-05 St Microelectronics Srl PRESSURE CAPACITIVE SENSOR FOR THE MONITORING OF BUILDING STRUCTURES, IN PARTICULAR OF CONCRETE
JP6896585B2 (en) * 2017-10-20 2021-06-30 キヤノン株式会社 Force sensor and device
JP2021025957A (en) * 2019-08-08 2021-02-22 アズビル株式会社 Pressure sensor
CN112099661B (en) * 2020-08-17 2024-05-03 深圳市优必选科技股份有限公司 Pressure detection method and device and electronic equipment
US11467051B1 (en) * 2022-04-11 2022-10-11 Heinz Plöchinger Method for correcting a dual capacitance pressure sensor
CN115165158B (en) * 2022-05-20 2023-12-22 安徽京芯传感科技有限公司 MEMS capacitive pressure sensor and preparation method thereof

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515711A (en) * 1995-06-26 1996-05-14 Mks Instruments, Inc. Pressure measurement and calibration apparatus using gravity-induced diaphragm deflection
DE59606342D1 (en) * 1996-03-23 2001-02-22 Endress Hauser Gmbh Co Process for the production of capacitive ceramic absolute pressure sensors sorted into long-term zero-point error classes
WO1998012528A1 (en) * 1996-09-19 1998-03-26 Hokuriku Electric Industry Co., Ltd. Electrostatic capacity type pressure sensor
JP2882786B1 (en) * 1998-04-14 1999-04-12 長野計器株式会社 Sensor signal processing circuit
JP3339563B2 (en) * 1998-06-09 2002-10-28 株式会社山武 Capacitive sensor
JP3339565B2 (en) * 1998-09-29 2002-10-28 株式会社山武 Pressure sensor
US6295875B1 (en) * 1999-05-14 2001-10-02 Rosemount Inc. Process pressure measurement devices with improved error compensation
JP3588286B2 (en) * 1999-10-06 2004-11-10 株式会社山武 Capacitive pressure sensor
JP3932302B2 (en) * 2000-12-27 2007-06-20 独立行政法人産業技術総合研究所 Pressure sensor
JP4342122B2 (en) * 2001-06-01 2009-10-14 株式会社豊田中央研究所 Capacitance type physical quantity sensor and detection device
JP4503963B2 (en) * 2003-09-18 2010-07-14 株式会社山武 Sensor electrode extraction method
JP4020318B2 (en) * 2004-05-19 2007-12-12 株式会社山武 Capacitive pressure sensor
JP4014006B2 (en) 2004-06-17 2007-11-28 株式会社山武 Pressure sensor
JP5222457B2 (en) * 2005-09-26 2013-06-26 株式会社日立製作所 Sensors and sensor modules
JP2008008688A (en) * 2006-06-27 2008-01-17 Yamatake Corp Capacitance-type pressure sensor
US7706995B2 (en) * 2007-04-16 2010-04-27 Mks Instr Inc Capacitance manometers and methods relating to auto-drift correction
US7918135B2 (en) * 2009-02-03 2011-04-05 Infineon Technologies Ag Pressure sensor including thermal selftest
JP5336242B2 (en) 2009-03-30 2013-11-06 アズビル株式会社 Capacitive pressure sensor
TWI427278B (en) * 2009-03-30 2014-02-21 Azbil Corp Electrostatic capacitive pressure sensor
JP5400560B2 (en) * 2009-10-16 2014-01-29 アズビル株式会社 Capacitive sensor
KR101332701B1 (en) * 2010-09-20 2013-11-25 페어차일드 세미컨덕터 코포레이션 Microelectromechanical pressure sensor including reference capacitor
EP2520917A1 (en) * 2011-05-04 2012-11-07 Nxp B.V. MEMS Capacitive Pressure Sensor, Operating Method and Manufacturing Method
DE102011078557A1 (en) * 2011-07-01 2013-01-03 Endress + Hauser Gmbh + Co. Kg Method for operating an absolute or relative pressure sensor with a capacitive transducer
KR101588725B1 (en) * 2011-10-11 2016-01-26 엠케이에스 인스트루먼츠, 인코포레이티드 Pressure sensor
JP6002016B2 (en) * 2012-11-30 2016-10-05 アズビル株式会社 Capacitive pressure sensor
US8997548B2 (en) * 2013-01-29 2015-04-07 Reno Technologies, Inc. Apparatus and method for automatic detection of diaphragm coating or surface contamination for capacitance diaphragm gauges
US9562820B2 (en) * 2013-02-28 2017-02-07 Mks Instruments, Inc. Pressure sensor with real time health monitoring and compensation
US9128136B2 (en) * 2013-03-15 2015-09-08 Infineon Technologies Ag Apparatus and method for determining the sensitivity of a capacitive sensing device
JP2015074102A (en) * 2013-10-07 2015-04-20 ファナック株式会社 Injection molding apparatus capable of detecting pressure abnormality
JP6126545B2 (en) * 2014-03-20 2017-05-10 アズビル株式会社 Capacitive pressure sensor
US9689770B2 (en) * 2014-07-17 2017-06-27 Infineon Technologies Ag Selfcalibration of capacitive pressure sensors with electrostatic forces
JP2016180651A (en) * 2015-03-24 2016-10-13 アズビル株式会社 Deposit state estimation device, deposit state estimation method, and deposit state estimation system
US9791340B2 (en) * 2015-07-22 2017-10-17 Nxp Usa, Inc. Self test for capacitive pressure sensors
JP2017156098A (en) 2016-02-29 2017-09-07 アズビル株式会社 Pressure sensor state detection method and pressure sensor state detection system
JP6663284B2 (en) * 2016-04-19 2020-03-11 アズビル株式会社 Vacuum gauge state detection method and system
WO2018029790A1 (en) * 2016-08-09 2018-02-15 株式会社 トライフォース・マネジメント Force sensor

Also Published As

Publication number Publication date
CN110068421B (en) 2022-02-11
KR20190089729A (en) 2019-07-31
US11054331B2 (en) 2021-07-06
JP2019128190A (en) 2019-08-01
CN110068421A (en) 2019-07-30
US20190226936A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6981885B2 (en) Anomaly detection method and device for capacitive pressure sensor
JP4989659B2 (en) Vacuum measuring cell with diaphragm
JP6002016B2 (en) Capacitive pressure sensor
WO2010113803A1 (en) Capacitance type pressure sensor
JP5680677B2 (en) Capacitive pressure sensor
JP5997771B2 (en) Capacitive pressure sensor with improved electrode structure
US10620072B2 (en) Capacitive pressure sensor
KR20170101789A (en) Method and system for detecting pressure sensor state
JP6126545B2 (en) Capacitive pressure sensor
JP2010236949A (en) Electrostatic capacitance type pressure sensor
JP4993345B2 (en) Capacitive pressure sensor
US8739632B2 (en) Pressure sensor structure and associated method of making a pressure sensor
WO2018225853A1 (en) Capacitative type pressure sensor
JP2009265041A (en) Capacitance type pressure sensor
CN108398204B (en) Pressure sensor
CN108431571B (en) Pressure sensor
US20200064213A1 (en) Capacitance manometer for high temperature environments
KR20190007381A (en) Pressure sensor element with glass barrier material configured for increased capacitive response
JP5159685B2 (en) Capacitive pressure sensor
US11467051B1 (en) Method for correcting a dual capacitance pressure sensor
JP2022085260A (en) Diaphragm vacuum gauge
JP6985071B2 (en) Anomaly detection method and anomaly detection device
TW202105450A (en) Sensors and system for in-situ edge ring erosion monitor
JP2010236942A (en) Electrostatic capacitance type pressure sensor
JP2019027849A (en) Capacitive pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211118

R150 Certificate of patent or registration of utility model

Ref document number: 6981885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150