JP6981028B2 - Inside temperature measurement method and inside monitoring system - Google Patents

Inside temperature measurement method and inside monitoring system Download PDF

Info

Publication number
JP6981028B2
JP6981028B2 JP2017071959A JP2017071959A JP6981028B2 JP 6981028 B2 JP6981028 B2 JP 6981028B2 JP 2017071959 A JP2017071959 A JP 2017071959A JP 2017071959 A JP2017071959 A JP 2017071959A JP 6981028 B2 JP6981028 B2 JP 6981028B2
Authority
JP
Japan
Prior art keywords
firing furnace
cement firing
furnace
temperature
protective tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017071959A
Other languages
Japanese (ja)
Other versions
JP2018173358A (en
Inventor
和喜 稲津
敦 大西
龍介 内場
康行 江波戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2017071959A priority Critical patent/JP6981028B2/en
Publication of JP2018173358A publication Critical patent/JP2018173358A/en
Application granted granted Critical
Publication of JP6981028B2 publication Critical patent/JP6981028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、炉内温度計測方法及び炉内監視システムに関する。 The present invention relates to a furnace temperature measuring method and a furnace monitoring system.

一般に、セメント製造設備が備えるセメント焼成炉(セメントロータリーキルン)は、運転管理及びクリンカ等の被加熱物の焼成度を管理する上で、被加熱物の温度計測をすることを要する。セメント焼成炉のような粉塵濃度が高く、連続処理を行う炉内における被加熱物の温度計測においては、非接触で温度が計測できる放射温度計が用いられている。 In general, a cement firing furnace (cement rotary kiln) provided in a cement manufacturing facility needs to measure the temperature of a heated object in order to control the operation and the degree of firing of the heated object such as clinker. In the temperature measurement of the object to be heated in a furnace having a high dust concentration such as a cement firing furnace and performing continuous treatment, a radiation thermometer capable of measuring the temperature without contact is used.

しかし、放射温度計では、計測対象である被加熱物と観測者の間に粉塵があると、粉塵による放射光の減衰及び粉塵自体からの放射光が影響し、被加熱物の温度を正確に計測できないという問題がある。 However, with a radiation thermometer, if there is dust between the object to be measured and the observer, the attenuation of the synchrotron radiation by the dust and the synchrotron radiation from the dust itself will affect the temperature of the object to be heated accurately. There is a problem that it cannot be measured.

粉塵濃度が高い炉内の温度計測に係る上記問題は、セメント焼成炉以外の他の焼成炉等においても当然起こり得る。このような問題を解消するため、例えば、煤塵濃度が高い炉内において、溶融スラグの液面温度を確実に計測することができる温度計測方法が提案されている(例えば、特許文献1参照。)。
特許文献1で提案されている方法では、炉内に収容された溶融スラグの液面から放射される輻射光のうち、中間赤外域又は遠赤外域の輻射光を光電気素子に集光し、入射する輻射光の強度に応じた振幅の出力電圧を光電気素子から発生させ、この出力電圧値とプランクの輻射則から上記溶融スラグの液面温度を決定している。また、この温度計測方法では、2以上の異なる波長の輻射光が用いられている。
The above-mentioned problem related to temperature measurement in a furnace having a high dust concentration can naturally occur in a firing furnace other than the cement firing furnace. In order to solve such a problem, for example, a temperature measuring method capable of reliably measuring the liquid level temperature of molten slag in a furnace having a high soot concentration has been proposed (see, for example, Patent Document 1). ..
In the method proposed in Patent Document 1, among the radiant light radiated from the liquid surface of the molten slag contained in the furnace, the radiant light in the mid-infrared region or the far-infrared region is focused on the photoelectric element. An output voltage having an amplitude corresponding to the intensity of the incident radiant light is generated from the photoelectric element, and the liquid level temperature of the molten slag is determined from this output voltage value and Planck's radiation law. Further, in this temperature measuring method, synchrotron radiation having two or more different wavelengths is used.

特開2001−249049号公報Japanese Unexamined Patent Publication No. 2001-249049

特許文献1で提案されている方法では、対象としている粉塵の粒子径が1〜2μmであり、セメント焼成炉等における粉塵と比較すると非常に微細である。そのため、当該方法をそのままセメント焼成炉等における粉塵に適用してクリンカの温度計測等に使用することはできない。 In the method proposed in Patent Document 1, the particle size of the target dust is 1 to 2 μm, which is very fine as compared with the dust in a cement firing furnace or the like. Therefore, the method cannot be directly applied to dust in a cement firing furnace or the like and used for temperature measurement of clinker or the like.

そして、セメント焼成炉において、放射温度計を用いる温度計測は、セメント焼成炉の出口側の最高温度に到達する近傍一点のみを計測していたので、上記粉塵による問題と相まって計測精度に難点がある。また、セメント焼成炉の運転管理は、炉内の計測した一点の温度を頼りに行うので、運転管理が十分であるとはいえない。運転管理が十分でないと、何らかの原因で発生した場合、炉内温度変動の検知が遅れることによって、セメント焼成炉の運転を安定させる操作が遅れてしまうため、不安定な状況からの回復に時間がかかり、クリンカ焼成度(品質)を維持することが困難となる。 In the cement firing furnace, the temperature measurement using a radiation thermometer measures only one point in the vicinity where the maximum temperature on the outlet side of the cement firing furnace is reached. .. Further, since the operation management of the cement firing furnace is performed by relying on the temperature of one point measured in the furnace, it cannot be said that the operation management is sufficient. If the operation control is not sufficient, if it occurs for some reason, the operation to stabilize the operation of the cement firing furnace will be delayed due to the delay in the detection of the temperature fluctuation in the furnace, so it will take time to recover from the unstable situation. This makes it difficult to maintain the degree of firing (quality) of the clinker.

そこで、本発明は、上記問題に鑑み、高温状態にある被加熱物の温度を精度よく計測できる炉内温度計測方法及び炉内監視システムを提供することを目的とする。 Therefore, in view of the above problems, it is an object of the present invention to provide a furnace temperature measuring method and a furnace monitoring system capable of accurately measuring the temperature of a heated object in a high temperature state.

本発明は以下のものを提供する。
[1]長さがL(m)及び外径がD(m)であるセメント焼成炉の炉内温度計測方法であって、保護管を有する熱電対温度計を、前記Dに対する前記セメント焼成炉の出口端からの長さの比が8以上15以下となる位置に配置して、前記セメント焼成炉内の被加熱物の温度を計測する炉内温度計測方法。
[2]前記熱電対温度計は、前記セメント焼成炉の出口端より同一距離であって、前記セメント焼成炉の周方向に複数個設けられている[1]の炉内温度計測方法。
[3]前記セメント焼成炉の内壁には耐火煉瓦が設けられており、前記耐火煉瓦は、前記セメント焼成炉の周方向に複数分割され内壁に装着固定された煉瓦止鉄板によって位置が固定され、前記熱電対温度計は、分割された前記煉瓦止鉄板の間から前記セメント焼成炉内に挿入されている[1]又は[2]の炉内温度計測方法。
[4]前記保護管の外径がD(mm)であり、前記熱電対温度計の挿入距離L(mm)は、前記耐火煉瓦のセメント焼成炉内部側表面から前記保護管の先端が2D以上出る[3]の炉内温度計測方法。
[5]前記保護管の材質は、SUS310s、カンタル、インコネル及び窒化珪素から選ばれる少なくとも1種である[1]〜[4]のいずれかの炉内温度計測方法。
[6]前記保護管の外径がD(mm)及びで内径がd(mm)あり、前記保護管の厚さは、(D−d)/2≧6を満たす[1]〜[5]のいずれかの炉内温度計測方法。
[7]長さがL(m)及び外径がD(m)であるセメント焼成炉の炉内監視システムであって、前記Dに対する前記セメント焼成炉の出口端からの長さの比が8以上15以下の位置に配置され、保護管を有する熱電対温度計によって、前記セメント焼成炉内の温度データを検出する温度計測装置と、前記温度データを受信し、前記セメント焼成炉内の被加熱物の材料温度及び焼成状態を監視する制御装置とを備える炉内監視システム。
The present invention provides the following.
[1] A method for measuring the temperature inside a cement firing furnace having a length of L (m) and an outer diameter of D (m) , wherein a thermoelectric thermometer having a protective tube is used for the cement firing furnace with respect to the D. the ratio of the length from the outlet end is disposed at a position of 8 to 15, the furnace temperature measuring method of measuring the temperature of the heated object of the cement burning furnace.
[2] The method for measuring the temperature inside the furnace according to [1], wherein the thermocouple thermometers are provided at the same distance from the outlet end of the cement firing furnace in the circumferential direction of the cement firing furnace.
[3] Refractory bricks are provided on the inner wall of the cement firing furnace, and the refractory bricks are fixed in position by a brick retaining iron plate that is divided into a plurality of pieces in the circumferential direction of the cement firing furnace and mounted and fixed to the inner wall. The method for measuring the temperature inside the furnace according to [1] or [2], wherein the thermoelectric pair thermometer is inserted into the cement firing furnace from between the divided brick refractory plates.
[4] The outer diameter of the protective tube is D t (mm), and the insertion distance L t (mm) of the thermocouple thermometer is such that the tip of the protective tube is from the inner surface of the cement firing furnace of the refractory bricks. The method for measuring the temperature inside the furnace in [3], which produces 2D t or more.
[5] The method for measuring the temperature inside the furnace according to any one of [1] to [4], wherein the material of the protective tube is at least one selected from SUS310s, cantal, inconel, and silicon nitride.
[6] The outer diameter of the protective tube is D t (mm) and the inner diameter is dt (mm), and the thickness of the protective tube satisfies (D t −d t ) / 2 ≧ 6 [1]. ~ [5] Any one of the furnace temperature measuring methods.
[7] An in-core monitoring system for a cement firing furnace having a length of L (m) and an outer diameter of D (m), and the ratio of the length from the outlet end of the cement firing furnace to D is 8 A temperature measuring device that detects the temperature data in the cement firing furnace by a thermoelectric thermometer arranged at the position of 15 or less and having a protective tube, and a temperature measuring device that receives the temperature data and is heated in the cement firing furnace. An in-core monitoring system equipped with a control device for monitoring the material temperature and firing state of an object.

本発明によれば、高温状態にある被加熱物の温度を精度よく計測できる炉内温度計測方法及び炉内監視システムを提供することができる。 According to the present invention, it is possible to provide a furnace temperature measuring method and a furnace monitoring system that can accurately measure the temperature of a heated object in a high temperature state.

セメント焼成炉及びセメント焼成炉に関連する装置のブロック図である。It is a block diagram of the cement firing furnace and the apparatus related to the cement firing furnace. 温度計測装置の模式的ブロック図である。It is a schematic block diagram of a temperature measuring device. 熱電対温度計が配置されているセメント焼成炉の周方向の模式的断面図である。It is a schematic cross-sectional view in the circumferential direction of a cement firing furnace in which a thermocouple thermometer is arranged. 回転するセメント焼成炉の周方向に配置された熱電対温度計が順に被加熱物の温度を計測することを示す模式図である。It is a schematic diagram which shows that the thermocouple thermometer arranged in the circumferential direction of a rotating cement firing furnace measures the temperature of the object to be heated in order. 熱電対温度計が配置されているセメント焼成炉の回転軸方向の模式的断面図である。It is a schematic cross-sectional view in the rotation axis direction of a cement firing furnace in which a thermocouple thermometer is arranged. 熱電対温度計を示す模式的断面図である。It is a schematic cross-sectional view which shows the thermocouple thermometer.

[セメント焼成炉]
以下、図1を参照して、本発明の実施の形態におけるセメント焼成炉を説明する。
原料投入装置10は、原料投入部12を介して、セメント焼成炉20の入口端より投入する原料11の送量を制御する。原料投入装置10は、予熱装置(図示せず)を通過し、例えば、温度が800℃以上900℃以下に達した原料11をセメント焼成炉20に入れる制御を行う。
セメント焼成炉20は、回転しながら原料投入部12から投入された原料11を燃焼装置21が出力等を制御するキルンバーナ22で燃焼し、クリンカ等の被加熱物を焼成する。セメント焼成炉20内における焼成は、供給された主燃料を気体と共に環状に噴射させるキルンバーナ22によりなされる。焼成された被加熱物は、セメント焼成炉20の出口端より排出され、冷却器13に入る。冷却器13は、エアークエンチングクーラー(クリンカクーラー)であり、空気を使って焼成された原料11を急激に冷却する。
温度計測装置30は、焼成時の被加熱物の温度を計測する熱電対温度計31を備える。温度計測装置30は、熱電対温度計31で計測した温度を温度データとして制御装置50へ送信する。温度計測装置30は、例えば、図2に示すように、複数の熱電対温度計31で計測した温度データを受信した無線送信部33が制御装置50へ無線で送信することができる。熱電対温度計31及び無線送信部33は、動作のための電力をバッテリー34から得る。
焼成炉駆動制御装置40は、セメント焼成炉20の駆動を制御する。
制御装置50は、受信した温度データに基づいて、材料温度及び焼成状態を監視する。また、制御装置50は、受信した温度データに基づいて、セメント焼成炉20に投入する窯入原料送量を原料投入装置10へ送信して制御し、焼成炉電力及び焼成炉石炭焚量を燃焼装置21へ送信して制御する。
入力装置60は、セメント焼成炉20の動作条件の設定を入力し、制御装置50へ送信する。
[Cement firing furnace]
Hereinafter, the cement firing furnace according to the embodiment of the present invention will be described with reference to FIG.
The raw material charging device 10 controls the feeding amount of the raw material 11 charged from the inlet end of the cement firing furnace 20 via the raw material charging unit 12. The raw material charging device 10 passes through a preheating device (not shown), and controls, for example, to put the raw material 11 having a temperature of 800 ° C. or higher and 900 ° C. or lower into the cement firing furnace 20.
The cement firing furnace 20 burns the raw material 11 input from the raw material input unit 12 while rotating by the kiln burner 22 whose output and the like are controlled by the combustion device 21, and fires a heated object such as a clinker. The firing in the cement firing furnace 20 is performed by a kiln burner 22 that injects the supplied main fuel in a ring shape together with the gas. The fired object to be heated is discharged from the outlet end of the cement firing furnace 20 and enters the cooler 13. The cooler 13 is an air quenching cooler (clinker cooler), and rapidly cools the fired raw material 11 using air.
The temperature measuring device 30 includes a thermocouple thermometer 31 that measures the temperature of the object to be heated at the time of firing. The temperature measuring device 30 transmits the temperature measured by the thermocouple thermometer 31 as temperature data to the control device 50. In the temperature measuring device 30, for example, as shown in FIG. 2, the wireless transmission unit 33 that has received the temperature data measured by the plurality of thermocouple thermometers 31 can wirelessly transmit the temperature data to the control device 50. The thermocouple thermometer 31 and the wireless transmitter 33 obtain power for operation from the battery 34.
The firing furnace drive control device 40 controls the driving of the cement firing furnace 20.
The control device 50 monitors the material temperature and the firing state based on the received temperature data. Further, the control device 50 transmits and controls the amount of raw material sent into the kiln to be charged into the cement firing furnace 20 to the raw material charging device 10 based on the received temperature data, and burns the firing furnace power and the firing furnace coal burning amount. It is transmitted to the device 21 and controlled.
The input device 60 inputs the setting of the operating conditions of the cement firing furnace 20 and transmits the setting to the control device 50.

[炉内温度計測方法]
本発明の実施の形態に係る炉内温度計測方法は、長さがL(m)及び外径がD(m)であるセメント焼成炉20の炉内温度計測方法である。本発明の実施の形態に係る炉内温度計測方法は、セメント焼成炉20の出口端よりL/Dが5以上15以下の位置に配置され、保護管を有する熱電対温度計31でセメント焼成炉20内の被加熱物の温度を計測する。
[Foil temperature measurement method]
The method for measuring the temperature inside the furnace according to the embodiment of the present invention is the method for measuring the temperature inside the cement firing furnace 20 having a length of L (m) and an outer diameter of D (m). In the method for measuring the temperature inside the furnace according to the embodiment of the present invention, the cement firing furnace is arranged at a position where the L / D is 5 or more and 15 or less from the outlet end of the cement firing furnace 20 and has a thermocouple thermometer 31 having a protective tube. The temperature of the object to be heated in 20 is measured.

セメント焼成炉20は、長さが60m以上100m以下程度であり、外径が4m以上6m以下程度の円筒形を横においた形状である。セメント焼成炉20は、1分間に2〜3回の速さで回転する。
セメント焼成炉20は、入口端から仮焼帯201、脱着帯202、焼成帯203、冷却帯204が構成されている。
The cement firing furnace 20 has a cylindrical shape having a length L of 60 m or more and 100 m or less and an outer diameter D of 4 m or more and 6 m or less. The cement firing furnace 20 rotates at a speed of 2 to 3 times per minute.
The cement firing furnace 20 includes a temporary firing zone 201, a desorption zone 202, a firing zone 203, and a cooling zone 204 from the inlet end.

セメント焼成炉20は、焼成時の被加熱物の温度を計測する熱電対温度計31が設けられている。熱電対温度計31は、セメント焼成炉20の出口端よりL/D(長さ/外径)が8以上15以下の位置に配置される。L/Dが8未満であると、セメント焼成炉20の表面にコーチングが付着成長し、熱電対温度計31の先端が埋没して計測できないことがある。L/Dが15を超えると、セメント焼成炉20の仮焼体201より先になって焼成時の被加熱物の温度を計測することができない。熱電対温度計31は、セメント焼成炉20の表面のコーチングが少なく、被加熱物の温度を正確に計測できるという観点から、セメント焼成炉20の出口端よりL/Dが9以上15以下であることが好ましく、10以上15以下であることがより好ましく、11以上15以下であることがさらに好ましい。ちなみに、仮焼帯201と脱着帯202の境界は、L/Dが8程度であり、脱着帯202と焼成帯203の境界は、L/Dが5程度である。 The cement firing furnace 20 is provided with a thermocouple thermometer 31 that measures the temperature of the object to be heated during firing. The thermocouple thermometer 31 is arranged at a position where the L / D (length / outer diameter) is 8 or more and 15 or less from the outlet end of the cement firing furnace 20. If the L / D is less than 8, coaching may adhere to and grow on the surface of the cement firing furnace 20, and the tip of the thermocouple thermometer 31 may be buried and measurement may not be possible. If the L / D exceeds 15, the temperature of the object to be heated at the time of firing cannot be measured prior to the calcined body 201 of the cement firing furnace 20. The thermocouple thermometer 31 has an L / D of 9 or more and 15 or less from the outlet end of the cement firing furnace 20 from the viewpoint that the surface of the cement firing furnace 20 is less coated and the temperature of the object to be heated can be accurately measured. It is preferable, it is more preferably 10 or more and 15 or less, and further preferably 11 or more and 15 or less. Incidentally, the boundary between the temporary firing zone 201 and the desorption zone 202 has an L / D of about 8, and the boundary between the desorption zone 202 and the firing zone 203 has an L / D of about 5.

熱電対温度計31は、図3に示すように、セメント焼成炉20の出口端より同一距離であって、セメント焼成炉20の周方向に複数個設けられていることが好ましい。図3では、4個の熱電対温度計31A〜31Dを示したが、4個に限られない。
熱電対温度計31がセメント焼成炉20の周方向に複数個設けられていることによって、図4に示すように、セメント焼成炉20の回転することで、熱電対温度計31A〜31Dが順に被加熱物(原料11)と接し、原料温度を直接計測することができる。
As shown in FIG. 3, it is preferable that a plurality of thermocouple thermometers 31 are provided at the same distance from the outlet end of the cement firing furnace 20 in the circumferential direction of the cement firing furnace 20. In FIG. 3, four thermocouple thermometers 31A to 31D are shown, but the number is not limited to four.
Since a plurality of thermocouple thermometers 31 are provided in the circumferential direction of the cement baking furnace 20, as shown in FIG. 4, the thermocouple thermometers 31A to 31D are sequentially covered by the rotation of the cement baking furnace 20. The raw material temperature can be directly measured in contact with the heated material (raw material 11).

セメント焼成炉20の内壁(シェル面26)には、図5に示すように、耐火煉瓦25が設けられている。耐火煉瓦25は、セメント焼成炉20の周方向に複数分割され内壁に装着固定された煉瓦止鉄板23によって位置が固定されている。熱電対温度計31は、分割された煉瓦止鉄板23の間からセメント焼成炉20内に挿入されていることが好ましい。熱電対温度計31を分割された煉瓦止鉄板23の間からセメント焼成炉20内に挿入することで、セメント焼成炉20の回転時のシェル面26の変形に伴う耐火煉瓦25による揉まれによる破損、及び耐火煉瓦25の移動により荷重がかかる破損を防ぐことができる。
図3及び図4に示したように、煉瓦止鉄板23がセメント焼成炉20の周方向に4分割されている場合は、熱電対温度計31は、分割された煉瓦止鉄板23の間から4本挿入される。つまり、熱電対温度計31は、煉瓦止鉄板23の分割数に応じた本数を挿入することが好ましい。
分割された煉瓦止鉄板23の間は、図5に示すように、キャスタブル耐火物24で充填されている。耐火物24は、挿入された熱電対温度計31の先端側を覆い、熱電対温度計31に耐火性及び耐衝撃性を付与する。
As shown in FIG. 5, refractory bricks 25 are provided on the inner wall (shell surface 26) of the cement firing furnace 20. The refractory bricks 25 are fixed in position by a brick stop iron plate 23 which is divided into a plurality of pieces in the circumferential direction of the cement firing furnace 20 and mounted and fixed to the inner wall. The thermocouple thermometer 31 is preferably inserted into the cement firing furnace 20 from between the divided brick stop iron plates 23. By inserting the thermoelectric anti-thermometer 31 into the cement firing furnace 20 from between the divided brick stop iron plates 23, the cement firing furnace 20 is damaged due to being rubbed by the refractory bricks 25 due to the deformation of the shell surface 26 during rotation. , And damage to which a load is applied due to the movement of the refractory brick 25 can be prevented.
As shown in FIGS. 3 and 4, when the brick stop iron plate 23 is divided into four in the circumferential direction of the cement firing furnace 20, the thermocouple thermometer 31 is 4 from between the divided brick stop iron plates 23. This is inserted. That is, it is preferable to insert the number of thermocouple thermometers 31 according to the number of divisions of the brick stop iron plate 23.
As shown in FIG. 5, the space between the divided brick retaining iron plates 23 is filled with the castable refractory material 24. The refractory material 24 covers the tip end side of the inserted thermocouple thermometer 31 and imparts fire resistance and impact resistance to the thermocouple thermometer 31.

熱電対温度計31は、図6に示すように、外径D(mm)で内径d(mm)の保護管32を有する。
保護管32の外径D(mm)は、熱電対温度計31の耐久性及び取扱性の観点から、10mm以上30mm以下であることが好ましく、12mm以上25mm以下であることがより好ましく、14mm以上20mm以下であることがさらに好ましい。
保護管32の内径d(mm)は、熱電対の収容性容易性及び温度計測の応答性の観点から、3mm以上12mm以下であることが好ましく、4mm以上10mm以下であることがより好ましく、5mm以上8mm以下であることがさらに好ましい。
保護管32の厚さは、耐熱性、耐衝撃性及び燃焼ガスによる耐蝕性観点、並びに温度計側の応答性の観点から、(D−d)/2≧6を満たすことが好ましく、6≦(D−d)/2≦10を満たすことがより好ましく、6≦(D−d)/2≦8を満たすことがさらに好ましい。
As shown in FIG. 6, the thermocouple thermometer 31 has a protective tube 32 having an outer diameter of D t (mm) and an inner diameter of dt (mm).
The outer diameter D t (mm) of the protective tube 32 is preferably 10 mm or more and 30 mm or less, more preferably 12 mm or more and 25 mm or less, and more preferably 14 mm, from the viewpoint of durability and handleability of the thermocouple thermometer 31. It is more preferably 20 mm or less.
The inner diameter dt (mm) of the protective tube 32 is preferably 3 mm or more and 12 mm or less, and more preferably 4 mm or more and 10 mm or less, from the viewpoint of easy accommodation of the thermocouple and responsiveness of temperature measurement. It is more preferably 5 mm or more and 8 mm or less.
The thickness of the protective tube 32, heat resistance, corrosion resistance viewpoint by impact resistance and the combustion gases, as well as from the viewpoint of responsiveness of the thermometer side, preferably satisfies (D t -d t) / 2 ≧ 6, It is more preferable to satisfy 6 ≦ (D t −d t ) / 2 ≦ 10, and it is further preferable to satisfy 6 ≦ (D t −d t ) / 2 ≦ 8.

熱電対温度計31の挿入距離L(mm)は、被加熱物(原料11)の温度を正確に計測する観点及び耐熱性、耐衝撃性及び燃焼ガスによる耐蝕性観点から、耐火煉瓦25のセメント焼成炉内部側表面から保護管32の先端が2D以上出ることが好ましく、2.5D以上出ることがより好ましく、3.0D以上出ることがさらに好ましい。 The insertion distance L t (mm) of the thermocouple thermometer 31 is the refractory brick 25 from the viewpoint of accurately measuring the temperature of the object to be heated (raw material 11) and from the viewpoint of heat resistance, impact resistance and corrosion resistance due to combustion gas. it is preferable that the tip of the protective tube 32 from a cement burning furnace interior side surface exits or 2D t, it is more preferable to leaving or 2.5D t, it is further preferred that exits more than 3.0D t.

保護管32の材質は、耐熱性、耐衝撃性、耐酸化性及び燃焼ガスによる耐蝕性の観点から、SUS310s、カンタル、インコネル及び窒化珪素から選ばれる少なくとも1種であることが好ましい。保護管32の材質は、耐熱性に加え、被加熱物(原料11)及びコーチングとの接触時の衝撃耐久性に優れる観点から、金属製であるSUS310s、カンタル及びインコネルから選ばれる少なくとも1種であることがより好ましい。 The material of the protective tube 32 is preferably at least one selected from SUS310s, cantal, inconel and silicon nitride from the viewpoint of heat resistance, impact resistance, oxidation resistance and corrosion resistance due to combustion gas. The material of the protective tube 32 is at least one selected from SUS310s, cantal and inconel, which are made of metal, from the viewpoint of excellent impact durability at the time of contact with the object to be heated (raw material 11) and coaching in addition to heat resistance. It is more preferable to have.

[炉内監視システム]
本発明の実施の形態に係る炉内監視システムは、長さがL(m)及び外径がD(m)であるセメント焼成炉20の炉内監視システムである。本発明の実施の形態に係る炉内監視システムは、セメント焼成炉20の出口端よりL/Dが5以上15以下の位置に配置され、保護管を有する熱電対温度計31によって、セメント焼成炉20内の温度データを検出する温度計測装置30と、温度データを受信し、セメント焼成炉20内の被加熱物の材料温度及び焼成状態を監視する制御装置50とを備える。
[In-furnace monitoring system]
The in-core monitoring system according to the embodiment of the present invention is an in-core monitoring system for a cement firing furnace 20 having a length of L (m) and an outer diameter of D (m). The in-furnace monitoring system according to the embodiment of the present invention is arranged at a position where the L / D is 5 or more and 15 or less from the outlet end of the cement firing furnace 20, and is provided by a thermoelectric thermometer 31 having a protective tube. A temperature measuring device 30 for detecting the temperature data in the 20 and a control device 50 for receiving the temperature data and monitoring the material temperature and the firing state of the object to be heated in the cement baking furnace 20 are provided.

本発明の炉内監視システムによれば、セメント焼成炉20の出口端よりL/Dが5以上15以下の位置に挿入された熱電対温度計31によって、原料温度を直接計測することができるので、正確な原料温度を把握することができる。正確な原料温度を把握することでセメント焼成炉の運転管理を十分に行うことができ、セメント焼成炉の運転を安定させることができる。また、正確な原料温度を把握することでクリンカ焼成度(品質)を維持することができる。
本発明の炉内監視システムによれば、原料温度を連続して計測し、温度に変動が見られた場合は、事前にキルンバーナ等を調整することにより、出口端でのクリンカ温度をより一定に保ち、クリンカ焼成度をより安定させることが可能である。
According to the in-core monitoring system of the present invention, the raw material temperature can be directly measured by the thermocouple thermometer 31 inserted at a position where the L / D is 5 or more and 15 or less from the outlet end of the cement firing furnace 20. , It is possible to grasp the accurate raw material temperature. By grasping the accurate raw material temperature, it is possible to sufficiently manage the operation of the cement firing furnace and stabilize the operation of the cement firing furnace. In addition, the degree of clinker firing (quality) can be maintained by grasping the accurate raw material temperature.
According to the in-furnace monitoring system of the present invention, the raw material temperature is continuously measured, and if the temperature fluctuates, the clinker temperature at the outlet end is made more constant by adjusting the kiln burner or the like in advance. It is possible to keep the clinker firing degree more stable.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

[保護管の材質]
保護管の材質は、耐熱性、耐衝撃性、耐酸化性及び燃焼ガスによる耐蝕性の観点から、これらの性能に優れるSUS310s、カンタル、インコネル及び窒化珪素を選定した。セメント焼成炉は回転炉であるため、回転に伴い掻き上げられた原料やコーチングが落下する際の衝撃力が極めて大きいため、耐衝撃性、耐酸化性、耐蝕性の中で耐衝撃性を最重要視して材質を選定する。耐衝撃性は材料の靱性に関連し、一般的に硬度とは傾向が一致しない。
[Material of protective tube]
As the material of the protective tube, SUS310s, cantal, inconel, and silicon nitride, which are excellent in these performances, were selected from the viewpoints of heat resistance, impact resistance, oxidation resistance, and corrosion resistance due to combustion gas. Since the cement firing furnace is a rotary furnace, the impact force when the raw materials and coaching scraped up due to rotation fall is extremely large, so the impact resistance is the highest among the impact resistance, oxidation resistance, and corrosion resistance. Select the material with importance. Impact resistance is related to the toughness of the material and generally does not tend to match hardness.

<耐熱性>
材料特性情報より、耐熱最高温度が1,500℃以上であるものを「◎」、1,500℃未満1,200℃以上であるものを「○」、1,200℃未満1,000℃以上であるものを「△」、1,000℃未満であるものを「×」とした。
<Heat resistance>
From the material property information, "◎" is for the maximum heat resistance temperature of 1,500 ° C or higher, "○" is for less than 1,500 ° C and 1,200 ° C or higher, and 1,000 ° C or higher is less than 1,200 ° C. Those with a temperature of less than 1,000 ° C. were designated as “Δ”, and those with a temperature of less than 1,000 ° C. were designated as “×”.

<硬度>
硬度の測定は、ビッカース硬さ試験機(株式会社ミツトヨ製、製品名「HM−200」)を使用し、JISZ2244:2009に準拠して行った。
<Hardness>
The hardness was measured using a Vickers hardness tester (manufactured by Mitutoyo Co., Ltd., product name "HM-200") in accordance with JISZ2244: 2009.

<耐衝撃性>
耐衝撃性は材質の靱性に関連することより、金属の靱性評価に着目した。靱性評価は、金属引張試験(JISZ2241:2011)に準拠して行い、各材質の伸び(%)と絞り(%)に着目した。伸び(%)と絞り(%)がそれぞれ50%以上であるものを「◎」、50%未満10%以上であるものを「○」、10%未満1%以上であるものを「△」、1%未満であるものを「×」とした。
<Impact resistance>
Since impact resistance is related to the toughness of the material, we focused on the evaluation of the toughness of the metal. The toughness evaluation was performed in accordance with the metal tensile test (JISZ2241: 2011), and attention was paid to the elongation (%) and drawing (%) of each material. "◎" for those with elongation (%) and aperture (%) of 50% or more, "○" for those with less than 50% and 10% or more, and "△" for those with less than 10% and 1% or more. Those with less than 1% were marked with "x".

Figure 0006981028
Figure 0006981028

表1より、耐熱性及び硬度は窒化珪素が優れているが、保護管の材質としては、耐衝撃性を最重要視することからSUS310sが最適であると選定した。 From Table 1, silicon nitride is excellent in heat resistance and hardness, but SUS310s was selected as the most suitable material for the protective tube because impact resistance is of the utmost importance.

以下に、表1で示した結果を立証するために、保護管の材質として、SUS310s、カンタル、インコネル及び窒化珪素を用いて保護管の耐久性比較試験を行った結果を示す。 In order to prove the results shown in Table 1, the results of a durability comparison test of the protective tube using SUS310s, cantal, Inconel and silicon nitride as the material of the protective tube are shown below.

[保護管の耐久性比較試験1]
セメント焼成炉の出口端よりのL/Dを11、保護管の厚さを3mmで一定とし、分割された煉瓦止鉄板の間からセメント焼成炉内に保護管を有する熱電対温度計を挿入して、以下のような評価を行った。なお、熱電対温度計としては、R熱電対(株式会社チノー製、種類「白金−13%ロジウム」)を使用した。
[Durability comparison test of protective tube 1]
The L / D from the outlet end of the cement firing furnace is set to 11 and the thickness of the protective tube is fixed at 3 mm. The following evaluations were made. As the thermocouple thermometer, an R thermocouple (manufactured by Chino Corporation, type "platinum-13% rhodium") was used.

<耐用時間>
熱電対温度計での温度計測開始から、熱電対温度計が損傷するまでの時間を耐用時間として測定した。
<Durable time>
The time from the start of temperature measurement with the thermocouple thermometer to the damage of the thermocouple thermometer was measured as the useful time.

<耐久性>
計測した耐用時間が1,500時間以上であるものを「◎」、1,500時間未満500時間以上であるものを「○」、500時間未満30時間以上であるものを「△」、30時間未満であるものを「×」とした。
<Durability>
"◎" for measured useful time of 1,500 hours or more, "○" for less than 1,500 hours and 500 hours or more, "△" for less than 500 hours and 30 hours or more, 30 hours Those less than or equal to are marked with "x".

(実施例1)
外径Dが18mm、内径dが12mm、厚さが3mmであり材料がSUS310sの保護管にて評価を行った。熱電対温度計は、保護管の先端が耐熱煉瓦のセメント焼成炉内部側表面から80mmとなるように挿入した。結果を表2に示す。
(Example 1)
The evaluation was performed using a protective tube having an outer diameter D t of 18 mm, an inner diameter dt of 12 mm, a thickness of 3 mm, and a material of SUS310s. The thermocouple thermometer was inserted so that the tip of the protective tube was 80 mm from the inner surface of the cement firing furnace of heat-resistant brick. The results are shown in Table 2.

(実施例2)
外径Dが18mm、内径dが12mm、厚さが3mmであり材料がカンタルの保護管にて評価を行った。熱電対温度計は、保護管の先端が耐熱煉瓦のセメント焼成炉内部側表面から80mmとなるように挿入した。結果を表2に示す。
(Example 2)
The outer diameter D t was 18 mm, the inner diameter dt was 12 mm, the thickness was 3 mm, and the material was evaluated using a protective tube made of Cantal cheese. The thermocouple thermometer was inserted so that the tip of the protective tube was 80 mm from the inner surface of the cement firing furnace of heat-resistant brick. The results are shown in Table 2.

(実施例3)
外径Dが18mm、内径dが12mm、厚さが3mmであり材料がインコネルの保護管にて評価を行った。熱電対温度計は、保護管の先端が耐熱煉瓦のセメント焼成炉内部側表面から80mmとなるように挿入した。結果を表2に示す。
(Example 3)
The outer diameter D t was 18 mm, the inner diameter dt was 12 mm, the thickness was 3 mm, and the material was evaluated using a protective tube of Inconel. The thermocouple thermometer was inserted so that the tip of the protective tube was 80 mm from the inner surface of the cement firing furnace of heat-resistant brick. The results are shown in Table 2.

(実施例4)
外径Dが18mm、内径dが12mm、厚さが3mmであり材料が窒化珪素の保護管にて評価を行った。熱電対温度計は、保護管の先端が耐熱煉瓦のセメント焼成炉内部側表面から80mmとなるように挿入した。結果を表1に示す。
(Example 4)
The evaluation was performed using a protective tube having an outer diameter D t of 18 mm, an inner diameter dt of 12 mm, and a thickness of 3 mm, and the material was silicon nitride. The thermocouple thermometer was inserted so that the tip of the protective tube was 80 mm from the inner surface of the cement firing furnace of heat-resistant brick. The results are shown in Table 1.

Figure 0006981028
Figure 0006981028

表2より、保護管の材質としてSUS310sを用いた実施例1の耐用時間が一番長かった。しかし、保護管の厚さが3mmでは、いずれの保護管も1週間以内に損傷してしまい耐久性が若干低かった。なお、損傷までの保護管の温度は1,200℃付近で推移した。 From Table 2, the service life of Example 1 using SUS310s as the material of the protective tube was the longest. However, when the thickness of the protective tube was 3 mm, all the protective tubes were damaged within one week, and the durability was slightly low. The temperature of the protective tube until the damage remained around 1,200 ° C.

[保護管の耐久性比較試験2]
表1及び表2の結果より、耐衝撃性及び耐用時間が一番長かったSUS310sを選定し、厚さを増したSUS310sの保護管の耐久性比較試験を行った。
セメント焼成炉の出口端よりL/Dが11、保護管の厚さが6mm、材料がSUS310sで一定とし、分割された煉瓦止鉄板の間からセメント焼成炉内に保護管を有する熱電対温度計を挿入して、上記の耐用時間及び耐久性の評価を行った。なお、熱電対温度計としては、R熱電対(株式会社チノー製、種類「白金−13%ロジウム」)を使用した。
[Durability comparison test 2 of protective tube]
From the results in Tables 1 and 2, SUS310s having the longest impact resistance and service life were selected, and a durability comparison test of the protective tube of SUS310s with an increased thickness was performed.
A thermocouple thermometer having an L / D of 11 from the outlet end of the cement firing furnace, a protective tube thickness of 6 mm, a constant material of SUS310s, and a protective tube inside the cement firing furnace from between the divided brick stop iron plates. Was inserted to evaluate the above-mentioned service life and durability. As the thermocouple thermometer, an R thermocouple (manufactured by Chino Corporation, type "platinum-13% rhodium") was used.

(実施例5〜8)
外径Dが18mm、内径dが6mm、厚さが6mmであり材料がSUS310sの4本の保護管に対して評価を行った。熱電対温度計は、保護管の先端が耐熱煉瓦のセメント焼成炉内部側表面から80mmとなるように挿入した。結果を表3に示す。
(Examples 5 to 8)
Evaluation was performed on four protective tubes having an outer diameter D t of 18 mm, an inner diameter dt of 6 mm, a thickness of 6 mm, and a material of SUS310s. The thermocouple thermometer was inserted so that the tip of the protective tube was 80 mm from the inner surface of the cement firing furnace of heat-resistant brick. The results are shown in Table 3.

Figure 0006981028
Figure 0006981028

表3より、セメント焼成炉の出口端よりL/Dが11の位置に、厚さが6mmであり、材料がSUS310sの4本の保護管付きの熱電対温度計に対して評価を行った。結果としては、4本の保護管の全ての耐用時間が1,000時間を超え、うちの2本は耐用時間が1,500時間を超えた。この程度の耐用時間があれば、休転毎に熱電対温度計を取り替えることにより、セメント焼成炉内の連続温度計測が可能であることが確認できた。
分割された煉瓦止鉄板の間からセメント焼成炉内に保護管を有する熱電対温度計を挿入することで、耐熱煉瓦による揉まれ損傷を防止できることを休転時の炉内点検にて確認できた。
From Table 3, the thermocouple thermometer with four protective tubes, which had an L / D of 11 from the outlet end of the cement firing furnace, had a thickness of 6 mm, and was made of SUS310s, was evaluated. As a result, the useful life of all four protective tubes exceeded 1,000 hours, and two of them had a useful life of more than 1,500 hours. It was confirmed that if the service life is as long as this, continuous temperature measurement in the cement firing furnace is possible by replacing the thermocouple thermometer every rest.
By inserting a thermocouple thermometer with a protective tube into the cement firing furnace from between the divided brick stop iron plates, it was confirmed by inspecting the inside of the furnace at the time of suspension that it was possible to prevent damage caused by being rubbed by heat-resistant bricks. ..

[保護管の耐久性比較試験3]
表1及び表2の結果より、耐衝撃性及び耐用時間が一番長かったSUS310sを選定し、厚さを増したSUS310sの保護管の耐久性比較試験を行った。
セメント焼成炉の出口端よりL/Dが8、保護管の厚さが6mm、材料がSUS310sで一定とし、分割された煉瓦止鉄板の間からセメント焼成炉内に保護管を有する熱電対温度計を挿入して、上記の耐用時間及び耐久性の評価を行った。なお、熱電対温度計としては、R熱電対(株式会社チノー製、種類「白金−13%ロジウム」)を使用した。
[Durability comparison test 3 of protective tube]
From the results in Tables 1 and 2, SUS310s having the longest impact resistance and service life were selected, and a durability comparison test of the protective tube of SUS310s with an increased thickness was performed.
A thermocouple thermometer having an L / D of 8 from the outlet end of the cement firing furnace, a protective tube thickness of 6 mm, a constant material of SUS310s, and a protective tube inside the cement firing furnace from between the divided brick stop iron plates. Was inserted to evaluate the above-mentioned service life and durability. As the thermocouple thermometer, an R thermocouple (manufactured by Chino Corporation, type "platinum-13% rhodium") was used.

(比較例1〜4)
外径Dが18mm、内径dが6mm、厚さが6mmであり材料がSUS310sの4本の保護管に対して評価を行った。熱電対温度計は、保護管の先端が耐熱煉瓦のセメント焼成炉内部側表面から80mmとなるように挿入した。結果を表4に示す。
(Comparative Examples 1 to 4)
Evaluation was performed on four protective tubes having an outer diameter D t of 18 mm, an inner diameter dt of 6 mm, a thickness of 6 mm, and a material of SUS310s. The thermocouple thermometer was inserted so that the tip of the protective tube was 80 mm from the inner surface of the cement firing furnace of heat-resistant brick. The results are shown in Table 4.

Figure 0006981028
Figure 0006981028

表4より、セメント焼成炉の出口端よりL/Dが7の位置に、厚さが6mmであり、材料がSUS310sの4本の保護管付きの熱電対温度計に対して評価を行った。結果としては、いずれの温度計も耐用時間が1,500時間未満となり、L/Dが7の位置での休転間での連続温度計測は困難であることが判明した。
分割された煉瓦止鉄板の間からセメント焼成炉内に保護管を有する熱電対温度計を挿入することで、耐熱煉瓦による揉まれ損傷を防止できることを休転時の炉内点検にて確認できた。
From Table 4, the thermocouple thermometer with four protective tubes, which had an L / D of 7 from the outlet end of the cement firing furnace, had a thickness of 6 mm, and was made of SUS310s, was evaluated. As a result, it was found that the service life of all the thermometers was less than 1,500 hours, and it was difficult to continuously measure the temperature between idles at the position where the L / D was 7.
By inserting a thermocouple thermometer with a protective tube into the cement firing furnace from between the divided brick stop iron plates, it was confirmed by inspecting the inside of the furnace at the time of suspension that it was possible to prevent damage caused by being rubbed by heat-resistant bricks. ..

10 原料投入装置
11 原料
12 原料投入部
13 冷却器
20 セメント焼成炉
21 燃焼装置
22 キルンバーナ
23 煉瓦止鉄板
24 キャスタブル耐火物
25 耐火煉瓦
26 シェル面
30 温度計測装置
31、31A〜31D 熱電対温度計
32 保護管
33 無線送信部
34 バッテリー
40 焼成炉駆動制御装置
50 制御装置
60 入力装置
201 仮焼帯
202 脱着帯
203 焼成帯
204 冷却帯
10 Raw material input device 11 Raw material 12 Raw material input unit 13 Cooler 20 Cement firing furnace 21 Combustion device 22 Kiln burner 23 Brick stop iron plate 24 Castable refractory 25 Refractory brick 26 Shell surface 30 Temperature measuring device 31, 31A to 31D Thermoelectric antithermometer 32 Protective tube 33 Wireless transmitter 34 Battery 40 Firing furnace drive control device 50 Control device 60 Input device 201 Temporary firing zone 202 Detachable zone 203 Firing zone 204 Cooling zone

Claims (7)

長さがL(m)及び外径がD(m)であるセメント焼成炉の炉内温度計測方法であって、
保護管を有する熱電対温度計を、前記Dに対する前記セメント焼成炉の出口端からの長さの比が8以上15以下となる位置に配置して、前記セメント焼成炉内の被加熱物の温度を計測する炉内温度計測方法。
A method for measuring the temperature inside a cement firing furnace having a length of L (m) and an outer diameter of D (m).
A thermocouple thermometer having a protective tube is placed at a position where the ratio of the length from the outlet end of the cement firing furnace to D is 8 or more and 15 or less, and the temperature of the object to be heated in the cement firing furnace is set. A method for measuring the temperature inside the furnace.
前記熱電対温度計は、前記セメント焼成炉の出口端より同一距離であって、前記セメント焼成炉の周方向に複数個設けられている請求項1に記載の炉内温度計測方法。 The method for measuring an in-furnace temperature according to claim 1, wherein the thermocouple thermometer is at the same distance from the outlet end of the cement firing furnace, and a plurality of thermocouple thermometers are provided in the circumferential direction of the cement firing furnace. 前記セメント焼成炉の内壁には耐火煉瓦が設けられており、
前記耐火煉瓦は、前記セメント焼成炉の周方向に複数分割され内壁に装着固定された煉瓦止鉄板によって位置が固定され、
前記熱電対温度計は、分割された前記煉瓦止鉄板の間から前記セメント焼成炉内に挿入されている請求項1又は2に記載の炉内温度計測方法。
Refractory bricks are provided on the inner wall of the cement firing furnace.
The refractory bricks are fixed in position by a brick stop iron plate that is divided into a plurality of parts in the circumferential direction of the cement firing furnace and mounted and fixed to the inner wall.
The method for measuring the temperature inside a furnace according to claim 1 or 2, wherein the thermocouple thermometer is inserted into the cement firing furnace from between the divided brick-stopping iron plates.
前記保護管の外径がD(mm)であり、
前記熱電対温度計の挿入距離L(mm)は、前記耐火煉瓦のセメント焼成炉内部側表面から前記保護管の先端が2D以上出る請求項3に記載の炉内温度計測方法。
The outer diameter of the protective tube is D t (mm), and the outer diameter is D t (mm).
The method for measuring the temperature inside a furnace according to claim 3, wherein the insertion distance L t (mm) of the thermocouple thermometer is 2 Dt or more at the tip of the protective tube from the inner surface of the cement firing furnace of the refractory bricks.
前記保護管の材質は、SUS310s、カンタル、インコネル及び窒化珪素から選ばれる少なくとも1種である請求項1〜4のいずれか1項に記載の炉内温度計測方法。 The method for measuring the temperature inside a furnace according to any one of claims 1 to 4, wherein the material of the protective tube is at least one selected from SUS310s, cantal, inconel, and silicon nitride. 前記保護管の外径がD(mm)及びで内径がd(mm)あり、
前記保護管の厚さは、(D−d)/2≧6を満たす請求項1〜5のいずれか1項に記載の炉内温度計測方法。
The outer diameter of the protective tube is D t (mm) and the inner diameter is dt (mm).
The method for measuring the temperature inside a furnace according to any one of claims 1 to 5, wherein the thickness of the protective tube satisfies (D t −d t) / 2 ≧ 6.
長さがL(m)及び外径がD(m)であるセメント焼成炉の炉内監視システムであって、
前記Dに対する前記セメント焼成炉の出口端からの長さの比が8以上15以下の位置に配置され、保護管を有する熱電対温度計によって、前記セメント焼成炉内の温度データを検出する温度計測装置と、
前記温度データを受信し、前記セメント焼成炉内の被加熱物の材料温度及び焼成状態を監視する制御装置
とを備える炉内監視システム。
An in-core monitoring system for a cement firing furnace having a length of L (m) and an outer diameter of D (m).
Temperature measurement for detecting temperature data in the cement firing furnace with a thermocouple thermometer having a ratio of the length from the outlet end of the cement firing furnace to D to 8 or more and 15 or less and having a protective tube. With the device,
An in-core monitoring system including a control device that receives the temperature data and monitors the material temperature and the firing state of the object to be heated in the cement firing furnace.
JP2017071959A 2017-03-31 2017-03-31 Inside temperature measurement method and inside monitoring system Active JP6981028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071959A JP6981028B2 (en) 2017-03-31 2017-03-31 Inside temperature measurement method and inside monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071959A JP6981028B2 (en) 2017-03-31 2017-03-31 Inside temperature measurement method and inside monitoring system

Publications (2)

Publication Number Publication Date
JP2018173358A JP2018173358A (en) 2018-11-08
JP6981028B2 true JP6981028B2 (en) 2021-12-15

Family

ID=64107319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071959A Active JP6981028B2 (en) 2017-03-31 2017-03-31 Inside temperature measurement method and inside monitoring system

Country Status (1)

Country Link
JP (1) JP6981028B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687572B2 (en) * 1989-04-17 1997-12-08 三菱マテリアル株式会社 Cement firing furnace monitoring method and apparatus
JP2918113B1 (en) * 1998-07-30 1999-07-12 川崎重工業株式会社 Fluidized bed furnace temperature measuring device
JP2001249054A (en) * 2000-03-03 2001-09-14 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for measuring temperature of kiln exhaust gas
JP2002295976A (en) * 2001-03-29 2002-10-09 Sumitomo Osaka Cement Co Ltd Control method for rotary kiln, controller for rotary kiln and program for controlling rotary kiln
JP2013210259A (en) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Method for measuring temperatures of a heated object, powder dust and gas in furnace and emissivity thereof

Also Published As

Publication number Publication date
JP2018173358A (en) 2018-11-08

Similar Documents

Publication Publication Date Title
US2275265A (en) Furnace control system
JPH0244186Y2 (en)
KR101742901B1 (en) Apparatus for temperature measurements of a molten bath in a top submerged injection lance installation
JP6981028B2 (en) Inside temperature measurement method and inside monitoring system
JP6734153B2 (en) Method for measuring the temperature of the object to be measured, the temperature of dust and the concentration of dust
US9863812B2 (en) Method for measuring temperature of object in atmosphere having dust
US20200333274A1 (en) Monitoring of heated tubes
JP2013210259A (en) Method for measuring temperatures of a heated object, powder dust and gas in furnace and emissivity thereof
JP2009174032A (en) Method and apparatus for detecting calcinating point in sintering machine
JP4998045B2 (en) Rotary kiln type high temperature processing equipment
DK166819B1 (en) PROCEDURE AND ARRANGEMENT FOR MANAGING A CEMENT CLICK MANUFACTURING PLANT
JP3567852B2 (en) Rotary kiln
MXPA04006602A (en) Method for monitoring a combustion process and corresponding device.
JP6483349B2 (en) Coke oven combustion chamber observation device
RU2422744C2 (en) Device for control over temperature in electric arc furnace
Sharikov et al. Control systems of sintering Processes in rotary tubular kilns with using of thermovisors scanning
JP2005326070A (en) Material baking device
US2013486A (en) Rotary furnace
JP2003171709A (en) Temperature measurement sensor for filled layer at high-temperature and highly corrosive atmosphere, and temperature measurement sensor installing method
WO2017047376A1 (en) Method of measuring temperature of an object to be measured, dust temperature and dust concentration
RU115355U1 (en) TEMPERATURE MEASUREMENT DEVICE FOR A BLAST FURNACE
SU143042A1 (en) Apparatus for controlling radial gas distribution in a blast furnace
JP5910556B2 (en) Temperature measurement unit for rotary kiln
JP2003302174A (en) Method of measuring temperature of processed material of rotary temperature adjusting device
PL221446B1 (en) Method for assessment of refractory lining in a rotary kiln

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6981028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150