JP6980886B2 - Electrode line for fine electric discharge machining, manufacturing method and application - Google Patents

Electrode line for fine electric discharge machining, manufacturing method and application Download PDF

Info

Publication number
JP6980886B2
JP6980886B2 JP2020177699A JP2020177699A JP6980886B2 JP 6980886 B2 JP6980886 B2 JP 6980886B2 JP 2020177699 A JP2020177699 A JP 2020177699A JP 2020177699 A JP2020177699 A JP 2020177699A JP 6980886 B2 JP6980886 B2 JP 6980886B2
Authority
JP
Japan
Prior art keywords
electrode wire
layer
electric discharge
discharge machining
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020177699A
Other languages
Japanese (ja)
Other versions
JP2021049637A (en
Inventor
志▲寧▼ 梁
林▲輝▼ 万
火根 林
桐 ▲呉▼
洪方 ▲顧▼
益波 ▲陳▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Bode Hightech Co Ltd
Original Assignee
Ningbo Bode Hightech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Bode Hightech Co Ltd filed Critical Ningbo Bode Hightech Co Ltd
Publication of JP2021049637A publication Critical patent/JP2021049637A/en
Application granted granted Critical
Publication of JP6980886B2 publication Critical patent/JP6980886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • B23H1/06Electrode material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/165Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon of zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/026Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one amorphous metallic material layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)

Description

本願は、機械製造分野に関し、特に、微細放電加工用電極線、製造方法及び応用に関する。 The present application relates to the field of machine manufacturing, and particularly to electrode wires for fine electric discharge machining, manufacturing methods and applications.

製品の益々小型化及び精密化への進化に伴い、微細放電加工技術は、非接触式精密製造法の1つとして、その超精細及び高精度の加工特徴によって学術界及び工業界で注目され、既に微小機械製造分野の重要な構成部分になり、製造業において幅広く応用されている。 With the evolution of products to smaller size and precision, fine electric discharge machining technology has attracted attention in academia and industry due to its ultra-fine and high-precision machining features as one of the non-contact precision manufacturing methods. It has already become an important component of the micromachine manufacturing field and is widely applied in the manufacturing industry.

微細放電加工(マイクロEDM)は、加工液に浸っている両極間におけるパルス放電時に生じた電気腐食作用を利用して、導電材料を腐食除去する特殊な加工方法であり、マイクロ放電加工又は微細電気腐食加工とも呼ばれ、主に複雑な形状の微小な穴やキャビティを有する金型及び部品を加工するのに用いられ、例えば、航空エンジン羽根の上の気体膜の孔加工、エンジンオイルノズル穿孔、化学繊維押し出しノズルの孔加工、時計の歯車又は装飾等の精密部品の孔加工、医療機器のメーター内の部品の孔加工、微細金型加工等々である。 Micro electric discharge machining (micro EDM) is a special processing method that corrodes and removes conductive materials by utilizing the electric corrosive action generated during pulse discharge between two electrodes immersed in the processing liquid, and is micro electric discharge machining or fine electricity. Also called corrosion machining, it is mainly used to machine molds and parts with small holes and cavities of complex shapes, such as drilling holes in gas films on aviation engine blades, drilling engine oil nozzles, etc. Hole machining of chemical fiber extrusion nozzles, hole machining of precision parts such as clock gears or decorations, hole machining of parts in meters of medical equipment, fine mold machining, etc.

微細放電加工に影響を与える要素は沢山あり、例えば、高周波数電源、工具電極、組立精度、制御システム、工程設計及び作動媒体等であり、これらの要素は、全て微小な穴やキャビティの加工精度及び表面品質に直接に影響を与える。なお、工具電極は、微細放電の超精細及び高精度の加工を実現するための制約性の鍵である。なぜならば、サイズのとても小さい微小な穴及びマイクロキャビティを加工するために、まずそれよりもっと小さくて高精度の工具電極を獲得する必要がある。微細放電で工具電極をオンラインで製作することに対して研究を行うことによって最大限で微細放電加工の高精度の要求を満たすことは、微小な穴及び微小な部材を加工する専用微細放電加工の超精細及び高精度の加工技術を実現する鍵である。 There are many factors that affect fine electrical discharge machining, such as high frequency power supplies, tool electrodes, assembly accuracy, control systems, process design and working media, all of which are the machining accuracy of minute holes and cavities. And directly affect the surface quality. The tool electrode is the key to the constraint for realizing ultra-fine and high-precision machining of fine discharge. Because, in order to machine very small holes and microcavities, it is first necessary to obtain smaller and more accurate tool electrodes. By conducting research on the online production of tool electrodes with fine electric discharge, it is possible to meet the high precision requirements of fine electric discharge machining at the maximum, which is dedicated to fine electric discharge machining for machining fine holes and small members. It is the key to realize ultra-fine and high-precision machining technology.

ワイヤ放電研削加工(WEDG)は、微細放電加工において工具電極をオンラインで製作する方法であり、銅/黄銅の電極線と工具電極の間のポイント放電により工具電極の余分の部分を腐食除去し続けることで、様々な微細で異形の工具電極を加工する。しかしながら、伝統的な電極線のキャパシタンス効果から生じた高エネルギー放出、不均一な電気火花分布及び不連続な電気火花腐食、放電爆発力の干渉及び加工屑除去の滞り等の影響により、電極線と工具電極の隙間を変化させ、ひいては工具電極の表面品質に影響を与え、平滑度が悪く、微小なひび割れが沢山あり、微細放電工具電極の加工精度が大きく低下してしまう。 Wire EDM (WEDG) is a method of manufacturing tool electrodes online in fine electric discharge machining, and continues to corrode and remove excess parts of the tool electrodes by point discharge between the copper / brass electrode lines and the tool electrodes. By doing so, various fine and irregularly shaped tool electrodes are machined. However, due to the effects of high energy release, uneven electric spark distribution and discontinuous electric spark corrosion, interference of discharge explosive force and delay in removal of machining debris caused by the capacitance effect of the traditional electrode wire, the electrode wire and the electrode wire The gaps between the tool electrodes are changed, which in turn affects the surface quality of the tool electrodes, the smoothness is poor, there are many minute cracks, and the machining accuracy of the fine discharge tool electrodes is greatly reduced.

故に、WEDG方法は、ミクロンレベルの工具電極を加工することができるが、設計サイズが与えられた工具電極に対し、同じ加工の電気的パラメータ、同じ加工液、同じ工作機械及び電極材料を用いてテストを繰り返して行っても、得られた工具電極の精度は、依然として要求を満たすことができず、特に電極の位置決め精度及び形状精度(ここでは、真円度を指す)が非常に大きなばらつき範囲内で変動し、さらなる進化が期待されている。 Therefore, the WEDG method can machine micron level tool electrodes, but with the same machining electrical parameters, the same machine tool, the same machine tool and electrode material for tool electrodes given the design size. Even after repeated tests, the accuracy of the obtained tool electrodes still cannot meet the requirements, and in particular, the positioning accuracy and shape accuracy (here, roundness) of the electrodes have a very large variation range. It fluctuates within, and further evolution is expected.

本発明は、オンライン加工精度及び表面品質を高めることができる微細放電加工用電極線を提供する。 The present invention provides an electrode wire for fine electric discharge machining that can improve online machining accuracy and surface quality.

本発明は、外層がアモルファスである電極線を製造することができ、高精度の微細放電加工に用いられる前記微細放電加工用電極線の製造方法も提供する。 The present invention can also manufacture an electrode wire having an amorphous outer layer, and also provides a method for manufacturing the electrode wire for fine electric discharge machining, which is used for high-precision fine electric discharge machining.

本発明は、微細放電加工精度を高めることができる前記微細放電加工用電極線の応用も提供する。 The present invention also provides an application of the electrode wire for fine electric discharge machining, which can improve the accuracy of fine electric discharge machining.

本発明の技術解決案の1つは、微細放電加工用電極線を提供する。前記微細放電加工用電極線は、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、前記表面層は、コア材の外表面を覆う内層と、内層の外表面を覆い、アモルファス層である外層とを含むことを特徴とする。本発明に記載のアモルファスは、構造が無定形又はガラス状態を呈し、微細構造が短距離で秩序的であり、長距離で無秩序であることを意味する。アモルファス層の原子は、配列が不規則であり、遠距離で無秩序であり、抵抗率が高く、非常に高いキャパシタンス効果耐性を有するので、キャパシタンス効果による電極線の高エネルギー放出を大きく減少させ、放電プロセスにおいて均一な電気火花分布を形成することができる。アモルファス層の組織構造は、短距離で秩序的である無定形又はガラス状態の構造を呈し、構造の中に大量の微細空間があり、密度が比較的低く、融点もより高く、高温アブレーション現象が殆どない。無定形又はガラス状態の構造であるため、その組織が連続性を有しておらず、材質が硬くて脆いので、当該電極線は、熱膨張係数が比較的小さく、ピーク電流耐性が比較的強い。よって、電極線の放電プロセスにおいて自身が燃え切れるまたは変形することを防止し、工具電極の表面の熱侵食及び凹凸の現象を軽減することができる。更に、当該構造の電極線は、オンライン加工精度及び表面品質を向上させることができる。 One of the technical solutions of the present invention provides an electrode wire for fine electric discharge machining. The electrode wire for fine electric discharge machining includes a core material whose material is brass and a surface layer that covers the outside of the core material, and the surface layer includes an inner layer that covers the outer surface of the core material and an outer surface of the inner layer. It is characterized by including a cover and an outer layer which is an amorphous layer. Amorphous as described in the present invention means that the structure exhibits an amorphous or glassy state, and the fine structure is short-range and ordered, and long-range and disordered. Atoms in the amorphous layer are irregularly arranged, disordered at long distances, have high resistance, and have very high capacitance effect resistance, which greatly reduces the high energy emission of the electrode line due to the capacitance effect and discharges. A uniform electric spark distribution can be formed in the process. The structure of the amorphous layer exhibits a short-range, orderly, amorphous or glassy structure, with a large amount of microspace in the structure, a relatively low density, a higher melting point, and a high temperature ablation phenomenon. Almost none. Since the structure is amorphous or glassy, the structure is not continuous, and the material is hard and brittle. Therefore, the electrode wire has a relatively small coefficient of thermal expansion and a relatively strong peak current resistance. .. Therefore, it is possible to prevent the electrode wire from burning out or being deformed in the discharge process, and to reduce the phenomenon of heat erosion and unevenness on the surface of the tool electrode. Further, the electrode wire having the structure can improve the online processing accuracy and the surface quality.

また、前記内層の外表面は、弛緩及び/又は再構成表面構造を呈する。ここの弛緩又は再構成表面構造は、内層の外表面の原子の縦方向と横方向の配列がその内部に比べて変化していることを意味する。縦方向には、銅、亜鉛、鉄、硫黄及びシリコン等の原子が元の位置に対して移動しており、即ち、表面の弛緩が生じ、弛緩により微量元素の原子が表面の最も外の領域に位置する。横方向には、これらの原子の間隔が不規則であり、表面に再構成が生じ、再構成により2つ又はより多い原子が近づき、原子の集合体が形成される。故に、内層の外表面の原子の配列が非常に不規則となり、結晶体セルの体積が膨張し、表面に弛緩が生じ、結晶体の構造に再構成が生じる。このような構造は、システムのエネルギーを下げることができ、外来の原子又は分子を吸着して外層をアモルファス層に形成することに非常に有利である。また、表面張力の理論に基づき、気泡が弛緩又は再構成の表面構造から逸出し、電極線と微細な電極の隙間に対する瞬間爆発力の直接な干渉を大幅に減少させることができ、微細放電加工の精度を高めることに有利である。 Further, the outer surface of the inner layer exhibits a relaxed and / or reconstructed surface structure. The relaxed or reconstructed surface structure here means that the vertical and horizontal arrangement of atoms on the outer surface of the inner layer is altered compared to its interior. In the vertical direction, atoms such as copper, zinc, iron, sulfur and silicon are moving from their original positions, that is, surface relaxation occurs, which causes trace element atoms to be the outermost regions of the surface. Located in. Laterally, the spacing between these atoms is irregular, causing surface reconstruction, which causes two or more atoms to approach each other to form an aggregate of atoms. Therefore, the arrangement of atoms on the outer surface of the inner layer becomes very irregular, the volume of the crystal cell expands, the surface relaxes, and the structure of the crystal is reconstructed. Such a structure can reduce the energy of the system and is very advantageous for adsorbing foreign atoms or molecules to form an outer layer into an amorphous layer. In addition, based on the theory of surface tension, bubbles can escape from the surface structure of relaxation or reconstruction, and the direct interference of the instantaneous explosive force with respect to the gap between the electrode line and the fine electrode can be greatly reduced, and fine electric discharge machining can be performed. It is advantageous to improve the accuracy of.

また、前記アモルファス層は、49.5〜90wt%のZn、1.5〜42wt%のCu、0.158〜6.6%のXという化学元素からなり、残量がO(酸素)である。なお、Xは、少なくとも3つの異なる元素X1、X2、X3を含み、X1は、Fe、Al又はCaであり、X2は、Si、C、S又はBであり、X3は、Fe、Al、Ca、Si、C、S又はBのうちの、X1、X2と異なる任意の一種類である。前記アモルファス層は、含量の合計が0.3wt%以下である、不可避な不純物が存在する場合もある。アモルファス層の混合組織は、電極線自身の放電損耗を下げ、連続して安定する微細な放電腐食を実現し、電極線と微細な工具電極の隙間が一定であることを保障し、微細な工具電極の表面品質を高め、平滑度が高く、微小なひび割れが生じない。また、表面層の金属の主な元素は、亜鉛であり、亜鉛のガス化効果がとても良く、放電効率を高めることに寄与し、加工速度を高め、加工時間を節約することができる。 The amorphous layer is composed of 49.5 to 90 wt% Zn, 1.5 to 42 wt% Cu, and 0.158 to 6.6% X, which are chemical elements, and the remaining amount is O (oxygen). .. In addition, X contains at least three different elements X1, X2, X3, X1 is Fe, Al or Ca, X2 is Si, C, S or B, and X3 is Fe, Al, Ca. , Si, C, S or B, any one different from X1 and X2. The amorphous layer may contain unavoidable impurities having a total content of 0.3 wt% or less. The mixed structure of the amorphous layer reduces the discharge wear of the electrode wire itself, realizes continuous and stable fine discharge corrosion, ensures that the gap between the electrode wire and the fine tool electrode is constant, and is a fine tool. The surface quality of the electrode is improved, the smoothness is high, and minute cracks do not occur. In addition, the main element of the metal of the surface layer is zinc, which has a very good gasification effect, contributes to increasing the discharge efficiency, increases the processing speed, and saves the processing time.

また、前記内層は、β相又はβ’相の銅亜鉛合金であり、導電性能が優れ、微細な電気火花がポイント放電して工具電極を腐食することに有利である。 Further, the inner layer is a β-phase or β'phase copper-zinc alloy, which has excellent conductive performance and is advantageous in that fine electric sparks are point-discharged to corrode the tool electrode.

また、前記アモルファス層は、内層の外表面を完全又は未完全に覆う。 Further, the amorphous layer completely or incompletely covers the outer surface of the inner layer.

また、前記アモルファス層の厚さは、1〜10μmであり、前記内層の厚さは、5〜50μmである。 The thickness of the amorphous layer is 1 to 10 μm, and the thickness of the inner layer is 5 to 50 μm.

当該技術案は、以下の有益な効果を有する。 The proposed technology has the following beneficial effects.

当該特殊な構造の非静電層は、抵抗率が高く、融点が高く、膨張係数が小さく、キャパシタンス効果耐性が高いという特徴を有するので、電極線全体は、より優れる導電率、引張強度及び製品塑性と靱性を有し、加工精度を高めることができるだけではなく、応力を除去し、変形を減少させることもでき、加工表面は、やけどがなく、滑らかであり、微小なひび割れがなく、加工品質を高めるという目的を実現することができる(例えば、表面の粗さは、Ra0.05μmに達することができる)。 Since the non-electrostatic layer having the special structure has the characteristics of high resistivity, high melting point, low expansion coefficient, and high resistance to capacitance effect, the entire electrode line has better conductivity, tensile strength and product. It has plasticity and toughness, not only can improve machining accuracy, but also can remove stress and reduce deformation, and the machined surface is smooth, free of burns, free of microcracks, and machined quality. (For example, the surface roughness can reach Ra 0.05 μm).

本発明のもう1つの技術案は、微細放電加工用電極線の製造方法を提供する。当該微細放電加工用電極線の製造方法は、直径が0.5〜1.5mmである黄銅母線を形成するコア材製造ステップ(1)と、ステップ(1)で得られた母線に対して脱脂、酸洗浄、水洗い及び電気メッキの処理を行い、母線上に厚さが0.5〜50μmである亜鉛メッキ層を形成し、第一の線材半製品を取得する電気メッキステップ(2)と、ステップ(2)で得られた第一の線材半製品に対して50〜550℃で合金化処理を行い、黄銅コア材、内層及び初期外層からなる第二の線材半製品を形成する合金化ステップ(3)と、ステップ(3)で得られた第二の線材半製品に対して粉末冶金により層被覆処理を行い、処理温度が300〜1000℃であり、処理プロセスにおける温度の変動が20℃以内であり、100℃以下に冷却された後に窯出しし、黄銅コア材、内層及びアモルファス外層からなる第三の線材半製品を形成する粉末冶金ステップ(4)と、ステップ(4)で得られた第三の線材半製品に対してマルチモード連続延伸及びオンライン応力緩和アニーリング加工を行い、直径が0.05〜0.25mmである電極線の完成品を取得する完成品までの延伸ステップ(5)とを含む。 Another technical proposal of the present invention provides a method for manufacturing an electrode wire for fine electric discharge machining. The method for manufacturing the electrode wire for fine discharge processing is as follows: a core material manufacturing step (1) for forming a brass bus having a diameter of 0.5 to 1.5 mm, and degreasing the bus obtained in step (1). , Acid washing, water washing and electroplating treatment to form a brass plating layer with a thickness of 0.5 to 50 μm on the bus, and the electroplating step (2) to obtain the first semi-finished wire rod. The first wire semi-finished product obtained in step (2) is alloyed at 50 to 550 ° C. to form a second wire semi-finished product composed of a brass core material, an inner layer and an initial outer layer. (3) and the second wire semi-finished product obtained in step (3) are layer-coated by powder metallurgy, the treatment temperature is 300 to 1000 ° C, and the temperature fluctuation in the treatment process is 20 ° C. Obtained in steps (4) and (4) of powder metallurgy, which is within the range and is cooled to 100 ° C. or lower and then removed from the kiln to form a third wire wire semi-finished product composed of a brass core material, an inner layer and an amorphous outer layer. The third wire semi-finished product is subjected to multimode continuous stretching and online stress relaxation annealing processing, and a stretching step (5) to obtain a finished product of the electrode wire having a diameter of 0.05 to 0.25 mm. ) And.

また、ステップ(2)の電気メッキ液の化学成分は、濃度の合計が0.1〜400g/Lである炭素、窒素、酸素、水素と、濃度の合計が0.5〜600g/Lであるホウ素、硫黄、塩素と、濃度が1.2〜1000g/Lであるアルミニウムと、濃度が100〜1500g/Lである亜鉛とを含む。前記ステップ(2)の電気メッキは、速度が10〜500m/minであり、電流が1200〜2500Aであり、電圧が120〜220Vである。 The chemical components of the electroplating solution in step (2) are carbon, nitrogen, oxygen, and hydrogen having a total concentration of 0.1 to 400 g / L, and the total concentration is 0.5 to 600 g / L. It contains boron, sulfur, chlorine, aluminum having a concentration of 1.2 to 1000 g / L, and zinc having a concentration of 100 to 1500 g / L. The electroplating in step (2) has a speed of 10 to 500 m / min, a current of 1200 to 2500 A, and a voltage of 120 to 220 V.

また、ステップ(4)の冷却時間は、5〜30分間である。 The cooling time in step (4) is 5 to 30 minutes.

また、ステップ(5)において、延伸速度は、600〜1500m/minであり、アニーリング電圧は、12〜60Vであり、アニーリング電流は、15〜50Aである。 Further, in step (5), the stretching speed is 600 to 1500 m / min, the annealing voltage is 12 to 60 V, and the annealing current is 15 to 50 A.

当該技術案は、以下の有益な効果を有する。 The proposed technology has the following beneficial effects.

当該製造方法は、外層がアモルファス層であり、微細放電加工用に適用できる電極線を獲得することができる。当該電極線は、性能が高く、寿命が長く、幾何学的形状の一致性が高く、高精度の工具電極の加工及びリミットサイズの加工に適用できる。また、実際の加工要求に基づき、様々な複雑な形状の微細放電加工の要求を満たし、例えば、円柱形、円錐形、角柱状、ねじ状及び傾斜度のある電極(多軸連動デジタル制御システムを配置する必要がある)であり、工具電極の自動化形成が実現されやすい。また、当該製造方法は、生産工程が簡単であり、操作可能性が高く、製造ステップが少なく、生産設備が簡単であり、要求を満たす製品が得られやすく、規模化、自動化の生産が実現されやすい。 In this manufacturing method, the outer layer is an amorphous layer, and an electrode wire applicable to fine electric discharge machining can be obtained. The electrode wire has high performance, long life, high geometrical shape matching, and can be applied to high-precision tool electrode machining and limit size machining. In addition, based on the actual machining requirements, we can meet the requirements for fine electric discharge machining of various complicated shapes, for example, cylindrical, conical, prismatic, threaded and inclined electrodes (multi-axis interlocking digital control system). It is necessary to arrange it), and it is easy to realize the automated formation of tool electrodes. In addition, the manufacturing method has a simple production process, high operability, few manufacturing steps, simple production equipment, easy to obtain products that meet the requirements, and realizes scaled and automated production. Cheap.

本発明のもう1つの技術案は、微細放電加工における電極線の応用を提供する。 Another technical proposal of the present invention provides an application of an electrode wire in fine electric discharge machining.

当該技術案は、以下の有益な効果を有する。 The proposed technology has the following beneficial effects.

電極線は、外表面に覆われるアモルファス構造により、キャパシタンス効果による高エネルギー放出が大幅に減少されるので、放電プロセスにおいて均一な電気火花分布を形成することができる。 Due to the amorphous structure of the electrode wire covered with the outer surface, the high energy emission due to the capacitance effect is greatly reduced, so that a uniform electric spark distribution can be formed in the discharge process.

アモルファスの混合組織は、電極線自身の放電損耗を下げ、連続して安定する微細放電腐食を実現し、電極線と微細な工具電極の隙間が一定であることを保障することができるので、微細な工具電極の表面品質が高まり、平滑度が高く、微小なひび割れが生じない。 The amorphous mixed structure reduces the discharge wear of the electrode wire itself, realizes continuous and stable fine discharge corrosion, and can guarantee that the gap between the electrode wire and the fine tool electrode is constant, so that it is fine. The surface quality of the tool electrode is improved, the smoothness is high, and minute cracks do not occur.

放電プロセスにおいて電極線自身が絶えずに一方向に移動して送りし、微細な工具電極が絶えずに回転するので、本発明による電極線に特殊な構造が設置されていることは、媒体の粘着性の抵抗力を有効的に減少させることができ、加工屑の排出がより容易になり、放電隙間における電気腐食の産物の過多の蓄積が避けられている。よって、異常放電の発生が低減し、加工表面の品質が高まる。 Since the electrode wire itself constantly moves and feeds in one direction in the discharge process, and the fine tool electrode constantly rotates, the fact that the electrode wire according to the present invention has a special structure is the adhesiveness of the medium. The resistance of the work can be effectively reduced, the discharge of work chips becomes easier, and the excessive accumulation of galvanic corrosion products in the discharge gap is avoided. Therefore, the occurrence of abnormal discharge is reduced and the quality of the machined surface is improved.

本発明の電極線で加工することにより生じた粗さの値は、明らかに黄銅線で放電することにより生じた粗さの値より小さいので、本発明の電極線で加工された微細な工具電極の変質層がより小さく、微細な工具電極の使用寿命を高めることに有利である。 Since the roughness value generated by processing with the electrode wire of the present invention is clearly smaller than the roughness value generated by discharging with the brass wire, the fine tool electrode machined with the electrode wire of the present invention is used. The altered layer is smaller, which is advantageous for extending the service life of fine tool electrodes.

図1は、微細放電加工の基本部材の模式図である。FIG. 1 is a schematic diagram of a basic member for fine electric discharge machining. 図2は、本発明の電極線の完成品の局部断面模式図である。FIG. 2 is a schematic local cross-sectional view of the finished product of the electrode wire of the present invention. 図3は、本発明の第一の線材の横断面模式図である。FIG. 3 is a schematic cross-sectional view of the first wire rod of the present invention. 図4は、本発明の第二の線材の横断面模式図である。FIG. 4 is a schematic cross-sectional view of the second wire rod of the present invention. 図5は、本発明の第三の線材の横断面模式図である。FIG. 5 is a schematic cross-sectional view of the third wire rod of the present invention.

以下、具体的な実施形態を用いて本発明を更に詳しく説明するが、本発明は、以下の具体的な実施形態に限らない。 Hereinafter, the present invention will be described in more detail using specific embodiments, but the present invention is not limited to the following specific embodiments.

以下の実施形態は、本発明がカバーする範囲を限定するものではなく、記載のステップもその実行順序を限定するものではなく、記載の方向は、図面のみに限定される。当業者は、現有の周知常識を用いて本発明に対して明らかな改良を行っても、本発明の特許請求の範囲に属する。 The following embodiments do not limit the scope covered by the present invention, the steps described do not limit the order of execution thereof, and the directions of description are limited to the drawings only. Those skilled in the art will be within the scope of the claims of the present invention even if they make obvious improvements to the present invention using existing common sense.

微細放電加工と伝統的な放電加工の違いは、微細放電加工対象のサイズがミクロンレベルであるので、微細加工電源のパルスのエネルギーが非常に小さく、通常、10−6〜10−7Jである。よって、微細放電加工は、通常、比較的長い時間を必要とする。また、微細放電加工における放電腐食除去は、主にワークピース材料の熱溶融のプロセスであるので、パルスのエネルギーが高ければ、ワークピース腐食除去の体積が大きくなり、相応する加工効率も高くなるが、ワークピースの表面の粗さ及び放電隙間も大きくなることを招き、加工精度を保証することが困難である。故に、単電極の微細放電加工にとって、加工効率及び精度を兼ねることが困難である。また、通常の低速ワイヤ放電加工に比べ、微細放電加工の電極損耗がより激しく、伝統的な電極交換の方法で電極を補償すれば、微細な工具電極の形状の一致性を保障することが困難だけではなく、再度装着する際の位置決め精度も保障することが困難である。 The difference between fine electric discharge machining and traditional electric discharge machining is that the size of the object to be fine electric discharge machining is at the micron level, so the pulse energy of the fine electric discharge machine is very small, usually 10-6 to 10-7 J. .. Therefore, fine electric discharge machining usually requires a relatively long time. Further, since the electric discharge corrosion removal in the fine electric discharge machining is mainly a process of thermal melting of the workpiece material, if the energy of the pulse is high, the volume of the workpiece corrosion removal becomes large and the corresponding machining efficiency also becomes high. , The roughness of the surface of the workpiece and the discharge gap are also increased, and it is difficult to guarantee the machining accuracy. Therefore, it is difficult to combine machining efficiency and accuracy for fine electric discharge machining of a single electrode. In addition, the electrode wear of fine electric discharge machining is more severe than that of normal low-speed wire electric discharge machining, and it is difficult to guarantee the conformity of the shapes of fine tool electrodes if the electrodes are compensated by the traditional electrode replacement method. Not only that, it is difficult to guarantee the positioning accuracy when remounting.

微細放電加工技術は、非接触式であり、精度が高く、ばりがなく、熱処理後に加工可能である等のメリットを有し、導電材料の微小な構造部品の精密な製造に適用する。微細な構造の微細放電加工に対し、工程プロセスに適する微細な工具電極を用いる必要がある。図1は、現在の微細放電加工の基本的な部材を示している。 The fine electric discharge machining technology has merits such as non-contact type, high accuracy, no burrs, and can be machined after heat treatment, and is applied to the precise production of minute structural parts of conductive materials. For fine electric discharge machining of fine structures, it is necessary to use fine tool electrodes suitable for process processes. FIG. 1 shows the basic members of the current fine electric discharge machining.

本発明による技術案は、微細放電加工用電極線を提供する。図2に示すように、当該微細放電加工用電極線は、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、前記表面層は、コア材の外表面を覆う内層と、内層の外表面を覆い、アモルファス層である外層とを含むことを特徴とする。本発明による電極線は、外表面を覆うアモルファス構造により、原子が不規則的に配列し(原子の配列は長距離秩序なし)、抵抗率が高く、非常に高いキャパシタンス効果耐性を有するので、キャパシタンス効果による高エネルギー放出を大幅に減少させ、放電プロセスにおいて均一な電気火花分布を形成することができる。本発明の電極線の外層は、アモルファス材料であり、その特徴としては、組織構造が無定形又はガラス状態の構造を呈し、原子の配列は、短距離秩序があり、即ち、局部領域において質点の配列形式が結晶体に類似するが、このような、局部において規則正しく配列する領域は、非常に分散しており、これらの構造に大量の微細な空間があり、密度が比較的低く、融点もより高く、高温アブレーション現象が殆どない。無定形又はガラス状態の構造であるため、その組織が連続性を有しておらず、材質が硬くて脆いので、当該電極線は、熱膨張係数が比較的小さく、ピーク電流に耐える能力が比較的強い。よって、電極線の放電プロセスにおいて自身が燃え切れるまたは変形することを防止し、工具電極の表面の熱侵食及び凹凸の現象を軽減することができる。更に、微細放電加工オンライン加工の精度及び表面品質を向上させることができる。 The technical proposal according to the present invention provides an electrode wire for fine electric discharge machining. As shown in FIG. 2, the electrode wire for fine electric discharge machining includes a core material whose material is brass and a surface layer that covers the outside of the core material, and the surface layer is an inner layer that covers the outer surface of the core material. It is characterized by covering the outer surface of the inner layer and including an outer layer which is an amorphous layer. The electrode wire according to the present invention has an amorphous structure that covers the outer surface, so that atoms are arranged irregularly (the arrangement of atoms is not long-range order), the resistance is high, and the resistance to the capacitance effect is very high. High energy emissions due to the effect can be significantly reduced and a uniform electric spark distribution can be formed in the discharge process. The outer layer of the electrode line of the present invention is an amorphous material, which is characterized by an amorphous or glassy structure, and the arrangement of atoms has short-range order, that is, a quality point in a local region. Although the arrangement format is similar to that of crystals, these locally regularly arranged regions are highly dispersed, with a large amount of fine space in these structures, relatively low density, and a higher melting point. High and almost no high temperature ablation phenomenon. Since the structure is amorphous or glassy, the structure is not continuous, and the material is hard and brittle. Therefore, the electrode wire has a relatively small coefficient of thermal expansion and its ability to withstand peak current is compared. Strong target. Therefore, it is possible to prevent the electrode wire from burning out or being deformed in the discharge process, and to reduce the phenomenon of heat erosion and unevenness on the surface of the tool electrode. Further, the accuracy and surface quality of fine electric discharge machining online machining can be improved.

前記内層の外表面は、弛緩(緩和)及び/又は再構成表面構造を呈することが好ましい。表面張力の理論に基づき、気泡が弛緩又は再構成表面構造から逸出し、電極線と微細な電極の隙間に対する瞬間爆発力の直接な干渉を大幅に減少させることができ、微細放電加工の精度を高めることに有利である。アモルファス層の化学元素は、49.5〜90wt%のZn、1.5〜42wt%のCu、0.158〜6.6%のXという化学元素からなり、残量がOである。Xは、少なくとも3つの異なる元素X1、X2、X3を含み、X1は、Fe、Al又はCaであり、X2は、Si、C、S又はBであり、X3は、Fe、Al、Ca、Si、C、S又はBのうちの、X1、X2と異なる任意の一種類であり、その他の不可避な不純物の含量の合計が0.3wt%以下である。「Xは、少なくとも3つの異なる元素X1、X2、X3を含み、X1は、Fe、Al又はCaであり、X2は、Si、C、S又はBであり、X3は、Fe、Al、Ca、Si、C、S又はBのうちの、X1、X2と異なる任意の一種類である」ことは、Xの例に対し、Xは、少なくとも3つの異なる元素を含み、例えば、X1は、Feであり、X2は、Siであれば、X3は、Al、Ca、C、S又はBのうちのいずれか一種類であると理解すべきである。アモルファス層の混合組織は、電極線自身の放電損耗を下げ、連続して安定する微細な放電腐食を実現し、電極線と微細な工具電極の隙間が一定であることを保障し、微細な工具電極の表面品質を高め、平滑度が高く、微小なひび割れが生じない。また、表面層の金属の主な元素は、亜鉛であり、亜鉛のガス化効果がとても良く、放電効率を高めることに寄与し、加工速度を高め、加工時間を節約することができる。 The outer surface of the inner layer preferably exhibits a relaxed (relaxed) and / or reconstructed surface structure. Based on the theory of surface tension, bubbles can escape from the relaxed or reconstructed surface structure, and the direct interference of the instantaneous explosive force with respect to the gap between the electrode line and the fine electrode can be greatly reduced, and the accuracy of fine electric discharge machining can be improved. It is advantageous to increase. The chemical element of the amorphous layer is composed of 49.5 to 90 wt% Zn, 1.5 to 42 wt% Cu, and 0.158 to 6.6% X, and the remaining amount is O. X comprises at least three different elements X1, X2, X3, X1 is Fe, Al or Ca, X2 is Si, C, S or B and X3 is Fe, Al, Ca, Si. , C, S or B, which is any kind different from X1 and X2, and the total content of other unavoidable impurities is 0.3 wt% or less. "X comprises at least three different elements X1, X2, X3, X1 is Fe, Al or Ca, X2 is Si, C, S or B and X3 is Fe, Al, Ca. "It is any one of Si, C, S or B that is different from X1 and X2." In contrast to the example of X, X contains at least three different elements, for example, X1 is Fe. Yes, if X2 is Si, it should be understood that X3 is any one of Al, Ca, C, S or B. The mixed structure of the amorphous layer reduces the discharge wear of the electrode wire itself, realizes continuous and stable fine discharge corrosion, ensures that the gap between the electrode wire and the fine tool electrode is constant, and is a fine tool. The surface quality of the electrode is improved, the smoothness is high, and minute cracks do not occur. In addition, the main element of the metal of the surface layer is zinc, which has a very good gasification effect, contributes to increasing the discharge efficiency, increases the processing speed, and saves the processing time.

電極線の内層は、β相又はβ’相の銅亜鉛合金であることが好ましく、導電性能が優れ、微細な電気火花がポイント放電して工具電極を腐食することに有利である。β相又はβ’相の銅亜鉛合金は、約45%〜51%の亜鉛を含有する銅亜鉛合金を表す。一定の環境温度では、合金構造は、規則正しく且つ一定の脆さを有し、通常、β’相と呼ばれ、一定の温度を超えると、構造が不規則となり、β相と呼ばれる。β相とβ’相の間の転換は、避けられないが、与えられる影響がとても小さい。 The inner layer of the electrode wire is preferably a β-phase or β'phase copper-zinc alloy, which has excellent conductivity and is advantageous in that fine electric sparks are point-discharged to corrode the tool electrode. The β-phase or β'phase copper-zinc alloy represents a copper-zinc alloy containing about 45% to 51% zinc. At a constant ambient temperature, the alloy structure has regular and constant brittleness and is usually referred to as the β'phase, above which the structure becomes irregular and is referred to as the β phase. The conversion between the β and β'phases is unavoidable, but has a very small effect.

アモルファス層は、内層の外表面を完全又は未完全に覆う。アモルファス層の厚さは、1〜10μmであることが好ましく、前記内層の厚さは、5〜50μmである。 The amorphous layer completely or incompletely covers the outer surface of the inner layer. The thickness of the amorphous layer is preferably 1 to 10 μm, and the thickness of the inner layer is 5 to 50 μm.

前記電極線の製造方法は、以下の基本ステップを含む。
(1)コア材製造:直径が0.5〜1.5mmである黄銅母線を形成し、黄銅コア材の成分は、57.5〜71.5wt%のCu、0.003〜0.30wt%のFe、0.001〜0.10wt%のSiであり、残量がZnである。
(2)電気メッキ:ステップ(1)で得られた母線に対して脱脂、酸洗浄、水洗い及び電気メッキの処理を行い、母線上に厚さが0.5〜50μmである亜鉛メッキ層を形成し、第一の線材半製品を取得し、図3は、その横断面を示しており、電気メッキ液の化学成分は、濃度の合計が0.1〜400g/Lである炭素、窒素、酸素、水素と、濃度の合計が0.5〜600g/Lであるホウ素、硫黄、塩素と、濃度が1.2〜1000g/Lであるアルミニウムと、濃度が100〜1500g/Lである亜鉛とを含み、電気メッキは、速度が10〜500m/minであり、電流が1200〜2500Aであり、電圧が120〜220Vである。
(3)合金化:ステップ(2)で得られた第一の線材半製品に対して50〜550℃で合金化処理を行い、黄銅コア材、内層及び初期外層からなる第二の線材半製品を形成し、図4は、その横断面を示している。
(4)粉末冶金:ステップ(3)で得られた第二の線材半製品に対して粉末冶金により層被覆処理を行い、処理温度が300〜1000℃であり、処理温度が安定すると、与えられた任意の時間間隔内において、仕事空間内の任意の一点の最高温度と最低温度の差が20℃以下であり、100℃以下に冷却(5〜30分間以内)された後に窯出しし、黄銅コア材、内層及びアモルファス外層からなる第三の線材半製品を形成し、図5は、その横断面を示している。
(5)完成品までの延伸:ステップ(4)で得られた第三の線材半製品に対してマルチモード連続延伸及びオンライン応力緩和アニーリング加工を行い、延伸速度が600〜1500m/minであり、アニーリング電圧が12〜60Vであり、アニーリング電流が15〜50Aであり、直径が0.05〜0.25mmである電極線の完成品を取得し、図2は、完成品の局部断面を示している。
The method for manufacturing an electrode wire includes the following basic steps.
(1) Manufacture of core material: A brass bus having a diameter of 0.5 to 1.5 mm is formed, and the components of the brass core material are 57.5 to 71.5 wt% Cu and 0.003 to 0.30 wt%. Fe, 0.001 to 0.10 wt% Si, and the remaining amount is Zn.
(2) Electroplating: The bus obtained in step (1) is subjected to degreasing, pickling, washing with water and electroplating to form a zinc-plated layer having a thickness of 0.5 to 50 μm on the bus. Then, the first semi-finished wire rod was obtained, and FIG. 3 shows the cross section thereof. The chemical components of the electroplating solution are carbon, nitrogen, and oxygen having a total concentration of 0.1 to 400 g / L. , Hydrogen, boron, sulfur and chlorine having a total concentration of 0.5 to 600 g / L, aluminum having a concentration of 1.2 to 1000 g / L, and zinc having a concentration of 100 to 1500 g / L. Including, electroplating has a speed of 10 to 500 m / min, a current of 1200 to 2500 A, and a voltage of 120 to 220 V.
(3) Alloying: The first wire semi-finished product obtained in step (2) is alloyed at 50 to 550 ° C., and the second wire semi-finished product composed of a brass core material, an inner layer and an initial outer layer is formed. Is formed, and FIG. 4 shows a cross section thereof.
(4) Powder metallurgy: The second wire semi-finished product obtained in step (3) is subjected to layer coating treatment by powder metallurgy, and is given when the treatment temperature is 300 to 1000 ° C. and the treatment temperature is stable. Within any time interval, the difference between the maximum temperature and the minimum temperature of any point in the work space is 20 ° C or less, and after cooling to 100 ° C or less (within 5 to 30 minutes), brass is removed. A third wire semi-finished product consisting of a core material, an inner layer and an amorphous outer layer is formed, and FIG. 5 shows a cross section thereof.
(5) Stretching to finished product: The third wire semi-finished product obtained in step (4) was subjected to multimode continuous stretching and online stress relaxation annealing, and the stretching speed was 600 to 1500 m / min. Obtained a finished electrode wire with an annealing voltage of 12-60V, an annealing current of 15-50A and a diameter of 0.05-0.25mm, FIG. 2 shows a local cross section of the finished product. There is.

本発明の電極線は、引張強度をコンピュータ制御電子式万能試験機でテストし、導電率をブリッジ法でテストした。 For the electrode wire of the present invention, the tensile strength was tested by a computer-controlled electronic universal tester, and the conductivity was tested by the bridge method.

前記電極線は、微細放電加工に適用し、微細な工具電極のオンライン加工精度及び表面品質を有効的に高めることができる。その原因は、以下を含む。 The electrode wire can be applied to fine electric discharge machining, and can effectively improve the online machining accuracy and surface quality of fine tool electrodes. The causes include the following.

1)外表面を覆うアモルファス合金構造により、原子が不規則な配列を呈し、抵抗率が高く、とても高いキャパシタンス効果耐性を有し、キャパシタンス効果による高エネルギー放出を大幅に減少させ、放電プロセスにおいて均一な電気火花分布を形成することができる。 1) Due to the amorphous alloy structure covering the outer surface, the atoms show an irregular arrangement, the resistance is high, the capacitance effect resistance is very high, the high energy emission due to the capacitance effect is greatly reduced, and it is uniform in the discharge process. Can form an electric spark distribution.

2)アモルファスの混合組織は、電極線自身の放電損耗を下げ、連続して安定する微細な放電腐食を実現し、電極線と微細な工具電極の隙間が一定であることを保障し、微細な工具電極の表面品質を高め、平滑度が高く、微小なひび割れが生じない。 2) The amorphous mixed structure reduces the discharge wear of the electrode wire itself, realizes continuous and stable fine discharge corrosion, guarantees that the gap between the electrode wire and the fine tool electrode is constant, and is fine. The surface quality of the tool electrode is improved, the smoothness is high, and minute cracks do not occur.

3)電極線の表面層の内層の外表面に特殊な弛緩及び/又は再構成構造を設置することにより、表面張力の理論に基づき、気泡が弛緩又は再構成構造から逸出し、電極線と微細な工具電極の隙間に対する瞬間爆発力の直接な干渉を大幅に減少させることができ、微細放電加工の精度を高めることに有利である。 3) By installing a special relaxation and / or reconstruction structure on the outer surface of the inner layer of the surface layer of the electrode wire, bubbles escape from the relaxation or reconstruction structure based on the theory of surface tension, and the electrode wire and fine particles. It is possible to significantly reduce the direct interference of the instantaneous explosive force with respect to the gap between the tool electrodes, which is advantageous for improving the accuracy of fine electric discharge machining.

4)放電プロセスにおいて電極線自身が絶えずに一方向に移動して送りし、微細な工具電極が絶えずに回転するので、本発明による電極線に特殊な構造が設置されていることは、媒体の粘着性の抵抗力を有効的に減少させることができ、加工屑の排出がより容易になり、放電隙間における電気腐食の産物の過多の蓄積が避けられている。よって、異常放電の発生が低減し、加工表面の品質が高まる。 4) In the discharge process, the electrode wire itself constantly moves and feeds in one direction, and the fine tool electrode constantly rotates. Therefore, the fact that the electrode wire according to the present invention has a special structure is that the medium has a special structure. Adhesive resistance can be effectively reduced, machining debris can be more easily discharged, and excessive accumulation of galvanic corrosion products in the discharge gap is avoided. Therefore, the occurrence of abnormal discharge is reduced and the quality of the machined surface is improved.

5)当該電極線は、材質がβ相又はβ’相の銅亜鉛合金である内層を有し、導電性能が優れ、微細な電気火花がポイント放電して工具電極を腐食することに有利である。 5) The electrode wire has an inner layer made of a β-phase or β'phase copper-zinc alloy, has excellent conductivity, and is advantageous in that fine electric sparks are point-discharged to corrode the tool electrode. ..

6)当該電極線の表面層の金属の主な元素は、亜鉛であり、亜鉛のガス化効果がとても優れ、放電効率を高めることに寄与し、加工速度を高め、加工時間を節約することができる。 6) The main element of the metal in the surface layer of the electrode wire is zinc, which has a very excellent gasification effect, contributes to increasing the discharge efficiency, increases the processing speed, and saves the processing time. can.

7)当該電極線は、引張強度が高く、製品塑性と靱性を有するので、小さなシャフト型の線回収及び線出しに便利であり、線が切れにくい。 7) Since the electrode wire has high tensile strength, product plasticity and toughness, it is convenient for collecting and drawing a small shaft type wire, and the wire is hard to break.

8)当該電極線は、加工精度が高く、柔軟性が良いので、微細放電により電極をオンラインで製作する際の加工表面の品質を有効的に高め、微細放電加工技術の長足の発展を促進する。 8) Since the electrode wire has high processing accuracy and flexibility, it effectively improves the quality of the processed surface when manufacturing an electrode online by fine electric discharge, and promotes the long-term development of fine electric discharge machining technology. ..

9)当該電極線は、実際の加工要求に基づき、様々な複雑な形状の微細放電加工の要求を満たし、例えば、円柱形、円錐形、角柱状、ねじ状及び傾斜度のある電極(多軸連動デジタル制御システムを配置する必要がある)であり、工具電極の自動化形成が実現されやすい。 9) The electrode wire meets the requirements for fine electric discharge machining of various complicated shapes based on the actual machining requirements, and is, for example, a cylindrical, conical, prismatic, screw-like, and inclined electrode (multi-axis). It is necessary to arrange an interlocking digital control system), and it is easy to realize automated forming of tool electrodes.

10)電気火花の変質層の厚さは、約Rmax値の3〜4倍であり、基本的に荒加工において形成する。本発明の電極線で加工することにより生じた粗さの値は、明らかに黄銅線で放電することにより生じた粗さの値より小さく、粗さの値が小さければ小さいほど、電極線のパルス幅が小さくなり、電流の作用時間が短くなり、熱量が材料の奥行き方向へ伝達するのに必要とする十分な時間がなく、熱量が達する深さも比較的小さいので、加工材料の変質層が比較的薄く、使用寿命がより長い。 10) The thickness of the altered layer of the electric spark is about 3 to 4 times the Rmax value, and is basically formed by roughing. The roughness value generated by processing with the electrode wire of the present invention is clearly smaller than the roughness value generated by discharging with the brass wire, and the smaller the roughness value, the more the pulse of the electrode wire. Compared to the altered layers of processed materials, because the width is smaller, the duration of current action is shorter, there is not enough time for the amount of heat to be transferred in the depth direction of the material, and the depth at which the amount of heat reaches is relatively small. Thin and long-lasting.

実施形態1Embodiment 1

微細放電加工用電極線は、直径D0が0.20mm(ここでは、電極線の直径を指す)であり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と、内層の外表面を覆う外層からなる。外層は、アモルファス層であり、53.38wt%のZn、30.67wt%のCu、0.41wt%のAl、0.87wt%のC、0.003wt%のSi及び0.002wt%のSからなり、残量がOである。当該アモルファス層の厚さは、5.5μmであり、内層の外表面の構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が50.5wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが10μmである。 The electrode wire for fine electric discharge machining has a diameter D0 of 0.20 mm (here, refers to the diameter of the electrode wire), includes a core material whose material is brass, and a surface layer that covers the outside of the core material, and has a surface surface. The layer consists of an inner layer that covers the outer surface of the core material and an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer consisting of 53.38 wt% Zn, 30.67 wt% Cu, 0.41 wt% Al, 0.87 wt% C, 0.003 wt% Si and 0.002 wt% S. The remaining amount is O. The thickness of the amorphous layer is 5.5 μm, which completely or incompletely covers the structure of the outer surface of the inner layer. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 50.5 wt% and has a thickness of 10 μm.

前記微細放電加工用電極線の製造プロセスは、次の通りである。 The manufacturing process of the electrode wire for fine electric discharge machining is as follows.

(1)直径が1.2mmであり、銅の含有量が62.8wt%であり、シリコンの含有量が0.01wt%である黄銅母線コア材を製造する。 (1) A brass bus core material having a diameter of 1.2 mm, a copper content of 62.8 wt%, and a silicon content of 0.01 wt% is produced.

(2)ステップ(1)で得られた母線に対して脱脂、酸洗浄、水洗い及び連続電気亜鉛メッキの処理を行い、メッキ液の1リットルあたりの中に380gの硫酸亜鉛、25gの硫酸アルミニウム、及びポリエチレングリコール、アラビアゴム、ピーチレジン、デキストリン又はグルコース等の添加剤13gを添加し、メッキ層の厚さが10μmであり、第一の線材半製品を獲得する。なお、電気メッキは、速度が150m/minであり、電流が1200Aであり、電圧が150Vである。 (2) The bus obtained in step (1) is subjected to degreasing, pickling, washing with water and continuous electrozinc plating, and 380 g of zinc sulfate and 25 g of aluminum sulfate are contained in 1 liter of the plating solution. And 13 g of an additive such as polyethylene glycol, arabic rubber, peach resin, dextrin or glucose is added, the thickness of the plating layer is 10 μm, and the first semi-finished wire rod is obtained. The electroplating has a speed of 150 m / min, a current of 1200 A, and a voltage of 150 V.

(3)ステップ(2)で電気メッキされた第一の線材半製品を、密封する容器に入れて真空排気し、真空度が−0.10MPaであり、その後、合金化処理を行い、温度が270℃であり、処理時間が600minであり、コア材とメッキ層に合金化及び化学偏析反応を完成させることで、電極線の内層の材質が得られ、内部の元素が線材半製品の表面に偏析し、第二の線材半製品を獲得する。 (3) The first wire wire semi-finished product electroplated in step (2) is placed in a sealed container and evacuated to a vacuum degree of −0.10 MPa. The temperature is 270 ° C., the treatment time is 600 min, and by completing the alloying and chemical segregation reaction between the core material and the plating layer, the material of the inner layer of the electrode wire is obtained, and the elements inside are applied to the surface of the wire semi-finished product. Segregate and obtain a second semi-finished wire rod.

(4)前記ステップ(3)で得られた第二の線材半製品を酸素雰囲気に置き、酸素の濃度を約20.9%とし、550℃まで温度上昇させ、焼結反応時間を180minとし、温度の変動を10℃以内に制御し、続いて風冷又は水冷を用いて30minの時間内で室温まで迅速に冷却し、その後、窯出しし、最終的に必要とする外層のアモルファス材料を形成して第三の線材半製品を獲得する。 (4) The second wire semi-finished product obtained in the above step (3) was placed in an oxygen atmosphere, the oxygen concentration was set to about 20.9%, the temperature was raised to 550 ° C, and the sintering reaction time was set to 180 min. Temperature fluctuations are controlled within 10 ° C, followed by rapid cooling to room temperature within a time of 30 min using air cooling or water cooling, followed by kiln removal to finally form the required outer layer amorphous material. And acquire the third semi-finished wire rod.

(5)最後に、前記得られた第三の線材半製品に対してマルチモード連続延伸及びオンライン応力緩和アニーリング加工を行い、延伸速度が1000m/minであり、アニーリング電圧が32Vであり、アニーリング電流が25Aであり、直径が0.25mmである電極線の完成品を獲得する。 (5) Finally, multimode continuous stretching and online stress relaxation annealing processing were performed on the obtained third wire semi-finished product, the stretching speed was 1000 m / min, the annealing voltage was 32 V, and the annealing current. Is 25A, and a finished product of the electrode wire having a diameter of 0.25 mm is obtained.

実施形態2Embodiment 2

微細放電加工用電極線は、直径D0が0.20mmであり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と内層の外表面を覆う外層からなる。外層は、アモルファス層であり、49.5wt%のZn、41.5wt%のCu、0.61wt%のFe、0.78wt%のCa、0.002wt%のSi及び0.002wt%のSを含み、残量がOである。当該アモルファス層の厚さは、1μmであり、内層の外表面の構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が50.5wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが5μmである。 The electrode wire for fine electric discharge machining includes a core material having a diameter D0 of 0.20 mm and a material of brass and a surface layer covering the outside of the core material, and the surface layer is an inner layer covering the outer surface of the core material. It consists of an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer containing 49.5 wt% Zn, 41.5 wt% Cu, 0.61 wt% Fe, 0.78 wt% Ca, 0.002 wt% Si and 0.002 wt% S. Including, the remaining amount is O. The thickness of the amorphous layer is 1 [mu] m, the structure of the inner layer of the outer surface completely or not completely cover. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 50.5 wt% and has a thickness of 5 μm.

実施形態3Embodiment 3

微細放電加工用電極線は、直径D0が0.20mmであり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と内層の外表面を覆う外層からなる。外層は、アモルファス層であり、75.5wt%のZn、12wt%のCu、0.42wt%のFe、0.005wt%のSi及び0.003wt%のPを含み、残量がOである。当該アモルファス層の厚さは、8μmであり、内層の外表面の再構成構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が46.5wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが40μmである。 The electrode wire for fine electric discharge machining includes a core material having a diameter D0 of 0.20 mm and a material of brass and a surface layer covering the outside of the core material, and the surface layer is an inner layer covering the outer surface of the core material. It consists of an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer and contains 75.5 wt% Zn, 12 wt% Cu, 0.42 wt% Fe, 0.005 wt% Si and 0.003 wt% P, and the remaining amount is O. The amorphous layer has a thickness of 8 μm and completely or incompletely covers the reconstructed structure of the outer surface of the inner layer. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 46.5 wt% and has a thickness of 40 μm.

実施形態4Embodiment 4

微細放電加工用電極線は、直径D0が0.20mmであり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と内層の外表面を覆う外層からなる。外層は、アモルファス層であり、60.5wt%のZn、12.5wt%のCu、0.55wt%のC、0.024wt%のAl及び0.024wt%のBを含み、残量がOである。当該アモルファス層の厚さは、10μmであり、内層の外表面の弛緩構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が50.8wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが50μmである。 The electrode wire for fine electric discharge machining includes a core material having a diameter D0 of 0.20 mm and a material of brass and a surface layer covering the outside of the core material, and the surface layer is an inner layer covering the outer surface of the core material. It consists of an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer and contains 60.5 wt% Zn, 12.5 wt% Cu, 0.55 wt% C, 0.024 wt% Al and 0.024 wt% B, and the remaining amount is O. be. The thickness of the amorphous layer is 10 μm, and completely or incompletely covers the relaxed structure of the outer surface of the inner layer. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 50.8 wt% and has a thickness of 50 μm.

実施形態5Embodiment 5

微細放電加工用電極線は、直径D0が0.20mmであり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と内層の外表面を覆う外層からなる。外層は、アモルファス層であり、71.5wt%のZn、11.5wt%のCu、0.60wt%のCa、0.78wt%のFe、0.002wt%のSi及び0.85wt%のCを含み、残量がOである。当該アモルファス層の厚さは、3μmであり、内層の外表面の弛緩構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が51.2wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが30μmである。 The electrode wire for fine electric discharge machining includes a core material having a diameter D0 of 0.20 mm and a material of brass and a surface layer covering the outside of the core material, and the surface layer is an inner layer covering the outer surface of the core material. It consists of an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer containing 71.5 wt% Zn, 11.5 wt% Cu, 0.60 wt% Ca, 0.78 wt% Fe, 0.002 wt% Si and 0.85 wt% C. Including, the remaining amount is O. The thickness of the amorphous layer is 3 μm, and completely or incompletely covers the relaxed structure of the outer surface of the inner layer. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 51.2 wt% and has a thickness of 30 μm.

実施形態6Embodiment 6

微細放電加工用電極線は、直径D0が0.20mmであり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と内層の外表面を覆う外層からなる。外層は、アモルファス層であり、74.5wt%のZn、1.5wt%のCu、0.50wt%のCa、2.0wt%のFe、2.5wt%のB及び1.6wt%のCを含み、残量がOである。当該アモルファス層の厚さは、7μmであり、内層の外表面の弛緩構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が50.5wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが38μmである。 The electrode wire for fine electric discharge machining includes a core material having a diameter D0 of 0.20 mm and a material of brass and a surface layer covering the outside of the core material, and the surface layer is an inner layer covering the outer surface of the core material. It consists of an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer containing 74.5 wt% Zn, 1.5 wt% Cu, 0.50 wt% Ca, 2.0 wt% Fe, 2.5 wt% B and 1.6 wt% C. Including, the remaining amount is O. The thickness of the amorphous layer is 7 μm, and completely or incompletely covers the relaxed structure of the outer surface of the inner layer. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 50.5 wt% and has a thickness of 38 μm.

実施形態7Embodiment 7

微細放電加工用電極線は、直径D0が0.20mmであり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と内層の外表面を覆う外層からなる。外層は、アモルファス層であり、77.5wt%のZn、14.7wt%のCu、0.60wt%のCa、0.78wt%のAl、0.002wt%のSi及び0.85wt%のCを含み、残量がOである。当該アモルファス層の厚さは、4μmであり、内層の外表面の弛緩構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が50.5wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが25μmである。 The electrode wire for fine electric discharge machining includes a core material having a diameter D0 of 0.20 mm and a material of brass and a surface layer covering the outside of the core material, and the surface layer is an inner layer covering the outer surface of the core material. It consists of an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer containing 77.5 wt% Zn, 14.7 wt% Cu, 0.60 wt% Ca, 0.78 wt% Al, 0.002 wt% Si and 0.85 wt% C. Including, the remaining amount is O. The thickness of the amorphous layer is 4 μm, and completely or incompletely covers the relaxed structure of the outer surface of the inner layer. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 50.5 wt% and has a thickness of 25 μm.

実施形態88th embodiment

微細放電加工用電極線は、直径D0が0.20mmであり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と内層の外表面を覆う外層からなる。外層は、アモルファス層であり、82.5wt%のZn、5.2wt%のCu、0.50wt%のAl、0.98wt%のFe及び0.003wt%のSiを含み、残量がOである。当該アモルファス層の厚さは、9μmであり、内層の外表面の弛緩構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が48.5wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが45μmである。 The electrode wire for fine electric discharge machining includes a core material having a diameter D0 of 0.20 mm and a material of brass and a surface layer covering the outside of the core material, and the surface layer is an inner layer covering the outer surface of the core material. It consists of an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer and contains 82.5 wt% Zn, 5.2 wt% Cu, 0.50 wt% Al, 0.98 wt% Fe and 0.003 wt% Si, and the remaining amount is O. be. The thickness of the amorphous layer is 9 μm, and completely or incompletely covers the relaxed structure of the outer surface of the inner layer. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 48.5 wt% and has a thickness of 45 μm.

実施形態9Embodiment 9

微細放電加工用電極線は、直径D0が0.20mmであり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と内層の外表面を覆う外層からなる。外層は、アモルファス層であり、88.5wt%のZn、1.9wt%のCu、0.88wt%のFe、0.002wt%のB及び0.85wt%のSを含み、残量がOである。当該アモルファス層の厚さは、5μmであり、内層の外表面の弛緩構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が50.5wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが30μmである。 The electrode wire for fine electric discharge machining includes a core material having a diameter D0 of 0.20 mm and a material of brass and a surface layer covering the outside of the core material, and the surface layer is an inner layer covering the outer surface of the core material. It consists of an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer containing 88.5 wt% Zn, 1.9 wt% Cu, 0.88 wt% Fe, 0.002 wt% B and 0.85 wt% S, and the remaining amount is O. be. The thickness of the amorphous layer is 5 μm, and completely or incompletely covers the relaxed structure of the outer surface of the inner layer. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 50.5 wt% and has a thickness of 30 μm.

実施形態10Embodiment 10

微細放電加工用電極線は、直径D0が0.20mmであり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と内層の外表面を覆う外層からなる。外層は、アモルファス層であり、55.5wt%のZn、42.5wt%のCu、0.05wt%のCa、0.1wt%のFe及び0.008wt%のSiを含み、残量がOである。当該アモルファス層の厚さは、2μmであり、内層の外表面の弛緩構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が50.5wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが30μmである。 The electrode wire for fine electric discharge machining includes a core material having a diameter D0 of 0.20 mm and a material of brass and a surface layer covering the outside of the core material, and the surface layer is an inner layer covering the outer surface of the core material. It consists of an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer containing 55.5 wt% Zn, 42.5 wt% Cu, 0.05 wt% Ca, 0.1 wt% Fe and 0.008 wt% Si, and the remaining amount is O. be. The thickness of the amorphous layer is 2 μm, and completely or incompletely covers the relaxed structure of the outer surface of the inner layer. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 50.5 wt% and has a thickness of 30 μm.

実施形態11Embodiment 11

微細放電加工用電極線は、直径D0が0.20mmであり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と内層の外表面を覆う外層からなる。外層は、アモルファス層であり、84.5wt%のZn、12.5wt%のCu、0.60wt%のCa、0.08wt%のSi及び0.85wt%のCを含み、残量がOである。当該アモルファス層の厚さは、1μmであり、内層の外表面の弛緩構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が50.5wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが25μmである。 The electrode wire for fine electric discharge machining includes a core material having a diameter D0 of 0.20 mm and a material of brass and a surface layer covering the outside of the core material, and the surface layer is an inner layer covering the outer surface of the core material. It consists of an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer and contains 84.5 wt% Zn, 12.5 wt% Cu, 0.60 wt% Ca, 0.08 wt% Si and 0.85 wt% C, and the remaining amount is O. be. The thickness of the amorphous layer is 1 μm, and completely or incompletely covers the relaxed structure of the outer surface of the inner layer. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 50.5 wt% and has a thickness of 25 μm.

実施形態12Embodiment 12

微細放電加工用電極線は、直径D0が0.20mmであり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と内層の外表面を覆う外層からなる。外層は、アモルファス層であり、73.5wt%のZn、17.5wt%のCu、0.68wt%のCa、2.2wt%のSi及び0.8wt%のCを含み、残量がOである。当該アモルファス層の厚さは、6μmであり、内層の外表面の弛緩構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が46.5wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが36μmである。 The electrode wire for fine electric discharge machining includes a core material having a diameter D0 of 0.20 mm and a material of brass and a surface layer covering the outside of the core material, and the surface layer is an inner layer covering the outer surface of the core material. It consists of an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer and contains 73.5 wt% Zn, 17.5 wt% Cu, 0.68 wt% Ca, 2.2 wt% Si and 0.8 wt% C, and the remaining amount is O. be. The thickness of the amorphous layer is 6 μm, and completely or incompletely covers the relaxed structure of the outer surface of the inner layer. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 46.5 wt% and has a thickness of 36 μm.

実施形態13Embodiment 13

微細放電加工用電極線は、直径D0が0.20mmであり、材質が黄銅であるコア材と、コア材の外を覆う表面層とを含み、表面層は、コア材の外表面を覆う内層と内層の外表面を覆う外層からなる。外層は、アモルファス層であり、90wt%のZn、3.5wt%のCu、0.2wt%のCa、1.8wt%のFe及び0.02wt%のSiを含み、残量がOである。当該アモルファス層の厚さは、7μmであり、内層の外表面の弛緩構造を完全又は未完全に覆う。当該電極線の内層は、材質は、亜鉛の含有量が48.5wt%であるβ相又はβ’相の銅亜鉛合金からなり、厚さが35μmである。 The electrode wire for fine electric discharge machining includes a core material having a diameter D0 of 0.20 mm and a material of brass and a surface layer covering the outside of the core material, and the surface layer is an inner layer covering the outer surface of the core material. It consists of an outer layer that covers the outer surface of the inner layer. The outer layer is an amorphous layer and contains 90 wt% Zn, 3.5 wt% Cu, 0.2 wt% Ca, 1.8 wt% Fe and 0.02 wt% Si, and the remaining amount is O. The thickness of the amorphous layer is 7 μm, and completely or incompletely covers the relaxed structure of the outer surface of the inner layer. The inner layer of the electrode wire is made of a β-phase or β'phase copper-zinc alloy having a zinc content of 48.5 wt% and has a thickness of 35 μm.

比較例Comparative example

比較例1、2は、D0が0.20mmである市販の赤銅線を、微細放電加工に応用する際にテストして比較する例である。 Comparative Examples 1 and 2 are examples of testing and comparing commercially available red copper wires having a D0 of 0.20 mm when applied to fine electric discharge machining.

比較例3、4、5は、D0が0.20mmである市販の普通の黄銅線A、B、Cを、微細放電加工に応用する際にテストして比較する例である。 Comparative Examples 3, 4, and 5 are examples in which commercially available ordinary brass wires A, B, and C having a D0 of 0.20 mm are tested and compared when applied to fine electric discharge machining.

比較例6は、番号が201310562102.8であり、名称が低速ワイヤ電気火花放電加工用電極線及びその製造方法である特許に記載の技術案に基づいて製造された電極線を、微細放電加工に応用する際にテストして比較する例である。 In Comparative Example 6, the number is 201310562102.8, and the electrode wire for low-speed wire electric spark electric discharge machining and the electrode wire manufactured based on the technical proposal described in the patent which is the manufacturing method thereof are used for fine electric discharge machining. This is an example of testing and comparing when applying.

比較例7は、番号が201610795405.8であり、名称が単方向ワイヤ放電加工用電極線及びその製造方法である特許に記載の技術案に基づいて製造された電極線を、微細放電加工に応用する際にテストして比較する例である。 In Comparative Example 7, the number is 201610795405.8, and the electrode wire for unidirectional wire electric discharge machining and the electrode wire manufactured based on the technical proposal described in the patent which is the manufacturing method thereof are applied to fine electric discharge machining. This is an example of testing and comparing when doing.

<引張強度及び導電率>
電極線の完成品は、コンピュータ制御電子式万能試験機でその引張強度性能をテストし、その導電率をブリッジ法でテストし、表1は、その結果を表している。
<Tensile strength and conductivity>
The finished product of the electrode wire was tested for its tensile strength performance with a computer-controlled electronic universal tester, and its conductivity was tested by the bridge method, and Table 1 shows the results.

Figure 0006980886
表1の各データは、何れも同等の条件でテストして得られ、なお、電極線の直径は何れも0.20mmである。当然ながら、当業者は、各実施形態の中のコア材の直径、ステップ2、3、4の加工パラメータ及びステップ5のマルチモード連続延伸及びオンライン応力緩和アニーリング加工の条件を有効的に調整することにより、各実施形態の中の完成品の電極線は、直径が0.05mm〜0.25mmの範囲内に変化するようにさせることができる。
Figure 0006980886
Each of the data in Table 1 was obtained by testing under the same conditions, and the diameter of the electrode wire was 0.20 mm. Of course, one of ordinary skill in the art will effectively adjust the diameter of the core material in each embodiment, the machining parameters of steps 2, 3 and 4 and the conditions of multimode continuous stretching and online stress relaxation annealing in step 5. Therefore, the electrode wire of the finished product in each embodiment can be made to change in diameter within the range of 0.05 mm to 0.25 mm.

表1の本発明の微細放電加工用電極線の引張強度が比較的高く、良好な製品の塑性と靱性を有し、導電率が明らかに同類の製品のレベルを超えている。 The tensile strength of the electrode wire for fine electric discharge machining of the present invention in Table 1 is relatively high, the product has good plasticity and toughness, and the conductivity clearly exceeds the level of similar products.

<微細放電加工試験>
試験でテストする微細放電機は、スイスSARIX会社が製造するSX−100HPM機器である。
<Fine electric discharge machining test>
The micro discharger to be tested in the test is an SX-100HPM device manufactured by the Swiss SARIX company.

試験の条件は、次の通りである。 The test conditions are as follows.

テストする、加工される微細電極のサイズは、直径がφ10μm(電極の直径)であり、長さが150μmであり、材質がタングステン銅である。設備のパラメータは、X/Y/Z/Z2軸行程距離が250X150X150X150mmであり、Z軸送り速度が最大650mm/minであり、X、Y軸送り速度が最大800mm/minであり、解像度が0.1μmであり、冷却モードが70bar冷却オイル/水高圧ポンプである。 The size of the microelectrode to be tested and machined is φ10 μm in diameter (electrode diameter), 150 μm in length, and the material is tungsten copper. The equipment parameters are X / Y / Z / Z 2-axis stroke distance 250X150X150X150 mm, Z-axis feed speed up to 650 mm / min, X, Y-axis feed speed up to 800 mm / min, and resolution 0. It is 1 μm and the cooling mode is 70 bar cooling oil / water high pressure pump.

加工する微細な工具電極は、放電機器SX−100HPMでその位置決め精度をテストし、レーザ線径測定機器でその形状精度(ここでは、真円度を指す)をテストし、ミツトヨ粗さ測定機器でその加工表面の粗さをテストし、200倍の光学顕微鏡でその加工表面の微小なひび割れの状況を観察し、表2は、その結果を示している。 The fine tool electrodes to be machined are tested for their positioning accuracy with the discharge device SX-100HPM, their shape accuracy (here, roundness) is tested with the laser wire diameter measuring device, and the Mitutoyo roughness measuring device is used. The roughness of the processed surface was tested, and the state of minute cracks on the processed surface was observed with a 200x optical microscope, and Table 2 shows the results.

表2の各データは、何れも同等の条件でテストして得られ、なお、電極線の直径が何れも0.20mmである。当然ながら、当業者は、各実施形態の中のコア材の直径、ステップ2、3、4の加工パラメータ及びステップ5のマルチモード連続延伸及びオンライン応力緩和アニーリング加工の条件を有効的に調整することにより、各実施形態の中の完成品の電極線は、直径が0.05mm〜0.25mmの範囲内に変化するようにさせることができる。 Each of the data in Table 2 was obtained by testing under the same conditions, and the diameter of the electrode wire was 0.20 mm. Of course, one of ordinary skill in the art will effectively adjust the diameter of the core material in each embodiment, the machining parameters of steps 2, 3 and 4 and the conditions of multimode continuous stretching and online stress relaxation annealing in step 5. Therefore, the electrode wire of the finished product in each embodiment can be made to change in diameter within the range of 0.05 mm to 0.25 mm.

表2においては、実施形態1〜13の電極線及び比較例1〜7の電極線で加工して得られた微細な工具電極の性能データを比較し、本発明の微細放電加工用電極線が明らかな優勢を有し、本発明の微細放電加工用電極線で加工して得られた微細な工具電極がより高い位置決め精度及び形状精度を有し、加工表面の平滑度がより良く、加工表面に微小なひび割れが全然ない。 In Table 2, the performance data of the fine tool electrodes obtained by machining with the electrode wires of Embodiments 1 to 13 and the electrode wires of Comparative Examples 1 to 7 are compared, and the electrode wire for fine discharge processing of the present invention is obtained. The fine tool electrode obtained by machining with the electrode wire for fine discharge machining of the present invention has a clear superiority, has higher positioning accuracy and shape accuracy, has better smoothness of the machined surface, and has a machined surface. There are no small cracks in the surface.

Figure 0006980886
Figure 0006980886

1 第一のパルス電源
2 第二のパルス電源
3 電極線
4 工具電極
5 材料部材
6 加工液
7 ガイド
8 自動送り調節装置
301 コア材
302 内層
303 外層
304 電気メッキ層
305 初期外層
1 1st pulse power supply 2 2nd pulse power supply 3 Electrode line 4 Tool electrode 5 Material member 6 Processing liquid 7 Guide 8 Automatic feed adjustment device 301 Core material 302 Inner layer 303 Outer layer 304 Electroplating layer 305 Initial outer layer

Claims (11)

材質が黄銅であるコア材と、コア材の外を覆う表面層とを含む微細放電加工用電極線であって、
前記表面層は、コア材の外表面を覆う内層と、内層の外表面を覆い、アモルファス層である外層とを含むことを特徴とする微細放電加工用電極線。
An electrode wire for fine electric discharge machining including a core material whose material is brass and a surface layer that covers the outside of the core material.
The surface layer is an electrode wire for fine electric discharge machining, which includes an inner layer that covers the outer surface of the core material and an outer layer that covers the outer surface of the inner layer and is an amorphous layer.
前記内層の外表面は、弛緩及び/又は再構成表面構造を呈することを特徴とする請求項1に記載の微細放電加工用電極線。 The electrode wire for fine electric discharge machining according to claim 1, wherein the outer surface of the inner layer exhibits a relaxed and / or reconstructed surface structure. 前記アモルファス層は、49.5〜90wt%Zn、1.5〜42wt%Cu、0.158〜6.6%Xという化学元素からなり、残量がOであり、Xは、少なくとも3つの異なる元素X1、X2、X3を含み、X1は、Fe、Al又はCaであり、X2は、Si、C、S又はBであり、X3は、Fe、Al、Ca、Si、C、S又はBのうちの、X1、X2と異なる任意の一種類であることを特徴とする請求項1に記載の微細放電加工用電極線。 The amorphous layer is composed of chemical elements of 49.5 to 90 wt% Zn, 1.5 to 42 wt% Cu and 0.158 to 6.6% X, the remaining amount is O, and X is at least three different. Contains the elements X1, X2, X3, where X1 is Fe, Al or Ca, X2 is Si, C, S or B and X3 is Fe, Al, Ca, Si, C, S or B. The electrode wire for fine discharge processing according to claim 1, wherein the electrode wire is of any one type different from X1 and X2. 前記内層は、β相又はβ’相の銅亜鉛合金であることを特徴とする請求項1に記載の微細放電加工用電極線。 The electrode wire for fine electric discharge machining according to claim 1, wherein the inner layer is a β-phase or β'phase copper-zinc alloy. 前記アモルファス層は、内層の外表面を完全又は未完全に覆うことを特徴とする請求項1に記載の微細放電加工用電極線。 The electrode wire for fine electric discharge machining according to claim 1, wherein the amorphous layer completely or incompletely covers the outer surface of the inner layer. 前記アモルファス層の厚さは、1〜10μmであり、前記内層の厚さは、5〜50μmであることを特徴とする請求項1に記載の微細放電加工用電極線。 The electrode wire for fine electric discharge machining according to claim 1, wherein the amorphous layer has a thickness of 1 to 10 μm, and the inner layer has a thickness of 5 to 50 μm. 直径が0.5〜1.5mmである黄銅母線を形成するコア材製造ステップ(1)と、
ステップ(1)で得られた母線に対して脱脂、酸洗浄、水洗い及び電気メッキの処理を行い、母線上に厚さが0.5〜50μmである亜鉛メッキ層を形成し、第一の線材半製品を取得する電気メッキステップ(2)と、
ステップ(2)で得られた第一の線材半製品に対して50〜550℃で合金化処理を行い、黄銅コア材、内層及び初期外層からなる第二の線材半製品を形成する合金化ステップ(3)と、
ステップ(3)で得られた第二の線材半製品に対して粉末冶金により層被覆処理を行い、処理温度が300〜1000℃であり、処理プロセスにおける温度の変動が20℃以内であり、100℃以下に冷却された後に窯出しし、黄銅コア材、内層及びアモルファス外層からなる第三の線材半製品を形成する粉末冶金ステップ(4)と、
ステップ(4)で得られた第三の線材半製品に対してマルチモード連続延伸及びオンライン応力緩和アニーリング加工を行い、直径が0.05〜0.25mmである電極線の完成品を取得する完成品までの延伸ステップ(5)と、を含むことを特徴とする微細放電加工用電極線の製造方法。
The core material manufacturing step (1) for forming a brass bus having a diameter of 0.5 to 1.5 mm, and
The bus obtained in step (1) is subjected to degreasing, pickling, washing with water and electroplating to form a zinc-plated layer having a thickness of 0.5 to 50 μm on the bus, and the first wire is formed. Electroplating step (2) to acquire semi-finished products and
The first wire semi-finished product obtained in step (2) is alloyed at 50 to 550 ° C. to form a second wire semi-finished product composed of a brass core material, an inner layer and an initial outer layer. (3) and
The second wire semi-finished product obtained in step (3) is subjected to layer coating treatment by powder metallurgy, the treatment temperature is 300 to 1000 ° C., the temperature fluctuation in the treatment process is within 20 ° C., and 100. A powder metallurgy step (4), which is cooled to a temperature below ℃ and then removed from the kiln to form a third wire semi-finished product composed of a brass core material, an inner layer and an amorphous outer layer.
Multimode continuous stretching and online stress relaxation annealing are performed on the third wire semi-finished product obtained in step (4) to obtain a finished electrode wire with a diameter of 0.05 to 0.25 mm. A method for manufacturing an electrode wire for fine electric discharge machining, which comprises a stretching step (5) to a product.
前記ステップ(2)の電気メッキ液の化学成分は、濃度の合計が0.1〜400g/Lである炭素、窒素、酸素、水素と、濃度の合計が0.5〜600g/Lであるホウ素、硫黄、塩素と、濃度が1.2〜1000g/Lであるアルミニウムと、濃度が100〜1500g/Lである亜鉛とを含み、前記ステップ(2)の電気メッキは、速度が10〜500m/minであり、電流が1200〜2500Aであり、電圧が120〜220Vであることを特徴とする請求項7に記載の微細放電加工用電極線の製造方法。 The chemical components of the electroplating solution of step (2) are carbon, nitrogen, oxygen and hydrogen having a total concentration of 0.1 to 400 g / L and boron having a total concentration of 0.5 to 600 g / L. , Sulfur, chlorine, aluminum having a concentration of 1.2 to 1000 g / L, and zinc having a concentration of 100 to 1500 g / L, and the electroplating in step (2) has a speed of 10 to 500 m / L. The method for manufacturing an electrode wire for fine electric discharge machining according to claim 7, wherein the electrode wire is min, the current is 1200 to 2500 A, and the voltage is 120 to 220 V. 前記ステップ(4)の冷却時間は、5〜30分間であることを特徴とする請求項7に記載の微細放電加工用電極線の製造方法。 The method for manufacturing an electrode wire for fine electric discharge machining according to claim 7, wherein the cooling time in step (4) is 5 to 30 minutes. 前記ステップ(5)では、延伸速度は、600〜1500m/minであり、アニーリング電圧は、12〜60Vであり、アニーリング電流は、15〜50Aであることを特徴とする請求項7に記載の微細放電加工用電極線の製造方法。 The fineness according to claim 7, wherein in the step (5), the stretching speed is 600 to 1500 m / min, the annealing voltage is 12 to 60 V, and the annealing current is 15 to 50 A. A method for manufacturing electrode wires for electric discharge machining. 前記電極線は、請求項1〜6の何れか1項に記載の電極線であり、微細放電加工に用いられることを特徴とする微細放電加工用電極線の応用。 The electrode wire is the electrode wire according to any one of claims 1 to 6, and is an application of the electrode wire for fine electric discharge machining, which is used for fine electric discharge machining.
JP2020177699A 2020-06-05 2020-10-23 Electrode line for fine electric discharge machining, manufacturing method and application Active JP6980886B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010509917.X 2020-06-05
CN202010509917.XA CN111590153B (en) 2020-06-05 2020-06-05 Electrode wire for micro electric spark machining, preparation method and application

Publications (2)

Publication Number Publication Date
JP2021049637A JP2021049637A (en) 2021-04-01
JP6980886B2 true JP6980886B2 (en) 2021-12-15

Family

ID=72186177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020177699A Active JP6980886B2 (en) 2020-06-05 2020-10-23 Electrode line for fine electric discharge machining, manufacturing method and application

Country Status (3)

Country Link
JP (1) JP6980886B2 (en)
KR (1) KR102550403B1 (en)
CN (1) CN111590153B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114211063B (en) * 2021-10-18 2022-12-20 宁波博德高科股份有限公司 Electrode wire for electric spark discharge machining and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107918A (en) * 1985-11-05 1987-05-19 Kanegafuchi Chem Ind Co Ltd Electric discharge machining electrode and manufacture thereof
JPS63245329A (en) * 1987-03-30 1988-10-12 Inoue Japax Res Inc Wire-cut electric discharge machining device
JPS63221924A (en) * 1988-01-14 1988-09-14 Mitsubishi Electric Corp Wire electrode for wire-cut electric discharge machining
JPH0780726A (en) * 1993-09-14 1995-03-28 Omron Corp Wire electrode for electric discharge machining
PL2193867T3 (en) * 2008-12-03 2012-11-30 Berkenhoff Gmbh Wire electrodes for electrical discharge cutting and method for manufacturing such a wire electrode.
CN104191056B (en) * 2014-08-13 2016-06-29 宁波博威麦特莱科技有限公司 A kind of high accuracy zinc-containing alloy wire electrode and preparation method thereof
JP6584765B2 (en) * 2014-10-28 2019-10-02 沖電線株式会社 Electrode wire for electric discharge machining and electrode wire manufacturing method for electric discharge machining
JP6369545B2 (en) * 2015-01-07 2018-08-08 日立金属株式会社 Electrode wire for electric discharge machining and manufacturing method thereof
CN105033377B (en) * 2015-07-30 2017-05-10 宁波博威麦特莱科技有限公司 Electrode wire for efficient low-loss spark corrosion machining and preparation method thereof
CN105772877B (en) * 2015-12-31 2019-01-08 厦门虹鹭钨钼工业有限公司 A kind of wire cutting compound molybdenum filament and production method
DE102018200308B4 (en) * 2018-01-10 2019-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. METHOD FOR PRODUCING A TOOL ELECTRODE AND METHOD FOR THEIR USE
CN109158718B (en) * 2018-11-08 2020-07-17 上海江南轧辊有限公司 Method for producing electrode tip, tool electrode, and method for producing tool electrode

Also Published As

Publication number Publication date
KR102550403B1 (en) 2023-06-30
JP2021049637A (en) 2021-04-01
CN111590153A (en) 2020-08-28
CN111590153B (en) 2021-09-17
KR20210070249A (en) 2021-06-14

Similar Documents

Publication Publication Date Title
Tyagi et al. Electrical discharge coating using WS2 and Cu powder mixture for solid lubrication and enhanced tribological performance
CN105834533B (en) Wire electrode for slow wire feeding spark cutting
Arikatla et al. Surface integrity characteristics in wire electrical discharge machining of titanium alloy during main cut and trim cuts
Bisaria et al. MACHINING OF METAL MATRIX COMPOSITES BY EDM AND ITS VARIANTS: A REVIEW.
JP6980886B2 (en) Electrode line for fine electric discharge machining, manufacturing method and application
CN114786857A (en) Electrode wire with carbon-containing surface layer for wire-electrode cutting discharge machining and preparation method thereof
Weijing et al. Helical wire electrochemical discharge machining on large-thickness Inconel 718 alloy in low-conductivity salt-glycol solution
Ming et al. Wear resistance of copper EDM tool electrode electroformed from copper sulfate baths and pyrophosphate baths
Yanagida et al. Electrical discharge machining of PCD in ultrapure water
Dhupal et al. Generation of effusion holes on ultra-high temperature alloy by micro electro-discharge machining process
Maher et al. 1.9 effect of electrical discharge energy on white layer thickness of WEDM process
Reddy et al. An overview of major research areas in Wire cut EDM on different materials.
Khan et al. Machinability study of Incoloy using different wire electrode in Wire-Cut EDM
Hung et al. Using a nickel electroplating deposition for strengthening microelectrochemical machining electrode insulation
CN211142198U (en) In-liquid discharge deposition system
Vignesh et al. Machining of Ti–6Al–4V using diffusion annealed zinc-coated brass wire in WEDHT
Ghodsiyeh et al. Wire electrical discharge machining
Skoczypiec et al. Selected aspects of electrodischarge milling of aluminum alloy-based metal matrix composite with SiC reinforcement
Yu et al. Wire electropolishing of microgroove structures on a cobalt-based alloy
Singh et al. Parametric study of indigenously developed electrochemical diamond cut-off grinding setup using Inconel 925
Kumar et al. A state of art in development of wire electrodes for high performance wire cut EDM
Xin et al. Experimental Research on Discharge Forming Cutting-Electrochemical Machining of Single-Crystal Silicon
Lipiec Localized electrochemical deposition–preliminary research
MINAMI et al. Electrical discharge truing for sintered polycrystalline diamond tools
Bachchhav et al. Relative Tool Wear and Metal Removal Studies in Electric Discharge Machining of AISI D2 Die Steel Using Cu-Cr-Zr, Cu-Cd, and Cu-Be Electrode Materials

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201023

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211117

R150 Certificate of patent or registration of utility model

Ref document number: 6980886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533