JP6977536B2 - Method for evaluating the degree of antibody denaturation using gel filtration chromatography - Google Patents

Method for evaluating the degree of antibody denaturation using gel filtration chromatography Download PDF

Info

Publication number
JP6977536B2
JP6977536B2 JP2017242290A JP2017242290A JP6977536B2 JP 6977536 B2 JP6977536 B2 JP 6977536B2 JP 2017242290 A JP2017242290 A JP 2017242290A JP 2017242290 A JP2017242290 A JP 2017242290A JP 6977536 B2 JP6977536 B2 JP 6977536B2
Authority
JP
Japan
Prior art keywords
antibody
amino acid
protein
complex
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017242290A
Other languages
Japanese (ja)
Other versions
JP2019109134A (en
Inventor
直紀 山中
侑枝 山本
陽介 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2017242290A priority Critical patent/JP6977536B2/en
Publication of JP2019109134A publication Critical patent/JP2019109134A/en
Application granted granted Critical
Publication of JP6977536B2 publication Critical patent/JP6977536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)

Description

本発明は、抗体の変性度合をゲル濾過クロマトグラフィを用いて評価する方法に関する。 The present invention relates to a method for evaluating the degree of denaturation of an antibody using gel filtration chromatography.

抗体医薬品市場の成長に伴い、安定性試験や品質評価などの規制への迅速な技術対応が求められている。抗体医薬品をはじめとする生物薬品は生体による生合成過程を生産に利用していることから、原理的に分子構造上不均一なものが産生される可能性が存在する。故に生物薬品の規格(非特許文献1)には、開発段階での広範かつ詳細な特性解析が必要であることが記載されており、前記特性解析の一つとして特定の生物学的効果を発揮するための特異的な機能やその程度を表す生物活性をあげている。 With the growth of the antibody drug market, prompt technical response to regulations such as stability tests and quality evaluations is required. Since biopharmaceuticals such as antibody drugs utilize the biosynthetic process by living organisms for production, there is a possibility that non-uniform molecular structures will be produced in principle. Therefore, the biopharmaceutical standard (Non-Patent Document 1) states that extensive and detailed characteristic analysis is required at the development stage, and exhibits a specific biological effect as one of the characteristic analyzes. It raises the specific function to do so and the biological activity that expresses its degree.

抗体医薬品の生物活性、すなわち抗体(免疫グロブリン)の結合活性の評価方法として、従来よりELISA(Enzyme−Linked ImmunoSorbent Assay)法や表面プラズモン共鳴法を用いた方法が知られている。しかしながら、これらの方法は、酵素やセンサーチップなどの高価な試薬や備品が必要なこと、および複数の工程を必要とし操作が煩雑なことが問題であった。 As a method for evaluating the biological activity of an antibody drug, that is, the binding activity of an antibody (immunoglobulin), a method using an ELISA (Enzyme-Linked ImmunoSorbent Assay) method or a surface plasmon resonance method has been conventionally known. However, these methods have problems that they require expensive reagents and equipment such as enzymes and sensor chips, and that they require a plurality of steps and are complicated to operate.

医薬品規制調和国際会議(ICH)ガイドライン Q6B (通知日2001年5月1日)International Council for Harmonization of Pharmaceutical Regulations (ICH) Guidelines Q6B (Notification Date May 1, 2001)

本発明の課題は、抗体の結合活性より変性度合を従来よりも短時間かつ簡便に評価可能な方法を提供することにある。 An object of the present invention is to provide a method capable of evaluating the degree of denaturation based on the binding activity of an antibody in a shorter time and more easily than before.

上記課題を解決するために本発明者らは、抗体を含む溶液に当該抗体のFc領域と結合可能なタンパク質を添加し、前記抗体と前記タンパク質との複合体を形成させることで、ゲル濾過クロマトグラフィを用いた短時間かつ簡便な方法で抗体の結合活性および変性度合を評価できることを見出し、本発明を完成させるに至った。すなわち本発明は以下の[1]〜[3]の態様を包含する。
[1]
(1)一定量の未変性抗体Aを含む溶液に、抗体AのFc領域と結合可能なタンパク質を一定量添加し、抗体Aと前記タンパク質との複合体を形成させる工程、
(2)(1)の工程で得られた溶液をゲル濾過クロマトグラフィに供し、クロマトグラムを得る工程、
(3)(2)の工程で得られたクロマトグラムのうち、前記複合体または前記複合体を形成しない前記タンパク質に相当するピークの高さまたは面積を算出する工程、
(4)一定量の被検抗体Aを含む溶液に、抗体AのFc領域と結合可能なタンパク質を一定量添加し、抗体Aと前記タンパク質との複合体を形成させる工程、
(5)(4)の工程で得られた溶液をゲル濾過クロマトグラフィに供し、クロマトグラムを得る工程、
(6)(5)の工程で得られたクロマトグラムのうち、前記複合体または前記複合体を形成しない前記タンパク質に相当するピークの高さまたは面積を算出する工程、および
(7)(3)の工程での算出結果と(6)の工程での算出結果とを比較する工程、
を含む、被検抗体Aの変性度合を評価する方法。
[2]
抗体のFc領域と結合可能なタンパク質が、以下の(i)〜(iii)から選択される何れかである、[1]に記載の評価方法:
(i)配列番号2に記載のアミノ酸配列のうち33番目のグリシンから208番目のグルタミンまでのアミノ酸残基を少なくとも含むポリペプチド
(ii)配列番号2に記載のアミノ酸配列のうち33番目のグリシンから208番目のグルタミンまでのアミノ酸残基において1〜10個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を含み、かつ、抗体結合活性を有するタンパク質
(iii)配列番号2に記載のアミノ酸配列のうち33番目のグリシンから208番目のグルタミンまでのアミノ酸残基からなるアミノ酸配列に対して、90%以上の相同性を有するアミノ酸配列を含み、かつ、抗体結合活性を有するタンパク質。
[3]
様々な濃度の未変性抗体Aについて前記工程(1)〜(3)を行い、前記複合体量または前記複合体を形成しない前記抗体のFc領域と結合可能なタンパク質量と前記抗体量とで検量線Iを作成する工程、
様々な濃度の被検抗体Aについて前記工程(4)〜(7)を行い、前記複合体量または前記複合体を形成しない前記抗体のFc領域と結合可能なタンパク質量と前記抗体量とで検量線IIを作成する工程、並びに
前記検量線IおよびIIを比較する工程
を含む、[1]又は[2]に記載の評価方法。
In order to solve the above problems, the present inventors add a protein capable of binding to the Fc region of the antibody to a solution containing the antibody to form a complex of the antibody and the protein, thereby performing gel filtration chromatography. We have found that the binding activity and the degree of denaturation of an antibody can be evaluated by a simple method in a short time using the above, and have completed the present invention. That is, the present invention includes the following aspects [1] to [3].
[1]
(1) A step of adding a certain amount of a protein capable of binding to the Fc region of antibody A to a solution containing a certain amount of undenatured antibody A to form a complex of antibody A and the protein.
(2) A step of subjecting the solution obtained in the step (1) to gel filtration chromatography to obtain a chromatogram.
(3) Of the chromatograms obtained in the step (2), the step of calculating the height or area of the peak corresponding to the complex or the protein that does not form the complex.
(4) A step of adding a certain amount of a protein capable of binding to the Fc region of antibody A to a solution containing a certain amount of test antibody A to form a complex of antibody A and the protein.
(5) A step of subjecting the solution obtained in the step (4) to gel filtration chromatography to obtain a chromatogram.
(6) Of the chromatograms obtained in the steps (5), the steps of calculating the height or area of the peak corresponding to the complex or the protein that does not form the complex, and (7) (3). A step of comparing the calculation result in the step (6) with the calculation result in the step (6),
A method for evaluating the degree of denaturation of the test antibody A, which comprises.
[2]
The evaluation method according to [1], wherein the protein capable of binding to the Fc region of the antibody is selected from the following (i) to (iii).
(I) Polypeptide containing at least the amino acid residues from the 33rd glycine to the 208th glutamine in the amino acid sequence shown in SEQ ID NO: 2 (ii) From the 33rd glycine in the amino acid sequence shown in SEQ ID NO: 2. To protein (iii) SEQ ID NO: 2, which contains an amino acid sequence containing substitutions, deletions, insertions, or additions of 1 to 10 amino acid residues in the amino acid residues up to the 208th glutamine and has antibody-binding activity. A protein containing an amino acid sequence having 90% or more homology with respect to an amino acid sequence consisting of amino acid residues from the 33rd glycine to the 208th glutamine among the described amino acid sequences, and having antibody binding activity.
[3]
The steps (1) to (3) are performed on the unmodified antibody A having various concentrations, and the amount of the complex or the amount of protein that can bind to the Fc region of the antibody that does not form the complex and the amount of the antibody are used for calibration. The process of creating line I,
The steps (4) to (7) are performed on the test antibody A having various concentrations, and the amount of the complex or the amount of protein that can bind to the Fc region of the antibody that does not form the complex and the amount of the antibody are used for calibration. The evaluation method according to [1] or [2], which comprises a step of producing a line II and a step of comparing the calibration curves I and II.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

抗体を含む溶液に前記抗体のFc領域と結合可能なタンパク質を添加すると、前記抗体と前記タンパク質との複合体が形成される。前記複合体と前記タンパク質とは分子量が異なるため、ゲル濾過クロマトグラフィに供することで前記複合体と前記タンパク質とを分離できる。ここで用いるゲル濾過クロマトグラフィ用担体は抗体や前記抗体のFc領域と結合可能なタンパク質および前記抗体と前記タンパク質との複合体に対し反応性や吸着性をもたないものであればよく、個々の試料成分を分離するために十分な細孔径を有していればよい。例えば、担体の平均粒子径は2μm〜10μm、より好ましくは4μm〜8μmであり、担体の平均細孔径は20nm〜50nm、より好ましくは25nm〜30nmであってよいが、これらに限定されない。本発明は、当該分離で得られた前記複合体または(前記複合体を形成しない)前記抗体もしくは前記タンパク質を定量することで、抗体の結合活性を評価する。なお本抗体結合活性評価を、前記複合体を形成しない前記抗体または前記タンパク質を定量することで評価する場合、抗体が前記抗体のFc領域と結合可能なタンパク質に対し過剰量の場合は前記複合体を形成しない前記抗体を定量すればよく、抗体に対し前記抗体のFc領域と結合可能なタンパク質が過剰量の場合は前記複合体を形成しない前記タンパク質を定量すればよい。 When a protein capable of binding to the Fc region of the antibody is added to the solution containing the antibody, a complex of the antibody and the protein is formed. Since the complex and the protein have different molecular weights, the complex and the protein can be separated by subjecting them to gel filtration chromatography. The carrier for gel filtration chromatography used here may be an antibody, a protein capable of binding to the Fc region of the antibody, or a complex of the antibody and the protein, as long as it does not have reactivity or adsorptivity. It suffices to have a pore diameter sufficient to separate the sample components. For example, the average particle size of the carrier may be 2 μm to 10 μm, more preferably 4 μm to 8 μm, and the average pore size of the carrier may be 20 nm to 50 nm, more preferably 25 nm to 30 nm, but is not limited thereto. The present invention evaluates the binding activity of an antibody by quantifying the complex or the antibody (which does not form the complex) or the protein obtained by the separation. When the antibody binding activity is evaluated by quantifying the antibody or the protein that does not form the complex, the complex is used when the antibody is in excess of the protein capable of binding to the Fc region of the antibody. The antibody that does not form the complex may be quantified, and if the amount of the protein that can bind to the Fc region of the antibody is excessive with respect to the antibody, the protein that does not form the complex may be quantified.

抗体のFc領域と結合可能なタンパク質としては、抗体精製用アフィニティリガンドとして広く用いられている黄色ブドウ球菌由来のProtein A、連鎖球菌由来のProtein G、Peptostreptococcus magnus由来のProtein L、Fc受容体が例示できる。Fc受容体は、抗体が単に結合するための器としての役割だけでなく生体内の免疫機構に関与するタンパク質であり、IgGに対する受容体であるFcγ受容体、IgEに対する受容体であるFcε受容体、IgAに対する受容体であるFcα受容体、等いくつかのサブタイプに分類される。また各サブタイプの受容体は更に細かく分類されており、例えばFcγ受容体は、FcγRI、FcγRIIa、FcγRIIb、FcγRIIIa、FcγRIIIbの存在が報告されている(Takai.T.,Jpn.J.Clin.Immunol.,28,318−326,2005)。 Examples of proteins that can bind to the Fc region of an antibody include Protein A derived from yellow staphylococcus, Protein L derived from Peptostreptococcus magnus, and Fc receptor, which are widely used as affinity ligands for antibody purification. can. Fc receptors are proteins that are involved not only as a vessel for antibodies to bind but also in the immune system in the body, and are Fcγ receptors that are receptors for IgG and Fcε receptors that are receptors for IgE. , Fcα receptor, which is a receptor for IgA, etc., are classified into several subtypes. Receptors of each subtype are further subdivided, for example, Fcγ receptors have been reported to have the presence of FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa, FcγRIIIb (Takai.T., Jpn.J.Clin.Immunol). ., 28, 318-326, 2005).

抗体(免疫グロブリン)がIgGであり、抗体のFc領域と結合可能なタンパク質がFcγ受容体の場合、当該Fcγ受容体として、FcγRI、FcγRIIa、FcγRIIb、FcγRIIIa、FcγRIIIbのいずれも用いることができる。前記Fcγ受容体の好ましい態様として、
(A)配列番号1に記載のヒトFcγRIIIa(UniProt No.P08637)のアミノ酸配列のうち17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を少なくとも含む、Fc結合性タンパク質、および
(B)配列番号1に記載のヒトFcγRIIIa(UniProt No.P08637)のアミノ酸配列のうち17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を少なくとも含み、ただし当該17番目から192番目までのアミノ酸残基において、1以上のアミノ酸残基が欠失、他のアミノ酸残基に置換、または付加されたポリペプチドを含む、Fc結合性タンパク質、
があげられる。また前記(B)の好ましい態様として、
配列番号2に記載のアミノ酸配列のうち33番目のグリシンから208番目のグルタミンまでのアミノ酸残基を少なくとも含むポリペプチドを含む、Fc結合性タンパク質、
配列番号2に記載のアミノ酸配列のうち33番目のグリシンから208番目のグルタミンまでのアミノ酸残基を少なくとも含み、ただし当該33番目から208番目までのアミノ酸残基において、192番目のバリンがフェニルアラニンに置換されたポリペプチドを含む、Fc結合性タンパク質、
特開2015−086216号公報で開示のFc結合性タンパク質、
特開2016−169197号公報で開示のFc結合性タンパク質、
特開2017−118871号公報で開示のFc結合性タンパク質、
配列番号1に記載のアミノ酸配列の17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を少なくとも含み、但し当該17番目から192番目までのアミノ酸残基において、少なくとも176番目のフェニルアラニンがイソロイシン、アラニン、チロシンのいずれかにアミノ酸置換された、Fc結合性タンパク質、
があげられる。上記列挙したFc結合性タンパク質は、抗体結合活性を有する限り、さらに1以上のアミノ酸残基が欠失、他のアミノ酸残基に置換、または付加されていてもよい。1以上のアミノ酸残基とは、アミノ酸残基のタンパク質の立体構造における位置やアミノ酸残基の種類によっても異なるが、具体的には、例えば1〜50個、1〜40個、1〜30個、1〜20個、1〜10個を意味する。上記のアミノ酸の置換、欠失、挿入、または付加等には、遺伝子が由来する微生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。また、本発明のFc結合性タンパク質は、抗体結合活性を有する限り、配列番号2に記載のアミノ酸配列のうち33番目のグリシンから208番目のグルタミンまでのアミノ酸残基からなるアミノ酸配列に対し、80%以上、85%以上、90%以上、95%以上の相同性を有するアミノ酸配列を含むものであってもよい。
When the antibody (immunoglobulin) is IgG and the protein capable of binding to the Fc region of the antibody is an Fcγ receptor, any of FcγRI, FcγRIIa, FcγRIIb, FcγRIIIa, and FcγRIIIb can be used as the Fcγ receptor. As a preferred embodiment of the Fcγ receptor,
(A) An Fc-binding protein containing at least the amino acid residues from the 17th glycine to the 192nd glutamine in the amino acid sequence of human FcγRIIIa (UniProt No. P08637) shown in SEQ ID NO: 1, and the sequence (B). In the amino acid sequence of human FcγRIIIa (UniProt No. P08637) according to No. 1, at least the amino acid residues from the 17th glycine to the 192nd glutamine are contained, but in the 17th to 192nd amino acid residues. An Fc-binding protein, which comprises a polypeptide in which one or more amino acid residues have been deleted, replaced or added to another amino acid residue.
Can be given. Further, as a preferred embodiment of the above (B),
An Fc-binding protein comprising a polypeptide containing at least the amino acid residues from the 33rd glycine to the 208th glutamine in the amino acid sequence set forth in SEQ ID NO: 2.
Of the amino acid sequence set forth in SEQ ID NO: 2, at least the amino acid residues from the 33rd glycine to the 208th glutamine are contained, but in the 33rd to 208th amino acid residues, the 192nd valine is replaced with phenylalanine. Fc-binding protein, including the polypeptide
Fc-binding protein disclosed in Japanese Patent Application Laid-Open No. 2015-08626,
Fc-binding protein disclosed in JP-A-2016-169197,
Fc-binding protein disclosed in JP-A-2017-118871
It contains at least the amino acid residues from the 17th glycine to the 192nd glutamine in the amino acid sequence set forth in SEQ ID NO: 1, but in the 17th to 192nd amino acid residues, at least the 176th phenylalanine is isoleucine, alanine. , Fc-binding protein, amino acid substituted for any of tyrosine,
Can be given. The Fc-binding proteins listed above may have one or more amino acid residues deleted, replaced with other amino acid residues, or added as long as they have antibody-binding activity. The amino acid residue of 1 or more varies depending on the position of the amino acid residue in the three-dimensional structure of the protein and the type of the amino acid residue, but specifically, for example, 1 to 50, 1 to 40, and 1 to 30. , 1 to 20 pieces, 1 to 10 pieces. The above-mentioned amino acid substitutions, deletions, insertions, additions, etc. include those caused by naturally occurring mutations (mutants or variants) such as those based on individual differences and species differences of the microorganism from which the gene is derived. Further, the Fc-binding protein of the present invention has 80 as long as it has antibody-binding activity, with respect to the amino acid sequence consisting of amino acid residues from the 33rd glycine to the 208th glutamine in the amino acid sequence shown in SEQ ID NO: 2. It may contain an amino acid sequence having a homology of% or more, 85% or more, 90% or more, and 95% or more.

なお配列番号2に記載のアミノ酸配列からなるポリペプチドは、配列番号1に記載のヒトFcγRIIIa(UniProt No.P08637)の17番目のグリシンから192番目のグルタミンまでのアミノ酸残基を含み、ただし当該17番目から192番目までのアミノ酸残基において、Val27Glu(この表記は配列番号1の27番目(配列番号2では43番目)のバリンがグルタミンに置換していることを表す、以下同じ)、Phe29Ile、Tyr35Asn、Gln48Arg、Phe75Leu、Asn92Ser、Val117Glu、Glu121GlyおよびPhe171Serのアミノ酸置換が生じたポリペプチドである。 The polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 2 contains amino acid residues from the 17th glycine to the 192nd glutamine of the human FcγRIIIa (UniProt No. P08637) set forth in SEQ ID NO: 1, but said 17 At amino acid residues from the th to the 192nd, Val27Glu (this notation indicates that the 27th valine of SEQ ID NO: 1 (43rd in SEQ ID NO: 2) is replaced with glutamine, the same applies hereinafter), Phe29Ile, Tyr35Asn. , Gln48Arg, Phe75Leu, Asn92Ser, Val117Glu, Glu121Gly and Phe171Ser with amino acid substitutions.

抗体と前記抗体のFc領域と結合可能なタンパク質との複合体形成工程で用いる緩衝液としては、通常当業者が緩衝液として用いる、酢酸緩衝液、リン酸緩衝液、MES(2−Morpholinoethanesulfonic acid)緩衝液、HEPES(4−(2−hydroxyethyl)−1−piperazineethanesulfonic acid)緩衝液、トリス緩衝液、ホウ酸緩衝液を用いてもよいが、NaHPO・2HOとNaSOとを含む緩衝液が好ましい。前記緩衝液成分の濃度は30mMから200mMまでの間とすると好ましく、50mMから150mMまでの間とするとより好ましい。緩衝液のpHまたは反応温度は抗体の抗原への結合活性を損なわない範囲で設定すればよい。 As the buffer solution used in the complex formation step of the antibody and the protein capable of binding to the Fc region of the antibody, an acetate buffer solution, a phosphate buffer solution, or MES (2-Morphosphoethanesulphonic acid), which is usually used as a buffer solution by those skilled in the art, is used. buffer, HEPES (4- (2-hydroxyethyl ) -1-piperazineethanesulfonic acid) buffer, tris buffer, may be used boric acid buffer, but with NaH 2 PO 4 · 2H 2 O and Na 2 SO 4 A buffer solution containing is preferable. The concentration of the buffer component is preferably between 30 mM and 200 mM, more preferably between 50 mM and 150 mM. The pH or reaction temperature of the buffer solution may be set within a range that does not impair the antigen-binding activity of the antibody.

本抗体結合活性評価法は、例えば以下の(I−1)から(I−6)に示す工程または(II−1)から(II−6)に示す工程に基づき行なえばよい。 The present antibody binding activity evaluation method may be carried out, for example, based on the following steps (I-1) to (I-6) or (II-1) to (II-6).

(I−1)種々の量、好ましくは0〜15mg/mL、より好ましくは0〜10mg/mL、更に好ましくは0〜5mg/mLの抗体を含む溶液に、一定量の前記抗体のFc領域と結合可能なタンパク質をそれぞれ添加し、前記抗体と前記タンパク質との複合体を形成させる工程
(I−2)(I−1)の工程で得られた溶液をそれぞれゲル濾過クロマトグラフィに供し、クロマトグラムを得る工程
(I−3)(I−2)の工程で得られたクロマトグラムのうち、前記複合体(または前記複合体を形成しない前記抗体のFc領域と結合可能なタンパク質)に相当するピークの高さまたは面積を算出する工程
(I−4)(I−3)の算出結果に基づき、前記複合体量(または前記複合体を形成しない前記抗体のFc領域と結合可能なタンパク質量)と、前記抗体量とで検量線を作成する工程
(I−5)(I−4)で作成した検量線に基づき、前記一定量の抗体のFc領域と結合可能なタンパク質全てを前記複合体(以下、完全複合体化とも表記)にするために必要な抗体量を算出する工程
(I−6)(I−5)で算出した抗体量に基づき、抗体の結合活性を評価する工程
(II−1)一定量の抗体を含む溶液に、種々の量の前記抗体のFc領域と結合可能なタンパク質をそれぞれ添加し、前記抗体と前記タンパク質との複合体を形成させる工程
(II−2)(II−1)の工程で得られた溶液をそれぞれゲル濾過クロマトグラフィに供し、クロマトグラムを得る工程
(II−3)(II−2)の工程で得られたクロマトグラムのうち、前記複合体(または前記複合体を形成しない前記抗体)に相当するピークの高さまたは面積を算出する工程
(II−4)(II−3)の算出結果に基づき、前記複合体量(または前記複合体を形成しない前記抗体)と、前記タンパク質量とで検量線を作成する工程
(II−5)(II−4)で作成した検量線に基づき、前記一定量の抗体を完全複合体化するために必要な前記タンパク質量を算出する工程
(II−6)(II−5)で算出した前記タンパク質量に基づき、抗体の結合活性を評価する工程
本抗体結合活性評価法を利用して、抗体の変性度合も評価できる。抗体が、熱、酸、アルカリ、撹拌、凍結融解などのストレスにさらされると、二次構造などが変化し、変性することがある。当該変性した抗体は、未変性の抗体と比較し、結合活性が低下している。そこで変性した抗体を含む抗体溶液に対し、本抗体結合活性評価法を適用した。その結果、未変性の抗体のみを含む抗体溶液と比較し、抗体と当該抗体のFc領域と結合可能なタンパク質との複合体の量が低下(前記複合体を形成しない前記抗体のFc領域と結合可能なタンパク質の量が増加)していた(後述の実施例2参照)。このことから、本抗体結合活性評価法により、抗体の変性度合の評価もできることがわかった。
(I-1) In a solution containing various amounts, preferably 0 to 15 mg / mL, more preferably 0 to 10 mg / mL, even more preferably 0 to 5 mg / mL, with a constant amount of the Fc region of the antibody. The solutions obtained in the steps (I-2) and (I-1) of adding the bindable proteins to form a complex of the antibody and the protein are subjected to gel filtration chromatography, respectively, and chromatograms are obtained. In the chromatograms obtained in the steps (I-3) and (I-2), the peak corresponding to the complex (or a protein capable of binding to the Fc region of the antibody that does not form the complex). Based on the calculation results of the steps (I-4) and (I-3) for calculating the height or area, the amount of the complex (or the amount of protein that can bind to the Fc region of the antibody that does not form the complex) and Based on the calibration line prepared in the steps (I-5) and (I-4) for preparing a calibration line with the amount of the antibody, all the proteins that can bind to the Fc region of the fixed amount of the antibody are combined with the complex (hereinafter referred to as the complex). Step of evaluating the binding activity of an antibody based on the amount of protein calculated in steps (I-6) and (I-5) of calculating the amount of antibody required to obtain a complete complex (also referred to as complete complexation) (II-1). Steps (II-2) (II-1) of adding various amounts of proteins capable of binding to the Fc region of the antibody to a solution containing a certain amount of the antibody to form a complex of the antibody and the protein. ) Is subjected to gel filtration chromatography, respectively, and among the chromatograms obtained in the steps (II-3) and (II-2) to obtain a chromatogram, the complex (or the complex) is obtained. The amount of the complex (or the antibody that does not form the complex) based on the calculation results of the steps (II-4) and (II-3) for calculating the height or area of the peak corresponding to the antibody that does not form the complex. And, based on the calibration line prepared in the steps (II-5) and (II-4) for creating a calibration line with the protein amount, the amount of the protein required for completely complexing the fixed amount of the antibody is determined. Step to evaluate the binding activity of the antibody based on the amount of the protein calculated in the steps (II-6) and (II-5) to be calculated Using this antibody binding activity evaluation method, the degree of denaturation of the antibody can also be evaluated. When an antibody is exposed to stress such as heat, acid, alkali, stirring, freeze-thaw, etc., the secondary structure and the like may change and denature. The denatured antibody has a lower binding activity than the undenatured antibody. Therefore, this antibody binding activity evaluation method was applied to an antibody solution containing a denatured antibody. As a result, the amount of the complex of the antibody and the protein that can bind to the Fc region of the antibody is reduced as compared with the antibody solution containing only the undenatured antibody (binding to the Fc region of the antibody that does not form the complex). The amount of possible protein was increased) (see Example 2 below). From this, it was found that the degree of denaturation of the antibody can also be evaluated by this antibody binding activity evaluation method.

本抗体結合活性評価法を利用した抗体の変性度合評価法(以下、単に本発明の抗体変性度合評価法とも表記する)は、例えば以下に示す工程に基づき行なえばよい。 The antibody denaturation degree evaluation method using the antibody binding activity evaluation method (hereinafter, also simply referred to as the antibody denaturation degree evaluation method of the present invention) may be carried out based on, for example, the following steps.

(i−1)一定量の未変性抗体Aを含む溶液および前記と同量の被検抗体Aを含む溶液に対し、抗体AのFc領域と結合可能なタンパク質をそれぞれ一定量添加し、抗体Aと前記タンパク質との複合体を形成させる工程
(i−2)(i−1)の工程で得られた溶液をそれぞれゲル濾過クロマトグラフィに供し、クロマトグラムを得る工程
(i−3)(i−2)の工程で得られたクロマトグラムのうち、前記複合体(または前記複合体を形成しない抗体AのFc領域と結合可能なタンパク質)に相当するピークの高さまたは面積を算出する工程
(i−4)未変性抗体Aを含む溶液を用いたときの(i−3)の算出結果と、被検抗体Aを含む溶液を用いたときの(i−3)の算出結果との差に基づき、抗体Aの変性度合を評価する工程
前述した本発明の抗体変性度合評価法では、ある一点の(抗体A量および抗体AのFc領域と結合可能なタンパク質量を固定した)条件における、抗体Aと前記タンパク質との複合体(または前記複合体を形成しない抗体AのFc領域と結合可能なタンパク質)の量の変化に基づき評価しているが、前記(I−1)から(I−4)の工程により作成した検量線の変化に基づき、抗体の変性度合を評価してもよい。前記検量線の変化に基づく、本発明の抗体変性度合評価法は、例えば以下の(ii−1)から(ii−3)に示す工程または(iii−1)または(iii−3)に示す工程に基づき行なえばよい。
(I-1) To a solution containing a certain amount of the unmodified antibody A and a solution containing the same amount of the test antibody A as described above, a certain amount of a protein capable of binding to the Fc region of the antibody A is added to the solution, and the antibody A is added. The solutions obtained in the steps (i-2) and (i-1) for forming a complex between the protein and the protein are subjected to gel filtration chromatography, respectively, to obtain chromatograms (i-3) (i-2). ), The height or area of the peak corresponding to the complex (or a protein that can bind to the Fc region of antibody A that does not form the complex) is calculated from the chromatogram obtained in step (i-). 4) Based on the difference between the calculation result of (i-3) when the solution containing the unmodified antibody A is used and the calculation result of (i-3) when the solution containing the test antibody A is used. Step for evaluating the degree of denaturation of antibody A In the above-mentioned method for evaluating the degree of denaturation of antibody of the present invention, the antibody A and the antibody A are subjected to a certain condition (the amount of antibody A and the amount of protein that can bind to the Fc region of antibody A are fixed). The evaluation is based on the change in the amount of the complex with the protein (or the protein capable of binding to the Fc region of antibody A that does not form the complex), and the above (I-1) to (I-4). The degree of denaturation of the antibody may be evaluated based on the change in the calibration line prepared by the step. The antibody denaturation degree evaluation method of the present invention based on the change in the calibration curve is, for example, the steps shown in (ii-1) to (ii-3) below or the steps shown in (iii-1) or (iii-3) below. It should be done based on.

(ii−1)種々の量の未変性抗体Aを含む溶液に対し、前記(I−1)から(I−4)の工程を実施し、検量線を作成する工程
(ii−2)(ii−1)と同じ種々の量の被検抗体Aを含む溶液に対し、前記(I−1)から(I−4)の工程を実施し、検量線を作成する工程
(ii−3)(ii−1)で作成した検量線の傾きと、(ii−2)で作成した検量線の傾きとを比較し、抗体Aの変性度合を評価する工程
(iii−1)種々の量の未変性抗体Aを含む溶液に対し、前記(I−1)から(I−4)の工程を実施し、検量線を作成する工程
(iii−2)(iii−1)と同じ種々の量の被検抗体Aを含む溶液に対し、前記(I−1)から(I−4)の工程を実施し、検量線を作成する工程
(iii−3)(iii−1)および(iii−2)で作成した検量線をそれぞれ外挿して求められる、抗体のFc領域と結合可能なタンパク質を完全複合体化するために必要な抗体量の差に基づき、抗体Aの変性度合を評価する工程
本発明の抗体変性度合評価法に基づく、被検抗体Aが変性しているか否かの判断は、前記(i−1)から(i−4)の工程に基づき実施する場合は、例えば未変性抗体Aを含む溶液を用いたときの結果から一定値以上乖離しているとき、変性していると判断すればよい。また前記(ii−1)から(ii−3)の工程に基づき実施する場合は、例えば未変性抗体Aを含む溶液を用いたときの検量線の傾きから一定値以上または一定の割合以上乖離しているとき、変性していると判断すればよい。また前記(iii−1)から(iii−3)の工程に基づき実施する場合は、例えば未変性抗体Aを含む溶液を用いたときの、抗体のFc領域と結合可能なタンパク質を完全複合体化するのに必要な抗体量から一定値以上または一定の割合乖離しているとき、変性していると判断すればよい。
(Ii-1) Steps (ii-2) (ii-2) in which the steps (I-1) to (I-4) are carried out on a solution containing various amounts of the unmodified antibody A to prepare a calibration line. Steps (ii-3) (ii) for preparing calibration lines by carrying out the steps (I-1) to (I-4) above for a solution containing the same various amounts of the test antibody A as in -1). Step of comparing the inclination of the calibration line prepared in -1) with the inclination of the calibration line prepared in (ii-2) to evaluate the degree of denaturation of antibody A (iii-1) Various amounts of unmodified antibody. For the solution containing A, the same various amounts of the test antibody as in the steps (iii-2) and (iii-1) in which the steps (I-1) to (I-4) are carried out to prepare a calibration line are performed. The steps (I-1) to (I-4) were carried out on the solution containing A, and the steps (iii-3), (iii-1) and (iii-2) for creating a calibration line were prepared. A step of evaluating the degree of denaturation of antibody A based on the difference in the amount of antibody required to completely complex the Fc region of the antibody and the protein that can bind to the Fc region of the antibody, which is obtained by extrapolating the calibration lines. When the determination of whether or not the test antibody A is denatured based on the degree evaluation method is carried out based on the steps (i-1) to (i-4) above, for example, a solution containing the unmodified antibody A. When it deviates from the result when using the above by a certain value or more, it may be judged that the antibody is degenerated. Further, in the case of carrying out based on the steps (ii-1) to (ii-3), for example, the slope of the calibration curve when a solution containing the undenatured antibody A is used deviates from a certain value or more or a certain percentage or more. When it is, it should be judged that it is denatured. In the case of carrying out based on the steps (iii-1) to (iii-3), for example, when a solution containing the undenatured antibody A is used, a protein that can bind to the Fc region of the antibody is completely complexed. When the amount of antibody deviated from the amount of antibody required for the protein is more than a certain value or a certain percentage, it may be judged that the antibody is denatured.

本抗体結合活性評価法は、一定量の抗体を含む溶液に前記抗体のFc領域と結合可能なタンパク質を一定量添加し前記抗体と前記タンパク質との複合体を形成させる第一の工程、前記第一の工程で得られた溶液をゲル濾過クロマトグラフィに供し、クロマトグラムを得る第二の工程、および前記第二の工程で得られたクロマトグラムのうち、前記複合体、前記抗体または前記タンパク質に相当するピークの高さまたは面積を算出する第三の工程を含むことを特徴としている。本抗体結合活性評価法は、溶液中に含まれる抗体のFc領域と結合可能なタンパク質を添加後、ゲル濾過クロマトグラフィに供し、得られた画分中に含まれる前記複合体または前記タンパク質を定量するのみで抗体の結合活性を評価でき、抗体の結合活性を従来の方法(ELISA法や表面プラズモン共鳴法など)よりも短時間かつ煩雑な実験操作なしに評価できる。したがって、抗体の開発コストの削減に寄与できる。 The present antibody binding activity evaluation method is a first step of adding a certain amount of a protein capable of binding to the Fc region of the antibody to a solution containing a certain amount of the antibody to form a complex of the antibody and the protein, the first step. The solution obtained in one step is subjected to gel filtration chromatography to obtain a chromatogram, and the chromatogram obtained in the second step corresponds to the complex, the antibody or the protein. It is characterized by including a third step of calculating the height or area of the peak. In this antibody binding activity evaluation method, a protein capable of binding to the Fc region of an antibody contained in a solution is added and then subjected to gel filtration chromatography to quantify the complex or the protein contained in the obtained fraction. The antibody binding activity can be evaluated only by the conventional method (ELISA method, surface plasmon resonance method, etc.) in a shorter time and without complicated experimental operations. Therefore, it can contribute to the reduction of antibody development cost.

また本抗体結合活性評価法を利用して、溶液中に含まれる抗体の変性度合も評価できる。したがって、本発明は変性しにくい抗体の開発や抗体製造における工程分析に有用である。 In addition, the degree of denaturation of the antibody contained in the solution can be evaluated by using this antibody binding activity evaluation method. Therefore, the present invention is useful for the development of antibodies that are difficult to denature and for process analysis in antibody production.

実施例1の結果を示すクロマトグラムのうち、配列番号2に記載のアミノ酸配列からなるポリペプチドのピークに相当する、保持時間9.5分から12分までの領域の拡大図。In the chromatogram showing the results of Example 1, an enlarged view of a region having a retention time of 9.5 minutes to 12 minutes, which corresponds to the peak of the polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 2. 実施例1の結果をまとめた検量線。A calibration curve summarizing the results of Example 1. 実施例2の結果をまとめた検量線。黒丸実線は熱変性処理前の(熱変性処理しない)抗体を用いたときの結果。白丸点線は熱変性処理した抗体を用いたときの結果。A calibration curve summarizing the results of Example 2. The solid black circles are the results when the antibody before heat denaturation treatment (without heat denaturation treatment) was used. The white circle dotted line is the result when the heat-denatured antibody was used.

以下、ヒトFcγRIIIaの細胞外領域のアミノ酸置換体(以下、FcR9_Fとも表記)を含むポリペプチドである、配列番号2に記載のアミノ酸配列からなるポリペプチドを抗体のFc領域と結合可能なタンパク質としたときの実施例を用いて、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2, which is a polypeptide containing an amino acid substitution product in the extracellular region of human FcγRIIIa (hereinafter, also referred to as FcR9_F), was designated as a protein capable of binding to the Fc region of an antibody. The present invention will be described in more detail with reference to the examples of the above, but the present invention is not limited to these examples.

実施例1 抗体結合活性評価法
以下に示す方法で、抗体結合活性評価法を検証した。
Example 1 Antibody-binding activity evaluation method The antibody-binding activity evaluation method was verified by the method shown below.

(1)下記(A−1)から(A−6)に示す、配列番号2に記載のアミノ酸配列からなるポリペプチドまたは前記ポリペプチドと抗体との混合物を、リン酸緩衝生理食塩水(PBS)を用いて1000μLにメスアップし、30℃で30分間静置し、測定試料を調製した。なお配列番号2に記載のアミノ酸配列からなるポリペプチドのうち、1番目のメチオニン(Met)から26番目のアラニン(Ala)までがMalEシグナルペプチドであり、27番目のリジン(Lys)から32番目のメチオニン(Met)までがリンカー配列であり、33番目のグリシン(Gly)から208番目のグルタミン(Gln)までがFcR9_F(配列番号1の17番目から192番目までの領域に相当)であり、209番目から210番目までのグリシン(Gly)がリンカー配列であり、211番目から216番目のヒスチジン(His)がタグ配列である。またFcR9_FはヒトFcγRIIIa(UniProt No.P08637)の17番目のグリシンから192番目のグルタミンまでのアミノ酸残基において、Val27Glu、Phe29Ile、Tyr35Asn、Gln48Arg、Phe75Leu、Asn92Ser、Val117Glu、Glu121GlyおよびPhe171Serのアミノ酸置換が生じたポリペプチドである。
(A−1)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg
(A−2)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+リツキサン(全薬工業製)1,000μg
(A−3)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+リツキサン2,000μg
(A−4)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+リツキサン3,000μg
(A−5)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+リツキサン4,000μg
(A−6)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+リツキサン5,000μg
(2)高速液体クロマトグラフィー装置(HLC−8020、東ソー製)にゲル濾過クロマトグラフィ用カラムであるTSKgel G3000SWXLカラム(東ソー製)を接続し、pH7.4のリン酸緩衝生理食塩水(PBS)を流速1mL/分で流すことにより平衡化した後、(1)の試料50μL(下記(A−7)から(A−12))を注入し、30分間分析した。
(A−7)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg
(A−8)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+リツキサン(全薬工業製)50μg
(A−9)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+リツキサン100μg
(A−10)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+リツキサン150μg
(A−11)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+リツキサン200μg
(A−12)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+リツキサン250μg
得られたクロマトグラム中、配列番号2に記載のアミノ酸配列からなるポリペプチド(すなわち抗体(リツキサン)との複合体を形成しない前記抗体のFc領域と結合可能なタンパク質)に相当するピーク部分(保持時間9.5分から12分の位置)を拡大した図を図1に示す。抗体(リツキサン)を添加すると、抗体未添加時と比較し、配列番号2に記載のアミノ酸配列からなるポリペプチドに相当するピークの高さおよび面積が減少すること、および抗体(リツキサン)の添加量が増加すると、前記ピークの高さおよび面積がより減少することがわかる。この結果から、種々の量の抗体を含む溶液に、前記抗体のFc領域と結合可能なタンパク質を一定量添加し、前記抗体と前記タンパク質との複合体を形成させた後、ゲル濾過クロマトグラフィにより得られた、前記抗体との複合体を形成しない前記タンパク質を定量することで、前記抗体の結合活性を評価できることがわかる。
(1) A polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 shown in (A-1) to (A-6) below or a mixture of the polypeptide and an antibody is added to phosphate buffered saline (PBS). Was used to make up to 1000 μL, and the mixture was allowed to stand at 30 ° C. for 30 minutes to prepare a measurement sample. Among the polypeptides consisting of the amino acid sequences shown in SEQ ID NO: 2, the 1st methionine (Met) to the 26th alanin (Ala) are MalE signal peptides, and the 27th lys to the 32nd polypeptide. Up to methionine (Met) is the linker sequence, and from the 33rd glycine (Gly) to the 208th glutamine (Gln) is FcR9_F (corresponding to the 17th to 192nd regions of SEQ ID NO: 1), and the 209th. The 210th to 210th glycine (Gly) is a linker sequence, and the 211th to 216th histidine (His) is a tag sequence. In addition, FcR9_F produced Val27Glu, Phe29Ile, Tyr35Asn, Gln48Arg, Phe75Leu, Asn92Ser, Val117Ser, Val117Sr, Val117Glu in the amino acid residues from the 17th glycine to the 192nd glutamine of human FcγRIIIa (UniProt No. P08637). It is a polypeptide.
(A-1) 620 μg of a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2.
(A-2) 620 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 1,000 μg of Rituxan (manufactured by Zenyaku Kogyo)
(A-3) 620 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 2,000 μg of Rituxan
(A-4) 620 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 3,000 μg of Rituxan
(A-5) 620 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 4,000 μg of Rituxan
(A-6) Peptide 620 μg + Rituxan 5,000 μg consisting of the amino acid sequence shown in SEQ ID NO: 2.
(2) A TSKgel G3000SWXL column (manufactured by Tosoh), which is a column for gel filtration chromatography, is connected to a high performance liquid chromatography device (HLC-8020, manufactured by Tosoh), and a phosphate buffered saline solution (PBS) having a pH of 7.4 is passed through a flow rate. After equilibration by flowing at 1 mL / min, 50 μL of the sample (1) ((A-7) to (A-12) below) was injected and analyzed for 30 minutes.
(A-7) 31 μg of the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2.
(A-8) Peptide 31 μg consisting of the amino acid sequence shown in SEQ ID NO: 2 + Rituxan (manufactured by Zenyaku Kogyo) 50 μg
(A-9) 31 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 100 μg of Rituxan
(A-10) 31 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 150 μg of Rituxan
(A-11) Peptide 31 μg + Rituxan 200 μg consisting of the amino acid sequence shown in SEQ ID NO: 2.
(A-12) 31 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 250 μg of Rituxan
In the obtained chromatogram, the peak portion (retention) corresponding to the polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 2 (that is, a protein capable of binding to the Fc region of the antibody that does not form a complex with the antibody (Rituxan)). An enlarged view of the time (position from 9.5 minutes to 12 minutes) is shown in FIG. When the antibody (Rituxan) is added, the height and area of the peak corresponding to the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 is reduced as compared with the case where the antibody is not added, and the amount of the antibody (Rituxan) added. It can be seen that as the amount increases, the height and area of the peak decrease. From this result, a certain amount of a protein capable of binding to the Fc region of the antibody was added to a solution containing various amounts of the antibody to form a complex of the antibody and the protein, and then gel filtration chromatography was performed. It can be seen that the binding activity of the antibody can be evaluated by quantifying the protein that does not form a complex with the antibody.

また抗体(リツキサン)添加量(横軸)に対する、配列番号2に記載のアミノ酸配列からなるポリペプチドに相当するピーク面積(縦軸)を前記クロマトグラフィー装置の自動計算により算出してプロットした結果を図2に示す。前記(A−7)から前記(A−11)の結果では、抗体添加量と前記ピーク面積との間に良好な直線性が得られ(R=0.9997)、前記ピーク面積の減少が添加した抗体量に依存していることがわかる。またこの結果から、抗体の結合活性を図2で得られた検量線の傾きから評価できることもわかる。さらに前記検量線を外挿して求められる、抗体のFc領域と結合可能なタンパク質全てが複合体を形成(完全複合体化)するのに必要な抗体量からも、抗体の結合活性を評価できる。 Further, the peak area (vertical axis) corresponding to the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 with respect to the amount of antibody (Ritzan) added (horizontal axis) was calculated and plotted by automatic calculation of the chromatographic apparatus. It is shown in FIG. The results of the (A-11) from (A-7), good linearity is obtained between the peak area and antibody amount (R 2 = 0.9997), decrease of the peak area It can be seen that it depends on the amount of antibody added. From this result, it can be seen that the antibody binding activity can be evaluated from the slope of the calibration curve obtained in FIG. Furthermore, the antibody binding activity can be evaluated from the amount of antibody required for all proteins that can bind to the Fc region of the antibody to form a complex (complete complex), which is obtained by extrapolating the calibration curve.

なお前記(A−12)の結果が前記検量線から外れた結果となっているが、前記検量線を外挿して求められる、完全複合体化するのに必要な、抗体量が243μgであることから、前記(A−12)の結果(抗体添加量:250μg)は抗体を過剰量添加したときの結果といえる。 Although the result of (A-12) is a result deviating from the calibration curve, the amount of antibody required for complete complex formation, which is obtained by extrapolating the calibration curve, is 243 μg. Therefore, it can be said that the result of (A-12) (antibody addition amount: 250 μg) is the result when an excessive amount of antibody is added.

実施例2 本発明の抗体変性度合評価法
(1)配列番号2に記載のアミノ酸配列からなるポリペプチドまたは下記(B−1)から(B−5)および(C−1)から(C−5)に示す前記ポリペプチドと抗体との混合物を、0.1M NaSOを含むpH6.7の0.1M NaHPO・2HOを用いて1000μLにメスアップし、30℃で30分間静置し、測定試料を調製した。なお熱変性処理したリツキサンは、リツキサンを50℃で18時間処理して調製した。
(B−1)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+リツキサン260μg
(B−2)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+リツキサン1,320μg
(B−3)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+リツキサン3,320μg
(B−4)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+リツキサン5,520μg
(B−5)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+リツキサン6,900μg
(C−1)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+熱変性処理したリツキサン260μg
(C−2)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+熱変性処理したリツキサン1,320μg
(C−3)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+熱変性処理したリツキサン3,320μg
(C−4)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+熱変性処理したリツキサン5,520μg
(C−5)配列番号2に記載のアミノ酸配列からなるポリペプチド620μg+熱変性処理したリツキサン6,900μg
(2)高速液体クロマトグラフィー装置(Prominence、島津製作所製)にゲル濾過クロマトグラフィ用カラムであるTSKgel G3000SWXLカラムを接続し、0.1M NaSOを含むpH6.7の0.1M NaHPO・2HOを流速1mL/分で流すことにより平衡化した後、(1)の試料50μL(下記(B−6)から(B−10)および(C−6)から(C−10))を注入し、30分間分析した。
(B−6)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+リツキサン13μg
(B−7)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+リツキサン66μg
(B−8)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+リツキサン166μg
(B−9)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+リツキサン276μg
(B−10)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+リツキサン345μg
(C−6)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+熱変性処理したリツキサン13μg
(C−7)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+熱変性処理したリツキサン66μg
(C−8)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+熱変性処理したリツキサン166μg
(C−9)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+熱変性処理したリツキサン276μg
(C−10)配列番号2に記載のアミノ酸配列からなるポリペプチド31μg+熱変性処理したリツキサン345μg
実施例1と同様に配列番号2に記載のアミノ酸配列からなるポリペプチドに相当するピーク面積(縦軸)を前記クロマトグラフィー装置の自動計算により算出し、得られた検量線を図3に示す。熱変性処理したリツキサンを用いたとき(前記(C−6)から前記(C−10)の結果)に得られた検量線の傾きは、熱変性処理しない(熱変性処理前の)リツキサンを用いたとき(前記(B−6)から前記(B−10)の結果)と比較し、小さく(緩やかに)なった。さらに、熱変性処理したリツキサンを用いたときの完全複合体化に必要な抗体量は332μL、熱変性処理しないリツキサンを用いたときの完全複合体化に必要な抗体量は307μLであり、完全複合体化に必要な抗体量は熱変性処理により7%増加した。つまり、リツキサンを熱変性処理することにより、抗体と当該抗体のFc領域と結合可能なタンパク質との結合活性が低下していることがわかる。以上の結果から、本抗体結合活性評価法を用いて、検量線の傾きや完全複合体化に必要な抗体量を比較することで、被検抗体の変性度合を評価できることがわかる。
Example 2 Evaluation method for antibody denaturation degree of the present invention (1) A polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or the following (B-1) to (B-5) and (C-1) to (C-5). the mixture of the polypeptide and the antibody shown in), measured up to 1000μL using 0.1M NaH 2 PO 4 · 2H 2 O of pH6.7 containing 0.1M Na 2 SO 4, 30 at 30 ° C. The mixture was allowed to stand for a minute to prepare a measurement sample. The heat-denatured Rituxan was prepared by treating Rituxan at 50 ° C. for 18 hours.
(B-1) 620 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 260 μg of Rituxan
(B-2) 620 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 1,320 μg of Rituxan
(B-3) 620 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 3,320 μg of Rituxan
(B-4) 620 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 5,520 μg of Rituxan
(B-5) Polypeptide 620 μg consisting of the amino acid sequence shown in SEQ ID NO: 2 + Rituxan 6,900 μg
(C-1) 620 μg of the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 260 μg of heat-denatured Rituxan
(C-2) 620 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 1,320 μg of heat-denatured Rituxan
(C-3) 620 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 3,320 μg of heat-denatured Rituxan
(C-4) 620 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 5,520 μg of heat-denatured Rituxan
(C-5) 620 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 6,900 μg of heat-denatured Rituxan
(2) A TSKgel G3000SWXL column, which is a column for gel filtration chromatography, is connected to a high performance liquid chromatography device (Prominence, manufactured by Shimadzu Corporation), and a pH 6.7 0.1M NaH 2 PO 4 containing 0.1M Na 2 SO 4 is connected. After equilibration by flowing 2H 2 O at a flow rate of 1 mL / min, 50 μL of the sample of (1) ((B-6) to (B-10) and (C-6) to (C-10) below). Was injected and analyzed for 30 minutes.
(B-6) 31 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 13 μg of Rituxan
(B-7) Peptide 31 μg + Rituxan 66 μg consisting of the amino acid sequence shown in SEQ ID NO: 2.
(B-8) Peptide 31 μg + Rituxan 166 μg consisting of the amino acid sequence shown in SEQ ID NO: 2.
(B-9) 31 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 276 μg of Rituxan
(B-10) Peptide 31 μg + Rituxan 345 μg consisting of the amino acid sequence shown in SEQ ID NO: 2.
(C-6) 31 μg of the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 13 μg of heat-denatured Rituxan
(C-7) 31 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 66 μg of heat-denatured Rituxan
(C-8) 31 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 166 μg of heat-denatured Rituxan
(C-9) 31 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 276 μg of heat-denatured Rituxan
(C-10) 31 μg of polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 + 345 μg of heat-denatured Rituxan
Similar to Example 1, the peak area (vertical axis) corresponding to the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 was calculated by automatic calculation of the chromatography apparatus, and the obtained calibration curve is shown in FIG. The slope of the calibration curve obtained when heat-denatured Rituxan was used (results from (C-6) to (C-10) above) used Rituxan not heat-denatured (before heat denaturation). Compared with the time when it was (result of (B-6) to (B-10) above), it became smaller (slowly). Further, the amount of antibody required for complete complexing when heat-modified Rituxan was used was 332 μL, and the amount of antibody required for complete complexation when heat-modified Rituxan was used was 307 μL. The amount of antibody required for embodying was increased by 7% by the heat denaturation treatment. That is, it can be seen that the heat denaturation treatment of Rituxan reduces the binding activity between the antibody and the protein that can bind to the Fc region of the antibody. From the above results, it can be seen that the degree of denaturation of the test antibody can be evaluated by comparing the slope of the calibration curve and the amount of antibody required for complete complexation using this antibody binding activity evaluation method.

Claims (3)

(1)一定量の未変性抗体Aを含む溶液に、抗体AのFc領域と結合可能なタンパク質を一定量添加し、抗体Aと前記タンパク質との複合体を形成させる工程、
(2)(1)の工程で得られた溶液をゲル濾過クロマトグラフィに供し、クロマトグラムを得る工程、
(3)(2)の工程で得られたクロマトグラムのうち、前記複合体または前記複合体を形成しない前記タンパク質に相当するピークの高さまたは面積を算出する工程、
(4)一定量の被検抗体Aを含む溶液に、抗体AのFc領域と結合可能なタンパク質を一定量添加し、抗体Aと前記タンパク質との複合体を形成させる工程、
(5)(4)の工程で得られた溶液をゲル濾過クロマトグラフィに供し、クロマトグラムを得る工程、
(6)(5)の工程で得られたクロマトグラムのうち、前記複合体または前記複合体を形成しない前記タンパク質に相当するピークの高さまたは面積を算出する工程、および
(7)(3)の工程での算出結果と(6)の工程での算出結果とを比較する工程、
を含む、被検抗体Aの変性度合を評価する方法。
(1) A step of adding a certain amount of a protein capable of binding to the Fc region of antibody A to a solution containing a certain amount of undenatured antibody A to form a complex of antibody A and the protein.
(2) A step of subjecting the solution obtained in the step (1) to gel filtration chromatography to obtain a chromatogram.
(3) Of the chromatograms obtained in the step (2), the step of calculating the height or area of the peak corresponding to the complex or the protein that does not form the complex.
(4) A step of adding a certain amount of a protein capable of binding to the Fc region of antibody A to a solution containing a certain amount of test antibody A to form a complex of antibody A and the protein.
(5) A step of subjecting the solution obtained in the step (4) to gel filtration chromatography to obtain a chromatogram.
(6) Of the chromatograms obtained in the steps (5), the steps of calculating the height or area of the peak corresponding to the complex or the protein that does not form the complex, and (7) (3). A step of comparing the calculation result in the step (6) with the calculation result in the step (6),
A method for evaluating the degree of denaturation of the test antibody A, which comprises.
抗体のFc領域と結合可能なタンパク質が、以下の(i)〜(iii)から選択される何れかである、請求項1に記載の評価方法:
(i)配列番号2に記載のアミノ酸配列のうち33番目のグリシンから208番目のグルタミンまでのアミノ酸残基を少なくとも含むポリペプチド
(ii)配列番号2に記載のアミノ酸配列のうち33番目のグリシンから208番目のグルタミンまでのアミノ酸残基において1〜10個のアミノ酸残基の置換、欠失、挿入、または付加を含むアミノ酸配列を含み、かつ、抗体結合活性を有するタンパク質
(iii)配列番号2に記載のアミノ酸配列のうち33番目のグリシンから208番目のグルタミンまでのアミノ酸残基からなるアミノ酸配列に対して、90%以上の相同性を有するアミノ酸配列を含み、かつ、抗体結合活性を有するタンパク質。
The evaluation method according to claim 1, wherein the protein capable of binding to the Fc region of the antibody is selected from the following (i) to (iii).
(I) Polypeptide containing at least the amino acid residues from the 33rd glycine to the 208th glutamine in the amino acid sequence shown in SEQ ID NO: 2 (ii) From the 33rd glycine in the amino acid sequence shown in SEQ ID NO: 2. To protein (iii) SEQ ID NO: 2, which contains an amino acid sequence containing substitutions, deletions, insertions, or additions of 1 to 10 amino acid residues in the amino acid residues up to the 208th glutamine and has antibody-binding activity. A protein containing an amino acid sequence having 90% or more homology with respect to an amino acid sequence consisting of amino acid residues from the 33rd glycine to the 208th glutamine among the described amino acid sequences, and having antibody binding activity.
様々な濃度の未変性抗体Aについて前記工程(1)〜(3)を行い、前記複合体量または前記複合体を形成しない前記抗体のFc領域と結合可能なタンパク質量と前記抗体量とで検量線Iを作成する工程、
様々な濃度の被検抗体Aについて前記工程(4)〜(7)を行い、前記複合体量または前記複合体を形成しない前記抗体のFc領域と結合可能なタンパク質量と前記抗体量とで検量線IIを作成する工程、並びに
前記検量線IおよびIIを比較する工程
を含む、請求項1又は2に記載の評価方法。
The steps (1) to (3) are performed on the unmodified antibody A having various concentrations, and the amount of the complex or the amount of protein that can bind to the Fc region of the antibody that does not form the complex and the amount of the antibody are used for calibration. The process of creating line I,
The steps (4) to (7) are performed on the test antibody A having various concentrations, and the amount of the complex or the amount of protein that can bind to the Fc region of the antibody that does not form the complex and the amount of the antibody are used for calibration. The evaluation method according to claim 1 or 2, comprising a step of creating a line II and a step of comparing the calibration curves I and II.
JP2017242290A 2017-12-19 2017-12-19 Method for evaluating the degree of antibody denaturation using gel filtration chromatography Active JP6977536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017242290A JP6977536B2 (en) 2017-12-19 2017-12-19 Method for evaluating the degree of antibody denaturation using gel filtration chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242290A JP6977536B2 (en) 2017-12-19 2017-12-19 Method for evaluating the degree of antibody denaturation using gel filtration chromatography

Publications (2)

Publication Number Publication Date
JP2019109134A JP2019109134A (en) 2019-07-04
JP6977536B2 true JP6977536B2 (en) 2021-12-08

Family

ID=67179499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242290A Active JP6977536B2 (en) 2017-12-19 2017-12-19 Method for evaluating the degree of antibody denaturation using gel filtration chromatography

Country Status (1)

Country Link
JP (1) JP6977536B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100261216A1 (en) * 2007-12-21 2010-10-14 Bianca Eser Stability testing of antibodies
WO2013120929A1 (en) * 2012-02-15 2013-08-22 F. Hoffmann-La Roche Ag Fc-receptor based affinity chromatography
EP2949750B1 (en) * 2013-01-28 2019-11-13 National Institute of Advanced Industrial Science and Technology Antibody-binding peptide
JP6699096B2 (en) * 2014-06-27 2020-05-27 東ソー株式会社 Improved Fc-binding protein, method for producing the protein, and antibody adsorbent using the protein
JP2017187476A (en) * 2016-03-31 2017-10-12 東ソー株式会社 Method of measuring modified antibody

Also Published As

Publication number Publication date
JP2019109134A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
Zolotarjova et al. Differences among techniques for high‐abundant protein depletion
AU750674B2 (en) Free solution ligand interaction molecular separation method
Yang et al. Binding site on human immunoglobulin G for the affinity ligand HWRGWV
AU2002254683C1 (en) Binding molecules for Fc-region polypeptides
EP2578681B1 (en) Iga-binding peptide and iga purification using same
US8809005B2 (en) Conjugate and its use as a standard in an immunoassay
JPWO2013027796A1 (en) IgG-binding peptide and method for detecting and purifying IgG thereby
CN103827134A (en) Polypeptide separation methods
CA2689024A1 (en) High sensitivity immunoassays and kits for the determination of peptidesand proteins of biological interest
Geuijen et al. Rapid screening of IgG quality attributes–effects on Fc receptor binding
CN107849122A (en) Affinitive layer purification is carried out with low conductivity lavation buffer solution
Liu et al. Monoclonal antibody capture and analysis using porous membranes containing immobilized peptide mimotopes
Walpurgis et al. Testing for the erythropoiesis‐stimulating agent Sotatercept/ACE‐011 (ActRIIA‐Fc) in serum by means of Western blotting and LC‐HRMS
KR20150038046A (en) Method for the detection of a multispecific binder
CN107533055A (en) Method of immunity and the measure reagent for methods described
JP2020517718A (en) How to select antibodies
JP6977536B2 (en) Method for evaluating the degree of antibody denaturation using gel filtration chromatography
US9797900B2 (en) Multiplexed chromatography-immunoassay method for the characterization of circulating immune complexes
CN112147324A (en) Detection of autoantibodies
EP3736575A1 (en) Method for the determination of anti-drug antibodies against an effector function suppressed human or humanized drug antibody
Karger et al. High Resolution Separation and Analysis of Biological Macromolecules: Fundamentals
EP2787079A1 (en) IgA-BINDING PEPTIDE AND PURIFICATION OF IgA THEREBY
CN112625129B (en) Anti-human interleukin 23, kit comprising same and detection method thereof
CN113512097A (en) Detection reagent and detection kit for polypeptide, trimer and SARS-CoV-2 neutralizing antibody
Niimi et al. Monoclonal antibodies discriminating netrin-G1 and netrin-G2 neuronal pathways

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R151 Written notification of patent or utility model registration

Ref document number: 6977536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151