JP6977287B2 - Labeling method using multiple fluorescent substances - Google Patents

Labeling method using multiple fluorescent substances Download PDF

Info

Publication number
JP6977287B2
JP6977287B2 JP2017066231A JP2017066231A JP6977287B2 JP 6977287 B2 JP6977287 B2 JP 6977287B2 JP 2017066231 A JP2017066231 A JP 2017066231A JP 2017066231 A JP2017066231 A JP 2017066231A JP 6977287 B2 JP6977287 B2 JP 6977287B2
Authority
JP
Japan
Prior art keywords
fluorescence
wavelength
fluorescent substance
labeled
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017066231A
Other languages
Japanese (ja)
Other versions
JP2018169272A (en
Inventor
章仁 小松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2017066231A priority Critical patent/JP6977287B2/en
Publication of JP2018169272A publication Critical patent/JP2018169272A/en
Application granted granted Critical
Publication of JP6977287B2 publication Critical patent/JP6977287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は試料中に含まれる標的粒子を、最大蛍光波長が互いに異なる複数の蛍光物質を用いて検出する方法に関する。 The present invention relates to a method for detecting target particles contained in a sample by using a plurality of fluorescent substances having different maximum fluorescence wavelengths from each other.

血液試料、組織懸濁液、培養液などの試料中に含まれる細胞の特徴や細胞種を推定しようとする際、細胞の小器官に特異的に結合する物質で染色することで標識し、当該標識された部位やその強度(標識具合)によって、前記細胞を推定することが通常行なわれる。例えば、テトラメチルローダミンメチルエステル(TMRM)はミトコンドリアに特異的に結合することから細胞内にミドコンドリアが存在しているかを知ることができる。また、ミトコンドリアは真核細胞に特徴的に見られる小器官であることから、TMRMによって染色(標識)される細胞は、真核細胞であると推定できる。さらに、試料中に含まれる細胞を複数の特徴から推定しようとする際は、当該複数の特徴に対応した複数の物質で細胞を染色(標識)し、当該標識した物質の局在位置や強度に基づき前記特徴を検出することで前記細胞を推定する。 When trying to estimate the characteristics and cell types of cells contained in samples such as blood samples, tissue suspensions, and culture mediums, the cells are labeled by staining with a substance that specifically binds to the organelles of the cells. It is usual to estimate the cells based on the labeled site and its intensity (labeling degree). For example, since tetramethylrhodamine methyl ester (TMRM) specifically binds to mitochondria, it is possible to know whether or not midchondria is present in the cell. Moreover, since mitochondria are organelles characteristically found in eukaryotic cells, it can be presumed that the cells stained (labeled) by TMRM are eukaryotic cells. Furthermore, when trying to estimate the cells contained in the sample from a plurality of characteristics, the cells are stained (labeled) with a plurality of substances corresponding to the plurality of characteristics, and the localized position and intensity of the labeled substance are determined. Based on this, the cells are estimated by detecting the characteristics.

試料中に含まれる細胞の推定を標識具合に基づき行なう際、当該細胞に特異的に結合可能な蛍光物質を用いて標識し、標識した前記蛍光物質由来の蛍光強度を測定することで標識具合を判断する蛍光観察法が多く用いられる。蛍光観察法は外乱光による影響を抑えられるため、より正確な測定が可能である。試料中に含まれる細胞を複数の特徴に基づき蛍光観察法で推定しようとする際は、当該複数の特徴に対応した複数の蛍光物質を用いて標識し、当該蛍光物質由来の蛍光強度測定を、前記蛍光物質の蛍光スペクトルに対応した光学系に一つずつ順次切り替えて行なうことが多い。本方法は、標識したそれぞれの蛍光物質の標識具合を高い正確性で測定できる一方、同一の細胞に対し複数の光学系による測定または単一の光学系による複数回の測定が必要となり、測定時間が長くなる問題があった。 When estimating the cells contained in the sample based on the degree of labeling, the degree of labeling is determined by labeling with a fluorescent substance that can specifically bind to the cells and measuring the fluorescence intensity derived from the labeled fluorescent substance. Fluorescence observation methods for judgment are often used. Since the fluorescence observation method can suppress the influence of ambient light, more accurate measurement is possible. When trying to estimate the cells contained in the sample by the fluorescence observation method based on a plurality of features, the cells are labeled with a plurality of fluorescent substances corresponding to the plurality of features, and the fluorescence intensity derived from the fluorescent substance is measured. In many cases, the optical system corresponding to the fluorescence spectrum of the fluorescent substance is sequentially switched one by one. While this method can measure the labeling condition of each labeled fluorescent substance with high accuracy, it requires measurement with multiple optical systems or multiple measurements with a single optical system for the same cell, and the measurement time. There was a problem that it became long.

蛍光観察法において測定時間の短縮化が図れる方法の一例として、細胞に標識した複数の蛍光物質に由来する蛍光強度を、マルチバンドパスフィルタ(透過、遮光の範囲が複数からなる光学フィルタ)とデジタルカラーカメラを用いて測定する方法が挙げられる。本方法は、複数の蛍光物質の染色具合を同時に測定できるため、測定時間を短縮できる。しかしながら、蛍光検出の際、標識した特定の蛍光物質由来の蛍光の一部が、標識した別の蛍光物質由来の蛍光として検出(蛍光の漏れ込み)してしまい、蛍光測定の正確性が低下する問題があった。通常、デジタルカラーカメラはヒトの眼が認識できる範囲である400nmから700nm付近に感度を有するよう設計される一方、標識に用いる蛍光物質の蛍光スペクトルは幅広いため、マルチバンドパスフィルタおよびデジタルカラーカメラを複数(特に3以上)の蛍光物質の蛍光スペクトルに対応させようとしても、前述した蛍光の漏れこみが発生し得る。 As an example of a method that can shorten the measurement time in the fluorescence observation method, the fluorescence intensity derived from a plurality of fluorescent substances labeled on cells is digitally applied to a multi-bandpass filter (an optical filter having a plurality of transmission and shading ranges). A method of measuring using a color camera can be mentioned. Since this method can measure the dyeing condition of a plurality of fluorescent substances at the same time, the measurement time can be shortened. However, at the time of fluorescence detection, a part of the fluorescence derived from the specific labeled fluorescent substance is detected as the fluorescence derived from another labeled fluorescent substance (fluorescence leakage), and the accuracy of the fluorescence measurement is lowered. There was a problem. Normally, digital color cameras are designed to have a sensitivity in the range of 400 nm to 700 nm, which is recognizable by the human eye, while the fluorescence spectrum of the fluorescent substance used for labeling is wide, so multi-band pass filters and digital color cameras are used. Even if an attempt is made to correspond to the fluorescence spectra of a plurality of (particularly 3 or more) fluorescent substances, the above-mentioned fluorescence leakage may occur.

本発明の課題は、標的粒子を標識したそれぞれの蛍光物質由来の蛍光を、より正確かつ迅速に検出する方法を提供することにある。 An object of the present invention is to provide a method for more accurately and quickly detecting fluorescence derived from each fluorescent substance labeled with a target particle.

本発明者は、マルチバンドパスフィルタの最も短波長側の透過帯の下限よりも最大蛍光波長が短い蛍光物質を使用することで、他の透過帯への漏洩を低減できることを見出し、本発明を完成するに至った。 The present inventor has found that leakage to other transmission bands can be reduced by using a fluorescent substance having a maximum fluorescence wavelength shorter than the lower limit of the transmission band on the shortest wavelength side of the multiband pass filter. It came to be completed.

すなわち、本発明は
標的粒子を、最大蛍光波長が互いに異なる3以上の蛍光物質で標識する工程と、
前記標的粒子に励起光を照射する工程と、
前記標的粒子に標識した前記蛍光物質由来の蛍光を、マルチバンドパスフィルタを通して、デジタルカラーカメラで測定する工程と、
を含む前記標的粒子の測定方法であって、
最大蛍光波長が最も短い蛍光物質の最大蛍光波長が、前記マルチバンドパスフィルタの最も短波長側の透過帯の下限よりも短いことを特徴とする測定方法である。
That is, the present invention comprises a step of labeling the target particles with three or more fluorescent substances having different maximum fluorescence wavelengths from each other.
The step of irradiating the target particles with excitation light and
A step of measuring the fluorescence derived from the fluorescent substance labeled on the target particles with a digital color camera through a multi-bandpass filter, and
A method for measuring the target particles containing
The measurement method is characterized in that the maximum fluorescence wavelength of the fluorescent substance having the shortest maximum fluorescence wavelength is shorter than the lower limit of the transmission band on the shortest wavelength side of the multi-bandpass filter.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明において標的粒子とは、細胞、ウイルス、オルガネラ、小胞等の蛍光物質によって標識可能な生体材料が挙げられる。標的粒子が前述した生体材料からなる粒子である場合、標的粒子を含む試料の一例としては、全血、希釈血液、血清、血漿、臍帯血、成分採血液、髄液、尿、唾液、精液、糞便、痰、羊水、腹水、腹腔洗浄液などの生体試料や、肝臓、肺、脾臓、腎臓、皮膚、腫瘍、リンパ節などの組織の一片を懸濁させた組織懸濁液や、前記生体試料又は前記組織懸濁液より分離して得られる、前記生体試料又は前記組織由来の細胞を含む画分や、あらかじめ単離した細胞の培養液等が挙げられる。このうち生体試料又は組織由来の細胞を含む画分の一例として、生体試料や組織懸濁液を密度勾配形成用媒体の上に重層後、密度勾配遠心することで得られる画分が挙げられる。 In the present invention, the target particles include biomaterials that can be labeled with fluorescent substances such as cells, viruses, organelles, and vesicles. When the target particle is a particle made of the above-mentioned biological material, as an example of the sample containing the target particle, whole blood, diluted blood, serum, plasma, umbilical cord blood, component blood sampling, spinal fluid, urine, saliva, semen, etc. Biological samples such as feces, sputum, sheep's water, ascites, and peritoneal lavage fluid, tissue suspensions in which a piece of tissue such as liver, lung, spleen, kidney, skin, tumor, and lymph node is suspended, or the biological sample or Examples thereof include a fraction containing the biological sample or cells derived from the tissue obtained by separating from the tissue suspension, a culture solution of cells isolated in advance, and the like. Among these, as an example of a fraction containing cells derived from a biological sample or tissue, there is a fraction obtained by layering a biological sample or tissue suspension on a medium for forming a density gradient and then centrifuging the density gradient.

標的粒子を含む溶液が全血、希釈血液、血清、血漿、臍帯血、成分採血液などの血液試料である場合における、標的粒子の一例としては、血液循環腫瘍細胞(CTC)などの腫瘍細胞、循環血液内皮細胞(CEC)、循環血管内皮細胞(CEP)、循環胎児細胞(CFC)、抗原特異的T細胞などの各種幹細胞が挙げられる。なお、本明細書における血液試料は、全血、血清、血漿、臍帯血、成分採血液といった血液検体に限らず、当該血液検体を生理食塩水などで希釈した試料や、当該血液検体より分離して得られる、前記血液検体由来の細胞を含む画分も、血液試料に含まれる。 When the solution containing the target particles is a blood sample such as whole blood, diluted blood, serum, plasma, umbilical cord blood, or component blood sample, an example of the target particles is a tumor cell such as a blood circulation tumor cell (CTC). Various stem cells such as circulating blood endothelial cells (CEC), circulating vascular endothelial cells (CEP), circulating fetal cells (CFC), and antigen-specific T cells can be mentioned. The blood sample in the present specification is not limited to blood samples such as whole blood, serum, plasma, umbilical cord blood, and component blood sample, but is separated from a sample obtained by diluting the blood sample with physiological saline or the like or the blood sample. The fraction containing the cells derived from the blood sample obtained is also included in the blood sample.

本発明において、標的粒子の標識に用いる蛍光物質は、互いに異なる最大蛍光波長を有した物質である限り、特に限定はない。本発明における標的粒子への蛍光物質の標識態様の例として、試料中に含まれる単一の標的粒子を、最大蛍光波長が互いに異なる蛍光物質(例えば、最大蛍光波長Aの蛍光物質、最大蛍光波長Bの蛍光物質および最大蛍光波長Cの蛍光物質の3種類)で標識する態様や、試料中に含まれる標的粒子が複数種類(例えば、標的粒子A、標的粒子Bおよび標的粒子Cの3種類)あり、各標的粒子に対して最大蛍光波長が互いに異なる蛍光物質を標識(例えば、標的粒子Aに対して最大蛍光波長Aの蛍光物質、標的粒子Bに対して最大蛍光波長Bの蛍光物質、標的粒子Cに対して最大蛍光波長Cの蛍光物質)を標識する態様、が挙げられる。なお前記最大蛍光波長A(またはB、C)の蛍光物質は最大蛍光波長が一致または概ね一致(例えば、最大蛍光波長の差が5nm以内)していればそれぞれ複数種類併用してもよい。 In the present invention, the fluorescent substance used for labeling the target particles is not particularly limited as long as it is a substance having a maximum fluorescence wavelength different from each other. As an example of the embodiment of labeling a fluorescent substance on a target particle in the present invention, a single target particle contained in a sample is subjected to a fluorescent substance having different maximum fluorescence wavelengths (for example, a fluorescent substance having a maximum fluorescence wavelength A, a maximum fluorescence wavelength). A mode of labeling with a fluorescent substance of B and a fluorescent substance having a maximum fluorescence wavelength of C) and a plurality of types of target particles contained in the sample (for example, three types of target particle A, target particle B and target particle C). Each target particle is labeled with a fluorescent substance having a different maximum fluorescence wavelength from each other (for example, a fluorescent substance having a maximum fluorescence wavelength A for the target particle A, a fluorescent substance having a maximum fluorescence wavelength B for the target particle B, and a target). An embodiment of labeling the particles C with a fluorescent substance having a maximum fluorescence wavelength C) can be mentioned. A plurality of types of the fluorescent substances having the maximum fluorescence wavelength A (or B, C) may be used in combination as long as the maximum fluorescence wavelengths are the same or substantially the same (for example, the difference between the maximum fluorescence wavelengths is within 5 nm).

本発明において「標的粒子を蛍光物質で標識」とは、標的粒子と蛍光物質とを物理的、化学的に結合させることをいう。標識方法に特に限定はなく、例えば、標的粒子を蛍光色素で直接染色することにより標識してもよく、標的粒子と当該標的特有の物質に対する蛍光物質標識抗体とを抗原抗体反応で結合させることで標識してもよく、標的粒子と当該特有の物質に対する抗体(一次抗体)とを抗原抗体反応で結合させた後、当該一次抗体に対する蛍光物質標識抗体(二次抗体)とを抗原抗体反応で結合させることで標識してもよい。 In the present invention, "labeling the target particles with a fluorescent substance" means physically and chemically binding the target particles and the fluorescent substance. The labeling method is not particularly limited, and for example, the target particle may be labeled by directly dyeing it with a fluorescent dye, or by binding the target particle and a fluorescent substance-labeled antibody against the target-specific substance by an antigen-antibody reaction. It may be labeled, and after binding the target particle and an antibody against the specific substance (primary antibody) by an antigen-antibody reaction, the fluorescent substance-labeled antibody (secondary antibody) against the primary antibody is bound by an antigen-antibody reaction. It may be labeled by letting it.

本発明では標的粒子に標識した前記蛍光物質由来の蛍光をマルチバンドパスフィルタを通して、デジタルカラーカメラで測定する。マルチバンドパスフィルタは複数の透過帯を有するバンドパスフィルタであり、蛍光物質それぞれの蛍光スペクトルに対応した透過帯を有したフィルタであれば、市販品の中から適宜選択すればよい。なお、本明細書において「蛍光スペクトルに対応した透過帯」とは、必ずしも蛍光物質の最大蛍光波長がマルチバンドパスフィルタの透過帯に含まれなくてもよく、蛍光物質の最大蛍光波長における蛍光強度の80%以上(好ましくは90%以上)の蛍光強度を示す波長がマルチバンドパスフィルタの透過帯に含まれていればよい。具体例として、透過帯が425nmから465nmのマルチバンドパスフィルタの場合、Alexa Fluor 405の最大蛍光波長421nmは前記透過帯に含まれない。しかしながら、前記透過帯は、Alexa Fluor 405の最大蛍光波長における蛍光強度の80%以上の蛍光強度を示す波長(405nmから435nm、図1および5参照)には含まれるため、前記マルチバンドパスフィルタはAlexa Fluor 405の蛍光スペクトルに対応した透過帯を有するフィルタといえる。 In the present invention, the fluorescence derived from the fluorescent substance labeled on the target particles is measured by a digital color camera through a multi-bandpass filter. The multi-bandpass filter is a bandpass filter having a plurality of transmission bands, and any filter having a transmission band corresponding to the fluorescence spectrum of each fluorescent substance may be appropriately selected from commercially available products. In the present specification, the "transmission band corresponding to the fluorescence spectrum" does not necessarily mean that the maximum fluorescence wavelength of the fluorescent substance is included in the transmission band of the multiband pass filter, and the fluorescence intensity at the maximum fluorescence wavelength of the fluorescent substance is used. It suffices if the wavelength exhibiting the fluorescence intensity of 80% or more (preferably 90% or more) of the above is included in the transmission band of the multi-band pass filter. As a specific example, in the case of a multi-bandpass filter having a transmission band of 425 nm to 465 nm, the maximum fluorescence wavelength of 421 nm of Alexa Fluor 405 is not included in the transmission band. However, since the transmission band is included in the wavelength (405 nm to 435 nm, see FIGS. 1 and 5) showing a fluorescence intensity of 80% or more of the fluorescence intensity at the maximum fluorescence wavelength of the Alexa Fluor 405, the multi-bandpass filter is used. It can be said that the filter has a transmission band corresponding to the fluorescence spectrum of Alexa Fluor 405.

また、デジタルカラーカメラは、光の強度を電気信号に変換するセンサーを持ち、波長帯ごとにそれぞれの像を得ることができる機器である。センサーの素子として代表的なものに、電荷結合素子(Charge Coupled Devices:CCD)と、相補型金属酸化膜半導体(Complementary Metal Oxide Semiconductor:CMOS)等があるが、本発明ではどのような素子であってもよい。多くのデジタルカラーカメラは光の三原色である青、緑、赤に対応するように作られるが、本発明でいうデジタルカラーカメラはこれに限定されず、2または4以上の波長帯の像を得るものであってもよい。波長帯ごとに分ける代表的な方法として単板式、三板式がある。単板式は、1つのセンサー上で受光素子ごとに分担する波長帯を割り当てる方式である。三板式は、ダイクロイックミラー等によって光学的に分解した後、それぞれのセンサーで波長帯ごとの像を得る方式である。本発明は単板式、三板式どちらであってもよく、またこれらに限られず波長帯ごとに分けて受光するものであればどのようなものであってもよい。 In addition, a digital color camera is a device that has a sensor that converts the intensity of light into an electric signal and can obtain an image for each wavelength band. Typical sensor elements include a charge-coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), but what kind of element is used in the present invention? You may. Many digital color cameras are made to correspond to the three primary colors of light, blue, green, and red, but the digital color camera in the present invention is not limited to this, and obtains images in two or four or more wavelength bands. It may be a thing. There are single-plate type and three-plate type as typical methods for dividing by wavelength band. The single plate type is a method in which a wavelength band shared by each light receiving element is assigned on one sensor. The three-plate type is a method in which an image for each wavelength band is obtained by each sensor after being optically decomposed by a dichroic mirror or the like. The present invention may be either a single plate type or a three-plate type, and is not limited to these, and may be any type as long as it receives light separately for each wavelength band.

本発明は、最大蛍光波長が最も短い蛍光物質の最大蛍光波長が、マルチバンドパスフィルタの最も短波長側の透過帯の下限よりも短いことを特徴とする。換言すれば、マルチバンドパスフィルタが有する透過帯のうち、最大蛍光波長が最も短い蛍光物質の蛍光スペクトルに対応した透過帯が、前記蛍光物質の最大蛍光波長より長波長側であることを特徴としている。なお、前記透過帯以外の透過帯については、当該透過帯に対応する蛍光スペクトルを有した蛍光物質における最大蛍光波長に含まれていてもよい。 The present invention is characterized in that the maximum fluorescence wavelength of the fluorescent substance having the shortest maximum fluorescence wavelength is shorter than the lower limit of the transmission band on the shortest wavelength side of the multi-bandpass filter. In other words, among the transmission bands of the multi-bandpass filter, the transmission band corresponding to the fluorescence spectrum of the fluorescent substance having the shortest maximum fluorescence wavelength is characterized by being on the longer wavelength side than the maximum fluorescence wavelength of the fluorescent substance. There is. The transmission band other than the transmission band may be included in the maximum fluorescence wavelength of the fluorescent substance having the fluorescence spectrum corresponding to the transmission band.

標的粒子が細胞の場合、その核を標識する蛍光物質として青色蛍光物質であるDAPI(4’,6−DiAmidino−2−PhenylIndole)が多く用いられる。しかしながら、この物質の最大蛍光波長は461nmと青色蛍光物質としては比較的、長波長側にある。そのため、DAPIと緑色蛍光物質(例えば、最大蛍光波長が523nmであるSYTOX Green(Thermo Fisher Scientific製))とで少なくとも標識した細胞を、それぞれの蛍光スペクトルに対応した透過帯を有するマルチバンドパスフィルタを通して検出しようとした場合、前記緑色蛍光物質の蛍光スペクトルに対応した透過帯を通過した蛍光の中に、DAPI由来の蛍光が多く漏れ込む。例えば、青色蛍光物質がDAPIであり、マルチバンドパスフィルタの透過帯が波長425nmから465nm(以下、チャネルAと表記)および波長500nmから565nm(以下、チャネルBと表記)である場合、チャネルBからの蛍光には、チャネルAからの蛍光量の50%量に相当するDAPI由来の蛍光が漏れ込む。そこで、青色蛍光物質をチャネルAより短波長側に最大蛍光波長を有するAlexa Fluor 405(最大蛍光波長:421nm)に変更することで、チャネルBへの漏れ込み量をチャネルAからの蛍光量の約5%量まで低減できる。 When the target particle is a cell, DAPI (4', 6-DiAmidino-2-PhenylIndole), which is a blue fluorescent substance, is often used as a fluorescent substance that labels the nucleus. However, the maximum fluorescence wavelength of this substance is 461 nm, which is relatively long on the long wavelength side for a blue fluorescent substance. Therefore, cells labeled at least with DAPI and a green fluorescent substance (eg, SYSTEM Green (manufactured by Thermo Fisher Scientific) having a maximum fluorescence wavelength of 523 nm) are passed through a multi-band pass filter having a transmission band corresponding to each fluorescence spectrum. When attempting to detect, a large amount of fluorescence derived from DAPI leaks into the fluorescence that has passed through the transmission band corresponding to the fluorescence spectrum of the green fluorescent substance. For example, when the blue fluorescent substance is DAPI and the transmission band of the multi-bandpass filter has a wavelength of 425 nm to 465 nm (hereinafter referred to as channel A) and a wavelength of 500 nm to 565 nm (hereinafter referred to as channel B), from channel B. DAPI-derived fluorescence corresponding to 50% of the amount of fluorescence from channel A leaks into the fluorescence of. Therefore, by changing the blue fluorescent substance to Alexa Fluor 405 (maximum fluorescence wavelength: 421 nm) having the maximum fluorescence wavelength on the shorter wavelength side than the channel A, the amount of leakage to the channel B can be reduced to about the amount of fluorescence from the channel A. It can be reduced to 5% amount.

なお、標的粒子を細胞とし、細胞への標識が少なくとも細胞核への標識を含み、細胞への標識物質が少なくとも青色蛍光物質(例えば、最大蛍光波長400nmから500nmの蛍光物質)及び緑色蛍光物質(例えば、最大蛍光波長500nmから550nmの蛍光物質)又は赤色蛍光物質(例えば、最大蛍光波長600nmから650nmの蛍光物質)を含み、マルチバンドパスフィルタが少なくとも前記青色蛍光物質の蛍光スペクトルに対応した透過帯及び前記緑色蛍光物質又は前記赤色蛍光物質の蛍光スペクトルに対応した透過帯を互いに重ならないよう有している場合、細胞核への標識物質は緑色蛍光物質又は赤色蛍光物質とすると好ましい。前述した通り、細胞核への標識物質として知られている青色蛍光物質の最大蛍光波長は長波長側(具体的には450nm以上)にあり、本発明の方法を適用すべくマルチバンドパスフィルタの透過帯を前記最大蛍光波長より長波長側に設定すると、長波長側(緑色/赤色側)の検出領域が狭くなり、多色検出が困難となるからである。細胞核へ標識可能な緑色蛍光物質又は赤色蛍光物質の一例として、最大蛍光波長が523nmであるSYTOX Green(Thermo Fisher Scientific製)が挙げられる。なお、SYTOX Greenは半値全幅が狭く、本発明の方法で用いる細胞核標識物質として好ましい態様である。 In addition, the target particle is a cell, the label on the cell contains at least the label on the cell nucleus, and the label on the cell is at least a blue fluorescent substance (for example, a fluorescent substance having a maximum fluorescent wavelength of 400 nm to 500 nm) and a green fluorescent substance (for example,). , A transmission band and a transmission band comprising a red fluorescent material (eg, a fluorescent material having a maximum fluorescent wavelength of 600 nm to 650 nm) or a multiband pass filter corresponding to at least the fluorescence spectrum of the blue fluorescent material. When the transmission bands corresponding to the fluorescence spectra of the green fluorescent substance or the red fluorescent substance do not overlap each other, the labeling substance for the cell nucleus is preferably a green fluorescent substance or a red fluorescent substance. As described above, the maximum fluorescence wavelength of the blue fluorescent substance known as a labeling substance for cell nuclei is on the long wavelength side (specifically, 450 nm or more), and the transmission of a multi-band pass filter is applied in order to apply the method of the present invention. This is because if the band is set to a longer wavelength side than the maximum fluorescence wavelength, the detection region on the long wavelength side (green / red side) becomes narrow and multicolor detection becomes difficult. As an example of a green fluorescent substance or a red fluorescent substance that can be labeled on the cell nucleus, SYSTEM X Green (manufactured by Thermo Fisher Scientific) having a maximum fluorescence wavelength of 523 nm can be mentioned. Note that SYSTEMG Green has a narrow full width at half maximum, which is a preferable embodiment as a cell nucleus labeling substance used in the method of the present invention.

本発明により、長波長側に隣接する透過帯への蛍光の漏れ込みを低減でき、最大蛍光波長が互いに異なる複数の蛍光物質で標識した標的粒子の迅速、高感度な測定が可能となる。 INDUSTRIAL APPLICABILITY According to the present invention, leakage of fluorescence into a transmission band adjacent to a long wavelength side can be reduced, and rapid and highly sensitive measurement of target particles labeled with a plurality of fluorescent substances having different maximum fluorescence wavelengths becomes possible.

蛍光物質(Alexa Fluor 405、Alexa Fluor 350)の蛍光スペクトル。Fluorescence spectrum of a fluorescent substance (Alexa Fluor 405, Alexa Fluor 350). 実施例で用いたマルチバンドパスフィルタの分光特性。Spectral characteristics of the multi-bandpass filter used in the examples. 実施例で用いたカラーカメラ(CMOS)の分光感度曲線。The spectral sensitivity curve of the color camera (CMOS) used in the examples. Alexa Fluor 405またはAlexa Fluor 350による標識で得られた蛍光像(青チャネル(波長:425nmから465nm)、緑チャネル(波長:500nmから565nm)および緑チャネル/青チャネル)。なお図中白四角で囲った範囲が蛍光強度比(緑チャネル/青チャネル)の算出に用いた領域である。Fluorescence images obtained by labeling with Alexa Fluor 405 or Alexa Fluor 350 (blue channel (wavelength: 425 nm to 465 nm), green channel (wavelength: 500 nm to 565 nm) and green channel / blue channel). The area surrounded by the white square in the figure is the area used for calculating the fluorescence intensity ratio (green channel / blue channel). 蛍光物質(SYTOX Green、Alexa Fluor 633、Alexa Fluor 405)の蛍光スペクトル。Fluorescence spectrum of a fluorescent substance (SYSTOX Green, Alexa Fluor 633, Alexa Fluor 405). 実施例で得られた蛍光像(元々は青緑赤3色からなる画像で、合成して1色にした画像である)。Fluorescent image obtained in the example (originally an image consisting of three colors of blue, green, and red, which is an image combined into one color). 図6の画像データを色分解(青チャネル)した画像である。It is an image which color-separated (blue channel) the image data of FIG. 図6の画像データを色分解(緑チャネル)した画像である。It is an image which color-separated (green channel) the image data of FIG. 図6の画像データを色分解(赤チャネル)した画像である。It is an image which color-separated (red channel) the image data of FIG.

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.

(蛍光物質の違いによる蛍光の漏れ込みの影響)
(1−1)がん細胞株PC−9を培養ディッシュで培養し、培養したがん細胞を4%パラホルムアルデヒド溶液による固定処理およびエタノールによる膜透過処理を行った後、一次抗体としてAnti−Pan CK(サイトケラチン)抗体(マウス由来、自家製)を、二次抗体としてAlexa Fluor 405標識抗マウスIgG抗体(Abcam製)又はAlexa Fluor 350標識抗マウスIgG抗体(Thermo Fisher Scientific製)を、それぞれ用いて細胞質内のCKに対し蛍光物質を標識した。なお、Alexa Fluor 405の最大蛍光波長は421nmであり、Alexa Fluor 350の最大蛍光波長は442nmである(本実施例で用いた蛍光物質の蛍光スペクトルを図1に示す)。
(Effect of fluorescence leakage due to difference in fluorescent material)
(1-1) Cancer cell line PC-9 is cultured in a culture dish, and the cultured cancer cells are fixed with a 4% paraformaldehyde solution and membrane permeabilized with ethanol, and then Anti-Pan as a primary antibody. Using CK (cytokeratin) antibody (derived from mouse, homemade) and Alexa Fluor 405-labeled anti-mouse IgG antibody (manufactured by Abcam) or Alexa Fluor 350-labeled anti-mouse IgG antibody (manufactured by Thermo Fisher Scientific) as secondary antibodies, respectively. The CK in the cytoplasm was labeled with a fluorescent substance. The maximum fluorescence wavelength of the Alexa Fluor 405 is 421 nm, and the maximum fluorescence wavelength of the Alexa Fluor 350 is 442 nm (the fluorescence spectrum of the fluorescent substance used in this example is shown in FIG. 1).

(1−2)蛍光物質を標識したがん細胞に対し励起光(Alexa Fluor 405で標識した細胞は波長401nmを含む光、Alexa Fluor 350で標識した細胞は波長346nmを含む光)を照射し、得られた蛍光を蛍光顕微鏡(オリンパス製IX83)で検出し、マルチバンドパスフィルタ(透過帯:425nmから465nm(以下、青チャネルとも表記)、500nmから565nm(以下、緑チャネルとも表記)および610nmから685nm(以下、赤チャネルとも表記)、Semrock製、分光特性を図2に示す)を通して、カラーカメラ(ImagingSource製DFK23UX236、本カメラに備えるCMOS(ソニー製IMX236)の分光感度曲線を図3に示す)で撮像した。 (1-2) Cancer cells labeled with a fluorescent substance are irradiated with excitation light (light containing a wavelength of 401 nm for cells labeled with Alexa Fluor 405, light containing a wavelength of 346 nm for cells labeled with Alexa Fluor 350). The obtained fluorescence was detected with a fluorescence microscope (IX83 manufactured by Olympus), and from a multi-band pass filter (transmission band: 425 nm to 465 nm (hereinafter, also referred to as blue channel), 500 nm to 565 nm (hereinafter, also referred to as green channel) and 610 nm. The spectral sensitivity curve of a color camera (DFK23UX236 manufactured by Imaging Source, CMOS (IMX236 manufactured by Sony) provided in this camera) through 685 nm (hereinafter, also referred to as red channel), manufactured by Semirock, and spectral characteristics are shown in FIG. 2). I took an image with.

(1−3)青チャネルの蛍光像および緑チャネルの蛍光像(図4)中、細胞質部分の特定領域(図4の四角で囲った領域)における青チャネルの蛍光輝度に対する緑チャネルでの蛍光輝度の比(緑チャネルでの蛍光輝度/青チャネルの蛍光輝度)を算出し、緑チャネルへの蛍光の漏れ込みを評価した。 (1-3) Fluorescence brightness in the green channel with respect to the fluorescence brightness of the blue channel in a specific region (the region surrounded by the square in FIG. 4) of the cytoplasmic portion in the fluorescence image of the blue channel and the fluorescence image of the green channel (FIG. 4). The ratio (fluorescence brightness in the green channel / fluorescence brightness in the blue channel) was calculated, and the leakage of fluorescence into the green channel was evaluated.

蛍光強度比を算出した結果、蛍光物質としてAlexa Fluor 405を用いたときは0.358±0.0141となり、Alexa Fluor 350を用いたときは0.384±0.0973(範囲は標準偏差)となり、蛍光物質としてAlexa Fluor 405を用いることで、Alexa Fluor 350を用いたときよりも緑チャネルへの蛍光の漏れ込みが抑えられていることがわかる。 As a result of calculating the fluorescence intensity ratio, it is 0.358 ± 0.0141 when Alexa Fluor 405 is used as the fluorescent substance, and 0.384 ± 0.0973 (range is standard deviation) when Alexa Fluor 350 is used. It can be seen that by using Alexa Fluor 405 as the fluorescent substance, the leakage of fluorescence into the green channel is suppressed as compared with the case of using Alexa Fluor 350.

以上の結果から、青チャネル(波長:425nmから465nm)での蛍光検出に用いる蛍光色素として、最大蛍光波長が当該チャネルの透過帯よりも低波長側にあるAlexa Fluor405(最大蛍光波長:421nm)を用いるのが好ましいことがわかる。 From the above results, Alexa Fluor 405 (maximum fluorescence wavelength: 421 nm) whose maximum fluorescence wavelength is on the lower wavelength side than the transmission band of the channel is used as the fluorescent dye used for fluorescence detection in the blue channel (wavelength: 425 nm to 465 nm). It turns out that it is preferable to use it.

(3種類の蛍光物質を用いたがん細胞の蛍光検出)
(2−1)がん細胞株PC−9を培養ディッシュで培養し、培養したがん細胞を4%パラホルムアルデヒド溶液による固定処理およびエタノールによる膜透過処理を行なった後、細胞核、核膜、細胞質内のCKに対し、それぞれ以下に示す方法で蛍光物質を標識した。なお、本実施例で用いた蛍光物質の蛍光スペクトルを図5に示す。
細胞核:SYTOX Green(最大蛍光波長:523nm、Thermo Fisher Scientific製)による染色
核膜:一次抗体Anti−SUN2抗体(ウサギ由来、Sigma Life Science製)を添加後、二次抗体Alexa Fluor 633(最大蛍光波長:633nm)標識抗ウサギ抗体(Thermo Fisher Scientific製)を添加することで標識
細胞質(CK):一次抗体Anti−Pan CK(サイトケラチン)抗体(マウス由来、自家製)を添加後、二次抗体Alexa Fluor 405標識抗マウスIgG抗体(Abcam製)を添加することで標識
(2−2)(1−2)と同様の蛍光顕微鏡、マルチバンドパスフィルタおよびカラーカメラを用いて、蛍光像を取得した。
(Fluorescence detection of cancer cells using 3 types of fluorescent substances)
(2-1) Cancer cell line PC-9 is cultured in a culture dish, and the cultured cancer cells are fixed with a 4% paraformaldehyde solution and membrane permeabilized with ethanol, and then the cell nucleus, nuclear envelope, and cytoplasm. The fluorescent substances were labeled on the CKs in the cells by the methods shown below. The fluorescence spectrum of the fluorescent substance used in this example is shown in FIG.
Cell nucleus: Stained with SYSTEMX Green (maximum fluorescence wavelength: 523 nm, manufactured by Thermo Fisher Scientific) Nucleus membrane: Primary antibody Anti-SUN2 antibody (derived from rabbit, manufactured by Sigma Life Science), and then secondary antibody Alexa Fluor 633 (maximum fluorescence) : 633 nm) Labeled cytoplasm (CK) by adding a labeled anti-rabbit antibody (manufactured by Thermo Fisher Scientific): Primary antibody Anti-Pan CK (cytokeratin) antibody (derived from mouse, homemade), and then secondary antibody Alexa Fluor. A fluorescence image was obtained by adding a 405-labeled anti-mouse IgG antibody (manufactured by Abcam) using a fluorescence microscope, a multi-band pass filter and a color camera similar to those labeled (2-2) and (1-2).

取得した蛍光像を図6に示す。また図6の画像から、マルチバンドパスフィルタの各透過帯(各チャネル)毎に色分解した画像を図7(青チャネル、Alexa Fluor 405による蛍光像に相当)、図8(緑チャネル、SYTOX Greenによる蛍光像に相当)および図9(赤チャネル、Alexa Fluor 633による蛍光像に相当)に示す。図6の結果より、がん細胞の細胞核、核膜および細胞質(CK)がそれぞれの蛍光物質によって染色されていることが確認できた。また、色分解した画像(図7から図9)から、各チャネル(各蛍光色素)の染色具合を確認できた。 The acquired fluorescence image is shown in FIG. Further, from the image of FIG. 6, the images color-separated for each transmission band (each channel) of the multi-band pass filter are shown in FIG. 7 (blue channel, corresponding to the fluorescence image by Alexa Fluor 405) and FIG. 8 (green channel, SYSTEMG Green). (Corresponding to the fluorescence image by) and FIG. 9 (red channel, corresponding to the fluorescence image by Alexa Blue 633). From the results shown in FIG. 6, it was confirmed that the cell nuclei, nuclear envelope and cytoplasm (CK) of the cancer cells were stained with the respective fluorescent substances. In addition, the dyeing condition of each channel (each fluorescent dye) could be confirmed from the color-separated images (FIGS. 7 to 9).

なお、本結果から、緑チャネル(波長:500nmから565nm)および赤チャネル(波長:610nmから685nm)での蛍光検出用蛍光色素については、その最大蛍光波長が当該チャネル(透過帯)内であっても問題ないことがわかる(SYTOX Greenの最大蛍光波長:523nm、Alexa Fluor 633の最大蛍光波長:633nm)。 From this result, the maximum fluorescence wavelength of the fluorescent dye for fluorescence detection in the green channel (wavelength: 500 nm to 565 nm) and the red channel (wavelength: 610 nm to 685 nm) is within the channel (transmission band). It can be seen that there is no problem (maximum fluorescence wavelength of SYSTEMG Green: 523 nm, maximum fluorescence wavelength of Alexa Fluor 633: 633 nm).

Claims (2)

標的粒子を、最大蛍光波長が互いに異なる3以上の蛍光物質で標識する工程と、
前記標的粒子に励起光を照射する工程と、
前記標的粒子に標識した前記蛍光物質由来の蛍光を、マルチバンドパスフィルタを通して、デジタルカラーカメラで測定する工程と、
を含む前記標的粒子の蛍光輝度を定量的に測定する方法であって、
最大蛍光波長が最も短い蛍光物質の最大蛍光波長が、前記マルチバンドパスフィルタの最も短波長側の透過帯の下限よりも短いことを特徴とする測定方法。
A step of labeling the target particles with three or more fluorescent substances having different maximum fluorescence wavelengths from each other.
The step of irradiating the target particles with excitation light and
A step of measuring the fluorescence derived from the fluorescent substance labeled on the target particles with a digital color camera through a multi-bandpass filter, and
It is a method of quantitatively measuring the fluorescence brightness of the target particles containing
A measuring method characterized in that the maximum fluorescence wavelength of a fluorescent substance having the shortest maximum fluorescence wavelength is shorter than the lower limit of the transmission band on the shortest wavelength side of the multi-bandpass filter.
前記標的粒子が細胞であって、細胞核を染色するのに、蛍光スペクトルの最大蛍光波長が短波長側から数えて2番目以降となる蛍光物質を用いることを特徴とする請求項1に記載の方法。 The method according to claim 1, wherein the target particle is a cell, and a fluorescent substance having a maximum fluorescence wavelength of the fluorescence spectrum second or later counted from the short wavelength side is used for staining the cell nucleus. ..
JP2017066231A 2017-03-29 2017-03-29 Labeling method using multiple fluorescent substances Active JP6977287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017066231A JP6977287B2 (en) 2017-03-29 2017-03-29 Labeling method using multiple fluorescent substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017066231A JP6977287B2 (en) 2017-03-29 2017-03-29 Labeling method using multiple fluorescent substances

Publications (2)

Publication Number Publication Date
JP2018169272A JP2018169272A (en) 2018-11-01
JP6977287B2 true JP6977287B2 (en) 2021-12-08

Family

ID=64017883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017066231A Active JP6977287B2 (en) 2017-03-29 2017-03-29 Labeling method using multiple fluorescent substances

Country Status (1)

Country Link
JP (1) JP6977287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7280577B2 (en) * 2019-04-22 2023-05-24 東洋インキScホールディングス株式会社 Fluorescent bioimaging method
KR102450912B1 (en) 2022-02-25 2022-10-06 주식회사 제이엘메디랩스 Fluorescence microscope for identifying biomarker and biomarker identification method using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083486A (en) * 1998-05-14 2000-07-04 The General Hospital Corporation Intramolecularly-quenched near infrared fluorescent probes
GB0317679D0 (en) * 2003-07-29 2003-09-03 Amersham Biosciences Uk Ltd Analysing biological entities
JP4224640B2 (en) * 2004-03-29 2009-02-18 オリンパス株式会社 Fluorescence spectrometer
JP4509702B2 (en) * 2004-08-31 2010-07-21 オリンパス株式会社 Method for measuring intracellular granular structure
US7932503B2 (en) * 2008-05-16 2011-04-26 David R. Parks Method for pre-identification of spectral overlaps within fluorescent dye and detector combinations used in flow cytometry
JP5734091B2 (en) * 2010-06-04 2015-06-10 富士フイルム株式会社 Biomolecule detection apparatus and biomolecule detection method
JP5703126B2 (en) * 2010-09-30 2015-04-15 富士フイルム株式会社 Biomolecule detection apparatus and biomolecule detection method
SE537103C2 (en) * 2013-12-16 2015-01-07 Per Fogelstrand Fluorescence microscopy system and method with detection of light emission from multiple fluorochromes
EP3083979B1 (en) * 2013-12-19 2019-02-20 Axon DX, LLC Cell detection, capture and isolation methods and apparatus
EP3152549B1 (en) * 2014-06-05 2023-06-07 Universität Heidelberg Method and means for multispectral imaging

Also Published As

Publication number Publication date
JP2018169272A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
AU2017204463B2 (en) Digitally enhanced microscopy for multiplexed histology
AU2010301166A1 (en) System and method for generating a brightfield image using fluorescent images
JP2016161417A (en) Image processing system, image processing method and imaging system
JP6977287B2 (en) Labeling method using multiple fluorescent substances
JP2002521682A5 (en)
JP6721030B2 (en) Pathological specimen, method of making pathological specimen
US20160216209A1 (en) Method for determining quantity of biological material in tissue section
KR101836830B1 (en) Optical method for identifying cell
Sizaire et al. Automated screening of AURKA activity based on a genetically encoded FRET biosensor using fluorescence lifetime imaging microscopy
JP2020173204A (en) Image processing system, method for processing image, and program
Schmidt et al. Simultaneous polychromatic immunofluorescent staining of tissue sections and consecutive imaging of up to seven parameters by standard confocal microscopy
WO2017014196A1 (en) Target biological substance analysis method and analysis system
US11567008B2 (en) Immunostaining method, immunostaining system, and immunostaining kit
JP7160047B2 (en) Biological substance quantification method, image processing device and program
Di Caprio et al. Hyperspectral microscopy of flowing cells
JP5362666B2 (en) Cell observation apparatus and cell observation method
WO2013179279A2 (en) Method and device for analyzing biological sample
Itoh et al. Quantum dots for multicolor tumor pathology and multispectral imaging
WO2020262117A1 (en) Image processing system, image processing method, and program
WO2020209217A1 (en) Image processing system, image processing method, and program
JP7184046B2 (en) Biological substance quantification method, image processing device, pathological diagnosis support system and program
JP2024516380A (en) Morphological marker staining
Jenster et al. Measuring NLR Oligomerization II: Detection of ASC Speck Formation by Confocal Microscopy and Immunofluorescence
US20180275062A1 (en) Optical Method of Detecting Bacteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R151 Written notification of patent or utility model registration

Ref document number: 6977287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151