JP6973999B2 - Sulfide solid state battery - Google Patents

Sulfide solid state battery Download PDF

Info

Publication number
JP6973999B2
JP6973999B2 JP2016189899A JP2016189899A JP6973999B2 JP 6973999 B2 JP6973999 B2 JP 6973999B2 JP 2016189899 A JP2016189899 A JP 2016189899A JP 2016189899 A JP2016189899 A JP 2016189899A JP 6973999 B2 JP6973999 B2 JP 6973999B2
Authority
JP
Japan
Prior art keywords
positive electrode
sulfide solid
layer
conductive material
carbon conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016189899A
Other languages
Japanese (ja)
Other versions
JP2018055926A (en
Inventor
洋平 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016189899A priority Critical patent/JP6973999B2/en
Publication of JP2018055926A publication Critical patent/JP2018055926A/en
Application granted granted Critical
Publication of JP6973999B2 publication Critical patent/JP6973999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、硫化物固体電池に関する。 The present invention relates to a sulfide solid state battery.

硫化物固体電池に関し、電池の性能向上を目的として、表面に被覆層が形成された電極活物質を採用する技術が知られている。例えば特許文献1には、表面にコート材を有する正極活物質(LiNi0.5Mn1.5)と、導電材と、硫化物固体電解質とを含有する正極合材を有する硫化物固体電池が開示されている。 Regarding a sulfide solid-state battery, a technique of adopting an electrode active material having a coating layer formed on the surface is known for the purpose of improving the performance of the battery. For example, Patent Document 1 describes a sulfide solid having a positive electrode mixture containing a positive electrode active material (LiNi 0.5 Mn 1.5 O 4) having a coating material on the surface, a conductive material, and a sulfide solid electrolyte. Batteries are disclosed.

特開2016−081822号公報Japanese Unexamined Patent Publication No. 2016-081822

しかしながら、このような硫化物固体電池においては、高電位となった導電材の表面で硫化物固体電解質が分解され、容量維持率が低くなるという問題がある。図5は、硫化物固体電解質の分解の推定メカニズムを説明するための、従来の正極合材の部分断面模式図(図5(a))及びその拡大図(図5(b))である。
図5(a)に示すように、従来の硫化物固体電池用正極合材200は、その基材として正極活物質11を含む。正極活物質11としては、例えば、LiNi0.5Mn1.5等の高電位正極活物質等が挙げられる。当該正極活物質11表面は、酸化物層12により被覆されている。酸化物層12は主に正極活物質11の保護層の役割を果たし、その材料としては、例えば、LiPO等が挙げられる。酸化物層12には、通常、酸化還元電位の低い材料が使用される。
正極合材200表面には、他にも、カーボン導電材13及び硫化物固体電解質14が存在する。これらの材料は、通常、酸化物層12表面に存在するが、酸化物層12の被覆が途切れ、正極活物質11が露出した表面にも存在する。
図5(a)に一点鎖線の矢印で示すように、放電反応において、正極合材200は、主にカーボン導電材13表面から電子(e)を取り込むと共に、主に硫化物固体電解質14表面からリチウムイオン(Li)を取り込む。
However, in such a sulfide solid-state battery, there is a problem that the sulfide solid electrolyte is decomposed on the surface of the conductive material having a high potential, and the capacity retention rate is lowered. FIG. 5 is a schematic partial cross-sectional view (FIG. 5 (a)) and an enlarged view (FIG. 5 (b)) of a conventional positive electrode mixture for explaining the estimation mechanism of decomposition of the sulfide solid electrolyte.
As shown in FIG. 5A, the conventional positive electrode mixture 200 for a sulfide solid-state battery contains a positive electrode active material 11 as a base material thereof. Examples of the positive electrode active material 11 include a high-potential positive electrode active material such as LiNi 0.5 Mn 1.5 O 4. The surface of the positive electrode active material 11 is covered with an oxide layer 12. The oxide layer 12 mainly serves as a protective layer for the positive electrode active material 11, and examples of the material thereof include Li 3 PO 4 . A material having a low redox potential is usually used for the oxide layer 12.
In addition, the carbon conductive material 13 and the sulfide solid electrolyte 14 are present on the surface of the positive electrode mixture 200. These materials are usually present on the surface of the oxide layer 12, but are also present on the surface where the coating of the oxide layer 12 is interrupted and the positive electrode active material 11 is exposed.
As shown by the dashed line arrow in FIG. 5A, in the discharge reaction, the positive electrode mixture 200 mainly takes in electrons (e − ) from the surface of the carbon conductive material 13 and mainly the surface of the sulfide solid electrolyte 14. Lithium ion (Li + ) is taken in from.

図5(b)は、図5(a)中の一点鎖線の枠15を拡大した断面模式図であり、正極活物質11とカーボン導電材13との界面近傍を示した図である。
例えば、LiNi0.5Mn1.5(酸化還元電位:4.8V(vs.Li/Li))を正極活物質11として用いた場合には、高電位で不安定となり、酸素成分を放出しやすい。ここでいう酸素成分とは、酸素原子、酸素分子、オゾン、酸素ラジカル等を意味する。
一方、硫化物固体電解質14は、カーボン導電材13のような高電位物質との接触によって分解され、硫黄成分(図5(b)中のS)を放出する。ここでいう硫黄成分とは、硫黄原子、硫黄分子(各同素体含む)、硫黄ラジカル等を意味する。図5(b)中に一点鎖線の矢印で示すように、この硫黄成分は酸化物層12中やカーボン導電材13中を通過し、最終的に正極活物質11中に拡散すると考えられる。
正極活物質11中に拡散した硫黄成分は、酸素成分と結合することにより安定な硫酸成分(SO等)となったり、正極活物質11自体と反応することによりMnS等の高抵抗な物質を生成したりする。正極活物質11中にこれら硫酸成分や高抵抗物質が生成することにより、正極活物質11の組成が変化する結果、電池全体の容量維持率が低下すると考えられる。
FIG. 5B is an enlarged cross-sectional schematic view of the frame 15 of the alternate long and short dash line in FIG. 5A, showing the vicinity of the interface between the positive electrode active material 11 and the carbon conductive material 13.
For example, when LiNi 0.5 Mn 1.5 O 4 (oxidation-reduction potential: 4.8 V (vs. Li / Li +)) is used as the positive electrode active material 11, it becomes unstable at a high potential and the oxygen component. Is easy to release. The oxygen component here means an oxygen atom, an oxygen molecule, ozone, an oxygen radical, or the like.
On the other hand, the sulfide solid electrolyte 14 is decomposed by contact with a high-potential substance such as the carbon conductive material 13, and releases a sulfur component (S in FIG. 5B). The sulfur component here means a sulfur atom, a sulfur molecule (including each allotrope), a sulfur radical, and the like. As shown by the arrow of the alternate long and short dash line in FIG. 5B, it is considered that this sulfur component passes through the oxide layer 12 and the carbon conductive material 13 and finally diffuses into the positive electrode active material 11.
The sulfur component diffused in the positive electrode active material 11 becomes a stable sulfuric acid component (SO 4 etc.) by combining with the oxygen component, or reacts with the positive electrode active material 11 itself to form a highly resistant substance such as MnS. Or generate. It is considered that the generation of these sulfuric acid components and high resistance substances in the positive electrode active material 11 changes the composition of the positive electrode active material 11 and results in a decrease in the capacity retention rate of the entire battery.

本発明は硫化物固体電池の正極合材に関する上記実情を鑑みて成し遂げられたものであり、本発明の目的は、従来よりも容量維持率の高い硫化物固体電池を提供することである。 The present invention has been accomplished in view of the above circumstances regarding the positive electrode mixture of a sulfide solid-state battery, and an object of the present invention is to provide a sulfide solid-state battery having a higher capacity retention rate than the conventional one.

本発明の硫化物固体電池は、正極合材を含有する正極層と、負極層と、前記正極層と前記負極層との間に存在する硫化物固体電解質層とを備える硫化物固体電池において、前記正極合材は、酸化物により表面が被覆された高電位正極活物質と、カーボン導電材と、硫化物固体電解質とを含有し、前記カーボン導電材が、その表面にNb又はAlを含むコート層を備えることを特徴とする。 The sulfide solid battery of the present invention is a sulfide solid battery including a positive electrode layer containing a positive electrode mixture, a negative electrode layer, and a sulfide solid electrolyte layer existing between the positive electrode layer and the negative electrode layer. The positive electrode mixture contains a high-potential positive electrode active material whose surface is coated with an oxide, a carbon conductive material, and a sulfide solid electrolyte, and the carbon conductive material has Nb 2 O 5 or Al on its surface. It is characterized by comprising a coat layer containing 2 O 3.

本発明によれば、カーボン導電材に対しNb又はAlを含むコート層を設けることで、当該コート層は高電位状態とはならないため、カーボン導電材と硫化物固体電解質との接触に起因する硫化物固体電解質の分解及び硫黄成分の放出が抑制される。その結果、放出された硫黄成分と高電位正極活物質との反応による高抵抗物質の生成が抑制されるため、容量維持率を従来よりも向上させることができる。 According to the present invention, by providing a coat layer containing Nb 2 O 5 or Al 2 O 3 on the carbon conductive material, the coat layer does not become in a high potential state, so that the carbon conductive material and the sulfide solid electrolyte are used. The decomposition of the sulfide solid electrolyte and the release of the sulfur component due to the contact with the sulfide are suppressed. As a result, the production of a highly resistant substance due to the reaction between the released sulfur component and the high-potential positive electrode active material is suppressed, so that the capacity retention rate can be improved as compared with the conventional case.

本発明の硫化物固体電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。It is a figure which shows an example of the layer structure of the sulfide solid state battery of this invention, and is the figure which schematically shows the cross section cut in the stacking direction. 製造例Nb−1のカーボン導電材のHADDFによる測定結果を撮影した、倍率(20万倍又は120万倍)のTEM画像である。It is a TEM image of the magnification (200,000 times or 1.2 million times) which took the measurement result by HADDF of the carbon conductive material of Production Example Nb-1. 製造例Nb−1のカーボン導電材のEDXスペクトルライン分析結果である。It is the EDX spectrum line analysis result of the carbon conductive material of Production Example Nb-1. 製造例Al−1のカーボン導電材のSEM画像である。It is an SEM image of the carbon conductive material of Production Example Al-1. 硫化物固体電解質の分解の推定メカニズムを説明するための、従来の正極合材の部分断面模式図及びその拡大図である。It is a partial cross-sectional schematic diagram of the conventional positive electrode mixture and its enlarged view for demonstrating the estimation mechanism of decomposition of a sulfide solid electrolyte.

本発明の硫化物固体電池は、正極合材を含有する正極層と、負極層と、前記正極層と前記負極層との間に存在する硫化物固体電解質層とを備える硫化物固体電池において、前記正極合材は、酸化物により表面が被覆された高電位正極活物質と、カーボン導電材と、硫化物固体電解質とを含有し、前記カーボン導電材が、その表面にNb又はAlを含むコート層を備えることを特徴とする。 The sulfide solid battery of the present invention is a sulfide solid battery including a positive electrode layer containing a positive electrode mixture, a negative electrode layer, and a sulfide solid electrolyte layer existing between the positive electrode layer and the negative electrode layer. The positive electrode mixture contains a high-potential positive electrode active material whose surface is coated with an oxide, a carbon conductive material, and a sulfide solid electrolyte, and the carbon conductive material has Nb 2 O 5 or Al on its surface. It is characterized by comprising a coat layer containing 2 O 3.

図1は、本発明の硫化物固体電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。硫化物固体電池100は、正極層1と、負極層2と、正極層1と負極層2との間に存在する硫化物固体電解質層3を備える。
なお、本発明の硫化物固体電池は、必ずしもこの例のみに限定されるものではない。例えば、硫化物固体電池100の外側でありかつ正極層1と接する部分に正極集電体が設けられていてもよい。また、硫化物固体電池100の外側でありかつ負極層2と接する部分に負極集電体が設けられていてもよい。
FIG. 1 is a diagram showing an example of the layer structure of the sulfide solid-state battery of the present invention, and is a diagram schematically showing a cross section cut in the stacking direction. The sulfide solid-state battery 100 includes a positive electrode layer 1, a negative electrode layer 2, and a sulfide solid electrolyte layer 3 existing between the positive electrode layer 1 and the negative electrode layer 2.
The sulfide solid-state battery of the present invention is not necessarily limited to this example. For example, a positive electrode current collector may be provided on the outside of the sulfide solid-state battery 100 and in contact with the positive electrode layer 1. Further, a negative electrode current collector may be provided on a portion outside the sulfide solid-state battery 100 and in contact with the negative electrode layer 2.

正極層1は、少なくとも正極合材を含む層である。正極層1には、正極合材に加え、必要に応じて、バインダー等を適宜含有させることができる。
正極合材は、高電位正極活物質と、カーボン導電材と、硫化物固体電解質とを含有する。
The positive electrode layer 1 is a layer containing at least a positive electrode mixture. In addition to the positive electrode mixture, the positive electrode layer 1 may appropriately contain a binder or the like, if necessary.
The positive electrode mixture contains a high-potential positive electrode active material, a carbon conductive material, and a sulfide solid electrolyte.

本発明において「高電位正極活物質」とは、酸化還元電位が4.5V(vs.Li/Li)以上である正極活物質を意味する。高電位正極活物質としては、例えば、LiNi0.5Mn1.5等が挙げられる。
本発明に使用される高電位正極活物質は、酸化物により表面が被覆されている。当該酸化物としては、例えば、LiPO等が挙げられる。
高電位正極活物質の形状は特に限定されず、例えば粒状や薄膜状等が挙げられる。
In the present invention, the "high potential positive electrode active material" means a positive electrode active material having an oxidation-reduction potential of 4.5 V (vs. Li / Li +) or more. Examples of the high-potential positive electrode active material include LiNi 0.5 Mn 1.5 O 4 and the like.
The surface of the high-potential positive electrode active material used in the present invention is coated with an oxide. Examples of the oxide include Li 3 PO 4 and the like.
The shape of the high-potential positive electrode active material is not particularly limited, and examples thereof include a granular shape and a thin film shape.

本発明に使用されるカーボン導電材としては、例えば、気相成長炭素繊維、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等の炭素材料が挙げられる。カーボン導電材の形状は特に限定されず、例えば粒状や繊維状等が挙げられる。 Examples of the carbon conductive material used in the present invention include carbon materials such as vapor-grown carbon fiber, acetylene black (AB), ketjen black (KB), carbon nanotube (CNT), and carbon nanofiber (CNF). Can be mentioned. The shape of the carbon conductive material is not particularly limited, and examples thereof include granular and fibrous materials.

本発明に使用されるカーボン導電材は、その表面にNb又はAlを含むコート層を備える。カーボン導電材にコート層を設けることにより、カーボン導電材と硫化物固体電解質との接触による硫化物固体電解質の分解(及び硫黄成分の生成)が抑制される。これは、Nb又はAlを含むコート層の酸化還元電位が電池の充放電時における正極層の電位範囲(3.0〜4.8V vs.Li/Li)に含まれず、かつ当該コート層の電子伝導率が低い(すなわち、絶縁性が高い)ため、当該コート層によってカーボン導電材と硫化物固体電解質との接触を遮断することにより、硫化物固体電解質と高電位物質(カーボン導電材等)との接触を回避できるためである。その結果、硫化物固体電解質由来の硫黄成分と正極活物質との反応による高抵抗物質の生成が抑制されるため、硫化物固体電池の容量維持率が向上する。 The carbon conductive material used in the present invention is provided with a coat layer containing Nb 2 O 5 or Al 2 O 3 on its surface. By providing the coat layer on the carbon conductive material, the decomposition of the sulfide solid electrolyte (and the generation of the sulfur component) due to the contact between the carbon conductive material and the sulfide solid electrolyte is suppressed. This is because the oxidation-reduction potential of the coat layer containing Nb 2 O 5 or Al 2 O 3 is not included in the potential range of the positive electrode layer (3.0 to 4.8 V vs. Li / Li +) during charging and discharging of the battery. Moreover, since the electron conductivity of the coat layer is low (that is, the insulating property is high), the coat layer blocks the contact between the carbon conductive material and the sulfide solid electrolyte, whereby the sulfide solid electrolyte and the high potential substance are present. This is because contact with (carbon conductive material, etc.) can be avoided. As a result, the production of a high resistance substance due to the reaction between the sulfur component derived from the sulfide solid electrolyte and the positive electrode active material is suppressed, so that the capacity retention rate of the sulfide solid battery is improved.

コート層は、カーボン導電材表面の一部のみを被覆するものであってもよいし、カーボン導電材の全表面を被覆するものであってもよい。後述する実施例において示す通り、カーボン導電材表面全体を覆う膜状コート(実施例1)、カーボン導電材表面の一部を覆う粒状コート(実施例2)のいずれについても、容量維持率の向上の効果が見られる。ただし、硫化物固体電解質の分解を抑えやすいため、カーボン導電材の表面全体に占めるコート層によって被覆されている部位の割合は、高ければ高いほど好ましく、カーボン導電材の表面全体が、均一な厚さのコート層によって被覆されていることがより好ましい。
本発明において、コート層の厚さは特に限定されない。コート層の厚さは、好適には0.4nm以上50nm以下であり、より好適には1.0nm以上20nm以下であり、さらに好適には2.0nm以上10nm以下である。コート層の厚さが0.4nm未満の場合には、硫化物固体電解質の分解を抑える効果が低くなるおそれがある。一方、コート層の厚さが50nmを超える場合には、正極合材中の材料間の界面の電子抵抗が上昇するおそれがある。
The coat layer may cover only a part of the surface of the carbon conductive material, or may cover the entire surface of the carbon conductive material. As shown in Examples described later, the capacity retention rate is improved for both the film-like coat covering the entire surface of the carbon conductive material (Example 1) and the granular coat covering a part of the surface of the carbon conductive material (Example 2). The effect of is seen. However, since it is easy to suppress the decomposition of the sulfide solid electrolyte, the higher the ratio of the portion covered with the coat layer to the entire surface of the carbon conductive material, the more preferable, and the entire surface of the carbon conductive material has a uniform thickness. It is more preferable that it is covered with a coating layer.
In the present invention, the thickness of the coat layer is not particularly limited. The thickness of the coat layer is preferably 0.4 nm or more and 50 nm or less, more preferably 1.0 nm or more and 20 nm or less, and further preferably 2.0 nm or more and 10 nm or less. If the thickness of the coat layer is less than 0.4 nm, the effect of suppressing the decomposition of the sulfide solid electrolyte may be reduced. On the other hand, when the thickness of the coat layer exceeds 50 nm, the electronic resistance at the interface between the materials in the positive electrode mixture may increase.

カーボン導電材の表面にコート層を形成する方法は、特に限定されない。例えば、パルスレーザー堆積(PLD)法のほか、原子層堆積(ALD)法等に代表される気相法によって、カーボン導電材の表面にコート層を形成することが可能である。これらの方法の中では、原子層堆積(ALD)法等に代表される気相法によって、コート層を形成することが好ましい。均一な厚さのコート層を形成しやすいからである。
原子層堆積(ALD)法によりNbを含むコート層を形成する場合には、例えば、Nb原料としてニオブエトキシド、酸素源として水を用いることができる。
原子層堆積(ALD)法によりAlを含むコート層を形成する場合には、例えば、Al原料としてトリメチルアルミニウム、酸素源として水を用いることができる。
原子層堆積(ALD)法によりLiNbOを含むコート層を形成する場合には、例えば、Li原料としてリチウム t−ブトキシド、Nb原料としてニオブエトキシド、酸素源として水を用いることができる。
成膜レートとしては、1サイクル当たり0.3Å以上3Å以下が好ましい。好適なサイクル数は、上記好適なコート層の厚さを当該成膜レートにより除した値である。
The method for forming the coat layer on the surface of the carbon conductive material is not particularly limited. For example, in addition to the pulsed laser deposition (PLD) method, a vapor phase method typified by an atomic layer deposition (ALD) method can be used to form a coat layer on the surface of the carbon conductive material. Among these methods, it is preferable to form a coat layer by a vapor phase method represented by an atomic layer deposition (ALD) method or the like. This is because it is easy to form a coat layer having a uniform thickness.
When a coat layer containing Nb 2 O 5 is formed by the atomic layer deposition (ALD) method, for example, niobium ethoxide can be used as the Nb raw material and water can be used as the oxygen source.
When forming a coat layer containing Al 2 O 3 by the atomic layer deposition (ALD) method, for example, trimethylaluminum can be used as an Al raw material and water can be used as an oxygen source.
When forming a coat layer containing LiNbO 3 by the atomic layer deposition (ALD) method, for example, lithium t-butoxide as a Li raw material, niobium ethoxydo as an Nb raw material, and water as an oxygen source can be used.
The film formation rate is preferably 0.3 Å or more and 3 Å or less per cycle. The suitable number of cycles is a value obtained by dividing the thickness of the suitable coat layer by the film formation rate.

カーボン導電材の表面がコート層によって被覆されているか否かは、例えば、走査型電子顕微鏡(Scanning Transmission Electron Microscopy;SEM)による観察や、透過型電子顕微鏡のエネルギー分散型X線分光法(Transmission Electron Microscopy−Energy Dispersive X−ray Spectroscopy;TEM−EDX)を用いた、高角度散乱暗視野法(High−Angle Annular Dark−Field:HAADF)による観察によって確認することができる。特にTEM−EDXを用いたHAADFによる観察の場合は、EDXスペクトルライン分析により、カーボン導電材断面における元素の組成比を調べることができ、コート層の詳細な被覆形態を確認することができる。 Whether or not the surface of the carbon conductive material is covered with a coat layer can be determined, for example, by observation with a scanning electron microscope (SEM) or energy dispersive X-ray spectroscopy (Transmission Electron) of a transmission electron microscope. It can be confirmed by observation by a high-angle scattering dark-field method (High-Angle Anal Dark-Field: HAADF) using a Microscope-Energy Dispersive X-ray Spectroscopic; TEM-EDX. In particular, in the case of observation by HAADF using TEM-EDX, the composition ratio of the elements in the cross section of the carbon conductive material can be examined by EDX spectral line analysis, and the detailed coating form of the coat layer can be confirmed.

正極層に用いる硫化物固体電解質は特に限定されないが、例えば、LiS・P等が挙げられる。 The sulfide solid electrolyte used for the positive electrode layer is not particularly limited, and examples thereof include Li 2 S / P 2 S 5 .

硫化物固体電解質層は、正極層と負極層との間に存在する層である。硫化物固体電解質層を介して、正極活物質と負極活物質との間のイオン伝導が行われる。
硫化物固体電解質層としては、例えば、LiS・Pを含む層が挙げられる。
硫化物固体電解質層の厚さは、特に限定されないが、好適には0.1μm以上1000μm以下、より好適には0.1μm以上300μm以下である。
The sulfide solid electrolyte layer is a layer existing between the positive electrode layer and the negative electrode layer. Ion conduction between the positive electrode active material and the negative electrode active material is performed through the sulfide solid electrolyte layer.
Examples of the sulfide solid electrolyte layer include a layer containing Li 2 S / P 2 S 5.
The thickness of the sulfide solid electrolyte layer is not particularly limited, but is preferably 0.1 μm or more and 1000 μm or less, and more preferably 0.1 μm or more and 300 μm or less.

負極層は、少なくとも負極活物質を含み、必要に応じて、硫化物固体電解質等を含んでいてもよい。
負極層に含有させることが可能な負極活物質としては、リチウムイオンを吸蔵放出可能な負極活物質を適宜用いることができる。そのような負極活物質としては、例えば、カーボン活物質、酸化物活物質、及び、金属活物質等を挙げることができる。この中でもカーボン活物質は、炭素を含有していれば特に限定されず、例えば黒鉛(グラファイト)等を挙げることができる。
負極層に含有させることが可能な硫化物固体電解質としては、例えば、LiS・Pを例示することができる。
The negative electrode layer contains at least a negative electrode active material, and may contain a sulfide solid electrolyte or the like, if necessary.
As the negative electrode active material that can be contained in the negative electrode layer, a negative electrode active material that can occlude and release lithium ions can be appropriately used. Examples of such a negative electrode active material include a carbon active material, an oxide active material, a metal active material, and the like. Among these, the carbon active material is not particularly limited as long as it contains carbon, and examples thereof include graphite.
As the sulfide solid electrolyte that can be contained in the negative electrode layer, for example, Li 2 S / P 2 S 5 can be exemplified.

硫化物固体電池は、上記硫化物固体電解質層の一方の面に正極層を形成し、当該硫化物固体電解質層の他方の面に負極層を形成することにより製造する。硫化物固体電池は、外装体に収容した状態で使用してもよい。 The sulfide solid-state battery is manufactured by forming a positive electrode layer on one surface of the sulfide solid electrolyte layer and forming a negative electrode layer on the other surface of the sulfide solid electrolyte layer. The sulfide solid-state battery may be used in a state of being housed in an exterior body.

1.カーボン導電材に対する原子層堆積(ALD)法によるコーティング
[製造例Nb−1]
カーボン導電材であるアセチレンブラック(商品名、電気化学工業社製)の表面へ、ALD法によりコート層を成膜した。ALD成膜時に、Nb原料としてニオブエトキシド(ジャパン・アドバンスト・ケミカルズ社製)を用い、酸素源として水を用いた。ニオブエトキシドの温度は200℃とし、水の温度は20℃とし、反応層の温度は200℃とした。また、成膜レートを1サイクルあたり0.4Åとし、キャリアガスとして窒素ガスを用い、成膜を50サイクルに亘って繰り返すことにより、アセチレンブラックの表面に、Nbを主体とするコート層を形成した。ALD製膜の製膜条件から、コート層の厚さは約2nmであると考えられる。
1. 1. Coating of carbon conductive material by atomic layer deposition (ALD) method [Production Example Nb-1]
A coat layer was formed on the surface of acetylene black (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd.), which is a carbon conductive material, by the ALD method. At the time of ALD film formation, niobium ethoxydo (manufactured by Japan Advanced Chemicals Co., Ltd.) was used as an Nb raw material, and water was used as an oxygen source. The temperature of niobium ethoxyd was 200 ° C., the temperature of water was 20 ° C., and the temperature of the reaction layer was 200 ° C. Further, by setting the film formation rate to 0.4 Å per cycle, using nitrogen gas as the carrier gas, and repeating the film formation over 50 cycles, a coat layer mainly composed of Nb 2 O 5 is formed on the surface of acetylene black. Was formed. From the film forming conditions of ALD film forming, it is considered that the thickness of the coat layer is about 2 nm.

[製造例Nb−2〜Nb−6]
上記製造例Nb−1において、成膜の繰り返し回数を10サイクル(製造例Nb−2)、25サイクル(製造例Nb−3)、75サイクル(製造例Nb−4)、125サイクル(製造例Nb−5)又は175サイクル(製造例Nb−6)としたこと以外は、製造例Nb−1と同様の工程により、アセチレンブラックの表面に、Nbを主体とするコート層を形成した。
ALD製膜の製膜条件から、各コート層の厚さは、それぞれ約0.4nm(製造例Nb−2)、約1nm(製造例Nb−3)、約3nm(製造例Nb−4)、約5nm(製造例Nb−5)又は約7nm(製造例Nb−6)であると考えられる。
[Manufacturing Examples Nb-2 to Nb-6]
In the above-mentioned production example Nb-1, the number of times of repeating the film formation is 10 cycles (production example Nb-2), 25 cycles (production example Nb-3), 75 cycles (production example Nb-4), 125 cycles (production example Nb). A coat layer mainly composed of Nb 2 O 5 was formed on the surface of acetylene black by the same process as that of Production Example Nb-1, except that the cycle was -5) or 175 cycles (Production Example Nb-6).
From the film forming conditions of ALD film forming, the thickness of each coat layer is about 0.4 nm (Production Example Nb-2), about 1 nm (Production Example Nb-3), about 3 nm (Production Example Nb-4), respectively. It is considered to be about 5 nm (Production Example Nb-5) or about 7 nm (Production Example Nb-6).

[製造例LiNb−1]
カーボン導電材であるアセチレンブラック(商品名、電気化学工業社製)の表面へ、ALD法によりコート層を成膜した。ALD成膜時に、Li原料としてリチウム t−ブトキシド(ジャパン・アドバンスト・ケミカルズ社製)、Nb原料としてニオブエトキシド(ジャパン・アドバンスト・ケミカルズ社製)を用い、酸素源として水を用いた。リチウム t−ブトキシドの温度は140℃、ニオブエトキシドの温度は200℃とし、水の温度は20℃とし、反応層の温度は235℃とした。また、成膜レートを1サイクルあたり2Åとし、キャリアガスとして窒素ガスを用い、成膜を10サイクルに亘って繰り返すことにより、アセチレンブラックの表面に、Li及びNbの複合酸化物を主体とするコート層を形成した。ALD製膜の製膜条件から、コート層の厚さは約2nmであると考えられる。
[Manufacturing Example LiNb-1]
A coat layer was formed on the surface of acetylene black (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd.), which is a carbon conductive material, by the ALD method. At the time of ALD film formation, lithium t-butoxide (manufactured by Japan Advanced Chemicals Co., Ltd.) was used as a Li raw material, niobium ethoxydo (manufactured by Japan Advanced Chemicals Co., Ltd.) was used as an Nb raw material, and water was used as an oxygen source. The temperature of lithium t-butoxide was 140 ° C, the temperature of niobium ethoxyd was 200 ° C, the temperature of water was 20 ° C, and the temperature of the reaction layer was 235 ° C. Further, by setting the film formation rate to 2 Å per cycle, using nitrogen gas as the carrier gas, and repeating the film formation over 10 cycles, the surface of acetylene black is coated with a composite oxide of Li and Nb as a main component. Formed a layer. From the film forming conditions of ALD film forming, it is considered that the thickness of the coat layer is about 2 nm.

[製造例Al−1]
カーボン導電材であるアセチレンブラック(商品名、電気化学工業社製)の表面へ、ALD法によりコート層を成膜した。ALD成膜時に、Al原料としてトリメチルアルミニウム(ジャパン・アドバンスト・ケミカルズ社製)を用い、酸素源として水を用いた。トリメチルアルミニウムの温度は20℃とし、水の温度は20℃とし、反応層の温度は200℃とした。また、成膜レートを1サイクルあたり1Åとし、キャリアガスとして窒素ガスを用い、成膜を30サイクルに亘って繰り返すことにより、アセチレンブラックの表面に、Alを主体とするコート層を形成した。ALD製膜の製膜条件から、コート層の厚さは約3nmであると考えられる。
[Manufacturing Example Al-1]
A coat layer was formed on the surface of acetylene black (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd.), which is a carbon conductive material, by the ALD method. At the time of ALD film formation, trimethylaluminum (manufactured by Japan Advanced Chemicals Co., Ltd.) was used as an Al raw material, and water was used as an oxygen source. The temperature of trimethylaluminum was 20 ° C., the temperature of water was 20 ° C., and the temperature of the reaction layer was 200 ° C. Further, by setting the film formation rate to 1 Å per cycle, using nitrogen gas as the carrier gas, and repeating the film formation over 30 cycles, a coat layer mainly composed of Al 2 O 3 is formed on the surface of acetylene black. bottom. From the film forming conditions of ALD film forming, it is considered that the thickness of the coat layer is about 3 nm.

[製造例Al−2]
上記製造例Al−1において、成膜の繰り返し回数を10サイクル(製造例Al−2)としたこと以外は、製造例Al−1と同様の工程により、アセチレンブラックの表面に、Alを主体とするコート層を形成した。
ALD製膜の製膜条件から、コート層の厚さは約1nmであると考えられる。
[Manufacturing Example Al-2]
In the above Production Example Al-1, Al 2 O 3 was applied to the surface of acetylene black by the same process as Production Example Al-1 except that the number of times of film formation was set to 10 cycles (Production Example Al-2). A coat layer mainly composed of aluminum was formed.
From the film forming conditions of ALD film forming, it is considered that the thickness of the coat layer is about 1 nm.

2.硫化物固体電池の作製
[実施例1]
正極活物質として、LiPOにより表面が被覆されたLiNi0.5Mn1.5を用いた。また、硫化物固体電解質としてLiS・P(自社合成品)を用いた。これら正極活物質と硫化物固体電解質とを、正極活物質:硫化物固体電解質=50:50(体積比)で混合した。さらに当該混合物に対し、上記製造例Nb−1のカーボン導電材(コート層:主にNb、コート層の厚さ:約2nm)を、正極活物質に対して10体積%の割合で添加して、正極合材を調製した。
また負極活物質としての天然黒鉛と、上記LiS・Pとを、天然黒鉛:硫化物固体電解質=50:50(体積比)で混合し、負極合材を調製した。
上記LiS・P 50mgを加工し固体電解質層とした。当該固体電解質層の一方の面に、上記正極合材20mgを用いて正極層を作製した。また、当該固体電解質層の他方の面に、上記負極合材20mg用いて負極層を作製し、実施例1の硫化物固体電池を作製した。
2. 2. Fabrication of Solid Sulfide Battery [Example 1]
As the positive electrode active material, using LiNi 0.5 Mn 1.5 O 4 having a surface coated with Li 3 PO 4. In addition, Li 2 S / P 2 S 5 (in-house synthesized product) was used as the sulfide solid electrolyte. These positive electrode active materials and sulfide solid electrolytes were mixed at a positive electrode active material: sulfide solid electrolyte = 50:50 (volume ratio). To further the mixture, Production Example Nb-1 carbon conductive material (coating layer: mainly Nb 2 O 5, the thickness of the coating layer: about 2 nm) and at a rate of 10 vol% with respect to the positive electrode active material Addition was made to prepare a positive electrode mixture.
Further, natural graphite as a negative electrode active material and the above Li 2 S / P 2 S 5 were mixed at a ratio of natural graphite: sulfide solid electrolyte = 50:50 (volume ratio) to prepare a negative electrode mixture.
The above Li 2 S / P 2 S 5 50 mg was processed into a solid electrolyte layer. A positive electrode layer was prepared using 20 mg of the positive electrode mixture on one surface of the solid electrolyte layer. Further, a negative electrode layer was prepared using 20 mg of the negative electrode mixture on the other surface of the solid electrolyte layer, and the sulfide solid state battery of Example 1 was prepared.

[実施例2]
上記実施例1において、上記製造例Nb−1のカーボン導電材を、上記製造例Al−1のカーボン導電材(コート層:主にAl、コート層の厚さ:約3nm)に替えたこと以外は、実施例1と同様の工程を実施し、実施例2の硫化物固体電池を作製した。
[Example 2]
In the first embodiment, the carbon conductive material of the Production Example Nb-1, Production Example Al-1 carbon conductive material (coating layer: mainly Al 2 O 3, the thickness of the coating layer: about 3 nm) instead of Except for the above, the same steps as in Example 1 were carried out to prepare a sulfide solid-state battery of Example 2.

[比較例1]
上記実施例1において、上記製造例Nb−1のカーボン導電材を、アセチレンブラック(商品名、電気化学工業社製)に替えたこと以外は、実施例1と同様の工程を実施し、比較例1の硫化物固体電池を作製した。
[Comparative Example 1]
In Example 1, the same steps as in Example 1 were carried out except that the carbon conductive material of Production Example Nb-1 was replaced with acetylene black (trade name, manufactured by Denki Kagaku Kogyo Co., Ltd.), and Comparative Example. 1 sulfide solid-state battery was produced.

3.TEM観察
製造例Nb−1のカーボン導電材について、透過型電子顕微鏡のエネルギー分散型X線分光法(TEM−EDX)を用いた、高角度散乱暗視野法(HAADF)による測定を行い、カーボン導電材表面の構造及び組成解析を行った。
3. 3. TEM observation The carbon conductive material of Production Example Nb-1 was measured by the high-angle scattering dark-field method (HAADF) using the energy dispersive X-ray spectroscopy (TEM-EDX) of a transmission electron microscope, and the carbon conductivity was measured. The structure and composition of the material surface were analyzed.

図2(a)及び(b)は、製造例Nb−1のカーボン導電材のHADDFによる測定結果のTEM画像である。
HAADFの測定条件は以下の通りである。すなわち、電界放射型透過電子顕微鏡(日本電子製、JEM−2100F、Cs補正付属)を用いて、加速電圧200kVにて、倍率20万倍(図2(a))、及び倍率120万倍(図2(b))で、それぞれ暗視野STEM観察(Scanning Transmission Electron Microscopy)を行った。なお、図2(a)及び(b)中、重元素を白色で示した。また、図2(b)は、図2(a)の枠内をさらに拡大した写真である。
特に図2(b)から分かるように、カーボン導電材においては、比較的色の濃い内部の層が、厚さ数ナノメートルの比較的色の薄い層にほぼ均一に覆われている。このことより、製造例Nb−1においては、Nbによってカーボンの均一な被覆が成功したことが確認できた。
2 (a) and 2 (b) are TEM images of the measurement results of the carbon conductive material of Production Example Nb-1 by HADDF.
The measurement conditions of HAADF are as follows. That is, using an electric field radiation transmission electron microscope (manufactured by JEOL Ltd., JEM-2100F, attached with Cs correction), a magnification of 200,000 times (Fig. 2 (a)) and a magnification of 1.2 million times (Fig. 2) at an acceleration voltage of 200 kV. In 2 (b)), dark-field STEM observation (Scanning Transmission Electron Microscope) was performed, respectively. In FIGS. 2 (a) and 2 (b), heavy elements are shown in white. Further, FIG. 2 (b) is a photograph in which the inside of the frame of FIG. 2 (a) is further enlarged.
In particular, as can be seen from FIG. 2 (b), in the carbon conductive material, the relatively dark inner layer is almost uniformly covered with the relatively light-colored layer having a thickness of several nanometers. From this, it was confirmed that in Production Example Nb-1, the uniform coating of carbon by Nb 2 O 5 was successful.

図2(b)に矢印で示したライン部(120nm)について、1nm間隔で120点EDXスペクトルを測定した。図3は、そのEDXスペクトルライン分析結果であり、より詳細には、各EDXスペクトルから求めたC−Kα、O−Kα、及びNb−Kβの強度プロファイルを重ねたものである。
図3より、元素C、O、Nbのピークは、ライン部の25nmから110nmまでにかけて現れることが分かる。そのライン部のうち、25nmから38nmまでと、98nmから110nmまでの端の部分については、元素OとNbの極大ピークがそれぞれ現れ、中央部分(ライン部の38nmから98nmまでの部分)については元素Cの極大ピークが現れている。この結果は、カーボン導電材がNbコート層によって均一に覆われていることを示す。
For the line portion (120 nm) indicated by the arrow in FIG. 2 (b), 120-point EDX spectra were measured at 1 nm intervals. FIG. 3 shows the results of the EDX spectrum line analysis, and more specifically, the intensity profiles of C-Kα, OKα, and Nb-Kβ obtained from each EDX spectrum are superimposed.
From FIG. 3, it can be seen that the peaks of the elements C, O, and Nb appear from 25 nm to 110 nm in the line portion. Maximum peaks of elements O and Nb appear at the end of the line from 25 nm to 38 nm and from 98 nm to 110 nm, respectively, and the central part (the part from 38 nm to 98 nm of the line) is the element. The maximum peak of C appears. This result indicates that the carbon conductive material is uniformly covered with the Nb 2 O 5 coat layer.

4.SEM観察
製造例Al−1のカーボン導電材について、透過型電子顕微鏡(SEM)を用いて、カーボン導電材表面の構造を観察した。
SEM観察条件は以下の通りである。すなわち、走査型電子顕微鏡(日立ハイテクノロジーズ社製、型番:SU8000)を用いて、加速電圧1.0kVにて、倍率20万倍でSEM観察を行った。
4. SEM Observation With respect to the carbon conductive material of Production Example Al-1, the structure of the surface of the carbon conductive material was observed using a transmission electron microscope (SEM).
The SEM observation conditions are as follows. That is, using a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, model number: SU8000), SEM observation was performed at an acceleration voltage of 1.0 kV and a magnification of 200,000 times.

図4は、製造例Al−1のカーボン導電材のSEM画像である。なお、図4中、アルミニウム元素を白色で示した。
図4より、カーボン導電材表面には、白い斑点が断続的に観察される。これは、カーボン導電材表面のエッジ部分(先端部分)に選択的にAlコート層が成膜されていることを示す。すなわち、図4中の薄い黒色部分はカーボン導電材表面のテラス部分(平坦な部分)を示し、同図中の白色部分はカーボン導電材表面のエッジ部分上のAlコート層を示す。このことより、製造例Al−1においては、Alによってカーボン導電材表面の選択的な被覆が成功したことが確認できた。
FIG. 4 is an SEM image of the carbon conductive material of Production Example Al-1. In FIG. 4, the aluminum element is shown in white.
From FIG. 4, white spots are intermittently observed on the surface of the carbon conductive material. This indicates that the Al 2 O 3 coat layer is selectively formed on the edge portion (tip portion) of the surface of the carbon conductive material. That is, the light black portion in FIG. 4 shows the terrace portion (flat portion) on the surface of the carbon conductive material, and the white portion in the figure shows the Al 2 O 3 coat layer on the edge portion of the surface of the carbon conductive material. From this, it was confirmed that in Production Example Al-1, selective coating of the surface of the carbon conductive material was successful with Al 2 O 3.

5.充放電試験
試験電極を正極、金属Liを負極としたとき、試験電極からリチウムイオンを脱離させる過程を「充電」、試験電極にリチウムイオンを挿入させる過程を「放電」とし、上記実施例1の電池、実施例2の電池、及び比較例1の電池に対して、充放電試験を行った。測定装置は、充放電試験装置(北斗電工製、HJ−1001 SM8A)を使用した。測定条件は、1サイクル目の電流値0.2mA/cm、放電終了時電圧3.5V(対極グラファイト)、充電終了時電圧4.9V(対極グラファイト)、温度25℃とした。測定したセルの容量から0.1Cレートを算出した。コンディショニングとして、0.1Cレートで3回に亘って充放電を行った。この3回目のコンディショニングにおける放電容量を、「初期放電容量」とした。その後、充電状態(SOC)が60%になるまで充電し、30分間に亘って静置した後、25℃にて交流インピーダンス測定を行い、円弧成分の抵抗を見積もった。
その後、60℃、0.1Cレート、放電終了時電圧3.5V(対極グラファイト)、充電終了時電圧4.9V(対極グラファイト)の条件で、100サイクルに亘る充放電を行った。そして、100サイクル目の充放電を終了した後に、25℃、0.1Cレート、放電終了時電圧3.5V(対極グラファイト)、充電終了時電圧4.9V(対極グラファイト)の条件で充放電を行い、この時の放電容量を、「サイクル試験後の放電容量」とした。
5. Charging / discharging test When the test electrode is a positive electrode and metallic Li is a negative electrode, the process of desorbing lithium ions from the test electrode is referred to as "charging", and the process of inserting lithium ions into the test electrode is referred to as "discharge". The charge / discharge test was performed on the battery of Example 2, the battery of Example 2, and the battery of Comparative Example 1. As the measuring device, a charge / discharge test device (HJ-1001 SM8A manufactured by Hokuto Denko) was used. The measurement conditions were a current value of 0.2 mA / cm 2 in the first cycle, a voltage at the end of discharge of 3.5 V (counter electrode graphite), a voltage at the end of charging of 4.9 V (counter electrode graphite), and a temperature of 25 ° C. The 0.1C rate was calculated from the measured cell capacity. As conditioning, charging and discharging were performed three times at a rate of 0.1 C. The discharge capacity in this third conditioning was defined as the "initial discharge capacity". Then, it was charged until the charged state (SOC) became 60%, allowed to stand for 30 minutes, and then AC impedance was measured at 25 ° C. to estimate the resistance of the arc component.
Then, charging and discharging were performed for 100 cycles under the conditions of 60 ° C., 0.1 C rate, a voltage at the end of discharge of 3.5 V (counter electrode graphite), and a voltage at the end of charging of 4.9 V (counter electrode graphite). Then, after the 100th cycle of charging / discharging is completed, charging / discharging is performed under the conditions of 25 ° C., 0.1 C rate, discharge end voltage 3.5 V (counter electrode graphite), and charge end voltage 4.9 V (counter electrode graphite). The discharge capacity at this time was defined as "discharge capacity after cycle test".

6.結果と考察
下記表1は、実施例1〜実施例2及び比較例1について、コート層の性質及び評価結果を比較した表である。なお、下記表1の「容量」は、上記サイクル試験後の放電容量を意味する。また、下記表1の「容量維持率」は、下記式により求められる。
容量維持率(%)=([サイクル試験後の放電容量]/[初期放電容量])×100
6. Results and Discussion Table 1 below is a table comparing the properties of the coat layer and the evaluation results for Examples 1 to 2 and Comparative Example 1. The “capacity” in Table 1 below means the discharge capacity after the cycle test. Further, the "capacity retention rate" in Table 1 below is calculated by the following formula.
Capacity retention rate (%) = ([Discharge capacity after cycle test] / [Initial discharge capacity]) x 100

Figure 0006973999
Figure 0006973999

上記表1より、コート層の無いカーボン導電材を用いた電池(比較例1)は、容量維持率が53%に留まった。これに対し、Nbコート層を備えるカーボン導電材を用いた電池(実施例1)、及びAlコート層を備えるカーボン導電材を用いた電池(実施例2)は、いずれも容量維持率が60%を超え、比較例1と比べて容量維持率の大幅な向上が確認された。この結果から、Nb又はAlにより表面が被覆されたカーボン導電材を用いた硫化物固体電池は、従来の硫化物固体電池よりも容量維持率が高いことが実証された。
また、上記表1より、カーボン導電材表面全体を覆う膜状コート(実施例1)、カーボン導電材表面の一部を覆う粒状コート(実施例2)のいずれの場合でも、容量維持率の向上の効果が見られる。ただし、実施例1の容量維持率が実施例2の容量維持率よりも高いことから、膜状コートの方が粒状コートよりも容量維持率向上の効果に優れるといえる。
From Table 1 above, the battery using the carbon conductive material without the coat layer (Comparative Example 1) had a capacity retention rate of only 53%. On the other hand, the battery using the carbon conductive material having the Nb 2 O 5 coat layer (Example 1) and the battery using the carbon conductive material having the Al 2 O 3 coat layer (Example 2) are both. The capacity retention rate exceeded 60%, and it was confirmed that the capacity retention rate was significantly improved as compared with Comparative Example 1. From this result, it was demonstrated that the sulfide solid-state battery using the carbon conductive material whose surface is coated with Nb 2 O 5 or Al 2 O 3 has a higher capacity retention rate than the conventional sulfide solid-state battery.
Further, from Table 1 above, the capacity retention rate is improved in both the film-like coat covering the entire surface of the carbon conductive material (Example 1) and the granular coat covering a part of the surface of the carbon conductive material (Example 2). The effect of is seen. However, since the capacity retention rate of Example 1 is higher than that of Example 2, it can be said that the film-like coat is more effective in improving the capacity retention rate than the granular coat.

1 正極層
2 負極層
3 硫化物固体電解質層
11 正極活物質
12 酸化物層
13 カーボン導電材
14 硫化物固体電解質
15 拡大部分を示す一点鎖線の枠
100 硫化物固体電池
200 従来の硫化物固体電池用正極合材
1 Positive electrode layer 2 Negative electrode layer 3 Sulfurized solid electrolyte layer 11 Positive electrode active material 12 Oxide layer 13 Carbon conductive material 14 Sulfurized solid electrolyte 15 One-point chain wire frame showing enlarged part 100 Sulfurized solid-state battery 200 Conventional sulfide solid-state battery Positive electrode mixture for

Claims (1)

正極合材を含有する正極層と、負極層と、前記正極層と前記負極層との間に存在する硫化物固体電解質層とを備える硫化物固体電池において、
前記正極合材は、酸化物により表面が被覆された高電位正極活物質と、カーボン導電材と、硫化物固体電解質とを含有し、
前記カーボン導電材が、その表面にNb又はAlを含むコート層を備え
前記高電位正極活物質は、酸化還元電位が4.5V(vs.Li/Li )以上の正極活物質であることを特徴とする、硫化物固体電池。
In a sulfide solid-state battery including a positive electrode layer containing a positive electrode mixture, a negative electrode layer, and a sulfide solid electrolyte layer existing between the positive electrode layer and the negative electrode layer.
The positive electrode mixture contains a high-potential positive electrode active material whose surface is coated with an oxide, a carbon conductive material, and a sulfide solid electrolyte.
The carbon conductive material has a coat layer containing Nb 2 O 5 or Al 2 O 3 on its surface.
The high potential positive electrode active material, oxidation-reduction potential and said positive electrode active material der Rukoto above 4.5V (vs.Li/Li +), sulfide solid battery.
JP2016189899A 2016-09-28 2016-09-28 Sulfide solid state battery Active JP6973999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016189899A JP6973999B2 (en) 2016-09-28 2016-09-28 Sulfide solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189899A JP6973999B2 (en) 2016-09-28 2016-09-28 Sulfide solid state battery

Publications (2)

Publication Number Publication Date
JP2018055926A JP2018055926A (en) 2018-04-05
JP6973999B2 true JP6973999B2 (en) 2021-12-01

Family

ID=61837034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189899A Active JP6973999B2 (en) 2016-09-28 2016-09-28 Sulfide solid state battery

Country Status (1)

Country Link
JP (1) JP6973999B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163976A1 (en) * 2017-03-08 2018-09-13 富士フイルム株式会社 Solid electrolyte-containing sheet, solid electrolyte composition, all-solid-state secondary battery, method for producing solid electrolyte-containing sheet, and method for producing all-solid-state secondary battery
JP6931465B2 (en) * 2018-05-02 2021-09-08 トヨタ自動車株式会社 Positive electrode mixture for all-solid-state batteries
CN114649513A (en) * 2020-12-17 2022-06-21 中国科学院宁波材料技术与工程研究所 Electrode material additive with electron ion conduction function and preparation method thereof, positive electrode material and all-solid-state secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029266B2 (en) * 2001-12-04 2008-01-09 株式会社ジーエス・ユアサコーポレーション Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
CN103238242B (en) * 2010-11-30 2016-04-13 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery conductive agent, positive electrode for nonaqueous electrolyte secondary battery and rechargeable nonaqueous electrolytic battery
JP2012195099A (en) * 2011-03-15 2012-10-11 Sumitomo Electric Ind Ltd Positive electrode for battery, and battery comprising the positive electrode
US9384904B2 (en) * 2012-04-06 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, method for forming the same, and power storage device
JP6067645B2 (en) * 2014-10-21 2017-01-25 トヨタ自動車株式会社 Method for producing positive electrode composite for sulfide all solid state battery
JP6252524B2 (en) * 2015-03-12 2017-12-27 トヨタ自動車株式会社 Method for producing positive electrode active material for solid state battery
JP6540569B2 (en) * 2016-03-23 2019-07-10 トヨタ自動車株式会社 Lithium ion battery and method of manufacturing the same

Also Published As

Publication number Publication date
JP2018055926A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
Liang et al. Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries
Wang et al. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries
Yoon et al. Carbon nanotube film anodes for flexible lithium ion batteries
Basavaraja et al. Electrospun hollow glassy carbon–reduced graphene oxide nanofibers with encapsulated ZnO nanoparticles: a free standing anode for Li-ion batteries
JP2018504762A (en) Method for producing negative electrode for lithium battery
Liu et al. Fe 2 O 3@ SnO 2 nanoparticle decorated graphene flexible films as high-performance anode materials for lithium-ion batteries
JP6241480B2 (en) Highly dispersible graphene composition and method for producing the same, and electrode for lithium ion secondary battery including highly dispersible graphene composition
JP4597666B2 (en) Particles comprising a non-conductive core or a semi-conductive core coated with a hybrid conductive layer, a method for its production, and its use in electrochemical devices
Huang et al. Electrophoretic lithium iron phosphate/reduced graphene oxide composite for lithium ion battery cathode application
Liu et al. Electrode activation via vesiculation: improved reversible capacity of γ-Fe 2 O 3@ C/MWNT composite anodes for lithium-ion batteries
Wu et al. Synthesis and characterization of Fe@ Fe2O3 core-shell nanoparticles/graphene anode material for lithium-ion batteries
de Guzman et al. A silicon nanoparticle/reduced graphene oxide composite anode with excellent nanoparticle dispersion to improve lithium ion battery performance
Gnedenkov et al. Structural and electrochemical investigation of nanostructured C: TiO2–TiOF2 composite synthesized in plasma by an original method of pulsed high-voltage discharge
Menendez et al. Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries
Ju et al. Electrochemical performance of Li [Co0. 1Ni0. 15Li0. 2Mn0. 55] O2 modified by carbons as cathode materials
JP6540569B2 (en) Lithium ion battery and method of manufacturing the same
JP6973999B2 (en) Sulfide solid state battery
Abraham et al. Defect control in the synthesis of 2 D MoS2 nanosheets: polysulfide trapping in composite sulfur cathodes for Li–S batteries
Su et al. Engineering nano-composite Li4Ti5O12 anodes via scanning electron-probe fabrication
Lou et al. Coaxial Carbon/Metal Oxide/Aligned Carbon Nanotube Arrays as High‐Performance Anodes for Lithium Ion Batteries
Yue et al. Facile preparation of Mn 3 O 4-coated carbon nanofibers on copper foam as a high-capacity and long-life anode for lithium-ion batteries
EP3229293B1 (en) Positive-electrode active material for lithium-ion secondary battery, positive electrode and lithium-ion secondary battery
JP5697078B2 (en) Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP6702142B2 (en) Fluoride ion battery
Al-Salman et al. Facile synthesis of micrometer-long antimony nanowires by template-free electrodeposition for next generation Li-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200915

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201210

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210706

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210914

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211012

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211104

R151 Written notification of patent or utility model registration

Ref document number: 6973999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151