JP6973361B2 - Oxygen concentration measurement method - Google Patents
Oxygen concentration measurement method Download PDFInfo
- Publication number
- JP6973361B2 JP6973361B2 JP2018223446A JP2018223446A JP6973361B2 JP 6973361 B2 JP6973361 B2 JP 6973361B2 JP 2018223446 A JP2018223446 A JP 2018223446A JP 2018223446 A JP2018223446 A JP 2018223446A JP 6973361 B2 JP6973361 B2 JP 6973361B2
- Authority
- JP
- Japan
- Prior art keywords
- particle beam
- beam irradiation
- oxygen concentration
- irradiation condition
- proportionality constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Description
本発明は、シリコン単結晶中の酸素濃度を測定する方法に関する。 The present invention relates to a method for measuring an oxygen concentration in a silicon single crystal.
シリコン単結晶中の不純物濃度を高感度に測定する方法として、低温フォトルミネッセンス(PL)法がある。
低温PL法による酸素濃度定量方法は、特許文献1に、試料に電子線、および炭素イオンまたは酸素イオン(粒子線)を照射することで複合欠陥を形成させ、その複合欠陥に起因するルミネッセンス強度を測定し、その強度から酸素濃度を定量する方法が開示されている。
There is a low temperature photoluminescence (PL) method as a method for measuring the impurity concentration in a silicon single crystal with high sensitivity.
In the method for quantifying oxygen concentration by the low temperature PL method, Patent Document 1 irradiates a sample with an electron beam and carbon ion or oxygen ion (particle beam) to form a composite defect, and obtains the luminescence intensity caused by the composite defect. A method of measuring and quantifying the oxygen concentration from the intensity thereof is disclosed.
また、低温PL法による炭素濃度定量方法は、例えば非特許文献1や特許文献1に、試料に電子線や炭素イオンまたは酸素イオンのイオンビームを照射して複合欠陥を形成させ、その複合欠陥に起因するルミネッセンス強度を測定し、その強度から炭素濃度を定量する方法が開示されている。
特許文献2には、シリコン単結晶に電子線を照射することで導入される格子間シリコン(I)由来のルミネッセンススペクトル(W線)をシリコン由来の発光線(TO線)で規格化した値と、シリコン単結晶中の炭素濃度の間で検量線を作成し、ルミネッセンス法で得られたW線/TO線から、炭素濃度を定量する方法が開示されている。
特許文献3には、シリコン単結晶中に炭素及び酸素以外のイオンを注入し、これにより形成される格子間炭素またはG線(Ci−Cs)、またはC線(Ci−Oi)のルミネッセンススペクトル強度と、炭素濃度の間で検量線を作成し、炭素関連複合欠陥のスペクトル強度から、炭素濃度を定量する方法が開示されている。
Further, in the carbon concentration quantification method by the low temperature PL method, for example, Non-Patent Document 1 and Patent Document 1 are irradiated with an ion beam of an electron beam, carbon ion or oxygen ion on a sample to form a composite defect, and the composite defect is formed. A method of measuring the resulting luminescence intensity and quantifying the carbon concentration from the intensity is disclosed.
Patent Document 2 describes a value obtained by standardizing a luminescence spectrum (W line) derived from interstitial silicon (I) introduced by irradiating a silicon single crystal with an electron beam and a light emitting line (TO line) derived from silicon. , A method of preparing a calibration curve between the carbon concentrations in a silicon single crystal and quantifying the carbon concentration from the W line / TO line obtained by the luminescence method is disclosed.
In Patent Document 3, ions other than carbon and oxygen are injected into a silicon single crystal, and the luminescence spectral intensity of interstitial carbon, G-ray (Ci-Cs), or C-line (Ci-Oi) formed by the injection. And, a method of creating a calibration curve between carbon concentrations and quantifying the carbon concentration from the spectral intensity of carbon-related composite defects is disclosed.
シリコン単結晶中の酸素濃度測定方法は、FT−IR法やSIMS法が一般的に用いられている。その検出下限値は、FT−IR法では0.07(ppma−JEITA)、SIMS法では0.02(ppma)である。 As a method for measuring the oxygen concentration in a silicon single crystal, an FT-IR method or a SIMS method is generally used. The lower limit of detection is 0.07 (ppma-JEITA) in the FT-IR method and 0.02 (ppma) in the SIMS method.
シリコン単結晶中に形成させた複合欠陥の強度を測定することにより、高感度に不純物濃度を測定する方法として低温PL法があるが、前記したように、その多くは炭素濃度測定方法である。この中には、シリコン単結晶に電子線を照射し、生成させたG線とC線の強度比と、シリコン単結晶中の炭素濃度と酸素濃度の濃度比の間で検量線を作成し、シリコン単結晶中の酸素濃度およびG線とC線の強度比から炭素濃度を測定する方法もある(特許文献4)。いずれも炭素濃度が既知で、且つ炭素濃度が異なるシリコン単結晶を複数用意し、複合欠陥のルミネッセンス強度を測定し、炭素濃度との検量線を作成した後に、ようやく測定対象である測定サンプルの複合欠陥のルミネッセンス強度を測定し、これを前記検量線に当てはめることにより、シリコン単結晶中の炭素濃度を定量する方法である。 There is a low temperature PL method as a method for measuring the impurity concentration with high sensitivity by measuring the strength of the composite defect formed in the silicon single crystal, but as described above, most of them are carbon concentration measuring methods. In this, a calibration curve is created between the intensity ratio of the generated G-ray and C-ray and the concentration ratio of the carbon concentration and the oxygen concentration in the silicon single crystal by irradiating the silicon single crystal with an electron beam. There is also a method of measuring the carbon concentration from the oxygen concentration in the silicon single crystal and the intensity ratio of G-ray and C-ray (Patent Document 4). After preparing multiple silicon single crystals with known carbon concentrations and different carbon concentrations, measuring the luminescence intensity of the composite defect, and creating a calibration curve with the carbon concentration, the composite of the measurement samples to be measured is finally used. This is a method of quantifying the carbon concentration in a silicon single crystal by measuring the luminescence intensity of a defect and applying it to the calibration curve.
ここで、酸素濃度の測定においても上記のような炭素濃度の測定方法を適用することを本発明者は見出している。このとき、特に、シリコン単結晶中の炭素濃度、G線とC線の強度比(および比例定数)から酸素濃度を測定するにあたって、必要に応じて粒子線の照射量を調整してルミネッセンススペクトルのピーク強度を大きくする場合がある(特願2018−42902)。しかし、このように粒子線照射量を変えた場合においても、改めて炭素濃度および酸素濃度が既知のサンプルを複数用意し、変更した粒子線照射量の下、特願2018−42902のような新しい比例定数を求める煩雑な作業を行った後でないと酸素濃度を求める事ができないという問題がある。 Here, the present inventor has found that the above-mentioned method for measuring carbon concentration is also applied to the measurement of oxygen concentration. At this time, in particular, when measuring the oxygen concentration from the carbon concentration in the silicon single crystal and the intensity ratio (and proportionality constant) of G-ray and C-ray, the irradiation amount of the particle beam is adjusted as necessary to obtain the luminous spectrum. The peak intensity may be increased (Japanese Patent Application No. 2018-42902). However, even when the particle beam irradiation amount is changed in this way, a plurality of samples having known carbon concentration and oxygen concentration are prepared again, and under the changed particle beam irradiation amount, a new proportionality such as Japanese Patent Application No. 2018-42902 is obtained. There is a problem that the oxygen concentration can be obtained only after performing the complicated work of obtaining the constant.
本発明は、上記従来技術の問題点に鑑みてなされたものであって、シリコン単結晶中の酸素濃度を簡便に測定する方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a method for easily measuring the oxygen concentration in a silicon single crystal.
上記目的を達成するために、本発明は、粒子線を照射したシリコン単結晶をPL測定またはCL測定して得られるG線強度およびC線強度と、別に求めた炭素濃度を用いて、前記シリコン単結晶中の酸素濃度を測定する酸素濃度測定方法であって、
前記シリコン単結晶中の酸素濃度を、下記式
酸素濃度=比例定数×炭素濃度×(C線強度/G線強度)…(A)
を用いて測定するとき、
予め、第1の粒子線照射条件における、前記式(A)の前記比例定数である第1の比例定数α1を求めておき、
次に、シリコン単結晶のサンプルを用意し、
前記第1の比例定数α1を求めたときと同じ前記第1の粒子線照射条件でのPL測定またはCL測定を行い、G線強度G1およびC線強度C1を求め、かつ、
前記第1の粒子線照射条件とは異なる第2の粒子線照射条件でのPL測定またはCL測定を行い、G線強度G2およびC線強度C2を求め、
その後、前記第2の粒子線照射条件における、前記式(A)の前記比例定数である第2の比例定数α2を、下記式
比例定数α2=比例定数α1×{(C線強度C1/G線強度G1)/(C線強度C2/G線強度G2)}…(B)
から決定し、
該決定した比例定数α2を代入した前記式(A)を用いて、前記第2の粒子線照射条件における、前記シリコン単結晶中の酸素濃度の測定を行うことを特徴とする酸素濃度測定方法を提供する。
In order to achieve the above object, the present invention uses the G-ray intensity and C-ray intensity obtained by PL measurement or CL measurement of a silicon single crystal irradiated with a particle beam, and the separately determined carbon concentration. It is an oxygen concentration measuring method for measuring the oxygen concentration in a single crystal.
The oxygen concentration in the silicon single crystal is determined by the following formula: oxygen concentration = proportionality constant × carbon concentration × (C-line intensity / G-line intensity) ... (A)
When measuring with
The first proportionality constant α1, which is the proportionality constant of the formula (A), under the first particle beam irradiation condition is obtained in advance.
Next, prepare a sample of silicon single crystal and prepare it.
PL measurement or CL measurement was performed under the same first particle beam irradiation conditions as when the first proportionality constant α1 was obtained, and G-ray intensity G1 and C-line intensity C1 were obtained, and
PL measurement or CL measurement was performed under a second particle beam irradiation condition different from the first particle beam irradiation condition, and G-ray intensity G2 and C-ray intensity C2 were obtained.
Then, under the second particle beam irradiation condition, the second proportionality constant α2, which is the proportionality constant of the equation (A), is changed to the following equation: proportionality constant α2 = proportionality constant α1 × {(C line intensity C1 / G line). Strength G1) / (C line strength C2 / G line strength G2)} ... (B)
Determined from
An oxygen concentration measuring method characterized by measuring the oxygen concentration in the silicon single crystal under the second particle beam irradiation condition by using the formula (A) in which the determined proportionality constant α2 is substituted. offer.
このような酸素濃度測定方法であれば、第2の比例定数α2を決定する際に、特願2018−42902のように、用いるサンプルについて酸素濃度や炭素濃度を求め、さらにPL測定等によるG線強度やC線強度を求めるといった煩雑な作業を行わなくても、第2の粒子線照射条件における第2の比例定数α2を簡便に精度良く求めることができる。
そして、該第2の比例定数α2を用いた式(A)によって、第2の粒子線照射条件における、酸素濃度の測定を簡便かつ高精度で行うことができる。
With such an oxygen concentration measuring method, when determining the second proportionality constant α2, the oxygen concentration and carbon concentration of the sample to be used are obtained as in Japanese Patent Application No. 2018-42902, and G-rays are further measured by PL measurement or the like. The second proportionality constant α2 under the second particle beam irradiation condition can be easily and accurately obtained without performing complicated work such as obtaining the intensity and C-ray intensity.
Then, according to the formula (A) using the second proportionality constant α2, the oxygen concentration can be measured easily and with high accuracy under the second particle beam irradiation condition.
このとき、前記第2の粒子線照射条件を、前記第1の粒子線照射条件から粒子線照射量のみを変えた条件とすることができる。 At this time, the second particle beam irradiation condition can be a condition in which only the particle beam irradiation amount is changed from the first particle beam irradiation condition.
このようにすれば、粒子線照射量以外の条件、例えば粒子線やその加速電圧などは変えないので、より高い精度で第2の比例定数α2を求めることができる。 By doing so, conditions other than the particle beam irradiation amount, for example, the particle beam and its acceleration voltage are not changed, so that the second proportionality constant α2 can be obtained with higher accuracy.
また、前記シリコン単結晶のサンプルとして、
1枚のシリコン単結晶ウェーハから、該シリコン単結晶ウェーハの中心から同じ距離の位置から採取した2つのウェーハ片を用意し、
前記第1の粒子線照射条件でのPL測定またはCL測定を前記2つのウェーハ片のうちの一方で行い、
前記第2の粒子線照射条件でのPL測定またはCL測定を他方で行うことができる。
Further, as a sample of the silicon single crystal,
From one silicon single crystal wafer, two wafer pieces taken from the same distance from the center of the silicon single crystal wafer were prepared.
PL measurement or CL measurement under the first particle beam irradiation condition is performed on one of the two wafer pieces.
The PL measurement or CL measurement under the second particle beam irradiation condition can be performed on the other side.
このようにすれば、上記2つのウェーハ片の炭素濃度、酸素濃度は同一とみなせるので、第2の比例定数α2を決定する際、より確実に、用いたサンプルの炭素濃度、酸素濃度を求めることなく、式(B)により第2の比例定数α2を求めることが出来る。 By doing so, the carbon concentration and oxygen concentration of the above two wafer pieces can be regarded as the same. Therefore, when determining the second proportionality constant α2, the carbon concentration and oxygen concentration of the sample used should be obtained more reliably. Instead, the second proportionality constant α2 can be obtained by the equation (B).
あるいは、前記第2の粒子線照射条件でのPL測定またはCL測定として、
前記第1の粒子線照射条件で粒子線を照射した前記シリコン単結晶のサンプルに、前記第1の粒子線照射条件の粒子線照射量と第2の粒子線照射条件の粒子線照射量の差分を追加照射して行うことができる。
Alternatively, as PL measurement or CL measurement under the second particle beam irradiation condition,
Difference between the particle beam irradiation amount under the first particle beam irradiation condition and the particle beam irradiation amount under the second particle beam irradiation condition on the silicon single crystal sample irradiated with the particle beam under the first particle beam irradiation condition. Can be performed by additional irradiation.
このようにすれば、第1の粒子線照射条件と第2の粒子線照射条件で粒子線を照射するサンプルは同じものであるので、第2の比例定数α2を決定する際、より確実に、用いたサンプルの炭素濃度、酸素濃度を求めることなく、式(B)により第2の比例定数α2を求めることが出来る。特に、第1の粒子線照射条件の粒子線照射量よりも第2の粒子線照射条件の粒子線照射量を増やしたい場合は、この方法が有効である。 By doing so, since the sample to be irradiated with the particle beam under the first particle beam irradiation condition and the second particle beam irradiation condition is the same, when determining the second proportionality constant α2, more reliably. The second proportionality constant α2 can be obtained by the formula (B) without obtaining the carbon concentration and the oxygen concentration of the sample used. In particular, this method is effective when it is desired to increase the particle beam irradiation amount of the second particle beam irradiation condition more than the particle beam irradiation amount of the first particle beam irradiation condition.
このとき、前記第2の粒子線照射条件での粒子線照射量を、前記第1の粒子線照射条件の粒子線照射量の2〜10倍、または0.1〜0.5倍とすることができる。 At this time, the particle beam irradiation amount under the second particle beam irradiation condition shall be 2 to 10 times, or 0.1 to 0.5 times, the particle beam irradiation amount under the first particle beam irradiation condition. Can be done.
前述したように、第1の粒子線照射条件の照射量が最適でなかった場合、照射量を増やしたり、減らしたりする必要性が生じる場合がある。第1の粒子線照射条件が通常使用している条件の場合、既に予備実験などである程度適切な条件となっているため、第2の粒子照射条件で例えば照射量を増やす場合は2〜10倍の照射量で十分である。また、逆に照射量を減らす場合も、0.1〜0.5倍の照射量で十分である。 As described above, if the irradiation amount of the first particle beam irradiation condition is not optimal, it may be necessary to increase or decrease the irradiation amount. If the first particle beam irradiation condition is a condition that is normally used, it is already a condition that is appropriate to some extent in preliminary experiments, etc. Therefore, for example, when increasing the irradiation amount under the second particle beam irradiation condition, it is 2 to 10 times. Irradiation amount of is sufficient. On the contrary, when the irradiation amount is reduced, the irradiation amount of 0.1 to 0.5 times is sufficient.
また、前記測定するシリコン単結晶中の酸素濃度を、1×1014atoms/cm3以上とすることができる。 Further, the oxygen concentration in the silicon single crystal to be measured can be set to 1 × 10 14 atoms / cm 3 or more.
このように本発明の測定方法であれば、1×1014atoms/cm3という低濃度の酸素濃度であっても簡便に精度良く求めることが可能となる。 As described above, according to the measuring method of the present invention, even a low oxygen concentration of 1 × 10 14 atoms / cm 3 can be easily and accurately obtained.
以上のように、本発明の酸素濃度測定方法であれば、第2の比例定数を決定する際に、特願2018−42902のような、用いるサンプルの炭素濃度と酸素濃度の測定など煩雑な作業を行わなくても、第2の粒子線照射条件における第2の比例定数α2を簡便に精度良く求めることができる。そして、該第2の比例定数α2を用いた式(A)を用いることで、第2の粒子線照射条件における、酸素濃度の測定を簡便かつ高精度で行うことができる。 As described above, in the case of the oxygen concentration measuring method of the present invention, when determining the second proportionality constant, complicated work such as measuring the carbon concentration and the oxygen concentration of the sample to be used as in Japanese Patent Application No. 2018-42902 is complicated. The second proportionality constant α2 under the second particle beam irradiation condition can be easily and accurately obtained without performing the above. Then, by using the formula (A) using the second proportionality constant α2, the oxygen concentration can be measured easily and with high accuracy under the second particle beam irradiation condition.
以下、本発明について図面を参照して実施の形態を説明するが、本発明はこれに限定されるものではない。
前述したように、式(A)、すなわち、
酸素濃度=比例定数×炭素濃度×(C線強度/G線強度)…(A)
を用いて酸素濃度を求める際に、予め比例定数を決定する必要があり、様々な条件を検討して粒子線の種類やその照射量を決定し、決定した条件で酸素濃度及び炭素濃度の異なるサンプルに粒子線を照射し、得られたG線強度、C線強度及び各サンプルの炭素濃度、酸素濃度から式(A)の比例定数を決定していた。
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
As mentioned above, the formula (A), that is,
Oxygen concentration = proportionality constant x carbon concentration x (C-line intensity / G-line intensity) ... (A)
When determining the oxygen concentration using, it is necessary to determine the proportionality constant in advance, determine the type of particle beam and its irradiation amount by considering various conditions, and the oxygen concentration and carbon concentration differ under the determined conditions. The sample was irradiated with a particle beam, and the proportionality constant of the formula (A) was determined from the obtained G-ray intensity, C-ray intensity, carbon concentration of each sample, and oxygen concentration.
このように、式(A)を用いてシリコン単結晶中の酸素濃度を求めていく中で、G線、C線のどちらか一方、または両方のピークが弱く、照射量を増やしてピーク強度を大きくする必要性が生じる場合がある。逆に、決定した照射量が強すぎて、シリコン単結晶の構造が乱れてピークが弱くなっている場合もあり、この場合は照射量を減らしてピーク強度を大きくする必要性が生じる場合がある。 In this way, while determining the oxygen concentration in the silicon single crystal using the formula (A), the peak of either one or both of the G line and the C line is weak, and the peak intensity is increased by increasing the irradiation amount. There may be a need to increase it. On the contrary, the determined irradiation amount may be too strong, and the structure of the silicon single crystal may be disturbed to weaken the peak. In this case, it may be necessary to reduce the irradiation amount to increase the peak intensity. ..
しかし、粒子線の照射量を変えると、式(A)において、照射量変更前に用いていた比例定数を用いることができなくなり、新たな比例定数を決定するために、照射量変更前の比例定数を決定したときと同様の煩雑な作業を必要としていた。 However, if the irradiation amount of the particle beam is changed, the proportionality constant used before the irradiation amount change cannot be used in the formula (A), and the proportionality before the irradiation amount change is determined in order to determine a new proportionality constant. It required the same complicated work as when determining the constant.
そこで本発明者は鋭意研究を行ったところ、粒子線照射量変更前における比例定数(第1の粒子線照射条件における第1の比例定数α1)と、照射量変更後における比例定数(第2の粒子線照射条件における第2の比例定数α2)との関係式を用いることにより、特願2018−42902のような煩雑な作業を行わなくても、精度の高い第2の粒子線照射条件における第2の比例定数α2を求めることができることを見出した。なお、本発明者が導き出したその関係式は以下の通りである。
比例定数α2=比例定数α1×{(C線強度C1/G線強度G1)/(C線強度C2/G線強度G2)}…(B)
そして、さらにこの第2の比例定数α2を用いた式(A)により、第2の粒子線照射条件における酸素濃度の測定を簡単に行うことができることを見出し、本発明を完成させた。
Therefore, the present inventor conducted diligent research and found that the proportionality constant before the change of the particle beam irradiation amount (the first proportionality constant α1 under the first particle beam irradiation condition) and the proportionality constant after the change of the irradiation amount (the second). By using the relational expression with the second proportionality constant α2) in the particle beam irradiation condition, the second particle beam irradiation condition with high accuracy can be performed without performing complicated work as in Japanese Patent Application No. 2018-42902. It was found that the proportionality constant α2 of 2 can be obtained. The relational expression derived by the present inventor is as follows.
Proportional constant α2 = Proportional constant α1 × {(C line strength C1 / G line strength G1) / (C line strength C2 / G line strength G2)} ... (B)
Further, they have found that the oxygen concentration under the second particle beam irradiation condition can be easily measured by the formula (A) using the second proportionality constant α2, and completed the present invention.
図1に本発明の酸素濃度測定方法の工程の一例を示す。
(工程1:第1の比例定数α1の決定)
まず、粒子線(電子線やイオンビーム)を照射したシリコン単結晶の比例定数決定用サンプルをPL測定して得られるG線強度[a.u.]、C線強度[a.u.]、および別に求めた炭素濃度[atoms/cm3]、酸素濃度[ppma−JEITA]を用いて、
酸素濃度=比例定数×炭素濃度×(C線強度/G線強度)…(A)
となる比例定数をあらかじめ求めておく。
なお、本発明の酸素濃度測定方法の工程を説明するにあたってPL法を用いる例を挙げるが、代わりにCL(カソードルミネッセンス)法を用いることもできる。
FIG. 1 shows an example of the process of the oxygen concentration measuring method of the present invention.
(Step 1: Determination of the first proportionality constant α1)
First, the G-ray intensity [a. u. ], C-line intensity [a. u. ], And using the separately determined carbon concentration [atoms / cm 3 ] and oxygen concentration [ppma-JEITA],
Oxygen concentration = proportionality constant x carbon concentration x (C-line intensity / G-line intensity) ... (A)
The proportionality constant that becomes is obtained in advance.
Although the PL method is used to explain the process of the oxygen concentration measuring method of the present invention, the CL (cathodoluminescence) method can also be used instead.
具体的には、炭素濃度、および酸素濃度が異なるシリコン単結晶基板(比例定数決定用サンプル)を15水準用意する。このとき、導出される比例定数の精度を上げる為、5水準以上用意することが好ましい。
そして、これらのサンプルの炭素濃度、および酸素濃度をSIMS法(あるいはFT−IR法など)で測定する。その後、電子線照射装置により各シリコン単結晶基板に2MVの加速電圧で1.0×1015electrons/cm2の電子線を照射する。これらの条件を第1の粒子線照射条件とする。こうして、シリコン単結晶基板にG線、およびC線を形成させ、それらのピーク強度をPL法で測定する。なお、このときのサンプル温度は液体ヘリウム温度とする。
Specifically, 15 levels of silicon single crystal substrates (samples for determining the proportionality constant) having different carbon concentrations and oxygen concentrations are prepared. At this time, in order to improve the accuracy of the derived proportionality constant, it is preferable to prepare 5 levels or more.
Then, the carbon concentration and the oxygen concentration of these samples are measured by the SIMS method (or FT-IR method or the like). Then, each silicon single crystal substrate is irradiated with an electron beam of 1.0 × 10 15 ejectrons / cm 2 at an acceleration voltage of 2 MV by an electron beam irradiator. These conditions are defined as the first particle beam irradiation conditions. In this way, G-rays and C-lines are formed on the silicon single crystal substrate, and their peak intensities are measured by the PL method. The sample temperature at this time is the liquid helium temperature.
これらシリコン単結晶基板において、得られた炭素濃度、酸素濃度、G線強度、およびC線強度を上記の式(A)に代入し、得られた比例定数の平均値を第1の比例定数α1とする。このようにして、第1の比例定数α1として2.25×10−15ppma/(atoms/cm3)が得られた。
なお、上記の第1の粒子線照射条件および第1の比例定数α1は一例であって、当然、これらの条件や数値に限定されるものではなく、適宜決定することができる。
In these silicon single crystal substrates, the obtained carbon concentration, oxygen concentration, G-ray intensity, and C-ray intensity are substituted into the above equation (A), and the average value of the obtained proportionality constants is the first proportionality constant α1. And. In this way, 2.25 × 10 -15 ppma / (atoms / cm 3 ) was obtained as the first proportionality constant α1.
The above-mentioned first particle beam irradiation condition and the first proportionality constant α1 are examples, and are not limited to these conditions and numerical values, and can be appropriately determined.
(工程2:第2の比例定数α2の決定)
上記のようにして第1の粒子線照射条件における第1の比例定数α1を決定した後は、通常、実際の酸素濃度測定対象のシリコン単結晶に対して第1の粒子線照射条件で粒子線を照射して得たG線強度、C線強度、別に求めた炭素濃度、第1の比例定数α1を式(A)に代入して酸素濃度を求めることができる。
(Step 2: Determination of the second proportionality constant α2)
After determining the first proportionality constant α1 under the first particle beam irradiation condition as described above, usually, the particle beam is normally applied to the silicon single crystal to be measured for the actual oxygen concentration under the first particle beam irradiation condition. The oxygen concentration can be obtained by substituting the G-ray intensity, the C-ray intensity, the separately obtained carbon concentration, and the first proportionality constant α1 obtained by irradiation with the equation (A).
しかしながら、前述したように、第1の粒子線照射条件でのC線などの強度測定において粒子線の照射量を調整する必要が生じる場合がある。粒子線の照射量を増やせば、もしくは減らせば、より低濃度の酸素濃度を定量することができる場合がある。この場合、特願2018−42902のように、粒子線の照射量を変えた比例定数決定用サンプルを用意し、上記と同様の煩雑な方法を行えば、照射量変更後の条件に対応する比例定数を求めることが出来るが、サンプルの炭素濃度や酸素濃度を求める必要がある。 However, as described above, it may be necessary to adjust the irradiation amount of the particle beam in the intensity measurement of the C ray or the like under the first particle beam irradiation condition. By increasing or decreasing the irradiation amount of the particle beam, it may be possible to quantify the oxygen concentration at a lower concentration. In this case, if a sample for determining the proportionality constant in which the irradiation amount of the particle beam is changed is prepared as in Japanese Patent Application No. 2018-42902 and the same complicated method as described above is performed, the proportionality corresponding to the condition after changing the irradiation amount is performed. It is possible to obtain a constant, but it is necessary to obtain the carbon concentration and oxygen concentration of the sample.
しかし、比例定数決定用サンプルの炭素濃度と酸素濃度が第1の粒子線照射条件と第2の粒子線照射条件で等しい場合、式(A)をより詳細に検討した結果、次のことが明らかとなった。
第1の粒子線照射条件におけるG線強度、C線強度を、G1、C1とし、第2の粒子線照射条件におけるG線強度、C線強度を、G2、C2とすると、
酸素濃度=比例定数α1×炭素濃度×(C線強度C1/G線強度G1)
=比例定数α2×炭素濃度×(C線強度C2/G線強度G2)
であり、比例定数α2について解くと、下記式(B)となる。
比例定数α2=比例定数α1×{(C線強度C1/G線強度G1)/(C線強度C2/G線強度G2)…(B)
即ち、式(B)には炭素濃度、酸素濃度が含まれていないため、比例定数α1が分かっている場合には、特願2018−42902のように、比例定数決定用のサンプルを用意し、該比例定数決定用サンプルの炭素濃度や酸素濃度をわざわざ測定することなく、比例定数α2を求めることが出来る。新たな第2の粒子線照射条件の下における新たな第2の比例定数α2を得る際に、従来のような煩雑な作業をなくして簡単かつ高精度に比例定数α2を求めることができる。
However, when the carbon concentration and oxygen concentration of the sample for determining the proportionality constant are equal to the first particle beam irradiation condition and the second particle beam irradiation condition, the following is clarified as a result of examining the formula (A) in more detail. It became.
Let G1 and C1 be the G-ray intensity and C-ray intensity under the first particle beam irradiation condition, and G2 and C2 be the G-ray intensity and C-line intensity under the second particle beam irradiation condition.
Oxygen concentration = proportionality constant α1 x carbon concentration x (C-line intensity C1 / G-line intensity G1)
= Proportional constant α2 × carbon concentration × (C line intensity C2 / G line intensity G2)
Therefore, when the proportionality constant α2 is solved, the following equation (B) is obtained.
Proportional constant α2 = Proportional constant α1 × {(C line strength C1 / G line strength G1) / (C line strength C2 / G line strength G2) ... (B)
That is, since the formula (B) does not include the carbon concentration and the oxygen concentration, if the proportionality constant α1 is known, a sample for determining the proportionality constant is prepared as in Japanese Patent Application No. 2018-42902. The proportionality constant α2 can be obtained without having to bother to measure the carbon concentration and the oxygen concentration of the sample for determining the proportionality constant. When obtaining a new second proportionality constant α2 under a new second particle beam irradiation condition, it is possible to easily and highly accurately obtain the proportionality constant α2 without the complicated work as in the past.
以下、この第2の比例定数α2を決定する具体的な手順についてさらに詳述する。
シリコン単結晶のサンプルを用意し、第1の比例定数α1を求めたときと同じ第1の粒子線照射条件でのPL測定またはCL測定を行い、G線強度G1およびC線強度C1を求める。また、第1の粒子線照射条件とは異なる第2の粒子線照射条件でのPL測定またはCL測定を行い、G線強度G2およびC線強度C2を求める。
Hereinafter, the specific procedure for determining the second proportionality constant α2 will be described in more detail.
A sample of a silicon single crystal is prepared, and PL measurement or CL measurement is performed under the same first particle beam irradiation conditions as when the first proportionality constant α1 is obtained, and G-ray intensity G1 and C-line intensity C1 are obtained. Further, PL measurement or CL measurement is performed under a second particle beam irradiation condition different from the first particle beam irradiation condition, and G-ray intensity G2 and C-ray intensity C2 are obtained.
第1の粒子線照射条件や第2の粒子線照射条件自体は特に限定されず、適宜決定することができる。このとき、第2の粒子線照射条件は、第1の粒子線照射条件と、例えば粒子線の種類、加速電圧、照射量、入射角度が異なっていれば良い。
また、第1の粒子線照射条件は、先に挙げた例の他、通常行っている酸素濃度測定時と同様の条件とすることができる。
さらに、第2の粒子線照射条件は、第1の粒子線照射条件とは粒子線照射量のみが異なっていることがより好ましい。ここで第1の粒子線照射条件は、通常は既に予備実験などである程度適切な条件となっているため、特に第2の粒子線照射条件として第1の粒子線照射量のみを変更する場合は、第1の粒子線照射条件からの微調整であり、照射量を増やす場合は2〜10倍の照射量から選べば十分である。照射量を減らす場合も同様で、0.1〜0.5倍の照射量から選べば十分である。
例えば、先に挙げた例のように第1の粒子線照射条件として1×1015electrons/cm2の電子線を照射したとき、C線強度のピークが弱かった場合は、第2の粒子線照射条件として、電子線照射量を5×1015electrons/cm2とすることができる。
The first particle beam irradiation condition and the second particle beam irradiation condition itself are not particularly limited and can be appropriately determined. At this time, the second particle beam irradiation condition may be different from the first particle beam irradiation condition, for example, the type of particle beam, the acceleration voltage, the irradiation amount, and the incident angle.
Further, the first particle beam irradiation condition can be the same as that at the time of normal oxygen concentration measurement, in addition to the above-mentioned example.
Further, it is more preferable that the second particle beam irradiation condition differs from the first particle beam irradiation condition only in the particle beam irradiation amount. Here, since the first particle beam irradiation condition is usually already suitable to some extent in a preliminary experiment or the like, especially when only the first particle beam irradiation amount is changed as the second particle beam irradiation condition. This is a fine adjustment from the first particle beam irradiation condition, and when increasing the irradiation amount, it is sufficient to select from 2 to 10 times the irradiation amount. The same applies when reducing the irradiation amount, and it is sufficient to select from 0.1 to 0.5 times the irradiation amount.
For example, if the peak of the C-ray intensity is weak when an electron beam of 1 × 10 15 ejectrons / cm 2 is irradiated as the first particle beam irradiation condition as in the above-mentioned example, the second particle beam is used. As the irradiation condition, the electron beam irradiation amount can be 5 × 10 15 ejectrons / cm 2 .
このように、第2の粒子線照射条件として、第1の粒子線照射条件から粒子線照射量のみを変えた条件とすれば、粒子線照射量以外の条件、例えば粒子線やその加速電圧などは変えないので、より高い精度で第2の比例定数α2を求めることができる。 As described above, if the second particle beam irradiation condition is a condition in which only the particle beam irradiation amount is changed from the first particle beam irradiation condition, conditions other than the particle beam irradiation amount, for example, the particle beam and its acceleration voltage, etc. Since does not change, the second proportionality constant α2 can be obtained with higher accuracy.
ここで、シリコン単結晶の比例定数決定用サンプルの用意の仕方と、第1の粒子線照射条件や第2の粒子線照射条件下でのPL測定等の仕方の例を挙げる。
まず、シリコン単結晶の比例定数決定用サンプルとして、1枚のシリコン単結晶ウェーハから、該シリコン単結晶ウェーハの中心から同じ距離の位置から採取した2つのウェーハ片を用意する。そして、第1の粒子線照射条件でのPL測定を2つのウェーハ片のうちの一方で行い、G線強度G1とC線強度C1を求める。そして、第2の粒子線照射条件でのPL測定を他方で行い、G線強度G2とC線強度C2を求める。
この方法であれば、用意した2つのウェーハ片の炭素濃度、酸素濃度は同一とみなすことができ、より確実に、式(B)により第2の比例定数α2を簡単に求めることができる。第2の比例定数α2を求める際に、特願2018−42902のようにサンプルの炭素濃度および酸素濃度を別途測定する必要もないので簡便である。
Here, an example of how to prepare a sample for determining the proportionality constant of a silicon single crystal and how to measure PL under the first particle beam irradiation condition and the second particle beam irradiation condition will be given.
First, as a sample for determining the proportionality constant of a silicon single crystal, two wafer pieces taken from one silicon single crystal wafer at the same distance from the center of the silicon single crystal wafer are prepared. Then, the PL measurement under the first particle beam irradiation condition is performed on one of the two wafer pieces to obtain the G-ray intensity G1 and the C-line intensity C1. Then, the PL measurement under the second particle beam irradiation condition is performed on the other side, and the G-ray intensity G2 and the C-line intensity C2 are obtained.
With this method, the carbon concentration and oxygen concentration of the two prepared wafer pieces can be regarded as the same, and the second proportionality constant α2 can be easily obtained by the equation (B) more reliably. When obtaining the second proportionality constant α2, it is not necessary to separately measure the carbon concentration and the oxygen concentration of the sample as in Japanese Patent Application No. 2018-42902, which is convenient.
別の例としては、シリコン単結晶のサンプルを1つ用意し、これに第1の粒子線照射条件で粒子線を照射してPL測定を行い、G線強度G1とC線強度C1を求める。次に、この第1の粒子線照射条件で粒子線を照射したシリコン単結晶のサンプルに、第1の粒子線照射条件の粒子線照射量と第2の粒子線照射条件の粒子線照射量の差分を追加照射してPL測定を行い、G線強度G2とC線強度C2を求める。
このような方法であれば、同一のサンプル使用のため、当然、炭素濃度および酸素濃度は同じであり、式(B)を用いて第2の比例定数α2を簡単に求めることができる。特に、第1の粒子線照射条件の粒子線照射量よりも第2の粒子線照射条件の粒子線照射量を増やしたい場合に有効な方法である。
逆に、第1の粒子線照射条件の粒子線照射量よりも第2の粒子線照射条件の粒子線照射量を減らしたい場合は、先に第2の粒子線照射条件でPL測定を行い、次に第1の粒子線照射条件と第2の粒子線照射条件との粒子線照射量の差分を追加で照射し、この第1の粒子線照射条件の下、PL測定を行えば良い。
As another example, one sample of a silicon single crystal is prepared, and the particle beam is irradiated to the sample under the first particle beam irradiation condition to perform PL measurement, and the G line intensity G1 and the C line intensity C1 are obtained. Next, the sample of the silicon single crystal irradiated with the particle beam under the first particle beam irradiation condition was subjected to the particle beam irradiation amount under the first particle beam irradiation condition and the particle beam irradiation amount under the second particle beam irradiation condition. PL measurement is performed by additionally irradiating the difference, and G-ray intensity G2 and C-line intensity C2 are obtained.
In such a method, since the same sample is used, the carbon concentration and the oxygen concentration are naturally the same, and the second proportionality constant α2 can be easily obtained by using the formula (B). In particular, it is an effective method when it is desired to increase the particle beam irradiation amount of the second particle beam irradiation condition more than the particle beam irradiation amount of the first particle beam irradiation condition.
On the contrary, if it is desired to reduce the particle beam irradiation amount of the second particle beam irradiation condition from the particle beam irradiation amount of the first particle beam irradiation condition, the PL measurement is first performed under the second particle beam irradiation condition. Next, the difference in the amount of particle beam irradiation between the first particle beam irradiation condition and the second particle beam irradiation condition may be additionally irradiated, and PL measurement may be performed under the first particle beam irradiation condition.
これらの他には、過去のデータから炭素濃度と酸素濃度が同じであることが分かっているシリコン単結晶のサンプルを、第1の粒子線照射条件用と第2の粒子線照射条件用として各々用意することもできる。
あるいは、1枚のシリコン単結晶ウェーハ内において、互いに隣接する箇所から採取した2つのサンプルとすることもできる。
いずれの方法でも、第1の粒子線照射条件と第2の粒子線照射条件のサンプルの炭素濃度と酸素濃度は同一であるか、あるいは、同一とみなすことが出来る。したがって、式(B)を利用することができる。
そして式(B)に第1の比例定数α1、G線強度G1、C線強度C1、G線強度G2、C線強度C2を代入して、簡単に第2の比例定数α2を得ることができる。
In addition to these, samples of silicon single crystals, which are known to have the same carbon concentration and oxygen concentration from past data, are used for the first particle beam irradiation condition and for the second particle beam irradiation condition, respectively. You can also prepare it.
Alternatively, two samples taken from adjacent locations in one silicon single crystal wafer can be used.
In either method, the carbon concentration and the oxygen concentration of the sample under the first particle beam irradiation condition and the second particle beam irradiation condition are the same or can be regarded as the same. Therefore, the equation (B) can be used.
Then, by substituting the first proportionality constant α1, G-line intensity G1, C-line intensity C1, G-line intensity G2, and C-line intensity C2 into the equation (B), the second proportionality constant α2 can be easily obtained. ..
(工程3:第2の粒子線照射条件における酸素濃度測定)
第2の比例定数α2を代入した式(A)を用いて、第2の粒子線照射条件における、シリコン単結晶中の酸素濃度の測定を行う。すなわち、測定するシリコン単結晶の、別に求めた炭素濃度と、第2の粒子線照射条件におけるG線強度G2やC線強度C2を式(A)にさらに代入することで、シリコン単結晶中の酸素濃度を得ることができる。
(Step 3: Oxygen concentration measurement under the second particle beam irradiation condition)
Using the formula (A) in which the second proportionality constant α2 is substituted, the oxygen concentration in the silicon single crystal is measured under the second particle beam irradiation condition. That is, by further substituting the separately obtained carbon concentration of the silicon single crystal to be measured and the G-ray intensity G2 and C-ray intensity C2 under the second particle beam irradiation condition into the formula (A), the silicon single crystal can be used. The oxygen concentration can be obtained.
このような本発明の測定方法であれば、第1の粒子線照射条件から、より適切な測定条件である第2の粒子線照射条件へと最適化することにより、1×1014atoms/cm3以上という低濃度の酸素濃度を簡便に精度良く求めることが可能となる。 With such a measurement method of the present invention, by optimizing from the first particle beam irradiation condition to the second particle beam irradiation condition, which is a more appropriate measurement condition, 1 × 10 14 atoms / cm. It is possible to easily and accurately obtain a low oxygen concentration of 3 or more.
以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
上記したように、粒子線照射条件が、2MVの加速電圧で電子線(EB)照射量が1×1015electrons/cm2(第1の粒子線照射条件)で、PL測定時のサンプル温度が液体ヘリウム温度の場合における、式(A)の第1の比例定数α1は2.25×10−15ppma/(atoms/cm3)と求められている。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited thereto.
(Example 1)
As described above, the particle beam irradiation condition is an acceleration voltage of 2 MV, the electron beam (EB) irradiation amount is 1 × 10 15 ejectrons / cm 2 (first particle beam irradiation condition), and the sample temperature at the time of PL measurement is In the case of liquid helium temperature, the first proportionality constant α1 of the formula (A) is determined to be 2.25 × 10 -15 ppma / (atoms / cm 3).
次に、EB照射量を5×1015electrons/cm2とした時(第2の粒子線照射条件)の第2の比例定数α2を求めるために、1枚のシリコンウェーハから、その中心部から同じ距離の位置から3つのサンプルを切り出した。これらの3つのサンプルは、互いに炭素濃度および酸素濃度が同一であるとみなせる。
その内の1つ目には第1の粒子線照射条件である1×1015electrons/cm2の照射量で電子線を照射した。2つ目には第2の照射条件である5×1015electrons/cm2の照射量で電子線を照射した。いずれも、電子線の加速電圧は2MVとした。次に、それぞれのサンプルを液体ヘリウム温度でPL測定を行い、第1の粒子線照射条件におけるG線強度G1およびC線強度C1と、第2の粒子線照射条件におけるG線強度G2およびC線強度C2を得た。
なお、3つ目については実施例1では使用せず、後述する比較例1で使用した。
Next, in order to obtain the second proportionality constant α2 when the EB irradiation amount is 5 × 10 15 electrons / cm 2 (second particle beam irradiation condition), from one silicon wafer from the center thereof. Three samples were cut out from the same distance position. These three samples can be regarded as having the same carbon concentration and oxygen concentration with each other.
The first of these was irradiation with an electron beam at an irradiation amount of 1 × 10 15 ejectrons / cm 2 , which is the first particle beam irradiation condition. Secondly, the electron beam was irradiated with an irradiation amount of 5 × 10 15 ejectrons / cm 2 , which is the second irradiation condition. In each case, the acceleration voltage of the electron beam was set to 2 MV. Next, PL measurement of each sample was performed at the liquid helium temperature, and the G-ray intensity G1 and C-ray intensity C1 under the first particle beam irradiation condition and the G-ray intensity G2 and C-ray under the second particle beam irradiation condition were performed. Strength C2 was obtained.
The third item was not used in Example 1 but was used in Comparative Example 1 described later.
上記の2つのサンプルに対するPL測定を、炭素濃度、酸素濃度が異なると予想される19水準のサンプルに対して行い、{(C線強度C1/G線強度G1)/(C線強度C2/G線強度G2)}の平均値を求めたところ、0.779であった。
図2に(C線強度C1/G線強度G1)と(C線強度C2/G線強度G2)の関係をプロットで示す。なお、参考として、図2に傾き1のグラフ((C線強度C1/G線強度G1)=(C線強度C2/G線強度G2))を実線で引いている。
従って、第2の比例定数α2は、第1の比例定数α1と上記平均値を式(B)に代入し、即ち、2.25×10−15×0.779により、1.75×10−15ppma/(atoms/cm3)と求まった。
PL measurements for the above two samples were performed on 19-level samples that are expected to have different carbon and oxygen concentrations, and {(C-line intensity C1 / G-line intensity G1) / (C-line intensity C2 / G). When the average value of the line strength G2)} was calculated, it was 0.779.
FIG. 2 plots the relationship between (C-line intensity C1 / G-line intensity G1) and (C-line intensity C2 / G-line intensity G2). As a reference, a graph with an inclination of 1 ((C line intensity C1 / G line intensity G1) = (C line intensity C2 / G line intensity G2)) is drawn with a solid line in FIG.
Therefore, for the second proportionality constant α2, the first proportionality constant α1 and the above average value are substituted into the equation (B), that is, 1.75 × 10 − by 2.25 × 10 -15 × 0.779. It was determined to be 15 ppma / (atoms / cm 3 ).
次に、上記19水準のサンプルについて、別に求めた炭素濃度と、G線強度G2、C線強度C2を、上記第2の比例定数α2を代入した式(A)に対して代入した。これにより、第2の粒子線照射条件における酸素濃度を求めることができた。
ここで、同様にして第1の粒子線照射条件(第1の比例定数α1)における酸素濃度も求め、該第1の粒子線照射条件から求めた酸素濃度と、第2の粒子線照射条件から求めた酸素濃度を図3にプロットで示し、比較した。なお、参考として、傾き1のグラフ(第1の粒子線照射条件から求めた酸素濃度=第2の粒子線照射条件から求めた酸素濃度)を実線で引いている。図3に示すように、両者は非常に良く一致した。すなわち、第2の比例定数α2が、特願2018−42902と同様にして煩雑な作業を行って求めた第1の比例定数α1と同程度に高精度であることが分かる。しかも、第2の比例定数α2を求めるにあたって、特願2018−42902のような煩雑な作業が必要ないため、簡単である。
Next, for the 19-level sample, the separately obtained carbon concentration, G-ray intensity G2, and C-line intensity C2 were substituted into the equation (A) into which the second proportionality constant α2 was substituted. As a result, the oxygen concentration under the second particle beam irradiation condition could be obtained.
Here, in the same manner, the oxygen concentration under the first particle beam irradiation condition (first proportional constant α1) is also obtained, and the oxygen concentration obtained from the first particle beam irradiation condition and the second particle beam irradiation condition are used. The obtained oxygen concentration is shown in a plot in FIG. 3 and compared. As a reference, a graph with a slope of 1 (oxygen concentration obtained from the first particle beam irradiation condition = oxygen concentration obtained from the second particle beam irradiation condition) is drawn with a solid line. As shown in FIG. 3, the two matched very well. That is, it can be seen that the second proportionality constant α2 is as accurate as the first proportionality constant α1 obtained by performing complicated work in the same manner as in Japanese Patent Application No. 2018-42902. Moreover, in obtaining the second proportionality constant α2, complicated work as in Japanese Patent Application No. 2018-42902 is not required, which is simple.
(実施例2)
実施例1において、第1の粒子線照射条件(加速電圧2MV、照射量1×1015electrons/cm2)で電子線を照射して液体ヘリウム温度にてPL測定(G線強度G1、C線強度C1)を行ったサンプルに対して、加速電圧2MVにて4×1015electrons/cm2の電子線照射を追加して行い、合わせて5×1015electrons/cm2の電子線照射を行ったサンプルを用意した。これの液体ヘリウム温度におけるG線強度G2およびC線強度C2を求めた。
(Example 2)
In Example 1, an electron beam is irradiated under the first particle beam irradiation condition (acceleration voltage 2 MV, irradiation amount 1 × 10 15 ejectrons / cm 2 ), and PL measurement is performed at the liquid helium temperature (G-ray intensity G1, C-ray). To the sample subjected to the intensity C1), electron beam irradiation of 4 × 10 15 ejectrons / cm 2 was additionally performed at an acceleration voltage of 2 MV, and electron beam irradiation of 5 × 10 15 ejectrons / cm 2 was performed in total. I prepared a sample. The G-ray intensity G2 and the C-line intensity C2 at the liquid helium temperature of this were determined.
上記19水準のサンプルの、(C線強度C1/G線強度G1)/(C線強度C2/G線強度G2)の平均値を求めたところ、0.779であった。
従って、第2の比例定数α2は、第1の比例定数α1と上記平均値を式(B)に代入し、即ち、2.25×10−15×0.779により、1.75×10−15ppma/(atoms/cm3)と求まった。このように実施例1と同様の数値になった。
The average value of (C-line intensity C1 / G-line intensity G1) / (C-line intensity C2 / G-line intensity G2) of the 19-level sample was found to be 0.779.
Therefore, for the second proportionality constant α2, the first proportionality constant α1 and the above average value are substituted into the equation (B), that is, 1.75 × 10 − by 2.25 × 10 -15 × 0.779. It was determined to be 15 ppma / (atoms / cm 3 ). In this way, the numerical values were the same as those in Example 1.
次に、上記19水準のサンプルについて、第1の粒子線照射条件から求めた酸素濃度(第1の比例定数α1を代入した式(A)使用)と、第2の粒子線照射条件から求めた酸素濃度(上記のようにして求めた第2の比例定数α2を代入した式(A)使用)を比較したところ、実施例1と同様に図3のような結果となり、両者は非常に良く一致した。 Next, the 19-level sample was obtained from the oxygen concentration obtained from the first particle beam irradiation condition (using the formula (A) in which the first proportionality constant α1 was substituted) and the second particle beam irradiation condition. When the oxygen concentrations (using the formula (A) in which the second proportionality constant α2 obtained as described above was substituted) were compared, the results shown in FIG. 3 were obtained as in Example 1, and the two were very well matched. bottom.
(比較例1)
実施例1で切り出したサンプルの内、何も処理をしていない残りの1つのサンプル(すなわち、1つ×19水準分)を用いて、これをさらに3分割して、それぞれの炭素濃度をSIMS法により、酸素濃度をFT−IR法により求めた。その後、加速電圧2MVにて5×1015electrons/cm2の電子線照射を行った。次に液体ヘリウム温度にてPL測定を行い、G線強度およびC線強度を得た。
(Comparative Example 1)
Of the samples cut out in Example 1, the remaining one sample (that is, one x 19 levels) that had not been treated was used, and this was further divided into three to determine the carbon concentration of each sample. By the method, the oxygen concentration was determined by the FT-IR method. Then, electron beam irradiation of 5 × 10 15 ejectrons / cm 2 was performed at an acceleration voltage of 2 MV. Next, PL measurement was performed at the liquid helium temperature to obtain G-line intensity and C-line intensity.
それぞれのサンプルにおいて、炭素濃度、酸素濃度、G線強度、C線強度を、式(A)
に代入して比例定数を求めた。これの19水準のサンプルの平均値は1.75×10−15ppma/(atoms/cm3)であった(比例定数βとする)。図4に各サンプルから求めた比例定数βと酸素濃度との関係を示す。この数値は、実施例1および実施例2の第2の比例定数α2と同一の値であるものの、これを得るために各サンプルの炭素濃度、酸素濃度を求めたために、多大なる時間が掛かった。
In each sample, the carbon concentration, oxygen concentration, G-ray intensity, and C-ray intensity are determined by the formula (A).
The proportionality constant was obtained by substituting into. The average value of this 19-level sample was 1.75 × 10 -15 ppma / (atoms / cm 3 ) (referred to as the proportionality constant β). FIG. 4 shows the relationship between the proportionality constant β obtained from each sample and the oxygen concentration. Although this value is the same as the second proportionality constant α2 of Example 1 and Example 2, it took a lot of time to obtain the carbon concentration and oxygen concentration of each sample. ..
そして、上記19水準のサンプルについて、第1の粒子線照射条件から求めた酸素濃度(第1の比例定数α1を代入した式(A)使用)と、第2の粒子線照射条件から求めた酸素濃度(上記のようにして求めた第2の粒子線照射条件における比例定数βを代入した式(A)使用)を比較したところ、両者は非常に良く一致した。しかしながら、上述したように、第2の粒子線照射条件における比例定数βを求めるために多大な時間がかかったため、測定全体として時間が多大になってしまった。 Then, for the 19-level sample, the oxygen concentration obtained from the first particle beam irradiation condition (using the formula (A) in which the first proportionality constant α1 is substituted) and the oxygen obtained from the second particle beam irradiation condition. When the concentrations (using the formula (A) in which the proportionality constant β was substituted under the second particle beam irradiation condition obtained as described above) were compared, the two were in very good agreement. However, as described above, it took a long time to obtain the proportionality constant β under the second particle beam irradiation condition, so that the measurement as a whole took a long time.
(実施例3)
シリコン単結晶から採取したサンプル(直径200mm、FZ結晶、固化率=20%の位置)を用意し、実施例1と同様の第1の粒子線照射条件の下、液体ヘリウム温度にてPL測定を行った。この結果、第1の粒子線照射条件ではG線は十分なピーク強度が得られたが、C線ピークが弱く、酸素濃度を定量できなかった。
このサンプルに隣接するサンプルを用意し、これに実施例1と同様の第2の粒子線照射条件でEB照射を行い、液体ヘリウム温度でPL測定を行った。この結果、G線、C線ともに十分なピーク強度を得られた。
そこで、実施例1で求めた、第2の粒子線照射条件における第2の比例定数α2(1.75×10−15)を代入した式(A)を用い、別に求めた炭素濃度、先に求めた第2の粒子線照射条件のPL測定でのG線強度、C線強度を代入することによって、第2の粒子線照射条件における酸素濃度を求めたところ、1.0×1014atoms/cm3(すなわち、0.002ppma(JEITA))と求めることが出来た。
(Example 3)
Prepare a sample (diameter 200 mm, FZ crystal, solidification rate = 20% position) collected from a silicon single crystal, and perform PL measurement at the liquid helium temperature under the same first particle beam irradiation conditions as in Example 1. went. As a result, the G-ray had a sufficient peak intensity under the first particle beam irradiation condition, but the C-ray peak was weak and the oxygen concentration could not be quantified.
A sample adjacent to this sample was prepared, EB irradiation was performed on the sample under the same second particle beam irradiation conditions as in Example 1, and PL measurement was performed at the liquid helium temperature. As a result, sufficient peak intensities were obtained for both G-line and C-line.
Therefore, using the formula (A) in which the second proportionality constant α2 (1.75 × 10 -15 ) under the second particle beam irradiation condition obtained in Example 1 was substituted, the carbon concentration separately obtained was obtained first. The oxygen concentration under the second particle beam irradiation condition was obtained by substituting the G-ray intensity and C-ray intensity in the PL measurement under the obtained second particle beam irradiation condition. As a result, 1.0 × 10 14 atoms / It could be determined as cm 3 (that is, 0.002 ppma (JEITA)).
(実施例4)
シリコン単結晶から採取したサンプル(直径200mm、FZ結晶、固化率=20%の位置)(実施例3と同様のサンプル)を用意し、実施例1と同様の第1の粒子線照射条件の下、液体ヘリウム温度にてPL測定を行った。この結果、第1の粒子線照射条件ではG線は十分なピーク強度が得られたが、C線ピークが弱く、酸素濃度を定量できなかった。
このサンプルについて、第1の粒子線照射条件でEB照射を行ったサンプルそのものに、追加で加速電圧2MVにて4×1015electrons/cm2の電子線照射を行い、合わせて5×1015electrons/cm2の電子線照射を行ったサンプルを用意した。これを、液体ヘリウム温度でPL測定を行った。この結果、G線、C線ともに十分なピーク強度を得られた。
そこで、実施例2で求めた第2の粒子線照射条件における第2の比例定数α2(1.75×10−15)を代入した式(A)を用い、別に求めた炭素濃度、先に求めた第2の粒子線照射条件のPL測定でのG線強度、C線強度を代入することによって、第2の粒子線照射条件における酸素濃度を求めたところ、1.0×1014atoms/cm3(すなわち、0.002ppma(JEITA))と求めることが出来た。
(Example 4)
A sample collected from a silicon single crystal (diameter 200 mm, FZ crystal, solidification rate = 20% position) (sample similar to Example 3) was prepared, and under the same first particle beam irradiation conditions as in Example 1. , PL measurement was performed at the liquid helium temperature. As a result, the G-ray had a sufficient peak intensity under the first particle beam irradiation condition, but the C-ray peak was weak and the oxygen concentration could not be quantified.
For this sample, the sample itself that had been EB-irradiated under the first particle beam irradiation conditions was additionally irradiated with an electron beam of 4 × 10 15 electrons / cm 2 at an acceleration voltage of 2 MV, for a total of 5 × 10 15 electrons. A sample subjected to electron beam irradiation at / cm 2 was prepared. This was measured by PL at the liquid helium temperature. As a result, sufficient peak intensities were obtained for both G-line and C-line.
Therefore, using the formula (A) in which the second proportionality constant α2 (1.75 × 10 -15 ) under the second particle beam irradiation condition obtained in Example 2 is substituted, the separately obtained carbon concentration is obtained first. and G-line intensity of the PL measurement of the second particle beam irradiation conditions, by substituting the C-ray intensity where to determine the oxygen concentration in the second particle beam irradiation conditions, 1.0 × 10 14 atoms / cm 3 (that is, 0.002 ppma (JEITA)) could be determined.
(比較例2)
シリコン単結晶から採取したサンプル(直径200mm、FZ結晶、固化率=20%の位置)(実施例3と同様のサンプル)を用意し、実施例1と同様の第1の粒子線照射条件の下、液体ヘリウム温度にてPL測定を行った。この結果、第1の粒子線照射条件ではG線は十分なピーク強度が得られたが、C線ピークが弱く、酸素濃度を定量できなかった。
このサンプルに隣接するサンプルを用意し、これに比較例1と同様の粒子線照射条件でEB照射を行い、液体ヘリウム温度でPL測定を行った。この結果、G線、C線ともに十分なピーク強度を得られた。
そこで、比較例1で多大な時間をかけて求めた比例定数β(1.75×10−15)を代入した式(A)を用い、別に求めた炭素濃度、先に求めた比較例1と同様の粒子線照射条件のPL測定でのG線強度、C線強度を代入することによって、比較例1と同様の粒子線照射条件における酸素濃度を求めたところ、1.0×1014atoms/cm3(すなわち、0.002ppma(JEITA))と求めることが出来た。
(Comparative Example 2)
A sample collected from a silicon single crystal (diameter 200 mm, FZ crystal, solidification rate = 20% position) (sample similar to Example 3) was prepared, and under the same first particle beam irradiation conditions as in Example 1. , PL measurement was performed at the liquid helium temperature. As a result, the G-ray had a sufficient peak intensity under the first particle beam irradiation condition, but the C-ray peak was weak and the oxygen concentration could not be quantified.
A sample adjacent to this sample was prepared, EB irradiation was performed on the sample under the same particle beam irradiation conditions as in Comparative Example 1, and PL measurement was performed at the liquid helium temperature. As a result, sufficient peak intensities were obtained for both G-line and C-line.
Therefore, using the formula (A) in which the proportionality constant β (1.75 × 10-15 ) obtained in Comparative Example 1 was substituted, the carbon concentration separately obtained and the previously obtained Comparative Example 1 were used. By substituting the G-ray intensity and C-ray intensity in the PL measurement under the same particle beam irradiation conditions, the oxygen concentration under the same particle beam irradiation conditions as in Comparative Example 1 was obtained. As a result, 1.0 × 10 14 atoms / It could be determined as cm 3 (that is, 0.002 ppma (JEITA)).
このように、本発明による実施例1、2や実施例3、4は、各々、特願2018−42902の方法による比較例1や比較例2と少なくとも同程度に高精度で酸素濃度を測定することができた。また、第2の粒子線照射条件を調整すれば、より低濃度の酸素濃度も測定可能となる。しかも、実施例1−4では、比較例1−2において行ったような煩雑な作業をなくし、従来法よりも時間をかけずに簡便に測定を行うことができた。 As described above, Examples 1 and 2 and Examples 3 and 4 according to the present invention measure the oxygen concentration with at least the same high accuracy as Comparative Example 1 and Comparative Example 2 according to the method of Japanese Patent Application No. 2018-42902, respectively. I was able to. Further, if the second particle beam irradiation condition is adjusted, a lower oxygen concentration can be measured. Moreover, in Example 1-4, the complicated work as in Comparative Example 1-2 was eliminated, and the measurement could be performed easily in less time than in the conventional method.
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above embodiment is an example, and any one having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. It is included in the technical scope of the invention.
Claims (6)
前記シリコン単結晶中の酸素濃度を、下記式
酸素濃度=比例定数×炭素濃度×(C線強度/G線強度)…(A)
を用いて測定するとき、
予め、第1の粒子線照射条件における、前記式(A)の前記比例定数である第1の比例定数α1を求めておき、
次に、シリコン単結晶のサンプルを用意し、
前記第1の比例定数α1を求めたときと同じ前記第1の粒子線照射条件でのPL測定またはCL測定を行い、G線強度G1およびC線強度C1を求め、かつ、
前記第1の粒子線照射条件とは異なる第2の粒子線照射条件でのPL測定またはCL測定を行い、G線強度G2およびC線強度C2を求め、
その後、前記第2の粒子線照射条件における、前記式(A)の前記比例定数である第2の比例定数α2を、下記式
比例定数α2=比例定数α1×{(C線強度C1/G線強度G1)/(C線強度C2/G線強度G2)}…(B)
から決定し、
該決定した比例定数α2を代入した前記式(A)を用いて、前記第2の粒子線照射条件における、前記シリコン単結晶中の酸素濃度の測定を行うことを特徴とする酸素濃度測定方法。 Oxygen concentration measurement to measure the oxygen concentration in the silicon single crystal using the G-ray intensity and C-ray intensity obtained by PL measurement or CL measurement of the silicon single crystal irradiated with particle beam and the carbon concentration obtained separately. It ’s a method,
The oxygen concentration in the silicon single crystal is determined by the following formula: oxygen concentration = proportionality constant × carbon concentration × (C-line intensity / G-line intensity) ... (A)
When measuring with
The first proportionality constant α1, which is the proportionality constant of the formula (A), under the first particle beam irradiation condition is obtained in advance.
Next, prepare a sample of silicon single crystal and prepare it.
PL measurement or CL measurement was performed under the same first particle beam irradiation conditions as when the first proportionality constant α1 was obtained, and G-ray intensity G1 and C-line intensity C1 were obtained, and
PL measurement or CL measurement was performed under a second particle beam irradiation condition different from the first particle beam irradiation condition, and G-ray intensity G2 and C-ray intensity C2 were obtained.
Then, under the second particle beam irradiation condition, the second proportionality constant α2, which is the proportionality constant of the equation (A), is changed to the following equation: proportionality constant α2 = proportionality constant α1 × {(C line intensity C1 / G line). Strength G1) / (C line strength C2 / G line strength G2)} ... (B)
Determined from
A method for measuring an oxygen concentration, which comprises measuring the oxygen concentration in a silicon single crystal under the second particle beam irradiation condition by using the formula (A) in which the determined proportionality constant α2 is substituted.
1枚のシリコン単結晶ウェーハから、該シリコン単結晶ウェーハの中心から同じ距離の位置から採取した2つのウェーハ片を用意し、
前記第1の粒子線照射条件でのPL測定またはCL測定を前記2つのウェーハ片のうちの一方で行い、
前記第2の粒子線照射条件でのPL測定またはCL測定を他方で行うことを特徴とする請求項1または請求項2に記載の酸素濃度測定方法。 As a sample of the silicon single crystal
From one silicon single crystal wafer, two wafer pieces taken from the same distance from the center of the silicon single crystal wafer were prepared.
PL measurement or CL measurement under the first particle beam irradiation condition is performed on one of the two wafer pieces.
The oxygen concentration measuring method according to claim 1 or 2, wherein the PL measurement or the CL measurement under the second particle beam irradiation condition is performed on the other side.
前記第1の粒子線照射条件で粒子線を照射した前記シリコン単結晶のサンプルに、前記第1の粒子線照射条件の粒子線照射量と第2の粒子線照射条件の粒子線照射量の差分を追加照射して行うことを特徴とする請求項1または請求項2に記載の酸素濃度測定方法。 As PL measurement or CL measurement under the second particle beam irradiation condition,
Difference between the particle beam irradiation amount under the first particle beam irradiation condition and the particle beam irradiation amount under the second particle beam irradiation condition on the silicon single crystal sample irradiated with the particle beam under the first particle beam irradiation condition. The oxygen concentration measuring method according to claim 1 or 2, wherein the method is carried out by additional irradiation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018223446A JP6973361B2 (en) | 2018-11-29 | 2018-11-29 | Oxygen concentration measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018223446A JP6973361B2 (en) | 2018-11-29 | 2018-11-29 | Oxygen concentration measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020085758A JP2020085758A (en) | 2020-06-04 |
JP6973361B2 true JP6973361B2 (en) | 2021-11-24 |
Family
ID=70907634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018223446A Active JP6973361B2 (en) | 2018-11-29 | 2018-11-29 | Oxygen concentration measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6973361B2 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04344443A (en) * | 1991-05-21 | 1992-12-01 | Hitachi Ltd | Measurement of carbon and oxygen density in silicon |
JP3460434B2 (en) * | 1996-02-22 | 2003-10-27 | 信越半導体株式会社 | Method and apparatus for evaluating oxygen concentration in semiconductor silicon crystal |
US6803576B2 (en) * | 2001-09-21 | 2004-10-12 | Memc Electronic Materials, Spa | Analytical method to measure nitrogen concentration in single crystal silicon |
JP6098891B2 (en) * | 2013-11-28 | 2017-03-22 | 信越半導体株式会社 | Method for measuring carbon concentration in silicon single crystals |
JP6268039B2 (en) * | 2014-05-23 | 2018-01-24 | グローバルウェーハズ・ジャパン株式会社 | Calibration curve creation method, impurity concentration measurement method, and semiconductor wafer manufacturing method |
JP6296001B2 (en) * | 2015-05-20 | 2018-03-20 | 信越半導体株式会社 | Manufacturing method and evaluation method of silicon epitaxial wafer |
JP6805015B2 (en) * | 2017-02-10 | 2020-12-23 | グローバルウェーハズ・ジャパン株式会社 | Calibration curve preparation method, carbon concentration measurement method, and silicon wafer manufacturing method |
-
2018
- 2018-11-29 JP JP2018223446A patent/JP6973361B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020085758A (en) | 2020-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9746433B2 (en) | X-ray fluorescence spectrometer and X-ray fluorescence analyzing method | |
JP6098891B2 (en) | Method for measuring carbon concentration in silicon single crystals | |
US8411263B2 (en) | Method of evaluating silicon wafer and method of manufacturing silicon wafer | |
CN107615470B (en) | Method for manufacturing silicon epitaxial wafer and method for evaluating silicon epitaxial wafer | |
KR102017957B1 (en) | Calibration curve determination method, carbon concentration measurement method, and silicon wafer-manufacturing method | |
JPH0590368A (en) | Method of evaluating deep level density distribution in semiconductor crystal | |
JP6973361B2 (en) | Oxygen concentration measurement method | |
JP6933201B2 (en) | Carbon concentration measurement method | |
JP6617736B2 (en) | Carbon concentration measurement method | |
JP6904313B2 (en) | Method for evaluating carbon concentration in silicon single crystal | |
JP5276382B2 (en) | X-ray fluorescence analyzer | |
JP2019124483A (en) | Carbon concentration evaluation method | |
JP6693485B2 (en) | Carbon concentration measurement method | |
JP6844561B2 (en) | Oxygen concentration evaluation method | |
Qiu et al. | Calibration of thickness-dependent k-factors for germanium X-ray lines to improve energy-dispersive X-ray spectroscopy of SiGe layers in analytical transmission electron microscopy | |
JP6919625B2 (en) | Impurity concentration measurement method | |
JP2006343244A (en) | Apparatus, program, and method for deconvolution analysis | |
JP6662330B2 (en) | Method for measuring carbon concentration in single crystal silicon | |
JP3369918B2 (en) | X-ray fluorescence analysis method and apparatus | |
Stöger-Pollach et al. | Using Cerenkov radiation for measuring the refractive index in thick samples by interferometric cathodoluminescence | |
JP2002310957A (en) | X-ray analyzer by electron excitation | |
TW202400989A (en) | Method for emission spectrochemical analysis of antimony in metal material, method for measuring concentration of antimony in molten steel during refining and production method of steel raw material | |
JP3362511B2 (en) | Rapid analysis method for alumina in steel | |
JP2008232875A (en) | Stress loading device, and stress measuring instrument | |
JPS6042413B2 (en) | Emission spectroscopy method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211018 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6973361 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |