JP6972886B2 - RT-B-based sintered magnet and its manufacturing method - Google Patents

RT-B-based sintered magnet and its manufacturing method Download PDF

Info

Publication number
JP6972886B2
JP6972886B2 JP2017199122A JP2017199122A JP6972886B2 JP 6972886 B2 JP6972886 B2 JP 6972886B2 JP 2017199122 A JP2017199122 A JP 2017199122A JP 2017199122 A JP2017199122 A JP 2017199122A JP 6972886 B2 JP6972886 B2 JP 6972886B2
Authority
JP
Japan
Prior art keywords
mass
magnet
based sintered
alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017199122A
Other languages
Japanese (ja)
Other versions
JP2019075426A (en
Inventor
恭孝 重本
武司 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2017199122A priority Critical patent/JP6972886B2/en
Priority to CN201811188728.6A priority patent/CN109671547B/en
Publication of JP2019075426A publication Critical patent/JP2019075426A/en
Application granted granted Critical
Publication of JP6972886B2 publication Critical patent/JP6972886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、R−T−B系焼結磁石及びその製造方法に関する。 The present invention relates to an R-TB based sintered magnet and a method for manufacturing the same.

R−T−B系焼結磁石(Rは希土類元素のうち少なくとも一種である。Tは遷移金属元素のうち少なくとも一種でありFeを必ず含む。Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。本明細書において希土類元素とは、スカンジウム(Sc)、イットリウム(Y)、及びランタノイドからなる群から選択された少なくとも1つの元素をいう。ここで、ランタノイドとは、ランタンからルテチウムまでの15の元素の総称である。 The RT-B-based sintered magnet (R is at least one of the rare earth elements, T is at least one of the transition metal elements and always contains Fe, and B is boron) is the most permanent magnet. Known as a high-performance magnet, it is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances. .. As used herein, the rare earth element refers to at least one element selected from the group consisting of scandium (Sc), yttrium (Y), and lanthanoids. Here, lanthanoid is a general term for 15 elements from lanthanum to lutetium.

R−T−B系焼結磁石は主としてR14B化合物からなる主相とこの主相の粒界部分に位置する粒界相(以下、単に「粒界」という場合がある)とから構成されている。R14B化合物は高い磁化を持つ強磁性相でありR−T−B系焼結磁石の特性の根幹をなしている。 R-T-B based sintered magnet is mainly grain boundary phase located in the grain boundary of the main phase and the main phase consisting of R 2 T 14 B compound (hereinafter, simply referred to as "grain boundary") from the It is configured. The R 2 T 14 B compound is a ferromagnetic phase with high magnetization and forms the basis of the characteristics of the R-TB based sintered magnet.

R−T−B系焼結磁石は、高温で保磁力HcJ(以下、単に「保磁力」又は「HcJ」という場合がある)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR−T−B系焼結磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。 The RTB -based sintered magnet has a problem that irreversible thermal demagnetization occurs because the coercive force H cJ (hereinafter, may be simply referred to as “coercive force” or “H cJ”) decreases at a high temperature. Therefore, in a particularly R-T-B based sintered magnet used in an electric vehicle motor, having a high H cJ even at high temperatures, that is, required to have a higher H cJ at room temperature.

R−T−B系焼結磁石において、R14B化合物中のRに含まれる軽希土類元素(主としてNd及び/又はPr)の一部を重希土類元素(主としてDy及び/又はTb)で置換すると、HcJが向上することが知られている。重希土類元素の置換量の増加に伴いHcJは向上する。 In the R-TB based sintered magnet, a part of the light rare earth element (mainly Nd and / or Pr) contained in R in the R 2 T 14 B compound is a heavy rare earth element (mainly Dy and / or Tb). Substitution is known to improve H cJ. HcJ improves as the amount of replacement of heavy rare earth elements increases.

しかし、R14B化合物中の軽希土類元素を重希土類元素で置換するとR−T−B系焼結磁石のHcJが向上する一方、残留磁束密度B(以下、単に「B」という場合がある)が低下する。また、重希土類元素、特にDyなどは資源存在量が少ないうえ産出地が限定されているなどの理由から供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、ユーザーから重希土類元素をできるだけ使用することなくHcJを向上させることが求められている。 However, while improving the H cJ of R 2 T 14 B when the light rare earth element in the compound is replaced with the heavy rare-earth element R-T-B based sintered magnet, the remanence B r (hereinafter, simply "B r" In some cases) decreases. In addition, heavy rare earth elements, especially Dy, have problems such as unstable supply due to a small amount of resources present and limited production areas, and prices fluctuate significantly. Therefore, in recent years, users have requested to improve HcJ without using heavy rare earth elements as much as possible.

特許文献1には、Dyの含有量を低減しつつ保磁力を高めたR−T−B系希土類焼結磁石が開示されている。この焼結磁石の組成は、一般に用いられてきたR−T−B系合金に比べてB量が相対的に少ない特定の範囲に限定され、かつ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有している。その結果、粒界にR17相が生成され、このR17相から粒界に形成される遷移金属リッチ相(R13M)の体積比率が増加することにより、HcJが向上する。 Patent Document 1 discloses an RTB-based rare earth sintered magnet having an increased coercive force while reducing the Dy content. The composition of this sintered magnet is limited to a specific range in which the amount of B is relatively small as compared with the generally used R-TB alloy, and is selected from Al, Ga, and Cu1. It contains more than a kind of metal element M. As a result, an R 2 T 17 phase is generated at the grain boundary, and the volume ratio of the transition metal rich phase (R 6 T 13 M) formed at the grain boundary from this R 2 T 17 phase increases, so that H cJ Is improved.

国際公開第2013/008756号International Publication No. 2013/008756

特許文献1に記載されている方法は、重希土類元素の含有量を抑制しつつR−T−B系焼結磁石を高保磁力化できる点で注目に値する。しかし、Bが大幅に低下するという問題があった。また、近年、電気自動車用モータ等の用途において更に高いHcJを有するR−T−B系焼結磁石が求められている。 It is noteworthy that the method described in Patent Document 1 can increase the coercive magnetic force of the RTB-based sintered magnet while suppressing the content of heavy rare earth elements. However, there is a problem that Br is significantly reduced. Further, in recent years, R-TB-based sintered magnets having a higher HcJ have been demanded in applications such as motors for electric vehicles.

本開示の実施形態は、重希土類元素の含有量を低減しつつ、高いB及び高いHcJを有するR−T−B系焼結磁石及びその製造方法を提供する。 Embodiments of the present disclosure, while reducing the content of heavy rare earth elements, providing a R-T-B based sintered magnet and a manufacturing method thereof with high B r and a high H cJ.

本開示のR−T−B系焼結磁石の製造方法は、限定的ではない例示的な実施形態において、R1−T1−B系焼結体を準備する工程と、R2−Si系合金を準備する工程と、前記R1−T1−B系焼結体の表面の少なくとも一部に、前記R2−Si系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、450℃以上1100℃以下の温度で熱処理を実施する工程を含み、前記R1−T1−B系焼結体において、R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1−T1−B系焼結体全体の27mass%以上35mass%以下であり、T1はFe又はCo、Al、Mn、Siの少なくとも1つとFeであり、T1全体に対するFeの含有量が80mass%以上であり、Bに対するT1のmol比([T1]/[B])が14.0超15.0以下であり、前記R2−Si系合金において、R2は希土類元素のうち少なくとも一種であり、Prを必ず含み、R2の含有量は、R2−Si系合金全体の74.4mass%以上96.6mass%以下であり、かつ、希土類元素全体に対するPrの比率が、R1−T1―B系焼結体の希土類元素全体に対するPrの比率よりも高く、Siの含有量は、R2−Si系合金全体の0.7mass%以上14.0mass%以下である。 The method for producing an R-TB-based sintered magnet of the present disclosure is a step of preparing an R1-T1-B-based sintered body and a step of preparing an R2-Si-based alloy in a non-limiting exemplary embodiment. At least a part of the R2-Si alloy is brought into contact with at least a part of the surface of the R1-T1-B-based sintered body, and the temperature is 450 ° C. or higher and 1100 ° C. or lower in a vacuum or an inert gas atmosphere. In the R1-T1-B-based sintered body, R1 is at least one of rare earth elements, and always contains at least one of Nd and Pr, and the content of R1 is The total content of the R1-T1-B-based sintered body is 27 mass% or more and 35 mass% or less, T1 is Fe or at least one of Co, Al, Mn, and Si and Fe, and the content of Fe with respect to the entire T1 is 80 mass% or more. The mol ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less, and in the R2-Si alloy, R2 is at least one of the rare earth elements, and Pr. The content of R2 is 74.4 mass% or more and 96.6 mass% or less of the whole R2-Si alloy, and the ratio of Pr to the whole rare earth element is R1-T1-B-based sintered body. It is higher than the ratio of Pr to the whole rare earth element, and the content of Si is 0.7 mass% or more and 14.0 mass% or less of the whole R2-Si alloy.

ある実施形態において、前記R2−Si系合金中のPrがR2全体の50質量%以上である。 In a certain embodiment, Pr in the R2-Si alloy is 50% by mass or more of the total amount of R2.

ある実施形態において、前記R2−Si系合金中のR2はPrである(不純物は含む)。 In certain embodiments, R2 in the R2-Si alloy is Pr (including impurities).

ある実施形態において、前記R2−Si系合金はCuを含有し、Cuの含有量はR2−Si系合金全体の0.1mass%以上24.1mass%以下である。 In a certain embodiment, the R2-Si alloy contains Cu, and the Cu content is 0.1 mass% or more and 24.1 mass% or less of the whole R2-Si alloy.

ある実施形態において、前記R1−T1−B系焼結体中の[Pr]/[R1]をα、R2−Si系合金中の[Pr]/[R2]をβとしたとき、β/α≧1.2である。 In a certain embodiment, when [Pr] / [R1] in the R1-T1-B-based sintered body is α and [Pr] / [R2] in the R2-Si-based alloy is β, β / α. ≧ 1.2.

ある実施形態において、前記R2−Si系合金におけるR2とSiの合計の含有量が80mass%以上である。 In one embodiment, the total content of R2 and Si in the R2-Si alloy is 80 mass% or more.

ある実施形態において、前記R1−T1−B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことを含む。 In a certain embodiment, in the step of preparing the R1-T1-B-based sintered body, the raw material alloy is pulverized to a particle size D 50 of 3 μm or more and 10 μm or less, and then oriented in a magnetic field for sintering. include.

本開示のR−T−B系焼結磁石は、限定的ではない例示的な実施形態において、R3:27mass%以上38mass%以下(R3は、希土類元素のうちの少なくとも一種であり、R3全体の50mass%以上がNdであり、Prを必ず含む)、X:0.85mass%以上0.93mass%以下(Xは、B及びCの少なくとも一方であり、必ずBを含む)、Si:0.1mass%以上2.0mass%以下、T2:61.0mass%以上(T2は、遷移金属元素の少なくとも一種であり、T2全体の90mass%以上がFeである)を含有し、Xに対するT2のmol比([T2]/[X])は13.0以上であり、Prの濃度は磁石中央部よりも磁石表面部の方が高く、Siの濃度は磁石中央部よりも磁石表面部の方が高く、R4−T3−A化合物(R4は、希土類元素のうち少なくとも一種であり、R4全体の50mass%以上がPrである。T3は、Fe、Co、Ni、Mn、Ti、Crのうち少なくとも一種であり、T3全体の50mass%以上がFeである。AはZn、Cu、Ga、Al、Ge、Siのうち少なくとも一種であり、Siを必ず含む)を含有する。 The R-TB based sintered magnets of the present disclosure are R3: 27 mass% or more and 38 mass% or less (R3 is at least one of rare earth elements, and R3 as a whole, in an exemplary embodiment without limitation. 50 mass% or more is Nd and always contains Pr), X: 0.85 mass% or more and 0.93 mass% or less (X is at least one of B and C and always contains B), Si: 0.1 mass % Or more and 2.0 mass% or less, T2: 61.0 mass% or more (T2 is at least one kind of transition metal element, and 90 mass% or more of the whole T2 is Fe), and the mol ratio of T2 to X ( [T2] / [X]) is 13.0 or more, the concentration of Pr is higher in the magnet surface than in the center of the magnet, and the concentration of Si is higher in the surface of the magnet than in the center of the magnet. R4-T3-A compound (R4 is at least one of rare earth elements, and 50 mass% or more of R4 is Pr. T3 is at least one of Fe, Co, Ni, Mn, Ti, and Cr. , 50 mass% or more of the whole T3 is Fe. A is at least one of Zn, Cu, Ga, Al, Ge, and Si, and always contains Si).

ある実施形態において、前記R−T−B系焼結磁石はCuを含有し、Cuの濃度は磁石中央部よりも磁石表面部の方が高い。 In a certain embodiment, the R-TB-based sintered magnet contains Cu, and the concentration of Cu is higher in the magnet surface portion than in the magnet central portion.

ある実施形態において、Prの濃度は、磁石中央部よりも磁石表面部の方が2.0mass%以上高い。 In one embodiment, the concentration of Pr is 2.0 mass% or more higher in the surface portion of the magnet than in the central portion of the magnet.

ある実施形態において、Siの濃度は、磁石中央部よりも磁石表面部の方が0.1mass%以上高い。 In one embodiment, the concentration of Si is 0.1 mass% or more higher in the magnet surface portion than in the magnet central portion.

ある実施形態において、前記R−T−B系焼結磁石はCuを含有し、Cuの濃度は、磁石中央部よりも磁石表面部の方が0.1mass%以上高い。 In a certain embodiment, the R-TB-based sintered magnet contains Cu, and the concentration of Cu is 0.1 mass% or more higher in the magnet surface portion than in the magnet central portion.

ある実施形態において、前記R4−T3−A化合物は、LaCo11Ga型結晶構造を有している。 In certain embodiments, the R4-T3-A compound has a La 6 Co 11 Ga type 3 crystal structure.

本開示の実施形態によると、重希土類元素の含有量を低減しつつ、高いB及び高いHcJを有するR−T−B系焼結磁石及びその製造方法を提供することができる。 According to embodiments of the present disclosure, while reducing the content of heavy rare-earth element, R-T-B based sintered magnet and a manufacturing method thereof with high B r and a high H cJ can be provided.

本開示によるR−T−B系焼結磁石の製造方法における工程の例を示すフローチャートである。It is a flowchart which shows the example of the process in the manufacturing method of the R-TB system sintered magnet by this disclosure. R−T−B系焼結磁石の主相と粒界相を示す模式図である。It is a schematic diagram which shows the main phase and the grain boundary phase of the RTB system sintered magnet. 図2Aの破線矩形領域内を更に拡大した模式図である。It is a schematic diagram which further enlarged in the broken line rectangular area of FIG. 2A. 磁石が瓦形状の場合における磁石表面部と磁石中央部を示す説明図である。It is explanatory drawing which shows the magnet surface part and the magnet center part when the magnet has a tile shape. 熱処理工程におけるR1−T1−B系焼結体とR2−Si系合金との配置形態を模式的に示す説明図である。It is explanatory drawing which shows typically the arrangement form of the R1-T1-B-based sintered body and the R2-Si-based alloy in a heat treatment step. No.2−4の磁石表面部の断面を走査電子顕微鏡で観察した写真である。No. It is a photograph which observed the cross section of the magnet surface part of 2-4 with a scanning electron microscope. No.2−4の磁石表面部の断面をさらに拡大して観察した写真である。No. It is a photograph which observed the cross section of the magnet surface part of 2-4 further enlarged. No.2−4の磁石中央部の断面を走査電子顕微鏡で観察した写真である。No. It is a photograph which observed the cross section of the central part of the magnet of 2-4 with a scanning electron microscope. No.2−4の磁石中央部の断面をさらに拡大して観察した写真である。No. It is a photograph which observed the cross section of the central part of the magnet of 2-4 further magnified. No.1−1の磁石表面部の断面を走査電子顕微鏡で観察した写真である。No. It is a photograph which observed the cross section of the magnet surface part of 1-1 with a scanning electron microscope. No.1−1の磁石表面部の断面をさらに拡大して観察した写真である。No. It is a photograph which observed the cross section of the magnet surface part of 1-1 further enlarged. No.1−1の磁石中央部の断面を走査電子顕微鏡で観察した写真である。No. It is a photograph which observed the cross section of the central part of the magnet of 1-1 with a scanning electron microscope. No.1−1の磁石中央部の断面をさらに拡大して観察した写真である。No. It is a photograph which observed the cross section of the central part of the magnet of 1-1 further enlarged. No.1−3の磁石表面部の断面を走査電子顕微鏡で観察した写真である。No. It is a photograph which observed the cross section of the magnet surface part of 1-3 with a scanning electron microscope. No.1−3の磁石表面部の断面をさらに拡大して観察した写真である。No. It is a photograph which observed the cross section of the magnet surface part of 1-3 further enlarged. No.1−3の磁石中央部の断面を走査電子顕微鏡で観察した写真である。No. It is a photograph which observed the cross section of the central part of the magnet of 1-3 with a scanning electron microscope. No.1−3の磁石中央部の断面をさらに拡散して観察した写真である。No. It is a photograph which observed the cross section of the central part of the magnet of 1-3 further diffused.

本開示において、希土類元素を総称して「R」と表記する場合がある。希土類元素Rのうちの特定の元素又は元素群を指すとき、例えば「R1」、「R2」、「R3」及び「R4」の符号を用いて他の希土類元素から区別する。また、本開示において、Feを含む遷移金属元素の全体を「T」と表記する。遷移金属元素Tのうちの特定の元素または元素群及び主相のFeサイトと容易に置換される遷移金属元素以外の特定の元素又は元素群の両方を含むとき、「T1」、「T2」及び「T3」の符号を用いて他の遷移金属元素から区別する。 In the present disclosure, rare earth elements may be collectively referred to as "R". When referring to a specific element or group of rare earth elements R, for example, the reference numerals "R1", "R2", "R3" and "R4" are used to distinguish them from other rare earth elements. Further, in the present disclosure, the entire transition metal element including Fe is referred to as "T". When both a specific element or element group of the transition metal element T and a specific element or element group other than the transition metal element easily replaced with the Fe site of the main phase are included, "T1", "T2" and The code "T3" is used to distinguish it from other transition metal elements.

本開示によるR−T−B系焼結磁石の製造方法は、図1に示すように、R1−T1−B系焼結体を準備する工程S10と、R2−Si系合金を準備する工程S20とを含む。R1−T1−B系焼結体を準備する工程S10と、R2−Si系合金を準備する工程S20との順序は任意であり、それぞれ、異なる場所で製造されたR1−T1−B系焼結体及びR2−Si系合金を用いてもよい。 As shown in FIG. 1, the method for manufacturing an R-TB-based sintered magnet according to the present disclosure includes a step S10 for preparing an R1-T1-B-based sintered body and a step S20 for preparing an R2-Si-based alloy. And include. The order of the step S10 for preparing the R1-T1-B-based sintered body and the step S20 for preparing the R2-Si-based alloy is arbitrary, and the R1-T1-B-based sintered body manufactured at different locations, respectively. Body and R2-Si based alloys may be used.

本開示において、熱処理前及び熱処理中のR−T−B系焼結磁石をR1−T1−B系焼結体と称し、熱処理後のR1−T1−B系焼結磁体を単にR−T−B系焼結磁石と称する。 In the present disclosure, the R-TB-based sintered magnets before and during the heat treatment are referred to as R1-T1-B-based sintered bodies, and the R1-T1-B-based sintered magnets after the heat treatment are simply RT-. It is called a B-based sintered magnet.

R1−T1−B系焼結体においては、下記(1)〜(3)が成立している。
(1)R1は希土類元素のうち少なくとも一種でありNd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1−T1−B系焼結体全体の27mass%以上35mass%以下である。
(2)T1はFe又はCo、Al、Mn、Siの少なくとも1つとFeであり、T1全体に対するFeの含有量が80mass%以上である。
(3)Bに対するT1のmol比([T1]/[B])が14.0超15.0以下である。
In the R1-T1-B system sintered body, the following (1) to (3) are established.
(1) R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-based sintered body.
(2) T1 is Fe or at least one of Co, Al, Mn, and Si and Fe, and the content of Fe with respect to the whole T1 is 80 mass% or more.
(3) The mol ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.

本開示におけるBに対するT1のmol比([T1]/[B])とは、T1を構成する各元素(Fe又はCo、Al、Mn、Siの少なくとも1つとFe)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。 The mol ratio of T1 to B ([T1] / [B]) in the present disclosure is an analytical value (mass%) of each element (at least one of Fe or Co, Al, Mn, Si and Fe) constituting T1. Was divided by the atomic weight of each element, and the ratio (a /) of the sum of these values (a) and the analytical value of B (mass%) divided by the atomic weight of B (b). b).

Bに対するT1のmol比([T1]/[B])が14.0を超えるということは、Bの含有比率がR14B化合物の化学量論組成比よりも低いことを意味している。言い換えると、R1−T1−B系焼結体において、主相(R14B化合物)の形成に使われるT1の量に対して相対的にB量が少ない。 Mol ratio of T1 for B ([T1] / [B ]) that is greater than 14.0, the content ratio of B is meant that less than the stoichiometric composition ratio of R 2 T 14 B compound There is. In other words, the R1-T1-B based sintered body, relative B amount relative to the amount of T1 to be used in the formation of the main phase (R 2 T 14 B compound) is small.

R2−Si系合金においては、以下の(4)及び(5)が成立している。
(4)R2は希土類元素のうち少なくとも一種であり、Prを必ず含み、R2の含有量は、R2−Si系合金全体の74.4mass%以上96.6mass%以下であり、かつ、希土類元素全体に対するPrの比率が、R1−T1―B系焼結体の希土類元素全体に対するPrの比率よりも高い。
(5)Siの含有量は、R2−Si系合金全体の0.7mass%以上14.0mass%以下である。
In the R2-Si alloy, the following (4) and (5) are established.
(4) R2 is at least one of rare earth elements and always contains Pr, and the content of R2 is 74.4 mass% or more and 96.6 mass% or less of the whole R2-Si alloy, and the whole rare earth element. The ratio of Pr to the total of the rare earth elements of the R1-T1-B based sintered body is higher than the ratio of Pr to the whole.
(5) The Si content is 0.7 mass% or more and 14.0 mass% or less of the entire R2-Si alloy.

本開示によるR−T−B系焼結磁石の製造方法では、主相(R14B化合物)形成に使われるTの量に対して化学量論比で相対的にB量が少ないR1−T1−B系焼結体の表面の少なくとも一部にR2−Si系合金を接触させ、図1に示すように、真空又は不活性ガス雰囲気中、450℃以上1100℃以下の温度で熱処理を実施する工程S30を行う。これにより、高いB及び高いHcJを有するR−T−B系焼結磁石を得ることができる。 The R-T-B based sintered magnet production method of the present disclosure, the main phase (R 2 T 14 B compound) relatively B amount in stoichiometric ratio to the amount of T used for forming a small R1 An R2-Si alloy is brought into contact with at least a part of the surface of the −T1-B-based sintered body, and heat treatment is performed at a temperature of 450 ° C. or higher and 1100 ° C. or lower in a vacuum or an inert gas atmosphere as shown in FIG. The step S30 to be carried out is carried out. Thus, it is possible to obtain the R-T-B based sintered magnet having a high B r and a high H cJ.

まず、R−T−B系焼結磁石の基本構造を説明する。 First, the basic structure of the RTB-based sintered magnet will be described.

R−T−B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。 R-T-B based sintered magnet, the powder particles of the raw material alloy has a structure bonded by sintering, mainly a main phase consisting of R 2 T 14 B compound, the grain boundary portion of the main phase It is composed of the grain boundary phase in which it is located.

図2Aは、R−T−B系焼結磁石の主相と粒界相を示す模式図であり、図2Bは図2Aの破線矩形領域内を更に拡大した模式図である。図2Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図2A及び図2Bに示されるように、R−T−B系焼結磁石は、主としてR14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図2Bに示されるように、2つのR14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つ以上のR14B化合物粒子が隣接する粒界三重点14bとを含む。 FIG. 2A is a schematic diagram showing the main phase and the grain boundary phase of the R-TB-based sintered magnet, and FIG. 2B is a schematic diagram further enlarging the inside of the broken line rectangular region of FIG. 2A. In FIG. 2A, as an example, an arrow having a length of 5 μm is shown for reference as a reference length indicating the size. As shown in FIGS. 2A and 2B, R-T-B based sintered magnet includes a main phase 12 mainly composed of R 2 T 14 B compound, the grain boundary phase located grain boundary of the main phase 12 14 It is composed of and. Further, as shown in FIG. 2B, the grain boundary phase 14 is a two-particle grain boundary phase 14a in which two R 2 T 14 B compound particles (grains) are adjacent to each other, and three or more R 2 T 14 B compound particles. Includes adjacent grain boundary triple points 14b.

主相12であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性相である。したがって、R−T−B系焼結磁石では、主相12であるR14B化合物の存在比率を高めることによってBを向上させることができる。R14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。R14B化合物を形成するためのB量又はR量が化学量論比を下回ると、一般的には、粒界相14にFe相又はR17相等の強磁性体が生成し、HcJが急激に低下する。しかし、特許文献1に記載されている方法のように、B量をR14B化合物の化学量論比よりも少なくし、且つ、Al、Ga、Cuのうちから選ばれる1種以上の金属元素Mを含有させると、R17相から粒界に遷移属リッチ相(例えばR−T−Ga相)が生成されて高いHcJを得ることできる。しかし、特許文献1に記載されている方法では、Bが大幅に低下してしまう。 The R 2 T 14 B compound, which is the main phase 12, is a ferromagnetic phase having a high saturation magnetization and an anisotropic magnetic field. Therefore, in the R-T-B based sintered magnet, it is possible to improve the B r by increasing the existence ratio of R 2 T 14 B compound is the main phase 12. In order to increase the abundance ratio of the R 2 T 14 B compound, the R amount, T amount, and B amount in the raw material alloy are mixed with the stoichiometric ratio of the R 2 T 14 B compound (R amount: T amount: B amount =). It should be close to 2:14: 1). When the amount of B or R for forming the R 2 T 14 B compound is lower than the stoichiometric ratio, generally, a ferromagnet such as Fe phase or R 2 T 17 phase is generated in the grain boundary phase 14. , H cJ drops sharply. However, as in the method described in Patent Document 1, the B amount is less than the stoichiometric ratio of R 2 T 14 B compound, and, Al, Ga, of one or more selected among Cu When the metal element M is contained, a transitional rich phase (for example, R-T-Ga phase) is generated from the R 2 T 17 phase to the grain boundary, and a high H cJ can be obtained. However, in the method described in Patent Document 1, Br is significantly reduced.

本発明者らは検討の結果、低B組成である特定の組成を有するR1−T1−B系焼結体の表面の少なくとも一部に、R2−Si系合金を接触させて特定の熱処理を実施すると、最終的に得られる焼結磁石は、高いBと高いHcJを実現できることがわかった。このとき、R2−Si系合金におけるR2の含有量は、希土類元素全体に対するPrの比率が、R1−T1−B系焼結磁石体の希土類元素全体に対するPrの比率よりも高い。このような比率でR2中にPrが存在すると粒界拡散が促進され、磁石内部にSiを拡散させることが可能になることを見出した。そして、上記特定組成の焼結体にSiを拡散させることにより、Siを含む厚い二粒子粒界を焼結体の内部まで容易に形成することができることがわかった。 As a result of the study, the present inventors carried out a specific heat treatment by contacting at least a part of the surface of the R1-T1-B-based sintered body having a specific composition having a low B composition with an R2-Si-based alloy. Then, finally sintered magnet obtained has been found to be achieved a high B r and high H cJ. At this time, in the content of R2 in the R2-Si alloy, the ratio of Pr to the whole rare earth element is higher than the ratio of Pr to the whole rare earth element of the R1-T1-B-based sintered magnet body. It has been found that the presence of Pr in R2 at such a ratio promotes grain boundary diffusion and makes it possible to diffuse Si inside the magnet. Then, it was found that by diffusing Si into the sintered body having the specific composition, a thick two-particle grain boundary containing Si can be easily formed even inside the sintered body.

本開示によるR−T−B系焼結磁石の製造方法は、本開示の特定組成のR2−Si系合金によりPr及びSiを磁石表面から内部に導入することで、高いBと高いHcJを実現することができる。 Method for producing R-T-B based sintered magnet according to the present disclosure, the Pr and Si by R2-Si based alloy of the particular composition of the present disclosure by introducing inside from the magnet surface, high B r and high H cJ Can be realized.

(R1−T1−B系焼結体を準備する工程)
まず、R1−T1−B系焼結体(以下、単に「焼結体」という場合がある)を準備する工程における焼結体の組成を説明する。
(Step of preparing R1-T1-B system sintered body)
First, the composition of the sintered body in the step of preparing the R1-T1-B-based sintered body (hereinafter, may be simply referred to as “sintered body”) will be described.

R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含む。R1−T1−B系焼結体のHcJを向上させるために、一般的に用いられるDy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。ただし、本開示による製造方法によれば、重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量は、R1−T1−B系焼結体の1mass%以下であることが好ましく、0.5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことがさらに好ましい。 R1 is at least one of rare earth elements and always contains at least one of Nd and Pr. In order to improve the HcJ of the R1-T1-B-based sintered body, a small amount of heavy rare earth elements such as Dy, Tb, Gd, and Ho, which are generally used, may be contained. However, according to the production method according to the present disclosure, a sufficiently high HcJ can be obtained without using a large amount of heavy rare earth elements. Therefore, the content of the heavy rare earth element is preferably 1 mass% or less, more preferably 0.5 mass% or less, and not contained (substantially 0 mass%) of the R1-T1-B-based sintered body. ) Is more preferable.

R1の含有量は、R1−T1−B系焼結体全体の27mass%以上35mass%以下である。R1の含有量が27mass%未満では焼結過程で液相が十分に生成せず、R1−T1−B系焼結体を十分に緻密化することが困難になる。一方、R1の含有量が35mass%を超えても本開示の効果を得ることはできるが、R1−T1−B系焼結体の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、35mass%以下が好ましい。R1の含有量は、27.5mass%以上33mass%以下であることがより好ましく、28mass%以上32mass%以下であることがさらに好ましい。 The content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-based sintered body. If the content of R1 is less than 27 mass%, a liquid phase is not sufficiently formed in the sintering process, and it becomes difficult to sufficiently densify the R1-T1-B-based sintered body. On the other hand, although the effect of the present disclosure can be obtained even if the content of R1 exceeds 35 mass%, the alloy powder in the manufacturing process of the R1-T1-B-based sintered body becomes very active. As a result, significant oxidation or ignition of the alloy powder may occur, so 35 mass% or less is preferable. The content of R1 is more preferably 27.5 mass% or more and 33 mass% or less, and further preferably 28 mass% or more and 32 mass% or less.

T1はFe又はCo、Al、Mn、Siの少なくとも1つとFeであり、T1全体に対するFeの含有量が80mass%以上である。すなわち、T1はFeのみであってもよいし、Co、Al、Mn、Siの少なくとも1つとFeからなってもよい。但し、T1全体に対するFeの含有量は80mass%以上である。Feの含有量が80mass%未満であると、B及びHcJが低下する可能性がある。ここで、「T1全体に対するFeの含有量は80mass%以上」とは、例えばR1−T1−B系焼結体中におけるT1の含有量が70mass%である場合、R1−T1−B系焼結体の56mass%以上がFeであることをいう。好ましくはT1全体に対するFeの含有量は90mass%以上である。より高いBと高いHcJを得ることができるからである。Co、Al、Mn、Siを含有する場合の好ましい含有量は、R1−T1−B系焼結体全体のCoは5.0mass%以下、Alは1.5mass%以下、Mn及びSiはそれぞれ0.2mass%以下である。 T1 is Fe or at least one of Co, Al, Mn, and Si and Fe, and the content of Fe with respect to the whole T1 is 80 mass% or more. That is, T1 may be Fe alone, or may be composed of at least one of Co, Al, Mn, and Si and Fe. However, the content of Fe with respect to the whole T1 is 80 mass% or more. When the content of Fe is less than 80 mass%, B r and H cJ may be reduced. Here, "the content of Fe with respect to the whole T1 is 80 mass% or more" means, for example, when the content of T1 in the R1-T1-B-based sintered body is 70 mass%, R1-T1-B-based sintered body. It means that 56 mass% or more of the body is Fe. Preferably, the Fe content with respect to the whole T1 is 90 mass% or more. This is because it is possible to obtain a higher B r and a high H cJ. When Co, Al, Mn, and Si are contained, the preferable contents of the entire R1-T1-B-based sintered body are 5.0 mass% or less for Co, 1.5 mass% or less for Al, and 0 for Mn and Si, respectively. It is .2 mass% or less.

Bに対するT1のmol比([T1]/[B])は14.0超15.0以下である。 The mol ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.

Bに対するT1のmol比([T1]/[B])が14.0以下であると高いHcJを得ることができない。一方、Bに対するT1のmol比([T1]/[B])が15.0を超えるとBが低下する可能性がある。Bに対するT1のmol比([T1]/[B])は14.3以上15.0以下であることが好ましい。さらに高いBと高いHcJを得ることができる。また、Bの含有量はR1−T1−B系焼結体全体の0.85mass%以上1.0mass%未満が好ましい。 When the mol ratio of T1 to B ([T1] / [B]) is 14.0 or less, high H cJ cannot be obtained. On the other hand, if the mol ratio of T1 to B ([T1] / [B]) exceeds 15.0, Br may decrease. The mol ratio of T1 to B ([T1] / [B]) is preferably 14.3 or more and 15.0 or less. It is possible to obtain a higher B r and a high H cJ. The B content is preferably 0.85 mass% or more and less than 1.0 mass% of the entire R1-T1-B-based sintered body.

R1−T1−B系焼結体は、上記元素の他にGa、Cu、Ag、Zn、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。含有量は、Ga、Cu、Ag、Zn、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下が好ましい。これらの元素の合計の含有量は、R1−T1−B系焼結体全体の5mass%以下が好ましい。これらの元素の合計の含有量がR1−T1−B系焼結体全体の5mass%を超えると高いBと高いHcJを得ることができない可能性がある。 In addition to the above elements, the R1-T1-B based sintered body includes Ga, Cu, Ag, Zn, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, and It may contain La, Ce, Sm, Ca, Mg, Cr, H, F, P, S, Cl, O, N, C and the like. The contents of Ga, Cu, Ag, Zn, In, Sn, Zr, Nb, and Ti are 0.5 mass% or less, respectively, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg and Cr are preferably 0.2 mass% or less, H, F, P, S and Cl are preferably 500 ppm or less, O is 6000 ppm or less, N is 1000 ppm or less, and C is 1500 ppm or less. The total content of these elements is preferably 5 mass% or less of the entire R1-T1-B-based sintered body. The total content of these elements may not be able to obtain the high B r and high H cJ exceeds 5 mass% of the total R1-T1-B based sintered body.

次にR1−T1−B系焼結体を準備する工程について説明する。R1−T1−B系焼結体を準備する工程は、R−T−B系焼結磁石に代表される一般的な製造方法を用いて準備することができる。R1−T1−B系焼結体は、原料合金を粒径D50(気流分散式レーザー回折法による測定で得られる体積中心値=D50)が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことが好ましい。一例を挙げると、ストリップキャスト法などで作製された原料合金を、ジェットミル装置などを用いて粒径D50が3μm以上10μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより準備することができる。原料合金の粒径D50が3μm未満では粉砕粉を作製するのが非常に困難であり、生産効率が大幅に低下するため好ましくない。一方、粒径D50が10μmを超えると最終的に得られるR1−T1−B系焼結体の結晶粒径が大きくなり過ぎ、高いHcJを得ることが困難となるため好ましくない。粒径D50は好ましくは、3μm以上5μm以下である。 Next, a step of preparing the R1-T1-B system sintered body will be described. The step of preparing the R1-T1-B-based sintered body can be prepared by using a general manufacturing method typified by the R-TB-based sintered magnet. In the R1-T1-B-based sintered body, the raw material alloy is pulverized to a particle size D 50 (volume center value obtained by measurement by an air flow dispersion laser diffraction method = D 50 ) of 3 μm or more and 10 μm or less, and then in a magnetic field. It is preferable to orient and perform sintering. As an example, a material alloy that has been prepared in such a strip casting method, after the particle size D 50 by using a jet mill is ground to 3μm over 10μm or less, and molded in a magnetic field, 900 ° C. or higher 1100 ° C. or less It can be prepared by sintering at the temperature of. If the particle size D 50 of the raw material alloy is less than 3 μm, it is very difficult to produce pulverized powder, and the production efficiency is significantly reduced, which is not preferable. On the other hand, if the particle size D 50 exceeds 10 μm, the crystal particle size of the finally obtained R1-T1-B-based sintered body becomes too large, and it becomes difficult to obtain a high HcJ, which is not preferable. The particle size D 50 is preferably 3 μm or more and 5 μm or less.

R1−T1−B系焼結体は、前記の各条件を満たしていれば、一種類の原料合金(単一原料合金)から作製してもよいし、二種類以上の原料合金を用いてそれらを混合する方法(ブレンド法)によって作製してもよい。また、得られたR1−T1−B系焼結体は、必要に応じて切断や切削など公知の機械加工を行った後、後述する熱処理を実施してもよい。 The R1-T1-B-based sintered body may be produced from one kind of raw material alloy (single raw material alloy) as long as each of the above conditions is satisfied, or may be made from two or more kinds of raw material alloys. May be produced by a method of mixing (blending method). Further, the obtained R1-T1-B-based sintered body may be subjected to known machining such as cutting or cutting as necessary, and then heat treatment described later may be carried out.

(R2−Si系合金を準備する工程)
まず、R2−Si系合金を準備する工程におけるR2−Si系合金の組成を説明する。以下に説明する特定の範囲でR2及びSiを含有することにより、後述する熱処理を実施する工程においてR2−Si系合金中のR2及びSiをR1−T1−B系焼結体内部に導入することができる。
(Step of preparing R2-Si alloy)
First, the composition of the R2-Si alloy in the step of preparing the R2-Si alloy will be described. By containing R2 and Si in a specific range described below, R2 and Si in the R2-Si alloy are introduced into the inside of the R1-T1-B sintered body in the step of performing the heat treatment described later. Can be done.

R2は希土類元素のうち少なくとも一種であり、Prを必ず含み、R2の含有量はR2−Si系合金全体の74.4mass%以上96.6mass%以下である。R2の含有量が74.4mass%未満では後述する熱処理で拡散が十分に進行しない可能性がある。一方、R2の含有量が96.6mass%を超えても本開示の効果を得ることはできるが、R2−Si系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じることがあるため、R2の含有量はR2−Si系合金全体の95mass%以下が好ましい。R2の含有量は85mass%以上94mass%以下であることがより好ましい。より高いHcJを得ることができるからである。 R2 is at least one of rare earth elements and always contains Pr, and the content of R2 is 74.4 mass% or more and 96.6 mass% or less of the whole R2-Si alloy. If the content of R2 is less than 74.4 mass%, diffusion may not proceed sufficiently by the heat treatment described later. On the other hand, although the effect of the present disclosure can be obtained even if the content of R2 exceeds 96.6 mass%, the alloy powder in the manufacturing process of the R2-Si alloy becomes very active. As a result, the alloy powder may be significantly oxidized or ignited. Therefore, the content of R2 is preferably 95 mass% or less of the entire R2-Si alloy. The content of R2 is more preferably 85 mass% or more and 94 mass% or less. This is because a higher H cJ can be obtained.

さらに、R2は、希土類元素全体に対するPrの比率が、R1−T1―B系焼結体の希土類元素全体に対するPrの比率よりも高い。これにより粒界拡散が促進され、磁石内部にSiを拡散させることができる。Prの比率がR1−T1―B系焼結体の希土類元素全体に対するPrの比率よりも低いと、粒界拡散が促進されずSiの拡散は焼結体の表面近傍にとどまる可能性がある。そのため、Siの磁石表面から内部への導入量が不十分となり、高いBと高いHcJを有するR−T−B系焼結磁石を得ることができない可能性がある。好ましくは、前記R1−T1−B系焼結体中の[Pr]/[R1]をα、R2−Si系合金中の[Pr]/[R2]をβとしたとき、β/α≧1.2である。 Further, in R2, the ratio of Pr to the whole rare earth element is higher than the ratio of Pr to the whole rare earth element of the R1-T1-B based sintered body. As a result, grain boundary diffusion is promoted, and Si can be diffused inside the magnet. If the ratio of Pr is lower than the ratio of Pr to the entire rare earth element of the R1-T1-B-based sintered body, the intergranular diffusion is not promoted and the diffusion of Si may stay near the surface of the sintered body. Therefore, the introduction amount to the inside from the magnet surface of Si is insufficient, there is a possibility that it is impossible to obtain a R-T-B based sintered magnet having a high B r and high H cJ. Preferably, β / α ≧ 1 when [Pr] / [R1] in the R1-T1-B-based sintered body is α and [Pr] / [R2] in the R2-Si-based alloy is β. .2.

R2の50mass%以上がPrであることが好ましい。より高いHcJを得ることができるからである。ここで「R2の50mass%以上がPrである」とは、例えばR2−Si合金中におけるR2の含有量が50mass%である場合、R2−Si合金の25mass%以上がPrであることをいう。さらに好ましくは、R2の70mass%以上がPrであり、最も好ましくはR2がPrのみ(不純物は含む)である。これにより、さらに高いHcJを得ることができる。 It is preferable that 50 mass% or more of R2 is Pr. This is because a higher H cJ can be obtained. Here, "50 mass% or more of R2 is Pr" means that, for example, when the content of R2 in the R2-Si alloy is 50 mass%, 25 mass% or more of the R2-Si alloy is Pr. More preferably, 70 mass% or more of R2 is Pr, and most preferably R2 is Pr only (including impurities). Thereby, even higher H cJ can be obtained.

R2として、Dy、Tb、Gd、Hoなどの重希土類元素を少量含有してもよい。ただし、本開示の製造方法によれば、重希土類元素を多量に用いずとも十分に高いHcJを得ることができる。そのため、前記重希土類元素の含有量はR2−Si系合金全体の10mass%以下(R2−Si系合金中の重希土類元素が10mass%以下)であることが好ましく、5mass%以下であることがより好ましく、含有しない(実質的に0mass%)ことがさらに好ましい。また、R2−Si系合金のR2が重希土類元素を含有する場合も、R2の50mass%以上がPrであることが好ましく、重希土類元素を除いたR2がPrのみ(不可避的不純物は含む)であることがより好ましい。 R2 may contain a small amount of heavy rare earth elements such as Dy, Tb, Gd, and Ho. However, according to the production method of the present disclosure, a sufficiently high HcJ can be obtained without using a large amount of heavy rare earth elements. Therefore, the content of the heavy rare earth element is preferably 10 mass% or less of the entire R2-Si alloy (the heavy rare earth element in the R2-Si alloy is 10 mass% or less), and more preferably 5 mass% or less. It is preferable that it is not contained (substantially 0 mass%). Further, even when R2 of the R2-Si alloy contains a heavy rare earth element, it is preferable that 50 mass% or more of R2 is Pr, and R2 excluding the heavy rare earth element is Pr only (including unavoidable impurities). It is more preferable to have.

Siは、R2−Si系合金全体の0.7mass%以上14.0mass%以下である。Siが0.7mass%未満では、後述する熱処理を実施する工程においてR2−Si系合金中のSiがR1−T1−B系焼結体の内部に導入され難くなり高いHcJを得ることができない。一方、Siが14.0mass%以上であると、Bが大幅に低下する可能性がある。Siは0.7mass%以上10mass%以下であることがより好ましく、1.0mass%以上6mass%以下であることがさらに好ましい。より高いBと高いHcJを得ることができるからである。 Si is 0.7 mass% or more and 14.0 mass% or less of the entire R2-Si alloy. If Si is less than 0.7 mass%, it becomes difficult for Si in the R2-Si alloy to be introduced into the R1-T1-B-based sintered body in the step of performing the heat treatment described later, and high HcJ cannot be obtained. .. On the other hand, when the Si is at least 14.0mass%, B r may be lowered significantly. Si is more preferably 0.7 mass% or more and 10 mass% or less, and further preferably 1.0 mass% or more and 6 mass% or less. This is because it is possible to obtain a higher B r and a high H cJ.

好ましくは、R2−Si系合金はCuを含有し、R2−Si系合金全体の0.1mass%以上24.1mass%以下含有する。Cuが24.1mass%を超えると、粒界におけるSiの存在比率が低下する可能性があるため、24.1mass%以下が好ましい。 Preferably, the R2-Si-based alloy contains Cu, and contains 0.1 mass% or more and 24.1 mass% or less of the entire R2-Si based alloy. If Cu exceeds 24.1 mass%, the abundance ratio of Si at the grain boundaries may decrease, so 24.1 mass% or less is preferable.

R2−Si系合金は、上記元素の他にCo、Al、Ag、Zn、Ga、In、Sn、Zr、Nb、Ti、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Cr、H、F、P、S、Cl、O、N、C等を含有してもよい。 In addition to the above elements, R2-Si alloys include Co, Al, Ag, Zn, Ga, In, Sn, Zr, Nb, Ti, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, etc. It may contain Ce, Sm, Ca, Mg, Mn, Cr, H, F, P, S, Cl, O, N, C and the like.

Coは、耐食性の向上のために0.5mass%以上10mass%以下含有することが好ましい。含有量は、Alは1.0mass%以下、Ag、Zn、Ga、In、Sn、Zr、Nb、及びTiはそれぞれ0.5mass%以下、Ni、Hf、Ta、W、Ge、Mo、V、Y、La、Ce、Sm、Ca、Mg、Mn、Si、Crはそれぞれ0.2mass%以下、H、F、P、S、Clは500ppm以下、Oは6000ppm以下、Nは1000ppm以下、Cは1500ppm以下が好ましい。但し、これらの元素の合計の含有量が20mass%を超えると、R2−Si系合金におけるR2及びSiの含有量が少なくなり、高いBと高いHcJを得ることができない可能性がある。そのため、R2−Si系合金におけるR2とSiの合計の含有量は80mass%以上が好ましく、90mass%以上がさらに好ましい。 Co is preferably contained in an amount of 0.5 mass% or more and 10 mass% or less in order to improve corrosion resistance. The content of Al is 1.0 mass% or less, Ag, Zn, Ga, In, Sn, Zr, Nb, and Ti are 0.5 mass% or less, respectively, Ni, Hf, Ta, W, Ge, Mo, V, Y, La, Ce, Sm, Ca, Mg, Mn, Si, Cr are 0.2 mass% or less, H, F, P, S, Cl are 500 ppm or less, O is 6000 ppm or less, N is 1000 ppm or less, and C is. It is preferably 1500 ppm or less. However, the total content of these elements exceeds 20 mass%, then the amount of R2 and Si in R2-Si-based alloy, there is a possibility that it is impossible to obtain a high B r and high H cJ. Therefore, the total content of R2 and Si in the R2-Si alloy is preferably 80 mass% or more, and more preferably 90 mass% or more.

次にR2−Si系合金を準備する工程について説明する。R2−Si系合金は、Nd−Fe−B系焼結磁石に代表される一般的な製造方法において採用されている原料合金の作製方法、例えば、金型鋳造法やストリップキャスト法や単ロール超急冷法(メルトスピニング法)やアトマイズ法などを用いて準備することができる。また、R2−Si系合金は、前記によって得られた合金をピンミルなどの公知の粉砕手段によって粉砕されたものであってもよい。また、前記によって得られた合金の粉砕性を向上させるために、水素雰囲気中で700℃以下の熱処理を行って水素を含有させてから粉砕を行っても良い。 Next, the process of preparing the R2-Si alloy will be described. The R2-Si alloy is a method for producing a raw material alloy adopted in a general manufacturing method represented by an Nd-Fe-B sintered magnet, for example, a mold casting method, a strip casting method, or a single roll super. It can be prepared by using a quenching method (melt spinning method) or an atomizing method. Further, the R2-Si alloy may be an alloy obtained by pulverizing the alloy obtained by the above by a known pulverizing means such as a pin mill. Further, in order to improve the pulverizability of the alloy obtained as described above, pulverization may be performed after performing a heat treatment at 700 ° C. or lower in a hydrogen atmosphere to contain hydrogen.

(熱処理を実施する工程)
前記によって準備したR1−T1−B系焼結体の表面の少なくとも一部に、前記R2−Si系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、450℃以上1100℃以下の温度で熱処理をする。これにより、R2−Si系合金からR2及びSiを含む液相が生成し、その液相がR1−T1−B系焼結体の粒界を経由して焼結体表面から内部に拡散導入され、粒界にR−T−Si相が生成される。熱処理温度が450℃未満であると、R2及びSiを含む液相量が少なすぎて、高いBと高いHcJを得ることができない可能性がある。一方、1100℃を超えると主相の異常粒成長が起こりHcJが低下する可能性がある。熱処理温度は、450℃以上900℃以下が好ましい。より高いBと高いHcJを得ることができるからである。なお、熱処理時間はR1−T1−B系焼結体やR2−Si系合金の組成や寸法、熱処理温度などによって適正値を設定するが、5分以上20時間以下が好ましく、10分以上15時間以下がより好ましく、30分以上10時間以下がさらに好ましい。また、熱処理は1回だけ行ってもよく、複数回行ってもよい。例えば、比較的低い温度(400℃以上600℃以下)のみでの熱処理(一段熱処理)をしてもよく、あるいは比較的高い温度(700℃以上焼結温度以下(例えば1050℃以下))で熱処理を行った後比較的低い温度(400℃以上600℃以下)で熱処理(二段熱処理)をしてもよい。また、R2−Si系合金は、R1−T1−B系焼結体の重量に対し2mass%以上30mass%以下準備した方が好ましい。R2−Si系合金がR1−T1−B系焼結体の重量に対し2mass%未満であるとHcJが低下する可能性がある。一方、30mass%を超えるとBが低下する可能性がある。
(Step of performing heat treatment)
At least a part of the R2-Si alloy is brought into contact with at least a part of the surface of the R1-T1-B-based sintered body prepared as described above, and the temperature is 450 ° C. or higher and 1100 ° C. or lower in a vacuum or an inert gas atmosphere. Heat treat at temperature. As a result, a liquid phase containing R2 and Si is generated from the R2-Si alloy, and the liquid phase is diffused and introduced from the surface of the sintered body to the inside via the grain boundaries of the R1-T1-B sintered body. , R-T-Si phase is generated at the grain boundaries. If the heat treatment temperature is lower than 450 ° C., and too small amount of liquid phase containing R2 and Si, there is a possibility that it is impossible to obtain a high B r and high H cJ. On the other hand, if the temperature exceeds 1100 ° C., abnormal grain growth of the main phase may occur and HcJ may decrease. The heat treatment temperature is preferably 450 ° C. or higher and 900 ° C. or lower. This is because it is possible to obtain a higher B r and a high H cJ. The heat treatment time is set to an appropriate value depending on the composition and dimensions of the R1-T1-B-based sintered body and the R2-Si-based alloy, the heat treatment temperature, etc., but is preferably 5 minutes or more and 20 hours or less, preferably 10 minutes or more and 15 hours. The following is more preferable, and 30 minutes or more and 10 hours or less are further preferable. Further, the heat treatment may be performed only once or may be performed a plurality of times. For example, heat treatment (one-step heat treatment) may be performed only at a relatively low temperature (400 ° C. or higher and 600 ° C. or lower), or heat treatment may be performed at a relatively high temperature (700 ° C. or higher and sintering temperature or lower (for example, 1050 ° C. or lower)). After that, heat treatment (two-stage heat treatment) may be performed at a relatively low temperature (400 ° C. or higher and 600 ° C. or lower). Further, it is preferable to prepare the R2-Si alloy in an amount of 2 mass% or more and 30 mass% or less with respect to the weight of the R1-T1-B-based sintered body. If the R2-Si alloy is less than 2 mass% with respect to the weight of the R1-T1-B sintered body, H cJ may decrease. On the other hand, there is a possibility that the B r decreases exceeds 30 mass%.

前記熱処理は、R1−T1−B系焼結体表面に、任意形状のR2−Si系合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R1−T1−B系焼結体表面をR2−Si系合金の粉末層で覆い、熱処理を行うことができる。例えば、R2−Si系合金を分散媒中に分散させたスラリーをR1−T1−B系焼結体表面に塗布した後、分散媒を蒸発させてR2−Si系合金とR1−T1−B系焼結体とを接触させてもよい。また、後述する実験例に示すように、R2−Si系合金は、少なくともR1−T1−B系焼結体の配向方向に対して垂直な表面に接触させるように配置することが好ましい。なお、分散媒として、アルコール(エタノール等)、NMP(N−メチルピロリドン)、アルデヒド及びケトンを例示できる。また、熱処理が実施されたR1−T1−B系焼結体に対して切断や切削など公知の機械加工を行ってもよい。 The heat treatment can be performed by arranging an R2-Si alloy having an arbitrary shape on the surface of the R1-T1-B sintered body and using a known heat treatment apparatus. For example, the surface of the R1-T1-B-based sintered body can be covered with a powder layer of the R2-Si-based alloy and heat-treated. For example, after applying a slurry in which an R2-Si alloy is dispersed in a dispersion medium to the surface of an R1-T1-B sintered body, the dispersion medium is evaporated to form an R2-Si alloy and an R1-T1-B based. It may be brought into contact with the sintered body. Further, as shown in the experimental examples described later, it is preferable that the R2-Si alloy is arranged so as to be in contact with the surface perpendicular to the orientation direction of at least the R1-T1-B sintered body. Examples of the dispersion medium include alcohol (ethanol and the like), NMP (N-methylpyrrolidone), aldehydes and ketones. Further, known machining such as cutting or cutting may be performed on the heat-treated R1-T1-B-based sintered body.

[R−T−B系焼結磁石]
本開示によるR-T-B系焼結磁石は、R3-T2-X系(又はR3-T2-X-Si系)焼結磁石と称することもできるが、上述したR-T-B系焼結磁石の製造方法により作製されたことを明確化するため「R-T-B系焼結磁石」と称する。
[RTB-based sintered magnet]
The RTB-based sintered magnet according to the present disclosure may be referred to as an R3-T2-X-based (or R3-T2-X-Si-based) sintered magnet, but is manufactured by the above-mentioned method for manufacturing an RTB-based sintered magnet. To clarify that, it is called "RTB-based sintered magnet".

本実施形態により作製されたR−T−B系焼結磁石は、以下の特徴を有する。
R3:27mass%以上38mass%以下(R3は、希土類元素のうちの少なくとも一種であり、R3全体の50mass%以上がNdであり、Prを必ず含む)、
X:0.85mass%以上0.93mass%以下(Xは、B及びCの少なくとも一方であり、必ずBを含む)、
Si:0.1mass%以上2.0mass%以下、
T2:61.0mass%以上(T1は、遷移金属元素の少なくとも一種であり、T1全体の90mass%以上がFeである)、
を含有し、
Xに対するT2のmol比([T2]/[X])は13.0以上であり、
Prの濃度は磁石中央部よりも磁石表面部の方が高く、
Siの濃度は磁石中央部よりも磁石表面部の方が高く、
R4−T3−A化合物(R4は、希土類元素のうち少なくとも一種であり、R4全体の50mass%以上がPrである。T3は、Fe、Co、Ni、Mn、Ti、Crのうち少なくとも一種であり、T3全体の50mass%以上がFeである。AはZn、Cu、Ga、Al、Ge、Siのうち少なくとも一種であり、Siを必ず含む)を含有する。
The RTB-based sintered magnet produced according to the present embodiment has the following features.
R3: 27 mass% or more and 38 mass% or less (R3 is at least one of rare earth elements, and 50 mass% or more of R3 as a whole is Nd and always contains Pr).
X: 0.85 mass% or more and 0.93 mass% or less (X is at least one of B and C, and always includes B),
Si: 0.1 mass% or more and 2.0 mass% or less,
T2: 61.0 mass% or more (T1 is at least one kind of transition metal element, and 90 mass% or more of the whole T1 is Fe),
Contains,
The mol ratio of T2 to X ([T2] / [X]) is 13.0 or more.
The concentration of Pr is higher on the surface of the magnet than in the center of the magnet.
The concentration of Si is higher on the surface of the magnet than in the center of the magnet.
R4-T3-A compound (R4 is at least one of rare earth elements, and 50 mass% or more of R4 is Pr. T3 is at least one of Fe, Co, Ni, Mn, Ti, and Cr. , 50 mass% or more of the whole T3 is Fe. A is at least one of Zn, Cu, Ga, Al, Ge, and Si, and always contains Si).

R4−T3−A化合物は、典型的には、LaCo11Ga型結晶構造を有しており、代表的にはRFe13Si化合物である。R4−T3−A化合物における組成は、R4は5mol%以上50mol%以下(好ましくは20mol%以上40mol%以下)であり、T3は30mol%以上94mol%以下(好ましくは50mol%以上70mol%以下)であり、Aは1mol%以上20mol%以下(好ましくは2mol%以上20mol%以下)である。 The R4-T3-A compound typically has a La 6 Co 11 Ga 3 type crystal structure and is typically an R 6 Fe 13 Si compound. The composition of the R4-T3-A compound is such that R4 is 5 mol% or more and 50 mol% or less (preferably 20 mol% or more and 40 mol% or less), and T3 is 30 mol% or more and 94 mol% or less (preferably 50 mol% or more and 70 mol% or less). Yes, A is 1 mol% or more and 20 mol% or less (preferably 2 mol% or more and 20 mol% or less).

R4−T3−A化合物のR4全体の50mass%以上をPrとするには、希土類元素全体に対するPrの比率がR1−T1−B系焼結磁石体の希土類元素全体に対するPrの比率よりも高いR2−Si系合金を用いてR1−T1−B系焼結磁石体へ拡散処理することにより実現することができる。 In order to make Pr of 50 mass% or more of the whole R4 of the R4-T3-A compound, the ratio of Pr to the whole rare earth element is higher than the ratio of Pr to the whole rare earth element of the R1-T1-B-based sintered magnet body R2. This can be achieved by diffusing the R1-T1-B-based sintered magnet body using a −Si-based alloy.

ある実施形態において、R4−T3−A化合物は、少なくとも磁石中央部の粒界に存在し、磁石中央部の前記粒界の厚さは、100nm以上である。粒界の厚さは、断面の顕微鏡写真から計測によって求められ得る。後述する実施例によれば、100nm以上の厚さを有する粒界が磁石の全体にわたって存在している。 In certain embodiments, the R4-T3-A compound is present at least at the grain boundaries in the central portion of the magnet, and the thickness of the grain boundaries in the central portion of the magnet is 100 nm or more. Grain boundary thickness can be determined by measurement from micrographs of cross sections. According to the examples described later, grain boundaries having a thickness of 100 nm or more are present throughout the magnet.

Pr及びSiの濃度が磁石中央部よりも磁石表面部の方が高いということは、Pr及びSiが磁石表面から内部に拡散されていることを示している。R2−Si系合金にCuを含有する場合は、Cuの濃度は磁石中央部よりも磁石表面部の方が高くなる。 The fact that the concentrations of Pr and Si are higher in the magnet surface than in the center of the magnet indicates that Pr and Si are diffused from the magnet surface to the inside. When Cu is contained in the R2-Si alloy, the concentration of Cu is higher in the magnet surface than in the magnet center.

「Pr及びSiの濃度が磁石中央部よりも磁石表面部の方が高い」は以下のようにして確認する。 "The concentration of Pr and Si is higher on the surface of the magnet than in the center of the magnet" is confirmed as follows.

磁石表面のうちで配向方向(磁化方向)に直交する面から配向方向に沿って厚さが200μmまでの領域(以下、単に「磁石表面部」と称する場合がある)における100μm×100μmの範囲のPr濃度が、磁石中央部(同様に磁石中央部における100μm×100μmの範囲)におけるPr濃度よりも高いかどうかにより確認する。Si(及びCu)も同様の方法により確認する。「Pr濃度」及び「Si(Cu)濃度」は、例えば、磁石中心部を通り、かつ、配向方向に平行である断面において、磁石中央部及び磁石表面部を走査電子顕微鏡で観察し、更に観察した磁石中央部及び磁石表面部の領域の中心点から±50μm、すなわち100μm×100μmの範囲を走査しながらエネルギー分散X線分光分析(EDX)をそれぞれ実施することによって測定された、範囲全体の平均値を求めればよい。 Within the range of 100 μm × 100 μm in the region of the magnet surface from the plane orthogonal to the orientation direction (magnetization direction) to a thickness of up to 200 μm along the orientation direction (hereinafter, may be simply referred to as “magnet surface portion”). It is confirmed by checking whether the Pr concentration is higher than the Pr concentration in the central part of the magnet (also in the range of 100 μm × 100 μm in the central part of the magnet). Si (and Cu) are also confirmed by the same method. For "Pr concentration" and "Si (Cu) concentration", for example, in a cross section that passes through the center of the magnet and is parallel to the orientation direction, the center of the magnet and the surface of the magnet are observed with a scanning electron microscope and further observed. Average of the entire range measured by performing energy dispersion X-ray spectroscopy (EDX) while scanning a range of ± 50 μm, that is, 100 μm × 100 μm from the center point of the central part of the magnet and the area of the surface part of the magnet. Just find the value.

また、磁石が図3に示すように瓦形状を有し、配向方向が磁石の厚さ方向(矢印101の方向)の場合、磁石表面のうちで配向方向に直交する面は、第1の曲面(上面)104及び第2の曲面(裏面)105の少なくとも一方である。よって、第1の曲面104及び第2の曲面105から配向方向に沿って測定した厚さ200μmの領域が磁石表面部となる。 Further, when the magnet has a tile shape as shown in FIG. 3 and the orientation direction is the thickness direction of the magnet (direction of arrow 101), the surface of the magnet surface orthogonal to the orientation direction is the first curved surface. At least one of the (upper surface) 104 and the second curved surface (back surface) 105. Therefore, a region having a thickness of 200 μm measured along the orientation direction from the first curved surface 104 and the second curved surface 105 becomes the magnet surface portion.

なお、磁石が瓦形状であり、配向方向が磁石が延びる方向(矢印102の方向)の場合は、第1の端面106及び第2の端面107が磁石表面のうちで配向方向に直交する面となる。 When the magnet has a tile shape and the orientation direction is the direction in which the magnet extends (direction of arrow 102), the first end face 106 and the second end face 107 are the faces of the magnet surface orthogonal to the orientation direction. Become.

なお、磁石が円筒形状の場合、図3における矢印102の方向を中心軸の方向にあわせ、矢印101の方向を半径方向とすれば、瓦形状の磁石について説明したことが適用される。 When the magnet has a cylindrical shape, if the direction of the arrow 102 in FIG. 3 is aligned with the direction of the central axis and the direction of the arrow 101 is the radial direction, the description of the tile-shaped magnet is applied.

更に、本開示では、磁石が瓦形状であり、配向方向が磁石の幅方向(矢印103の方向)の場合、磁石表面のうちで配向方向に直交する面は、配向方向と略直交する図3中の第1の側面108及び第2の側面109とする。よって、この場合は、第1の側面108及び第2の側面109から配向方向に沿って測定した厚さ200μmの領域が磁石表面部となる。 Further, in the present disclosure, when the magnet has a tile shape and the orientation direction is the width direction of the magnet (direction of arrow 103), the surface of the magnet surface orthogonal to the orientation direction is substantially orthogonal to the orientation direction. It is referred to as a first side surface 108 and a second side surface 109 inside. Therefore, in this case, the region having a thickness of 200 μm measured from the first side surface 108 and the second side surface 109 along the orientation direction becomes the magnet surface portion.

磁石中央部とは、磁石の中央に位置する部分であり、磁石が多面体形状や円柱形状の場合は典型的には重心部である。磁石が図3に示すように瓦形状の場合は、磁石中央部は、磁石の厚さ方向(矢印101の方向)、長さ方向(矢印102の方向)、及び幅方向(矢印103の方向)の全ての中心に位置する部分100とする。磁石が円筒形状の場合は、磁石中心部は、磁石の厚さ方向及び長さ方向両方の中心に位置する部分とする。なお、上記の「磁石表面部」は、製造工程の途中において、R2−Si系合金と接触し、R2−Si系合金からPr及びSiの供給を受けた部位である。このような拡散に起因してPr及びSiの濃度勾配が磁石内部に発生し、この濃度勾配は最終的に得られる磁石内部においても残る。Pr及びSiの濃度が磁石中心部に比べ高い「磁石表面部」は、磁石の表面全体に位置している必要はない。 The central portion of the magnet is a portion located in the center of the magnet, and is typically the center of gravity when the magnet has a polyhedral shape or a cylindrical shape. When the magnet has a tile shape as shown in FIG. 3, the central portion of the magnet is in the thickness direction (direction of arrow 101), the length direction (direction of arrow 102), and the width direction (direction of arrow 103) of the magnet. Let it be a portion 100 located at the center of all of the above. When the magnet has a cylindrical shape, the central portion of the magnet is a portion located at the center of both the thickness direction and the length direction of the magnet. The above-mentioned "magnet surface portion" is a portion that comes into contact with the R2-Si alloy during the manufacturing process and receives Pr and Si from the R2-Si alloy. Due to such diffusion, a concentration gradient of Pr and Si is generated inside the magnet, and this concentration gradient remains inside the finally obtained magnet. The "magnet surface portion" having a higher concentration of Pr and Si than the central portion of the magnet does not need to be located on the entire surface of the magnet.

Prの濃度は、磁石中央部よりも磁石表面部の方が2.0mass%以上高いことが好ましく、Si及びCuの濃度は、磁石中央部よりも磁石表面部の方が0.1mass%以上高いことが好ましい。ここで本開示における「Prの濃度は、磁石中央部よりも磁石表面部の方が2.0mass%以上高い」とは、磁石表面のうちで配向方向(磁化方向)に直交する面から配向方向に沿って測定した厚さが200μmの領域(「磁石表面部」)におけるPr濃度が、磁石中央部におけるPr濃度よりも、パーセントポイント(mass%)で2.0以上高いことをいう。例えば、磁石中央部のPr濃度が5.0mass%であった場合、磁石表面部のPr濃度が7.0mass%以上であることを意味する。Si及びCuの濃度についても同様である。Pr、SI及びCuの濃度は、例えば、磁石中心部を通り、かつ、配向方向に平行である断面において、磁石中央部及び磁石表面部を走査電子顕微鏡で観察し、更に観察した磁石中央部及び磁石表面部をEDXによって測定することで行われ得る。上記の構成を有することにより、本開示によるR−T−B系焼結磁石は、磁石表面近傍のみならず、磁石内部の保磁力が向上する。これは、二粒子粒界が厚いためである。また、磁石寸法調整のための表面研削によっても保磁力向上効果が大きく損なわれることがない。そして、重希土類元素を用いずとも、高いBと高いHcJを実現できる。 The concentration of Pr is preferably 2.0 mass% or more higher in the surface portion of the magnet than in the central portion of the magnet, and the concentration of Si and Cu is 0.1 mass% or more higher in the surface portion of the magnet than in the central portion of the magnet. Is preferable. Here, "the concentration of Pr in the magnet surface portion is 2.0 mass% or more higher than that in the magnet central portion" in the present disclosure means that the orientation direction is from the plane of the magnet surface orthogonal to the orientation direction (magnetization direction). It means that the Pr concentration in the region (“magnet surface portion”) having a thickness of 200 μm measured along the above line is 2.0 or more higher at the percentage point (mass%) than the Pr concentration in the central portion of the magnet. For example, when the Pr concentration in the central portion of the magnet is 5.0 mass%, it means that the Pr concentration in the surface portion of the magnet is 7.0 mass% or more. The same applies to the concentrations of Si and Cu. For the concentrations of Pr, SI and Cu, for example, in a cross section that passes through the center of the magnet and is parallel to the orientation direction, the center of the magnet and the surface of the magnet are observed with a scanning electron microscope, and the center of the magnet and the observed portion are further observed. This can be done by measuring the magnet surface with an EDX. By having the above configuration, the R-TB based sintered magnet according to the present disclosure improves the coercive force inside the magnet as well as near the magnet surface. This is because the two-particle grain boundaries are thick. Further, the effect of improving the coercive force is not significantly impaired by surface grinding for adjusting the magnet size. Then, without using a heavy rare-earth element, it can achieve high B r and high H cJ.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

実験例1
[R1−T1−B系焼結体の準備]
Ndメタル、Prメタル、フェロボロン合金、フェロカーボン合金、電解鉄を用いて(メタルはいずれも純度99%以上)、焼結体がおよそ表1に示す符号1−Aから1−Cの組成となるように配合し、それらの原料を溶解してストリップキャスト法により鋳造し、厚さ0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粉砕粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粉砕粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental Example 1
[Preparation of R1-T1-B system sintered body]
Using Nd metal, Pr metal, ferroboron alloy, ferrocarbon alloy, and electrolytic iron (all metals have a purity of 99% or more), the sintered body has a composition of reference numerals 1-A to 1-C shown in Table 1. The raw materials were melted and cast by a strip casting method to obtain a flake-shaped raw material alloy having a thickness of 0.2 to 0.4 mm. The obtained flake-shaped raw material alloy was pulverized with hydrogen, and then subjected to a dehydrogenation treatment of heating to 550 ° C. in a vacuum and then cooling to obtain a coarsely pulverized powder. Next, to the obtained coarse pulverized powder, zinc stearate as a lubricant was added in an amount of 0.04 mass% to 100 mass% of the coarsely pulverized powder, mixed, and then nitrogen was used using an air flow type pulverizer (jet mill device). Dry pulverization was performed in an air stream to obtain a finely pulverized powder (alloy powder) having a pulverized particle size D 50 of 4 μm. The crushed particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05 mass% with respect to 100 mass% of the finely pulverized powder, mixed, and then molded in a magnetic field to obtain a molded product. As the molding apparatus, a so-called right-angled magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressurizing direction are orthogonal to each other was used.

得られた成形体を、真空中、1000℃以上1040℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、R1−T1−B系焼結体を得た。得られた焼結体の密度は7.5Mg/m以上であった。得られた焼結体の組成を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、焼結体の酸素量をガス融解−赤外線吸収法で測定した結果、すべて0.4mass%前後であることを確認した。表1における「[T1]/[B]」は、T1を構成する各元素(不可避の不純物を含む、本実験例ではFe、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表1の各組成を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるため、さらには、表1に挙げた成分以外の成分(例えばC(カーボン)やN(窒素)など)が存在するためである。その他表についても同様である。 The obtained molded product was sintered in vacuum at 1000 ° C. or higher and 1040 ° C. or lower (select a temperature at which sufficient densification occurs by sintering for each sample) for 4 hours, and then quenched, and then R1-T1-B-based sintering. I got a body. The density of the obtained sintered body was 7.5 Mg / m 3 or more. The composition of the obtained sintered body is shown in Table 1. Each component in Table 1 was measured using high frequency inductively coupled plasma emission spectroscopy (ICP-OES). As a result of measuring the amount of oxygen in the sintered body by the gas melting-infrared absorption method, it was confirmed that all of them were around 0.4 mass%. “[T1] / [B]” in Table 1 is an analytical value (mass%) for each element constituting T1 (including unavoidable impurities, Fe, Al, Si, Mn in this experimental example). Divided by the atomic weight of the element, the sum of those values (a) and the analytical value of B (mass%) divided by the analytical value of B (mass%) by the atomic weight of B (b) The ratio with (a / b). The same applies to all the tables below. It should be noted that the total of the compositions in Table 1 does not reach 100 mass%. This is because, as described above, the analysis method differs depending on each component, and further, there are components other than the components listed in Table 1 (for example, C (carbon), N (nitrogen), etc.). The same applies to other tables.

Figure 0006972886
Figure 0006972886

[R2−Si系合金の準備]
Prメタル、Cuメタル、Siメタルを用いて(メタルはいずれも純度99%以上)、合金がおよそ表2に示す符号1−aの組成になるように配合し、それらの原料を溶解して、単ロール超急冷法(メルトスピニング法)により、リボン又はフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き425μmの篩を通過させ、R2−Si系合金を準備した。得られたR2−Si系合金の組成を表2に示す。
[Preparation of R2-Si alloy]
Using Pr metal, Cu metal, and Si metal (all of the metals have a purity of 99% or more), the alloys are blended so as to have the composition of reference numeral 1-a shown in Table 2, and the raw materials thereof are dissolved. A ribbon or flake-shaped alloy was obtained by a single-roll ultra-quenching method (melt spinning method). The obtained alloy was pulverized in an argon atmosphere using a mortar and then passed through a sieve having an opening of 425 μm to prepare an R2-Si alloy. The composition of the obtained R2-Si alloy is shown in Table 2.

Figure 0006972886
Figure 0006972886

[熱処理]
表1の符号1−Aから1−CのR1−T1−B系焼結体を切断、切削加工し、11.0mm×5.0mm×4.4mm(配向方向)の直方体とした。次に、図4に示すように、ニオブ箔により作製した処理容器3中に、主にR1−T1−B系焼結体1の配向方向(図中の矢印方向)と垂直な面がR2−Si系合金2と接触するように、表2に示す符号1−aのR2−Si系合金を、符号1−Aから1−CのR1−T1−B系焼結体のそれぞれの上下に配置した。
[Heat treatment]
The R1-T1-B-based sintered bodies of reference numerals 1-A to 1-C in Table 1 were cut and machined to obtain 11.0 mm × 5.0 mm × 4.4 mm (orientation direction) rectangular parallelepipeds. Next, as shown in FIG. 4, in the processing container 3 made of niobium foil, the plane perpendicular to the orientation direction (arrow direction in the figure) of the R1-T1-B-based sintered body 1 is mainly R2-. The R2-Si alloys of reference numerals 1-a shown in Table 2 are placed above and below each of the R1-T1-B-based sintered bodies of reference numerals 1-A to 1-C so as to be in contact with the Si-based alloy 2. bottom.

その後、管状流気炉を用いて、200Paに制御した減圧アルゴン中で、表3に示す熱処理温度及び時間で熱処理を行った後、冷却した。熱処理後の各サンプルの表面近傍に存在するR2−Si系合金の濃化部を除去するため、表面研削盤を用いて各サンプルを全面を0.2mmずつ切削加工し、4.0mm×4.0mm×4.0mmの立方体状のサンプル(R−T−B系焼結磁石)を得た。R−T−B系焼結磁石の組成を高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。但し、C(炭素量)については、燃焼−赤外線吸収法によるガス分析装置を使用して測定した。結果を表3に示す。表3における「[T2]/[X]」は、T2を構成する各元素(不可避の不純物を含む、本実験例ではFe、Al、Mn、Si)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(a´)と、X(B及びC)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの(b´)との比(a´/b´)である。 Then, using a tubular air oven, heat treatment was performed at the heat treatment temperature and time shown in Table 3 in reduced pressure argon controlled at 200 Pa, and then the mixture was cooled. In order to remove the concentrated portion of the R2-Si alloy existing near the surface of each sample after heat treatment, the entire surface of each sample was machined by 0.2 mm using a surface grinding machine, 4.0 mm × 4. A cubic sample (RTB-based sintered magnet) having a size of 0 mm × 4.0 mm was obtained. The composition of the R-TB based sintered magnet was measured using high frequency inductively coupled plasma emission spectroscopy (ICP-OES). However, C (carbon content) was measured using a gas analyzer by the combustion-infrared absorption method. The results are shown in Table 3. “[T2] / [X]” in Table 3 indicates the analytical value (mass%) for each element constituting T2 (including unavoidable impurities, Fe, Al, Mn, Si in this experimental example). Divided by the atomic weight of the element, the sum of those values (a') and the analytical value (mass%) of X (B and C) divided by the atomic weight of each element were obtained, and they were obtained. It is a ratio (a'/ b') to the sum of the values of (b').

[サンプル評価]
得られたサンプルを、BHトレーサーにより保磁力(HcJ)を測定した。測定結果を表3に示す。表3の通り、R1−T1−B系焼結体におけるBに対するT1のmol比([T1]/[B])を14.0以上及びR−T−B系焼結磁石におけるXに対するT2のmol比([T2]/[X])を13.0以上としたときに高いHcJが得られた。
[Sample evaluation]
The coercive force (H cJ ) of the obtained sample was measured by a BH tracer. The measurement results are shown in Table 3. As shown in Table 3, the mol ratio ([T1] / [B]) of T1 to B in the R1-T1-B-based sintered body is 14.0 or more, and T2 to X in the R-TB-based sintered magnet. A high HcJ was obtained when the mol ratio ([T2] / [X]) was 13.0 or more.

Figure 0006972886
Figure 0006972886

表3に示すサンプルのうち、No.1−1(本発明例)とNo.1−3(比較例)の断面を走査電子顕微鏡(SEM:日本電子製JCM−7001F)で観察した。その結果、No.1−1(本発明例)では、磁石表面近傍から磁石の中央部まで100nm以上の厚い二粒子粒界が形成されていた。これに対し、No.1−3(比較例)では、厚い二粒子粒界の形成は磁石表面近傍のみにとどまっていた。さらに、本発明例であるNo.1−1の断面に対しSEM(日本電子製JSM-7001F)付属装置(日本電子製JED−2300 SD10)によるエネルギー分散X線分光分析(EDX)を実施した結果、磁石中央部の粒界からも元々R1−T1−B系焼結体が拡散処理前から有していた以上の量のSiが検出されるとともに、その一部は含有量から、R13(Si,Cu)相と解釈された。 Among the samples shown in Table 3, No. 1-1 (example of the present invention) and No. The cross section of 1-3 (Comparative Example) was observed with a scanning electron microscope (SEM: JCM-7001F manufactured by JEOL Ltd.). As a result, No. In 1-1 (example of the present invention), a thick two-particle boundary of 100 nm or more was formed from the vicinity of the magnet surface to the central portion of the magnet. On the other hand, No. In 1-3 (comparative example), the formation of thick two-particle grain boundaries was limited to the vicinity of the magnet surface. Furthermore, No. 1 which is an example of the present invention. As a result of performing energy dispersive X-ray spectroscopic analysis (EDX) with an SEM (JEOL JSM-7001F) accessory device (JED-2300 SD10 manufactured by JEOL Ltd.) on the cross section 1-1, the grain boundary at the center of the magnet was also obtained. The amount of Si that was originally possessed by the R1-T1-B-based sintered body before the diffusion treatment was detected, and a part of it was interpreted as the R 6 T 13 (Si, Cu) phase based on the content. Was done.

実験例2
焼結体がおよそ表4に示す符号2−Aの組成となるように配合する以外は実験例1と同様の方法でR1−T1−B系焼結体を複数個作製した。得られた焼結体の成分分析の結果を表4に示す。
Experimental Example 2
A plurality of R1-T1-B-based sintered bodies were prepared in the same manner as in Experimental Example 1 except that the sintered bodies were blended so as to have the composition of reference numeral 2-A shown in Table 4. Table 4 shows the results of component analysis of the obtained sintered body.

Figure 0006972886
Figure 0006972886

R2−Si系合金がおよそ表5に示す符号2−aから2−pの組成となるように配合する以外は実験例1と同様の方法でR2−Si系合金を作製した。得られたR2−Si系合金の組成を表5に示す。 An R2-Si alloy was produced in the same manner as in Experimental Example 1 except that the R2-Si alloy was blended so as to have a composition of reference numerals 2-a to 2-p shown in Table 5. The composition of the obtained R2-Si alloy is shown in Table 5.

Figure 0006972886
Figure 0006972886

複数個のR1−T1−X系焼結体を実験例1と同様に加工した後、実験例1と同様に符号2−aから2−pのR2−Si系合金と符号2−AのR1−T1−B系焼結体とが接触するよう配置し、実験例1と同様に熱処理及び加工を行い、サンプル(R−T−B系焼結磁石)を得た。得られたサンプルを実験例1と同様な方法により測定し、保磁力(HcJ)を求めた。その結果を表6に示す。表6の通り、本発明例はいずれも高いHcJが得られた。また、R2として、PrがR2全体に対して50mass%以上とした本発明例はいずれも高いHcJが得られたのに対し、PrがR2全体の50mass%未満であるサンプルNo.2−10は本発明例の中においては比較的低いHcJとなった。これに対し、R2−Si系合金におけるSi量がはずれているNo.2−1、R量及びSi量がはずれているNo.2−11及び2−14、R量がはずれているNo.2−16はいずれも高いHcJが得られていない。 After processing a plurality of R1-T1-X-based sintered bodies in the same manner as in Experimental Example 1, R2-Si-based alloys of reference numerals 2-a to 2-p and R1 of reference numeral 2-A are similarly processed in the same manner as in Experimental Example 1. -Arranged so as to be in contact with the T1-B-based sintered body, and heat-treated and processed in the same manner as in Experimental Example 1 to obtain a sample (RT-B-based sintered magnet). The obtained sample was measured by the same method as in Experimental Example 1 to determine the coercive force (H cJ ). The results are shown in Table 6. As shown in Table 6, high HcJ was obtained in each of the examples of the present invention. Further, as R2, in all the examples of the present invention in which Pr was 50 mass% or more with respect to the whole R2, high H cJ was obtained, whereas in Sample No., where Pr was less than 50 mass% of the whole R2. 2-10 had a relatively low HcJ in the examples of the present invention. On the other hand, No. 1 in which the amount of Si in the R2-Si alloy is off. 2-1. No. where the amount of R and the amount of Si are out of alignment. 2-11 and 2-14, No. where the amount of R is off. In both 2-16, high H cJ was not obtained.

Figure 0006972886
Figure 0006972886

図5A〜Dは表6に示すNo.2−4(本発明例)の断面を走査電子顕微鏡(SEM:日本電子製JCM−7001F)で観察したものである。図5Aは磁石表面部の領域を観察した写真であり、図5Bは磁石表面部をさらに拡大して観察した写真であり、図5Cは磁石中央部の領域を観察した写真であり、図5Dは磁石中央部をさらに拡大して観察した写真である。同様に図6A〜Dは表3に示すNo.1−1(本発明例)、図7A〜Dは表3に示すNo.1−3(比較例)について観察した写真である。図5A〜図7Dに示すように、図5A〜D及び図6A〜Dの本発明例は磁石中央部まで100nm以上の厚い二粒子粒界が形成されているのに対し、図7A〜Dの比較例では、磁石中央部において100nm以上の厚い二粒子粒界が得られていない。 FIGS. 5A to 5D show No. 1 shown in Table 6. The cross section of 2-4 (example of the present invention) was observed with a scanning electron microscope (SEM: JCM-7001F manufactured by JEOL Ltd.). FIG. 5A is a photograph of observing the region of the magnet surface, FIG. 5B is a photograph of further magnifying the magnet surface, FIG. 5C is a photograph of observing the region of the magnet center, and FIG. 5D is a photograph. It is a photograph which observed the central part of a magnet further magnified. Similarly, FIGS. 6A to 6D show No. 1 shown in Table 3. 1-1 (example of the present invention), FIGS. 7A to 7D are No. 1 shown in Table 3. It is a photograph observed about 1-3 (comparative example). As shown in FIGS. 5A to 7D, in the examples of the present invention of FIGS. 5A to 6D and FIGS. 6A to 6D, a thick two-particle boundary of 100 nm or more is formed up to the center of the magnet, whereas in FIGS. In the comparative example, a thick two-particle boundary of 100 nm or more is not obtained at the central portion of the magnet.

図5A〜D、図6A〜D及び図7A〜D中において、□1から□6で示した100μm×100μmの領域及び○(白丸)1から〇(白丸)6で示した点領域において実施したEDXによる組成分析の結果を表7に示す。□1から□4(本発明例)に示すように、Pr及びSiの濃度はいずれも磁石中央部より磁石表面部の方が高くなっていることが分かる。これに対し、□5及び□6(比較例)では、Siの濃度が磁石表面部と磁石中央部とで同じになっている。 In FIGS. 5A to D, FIGS. 6A to D, and FIGS. 7A to D, the analysis was performed in the 100 μm × 100 μm region shown by □ 1 to □ 6 and the point region indicated by ○ (white circle) 1 to ○ (white circle) 6. The results of composition analysis by EDX are shown in Table 7. As shown in □ 1 to □ 4 (example of the present invention), it can be seen that the concentrations of Pr and Si are higher in the magnet surface portion than in the magnet central portion. On the other hand, in □ 5 and □ 6 (comparative example), the concentration of Si is the same in the magnet surface portion and the magnet center portion.

Figure 0006972886
Figure 0006972886

また表7において、図中記号〇(白丸)1〜6は走査電子顕微鏡の観察においてコントラストから磁石表面部及び磁石中央部内に存在するRFe13(Si,Cu)相と考えられるR4−T3−A化合物の組成を評価したものであるが、いずれもR4全体の50mass%以上がPrとなっている。代表して表7における〇(白丸)2の測定点について、電界放射型透過電子顕微鏡(FE−TEM:日立ハイテクノロジー製HF-2100)を用いて評価したところ、回折パターンからLaCo11Ga型の結晶構造であることが示されており、組成比から(Nd,Pr)Fe13(Cu,Si)相であることを確認した。 In Table 7, Symbols 〇 (open circles) 1-6-existing contrast in the magnet surface part and the magnet central part in the observation of a scanning electron microscope R 6 Fe 13 (Si, Cu ) is considered to phase R4-T3 The composition of the −A compound was evaluated, and in each case, 50 mass% or more of the entire R4 was Pr. As a representative, the measurement points of 〇 (white circles) 2 in Table 7 were evaluated using a field emission transmission electron microscope (FE-TEM: HF-2100 manufactured by Hitachi High Technology). From the diffraction pattern, La 6 Co 11 Ga was evaluated. It was shown to have a type 3 crystal structure, and it was confirmed from the composition ratio that it was a (Nd, Pr) 6 Fe 13 (Cu, Si) phase.

本発明の実施形態により得られたR−T−B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに好適に利用することができる。 The RTB-based sintered magnets obtained by the embodiment of the present invention include voice coil motors (VCMs) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and the like. It can be suitably used for various motors and home appliances.

1 R1−T1−X系焼結体
2 R2−Si系合金
3 処理容器
1 R1-T1-X-based sintered body 2 R2-Si-based alloy 3 Processing container

Claims (13)

R1−T1−B系焼結体を準備する工程と、
R2−Si系合金を準備する工程と、
前記R1−T1−B系焼結体の表面の少なくとも一部に、前記R2−Si系合金の少なくとも一部を接触させ、真空又は不活性ガス雰囲気中、450℃以上1100℃以下の温度で熱処理を実施する工程を含み、
前記R1−T1−B系焼結体において、
R1は希土類元素のうち少なくとも一種であり、Nd及びPrの少なくとも一方を必ず含み、R1の含有量は、R1−T1−B系焼結体全体の27mass%以上35mass%以下であり、
T1はFe又はCo、Al、Mn、Siの少なくとも1つとFeであり、T1全体に対するFeの含有量が80mass%以上であり、
Bに対するT1のmol比([T1]/[B])が14.0超15.0以下であり、
前記R2−Si系合金において、
R2は希土類元素のうち少なくとも一種であり、Prを必ず含み、R2の含有量は、R2−Si系合金全体の74.4mass%以上96.6mass%以下であり、かつ、希土類元素全体に対するPrの比率が、R1−T1―B系焼結体の希土類元素全体に対するPrの比率よりも高く、
Siの含有量は、R2−Si系合金全体の0.7mass%以上14.0mass%以下である、R−T−B系焼結磁石の製造方法。
The process of preparing the R1-T1-B system sintered body and
The process of preparing R2-Si alloy and
At least a part of the R2-Si alloy is brought into contact with at least a part of the surface of the R1-T1-B-based sintered body, and heat-treated at a temperature of 450 ° C. or higher and 1100 ° C. or lower in a vacuum or an inert gas atmosphere. Including the process of carrying out
In the R1-T1-B system sintered body,
R1 is at least one of rare earth elements and always contains at least one of Nd and Pr, and the content of R1 is 27 mass% or more and 35 mass% or less of the entire R1-T1-B-based sintered body.
T1 is Fe or at least one of Co, Al, Mn, and Si and Fe, and the content of Fe with respect to the whole T1 is 80 mass% or more.
The mol ratio of T1 to B ([T1] / [B]) is more than 14.0 and 15.0 or less.
In the R2-Si alloy,
R2 is at least one of rare earth elements and always contains Pr, and the content of R2 is 74.4 mass% or more and 96.6 mass% or less of the whole R2-Si alloy, and Pr is contained in the whole rare earth element. The ratio is higher than the ratio of Pr to the total rare earth elements of the R1-T1-B based sintered body.
A method for producing an R-TB-based sintered magnet, wherein the Si content is 0.7 mass% or more and 14.0 mass% or less of the entire R2-Si alloy.
前記R2−Si系合金中のPrがR2全体の50質量%以上である、請求項1に記載のR−T−B系焼結磁石の製造方法。 The method for producing an R-TB-based sintered magnet according to claim 1, wherein Pr in the R2-Si-based alloy is 50% by mass or more of the total amount of R2. 前記R2−Si系合金中のR2はPrである(不純物は含む)、請求項1に記載のR−T−B系焼結磁石の製造方法。 The method for producing an R-TB-based sintered magnet according to claim 1, wherein R2 in the R2-Si-based alloy is Pr (including impurities). 前記R2−Si系合金はCuを含有し、Cuの含有量はR2−Si系合金全体の0.1mass%以上24.1mass%以下である、請求項1から3のいずれかに記載のR−T−B系焼結磁石の製造方法。 The R- according to any one of claims 1 to 3, wherein the R2-Si alloy contains Cu, and the Cu content is 0.1 mass% or more and 24.1 mass% or less of the entire R2-Si alloy. A method for manufacturing a TB-based sintered magnet. 前記R1−T1−B系焼結体中の[Pr]/[R1]をα、R2−Si系合金中の[Pr]/[R2]をβとしたとき、β/α≧1.2である、請求項1から4のいずれかに記載のR−T−B系焼結磁石の製造方法。 When [Pr] / [R1] in the R1-T1-B-based sintered body is α and [Pr] / [R2] in the R2-Si-based alloy is β, β / α ≧ 1.2. The method for manufacturing an R-TB-based sintered magnet according to any one of claims 1 to 4. 前記R2−Si系合金におけるR2とSiの合計の含有量が80mass%以上である、請求項1から5のいずれかに記載のR−T−B系焼結磁石の製造方法。 The method for producing an R-TB-based sintered magnet according to any one of claims 1 to 5, wherein the total content of R2 and Si in the R2-Si-based alloy is 80 mass% or more. 前記R1−T1−B系焼結体を準備する工程は、原料合金を粒径D50が3μm以上10μm以下に粉砕した後、磁界中で配向させて焼結を行うことを含む、請求項1から6のいずれかに記載のR−T−B系焼結磁石の製造方法。 The step of preparing the R1-T1-B-based sintered body includes claim 1, wherein the raw material alloy is pulverized to a particle size D 50 of 3 μm or more and 10 μm or less, and then oriented in a magnetic field and sintered. A method for manufacturing an R-TB-based sintered magnet according to any one of 6 to 6. R3:27mass%以上38mass%以下(R3は、希土類元素のうちの少なくとも一種であり、R3全体の50mass%以上がNdであり、Prを必ず含む)、
X:0.85mass%以上0.93mass%以下(Xは、B及びCの少なくとも一方であり、必ずBを含む)、
Si:0.1mass%以上2.0mass%以下、
T2:61.0mass%以上(T2は、遷移金属元素の少なくとも一種であり、T2全体の90mass%以上がFeである)、
を含有し、
Xに対するT2のmol比([T2]/[X])は13.0以上であり、
Prの濃度は磁石中央部よりも磁石表面部の方が高く、
Siの濃度は磁石中央部よりも磁石表面部の方が高く、
R4−T3−A化合物(R4は、希土類元素のうち少なくとも一種であり、R4全体の50mass%以上がPrである。T3は、Fe、Co、Ni、Mn、Ti、Crのうち少なくとも一種であり、T3全体の50mass%以上がFeである。AはZn、Cu、Ga、Al、Ge、Siのうち少なくとも一種であり、Siを必ず含む)を含有する、R−T−B系焼結磁石。
R3: 27 mass% or more and 38 mass% or less (R3 is at least one of rare earth elements, and 50 mass% or more of R3 as a whole is Nd and always contains Pr).
X: 0.85 mass% or more and 0.93 mass% or less (X is at least one of B and C, and always includes B),
Si: 0.1 mass% or more and 2.0 mass% or less,
T2: 61.0 mass% or more (T2 is at least one kind of transition metal element, and 90 mass% or more of the whole T2 is Fe),
Contains,
The mol ratio of T2 to X ([T2] / [X]) is 13.0 or more.
The concentration of Pr is higher on the surface of the magnet than in the center of the magnet.
The concentration of Si is higher on the surface of the magnet than in the center of the magnet.
R4-T3-A compound (R4 is at least one of rare earth elements, and 50 mass% or more of R4 is Pr. T3 is at least one of Fe, Co, Ni, Mn, Ti, and Cr. , 50 mass% or more of T3 is Fe. A is at least one of Zn, Cu, Ga, Al, Ge, and Si, and Si is always contained). ..
前記R−T−B系焼結磁石はCuを含有し、Cuの濃度は磁石中央部よりも磁石表面部の方が高い、請求項8に記載のR−T−B系焼結磁石。 The R-TB-based sintered magnet according to claim 8, wherein the R-TB-based sintered magnet contains Cu, and the concentration of Cu is higher in the magnet surface portion than in the central portion of the magnet. Prの濃度は、磁石中央部よりも磁石表面部の方が2.0mass%以上高い、請求項8又は9に記載のR−T−B系焼結磁石。 The RTB-based sintered magnet according to claim 8 or 9, wherein the concentration of Pr is 2.0 mass% or more higher in the magnet surface portion than in the magnet central portion. Siの濃度は、磁石中央部よりも磁石表面部の方が0.1mass%以上高い、請求項8から10のいずれかに記載のR−T−B系焼結磁石。 The RTB-based sintered magnet according to any one of claims 8 to 10, wherein the concentration of Si is 0.1 mass% or more higher in the magnet surface portion than in the magnet central portion. 前記R−T−B系焼結磁石はCuを含有し、Cuの濃度は、磁石中央部よりも磁石表面部の方が0.1mass%以上高い、請求項8から11のいずれかに記載のR−T−B系焼結磁石。 The method according to any one of claims 8 to 11, wherein the RTB-based sintered magnet contains Cu, and the concentration of Cu is 0.1 mass% or more higher in the magnet surface portion than in the magnet central portion. R-TB system sintered magnet. 前記R4−T3−A化合物は、LaCo11Ga型結晶構造を有している、請求項8から12のいずれかに記載のR−T−B系焼結磁石。 The R-TB-based sintered magnet according to any one of claims 8 to 12, wherein the R4-T3-A compound has a La 6 Co 11 Ga 3 type crystal structure.
JP2017199122A 2017-10-13 2017-10-13 RT-B-based sintered magnet and its manufacturing method Active JP6972886B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017199122A JP6972886B2 (en) 2017-10-13 2017-10-13 RT-B-based sintered magnet and its manufacturing method
CN201811188728.6A CN109671547B (en) 2017-10-13 2018-10-12 R-T-B sintered magnet and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017199122A JP6972886B2 (en) 2017-10-13 2017-10-13 RT-B-based sintered magnet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019075426A JP2019075426A (en) 2019-05-16
JP6972886B2 true JP6972886B2 (en) 2021-11-24

Family

ID=66142180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017199122A Active JP6972886B2 (en) 2017-10-13 2017-10-13 RT-B-based sintered magnet and its manufacturing method

Country Status (2)

Country Link
JP (1) JP6972886B2 (en)
CN (1) CN109671547B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957091B (en) * 2019-11-21 2021-07-13 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method and application
CN110993231A (en) * 2019-11-25 2020-04-10 合肥工业大学 Surface-alloyed high-corrosion-resistance sintered NdFeB magnet and preparation method thereof
CN111243809B (en) * 2020-02-29 2021-07-30 厦门钨业股份有限公司 Neodymium-iron-boron material and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6235602A (en) * 1985-08-09 1987-02-16 Hitachi Metals Ltd Permannet magnet and manufacture thereof
JP5093485B2 (en) * 2007-03-16 2012-12-12 信越化学工業株式会社 Rare earth permanent magnet and manufacturing method thereof
JP6019695B2 (en) * 2011-05-02 2016-11-02 信越化学工業株式会社 Rare earth permanent magnet manufacturing method
JP5742776B2 (en) * 2011-05-02 2015-07-01 信越化学工業株式会社 Rare earth permanent magnet and manufacturing method thereof
JP5742813B2 (en) * 2012-01-26 2015-07-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP6221246B2 (en) * 2012-10-31 2017-11-01 日立金属株式会社 R-T-B system sintered magnet and manufacturing method thereof
JP6330813B2 (en) * 2013-08-09 2018-05-30 Tdk株式会社 R-T-B system sintered magnet and motor
US20180047504A1 (en) * 2015-02-18 2018-02-15 Hitachi Metals, Ltd. Method for manufacturing r-t-b sintered magnet
US20180025819A1 (en) * 2015-02-18 2018-01-25 Hitachi Metals, Ltd. Method for producing r-t-b system sintered magnet
JP6489052B2 (en) * 2015-03-31 2019-03-27 信越化学工業株式会社 R-Fe-B sintered magnet and method for producing the same

Also Published As

Publication number Publication date
CN109671547A (en) 2019-04-23
CN109671547B (en) 2021-06-29
JP2019075426A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
CN109478452B (en) R-T-B sintered magnet
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP6380652B2 (en) Method for producing RTB-based sintered magnet
CN109964290B (en) Method for producing R-T-B sintered magnet
CN109983553B (en) Method for producing R-T-B sintered magnet
JP6489201B2 (en) Method for producing RTB-based sintered magnet
JP6750543B2 (en) R-T-B system sintered magnet
JP6860808B2 (en) Manufacturing method of RTB-based sintered magnet
JP6051922B2 (en) Method for producing RTB-based sintered magnet
JP6972886B2 (en) RT-B-based sintered magnet and its manufacturing method
CN110024064B (en) R-T-B sintered magnet and method for producing same
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP2023052675A (en) R-t-b system based sintered magnet
JP7020224B2 (en) RTB-based sintered magnet and its manufacturing method
JP7059995B2 (en) RTB-based sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP7476601B2 (en) Manufacturing method of RTB based sintered magnet
JP2024093967A (en) RTB based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6972886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350