JP6972517B2 - Method for manufacturing conductive resin composition and molded product - Google Patents

Method for manufacturing conductive resin composition and molded product Download PDF

Info

Publication number
JP6972517B2
JP6972517B2 JP2016075921A JP2016075921A JP6972517B2 JP 6972517 B2 JP6972517 B2 JP 6972517B2 JP 2016075921 A JP2016075921 A JP 2016075921A JP 2016075921 A JP2016075921 A JP 2016075921A JP 6972517 B2 JP6972517 B2 JP 6972517B2
Authority
JP
Japan
Prior art keywords
carbon nanotubes
resin composition
conductive resin
polyolefin
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016075921A
Other languages
Japanese (ja)
Other versions
JP2017186440A (en
JP2017186440A5 (en
Inventor
淳 高橋
誠 柳澤
友浩 渡邊
正也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyocolor Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2016075921A priority Critical patent/JP6972517B2/en
Publication of JP2017186440A publication Critical patent/JP2017186440A/en
Publication of JP2017186440A5 publication Critical patent/JP2017186440A5/ja
Application granted granted Critical
Publication of JP6972517B2 publication Critical patent/JP6972517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、カーボンナノチューブを用いた導電性樹脂組成物の製造方法に関する。 The present invention relates to a method for producing a conductive resin composition using carbon nanotubes.

ICやLSIを用いた電子機器や電子部品の包装材として、熱可塑性樹脂を成形したトレイ、エンボスキャリアテープなどが知られている。トレイやエンボスキャリアテープの基材は、一般的に樹脂シート等の樹脂成形品が使用されている。樹脂自体には導電性がないため、樹脂成形品(以下、単に「成形体」という)は、帯電による電子部品の絶縁破壊やゴミの付着による電子部品の機能低下などの問題を防止するため、成形体にカーボンブラックのような導電性粒子を練り混むことで、帯電防止性能や静電気拡散性能を付与している。また、電子機器や電子部品は、製造時、クリーンルームで取り扱われることが多いため、成形体からフィラー等の異物の脱落が少ないクリーン性能も求められている。さらに、電子部品分野や自動車分野では金属部分の代替として、成形体が使用されつつあり、カーボンブラックでは達成できないレベルの導電性が求められている。 As a packaging material for electronic devices and electronic parts using ICs and LSIs, trays formed of thermoplastic resins, embossed carrier tapes, and the like are known. As the base material of the tray or the embossed carrier tape, a resin molded product such as a resin sheet is generally used. Since the resin itself is not conductive, resin molded products (hereinafter referred to simply as "molded bodies") prevent problems such as dielectric breakdown of electronic components due to static electricity and functional deterioration of electronic components due to adhesion of dust. By kneading conductive particles such as carbon black into the molded body, antistatic performance and static electricity diffusion performance are imparted. Further, since electronic devices and electronic parts are often handled in a clean room at the time of manufacture, clean performance is also required in which foreign substances such as fillers are less likely to fall off from the molded product. Further, in the fields of electronic parts and automobiles, molded bodies are being used as a substitute for metal parts, and there is a demand for a level of conductivity that cannot be achieved with carbon black.

このような状況の下、カーボンナノチューブは、エレクトロニクス(トランジスター素子、配線など)、エネルギー(燃料電池用電極材料、太陽光発電装置、ガス貯蔵など)、電子放出(フラットパネル装置など)、化学(吸着剤、触媒、センサーなど)、複合材料(導電性プラスチック、強化材料、難燃ナノコンポジットなど)など様々な分野での応用が期待されており、この中でも導電用途への応用が期待されている。カーノンナノチューブは、同じ導電用途で使用されているカーボンブラックと比較して、より低添加で導電性能を発現できるため、フィラーの脱落量を抑制できることが知られている。しかし、カーボンナノチューブは、一本一本のカーボンナノチューブ(一次粒子)が複雑に絡み合った一次凝集体で存在し、通常は、その一次凝集体同士が絡み合った二次凝集体も混在した状態にある。この一次凝集体と二次凝集体の混合物を樹脂中で一次粒子まで分散させる難易度は非常に高いため、カーボンナノチューブ本来の性能を引き出すことは難しい。また、成形体に二次凝集体が多数存在すると、成形体表面で異物になる場合があり、成形体の外観低下や、脱落等が生じる問題がある。 Under these circumstances, carbon nanotubes are used for electronics (transistor elements, wiring, etc.), energy (electrode materials for fuel cells, solar power generation equipment, gas storage, etc.), electron emission (flat panel equipment, etc.), and chemistry (adsorption). It is expected to be applied in various fields such as agents, catalysts, sensors, etc.), composite materials (conductive plastics, reinforced materials, flame-retardant nanocomposites, etc.), and among these, it is expected to be applied to conductive applications. It is known that carnon nanotubes can exhibit conductive performance with a lower addition as compared with carbon black used in the same conductive application, and thus can suppress the amount of filler dropped off. However, carbon nanotubes exist as primary aggregates in which individual carbon nanotubes (primary particles) are intricately entwined, and usually, secondary aggregates in which the primary aggregates are entangled with each other are also mixed. .. Since it is extremely difficult to disperse the mixture of the primary aggregate and the secondary aggregate to the primary particles in the resin, it is difficult to bring out the original performance of the carbon nanotube. Further, if a large number of secondary aggregates are present in the molded body, foreign matter may be formed on the surface of the molded body, which causes a problem that the appearance of the molded body is deteriorated, the molded body is dropped, and the like.

カーボンナノチューブを樹脂中に分散させる技術としては、特許文献1には、カーボンナノチューブをプラズマで処理することにより絡まりをほぐし、樹脂へ分散させる方法が開示されている。また、特許文献2には、イオン性液体とカーボンナノチューブを主成分とし、導電性を発現させる方法が開示されている。 As a technique for dispersing carbon nanotubes in a resin, Patent Document 1 discloses a method in which carbon nanotubes are treated with plasma to disentangle and disperse the carbon nanotubes in a resin. Further, Patent Document 2 discloses a method of exhibiting conductivity using an ionic liquid and carbon nanotubes as main components.

また、特許文献3には、2種の樹脂を含むポリマーアロイを海島構造もしくは共連続状態の連続層へカーボンナノチューブを選択的に配合することで、カーボンナノチューブが低濃度でも導電性が得られる方法が開示されている。また特許文献4には、エラストマー中にカーボンナノチューブを分散させた後、熱可塑性樹脂を加える方法が開示されている。 Further, in Patent Document 3, a method in which a polymer alloy containing two kinds of resins is selectively blended with carbon nanotubes in a continuous layer having a sea-island structure or a co-continuous state, so that conductivity can be obtained even at a low concentration of carbon nanotubes. Is disclosed. Further, Patent Document 4 discloses a method of adding a thermoplastic resin after dispersing carbon nanotubes in an elastomer.

特開2003−306607号公報Japanese Unexamined Patent Publication No. 2003-30607 特開2004−255481号公報Japanese Unexamined Patent Publication No. 2004-255481 特開2005−187811号公報Japanese Unexamined Patent Publication No. 2005-187811 特開2007−154157号公報Japanese Unexamined Patent Publication No. 2007-154157

しかし、従来のプラズマ処理は、コストが高く普及し難かった。また、イオン液体を用いた場合は成形体表面にイオン液体がブリードアウトする問題があった。また、特許文献3の方法は、2種類の樹脂が非相溶という条件が必要なので成形体の機械物性が大きく低下する問題があった。また特許文献4の方法は、エラストマー中のカーボンナノチューブが均一に熱可塑性樹脂へ分散され難く、またエラストマーは耐熱性が低いため低温で混練する必要があるので混練装置に高いトルクがかかり装置が壊れることが多かった。またエラストマーを使用すると導電性樹脂組成物は、高い弾性と延性を有するため、粉砕等ができずに粉末状やペレット状に加工し難い等、ハンドリングが悪い問題があった。 However, the conventional plasma treatment is expensive and difficult to spread. Further, when the ionic liquid is used, there is a problem that the ionic liquid bleeds out on the surface of the molded body. Further, the method of Patent Document 3 requires that the two types of resins are incompatible with each other, so that there is a problem that the mechanical properties of the molded product are significantly deteriorated. Further, in the method of Patent Document 4, it is difficult for the carbon nanotubes in the elastomer to be uniformly dispersed in the thermoplastic resin, and since the elastomer has low heat resistance, it is necessary to knead at a low temperature, so that a high torque is applied to the kneading device and the device is broken. There were many things. Further, when an elastomer is used, the conductive resin composition has high elasticity and ductility, so that it cannot be pulverized and it is difficult to process it into powder or pellets, which causes a problem of poor handling.

本発明は、特殊な製造装置を必要とせずに、カーボンナノチューブを高度に分散可能、かつ、粉砕性が良好なので粉末やペレット状等に可能で、外観が良好な成形体が得られる導電性樹脂組成物の製造方法の提供を目的とする。 INDUSTRIAL APPLICABILITY According to the present invention, carbon nanotubes can be highly dispersed without the need for special manufacturing equipment, and since they have good pulverizability, they can be made into powders, pellets, etc., and a conductive resin having a good appearance can be obtained. An object of the present invention is to provide a method for producing a composition.

本発明の導電性樹脂組成物の製造方法は、密度0.88〜0.94g/cm3かつ重量平均分子量25000〜130000のポリオレフィンと、カーボンナノチューブとをオープンロールで混練する製造方法であって、
前記ポリオレフィン100質量部に対して、カーボンナノチューブを15〜70質量部含む。
The method for producing a conductive resin composition of the present invention is a method for kneading a polyolefin having a density of 0.88 to 0.94 g / cm 3 and a weight average molecular weight of 2500 to 130000 and carbon nanotubes with an open roll.
It contains 15 to 70 parts by mass of carbon nanotubes with respect to 100 parts by mass of the polyolefin.

上記の本発明によると、特定の密度と分子量を有するポリオレフィンに、カーボンナノチューブを特定量配合し、オープンロールにて混練すると、ポリオレフィン中にカーボンナノチューブを高度に分散できるため、混練物の粉砕性が良好でありペレット化ができる。また、得られたペレットを用いて成形した成形体は、外観および粉砕性が良好という効果が得られた。また、得られる成形体は、カーボンナノチューブの凝集物の無い良好な外観と、高い導電性が得られる。 According to the present invention described above, when a specific amount of carbon nanotubes is blended with a polyolefin having a specific density and molecular weight and kneaded with an open roll, the carbon nanotubes can be highly dispersed in the polyolefin, so that the kneaded product has pulverizability. It is good and can be pelletized. In addition, the molded product molded using the obtained pellets had the effect of having good appearance and pulverizability. In addition, the obtained molded product has a good appearance without agglomerates of carbon nanotubes and high conductivity.

本発明により、特殊な製造装置を必要とせずに、カーボンナノチューブを高度に分散可能、かつ、粉砕性が良好なので粉末やペレット状等に可能で、外観が良好な成形体が得られる導電性樹脂組成物の製造方法を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, carbon nanotubes can be highly dispersed without the need for special manufacturing equipment, and since they have good pulverizability, they can be made into powders, pellets, etc., and a conductive resin having a good appearance can be obtained. A method for producing a composition can be provided.

本発明の導電性樹脂組成物の製造方法は、密度0.88〜0.94g/cm3かつ重量平均分子量25000〜130000のポリオレフィンと、カーボンナノチューブとをオープンロールで混練する製造方法であって、
前記ポリオレフィン100質量部に対して、カーボンナノチューブを15〜70質量部含む。
The method for producing a conductive resin composition of the present invention is a method for kneading a polyolefin having a density of 0.88 to 0.94 g / cm 3 and a weight average molecular weight of 2500 to 130000 and carbon nanotubes with an open roll.
It contains 15 to 70 parts by mass of carbon nanotubes with respect to 100 parts by mass of the polyolefin.

本発明で用いるオープンロールは、水平2本以上のロール棹を回転させ、ロール棹間に材料を加え、せん断力により混練する開放系の混練装置である。オープンロールは、ミクシングロールということがある。また、オープンロールに便宜上カバーをかけた場合、および密閉系ロールであっても大気圧で混練する場合もオープンロールである。 The open roll used in the present invention is an open-type kneading device that rotates two or more horizontal roll rods, adds a material between the roll rods, and kneads them by shearing force. The open roll is sometimes called a mixing roll. Further, the open roll is also used when the open roll is covered for convenience and when the closed roll is kneaded at atmospheric pressure.

混練装置が有するロール棹の数は、一般的には二本ロールや三本ロールであるところ、本発明の課題を解決できる範囲内であれば、さらにロールの数を増やしても良い。複数のロールの回転方向は、同方向回転でも、異方向回転でも使用することができるところ、より効率的に大きなせん断力を材料に加えられる、異方向回転が好ましい。 The number of rolls contained in the kneading device is generally two rolls or three rolls, but the number of rolls may be further increased as long as the problem of the present invention can be solved. As the rotation direction of the plurality of rolls, both the same direction rotation and the different direction rotation can be used, and the different direction rotation is preferable because a large shear force can be applied to the material more efficiently.

本発明での混練は、ポリオレフィンとカーボンナノチューブを十分混合できれば良いため条件は限定されないところ、オープンロールでの混練を50℃以上で行うとポリオレフィン中にカーボンナノチューブをより高度に分散できる。混練温度の上限は、特に限定しないところ、ポリオレフィンの融点より高く、かつポリオレフィンが分解ないし気化しない温度未満であればよい。なお、混練機のトルク負荷と、ロールに対する導電性樹脂組成物の巻き付きや、ロール間のバンク周り等の加工性を考慮すると、混練温度は、ポリオレフィンの融点より10℃以上高い温度が好ましく、20℃以上高い温度がより好ましい。 The conditions for kneading in the present invention are not limited as long as the polyolefin and carbon nanotubes can be sufficiently mixed. However, if the kneading with an open roll is performed at 50 ° C. or higher, the carbon nanotubes can be more highly dispersed in the polyolefin. The upper limit of the kneading temperature is not particularly limited as long as it is higher than the melting point of the polyolefin and lower than the temperature at which the polyolefin does not decompose or vaporize. Considering the torque load of the kneader, the wrapping of the conductive resin composition around the rolls, and the processability around the banks between the rolls, the kneading temperature is preferably 10 ° C. or higher higher than the melting point of the polyolefin. A temperature higher than ° C. is more preferable.

また、オープンロールの複数ロール間のクリアランスは、混合物に強いせん断力を加えるために、可能な限り狭いほうが良く、0.01mm〜1mmが好ましく、0.05mm〜0.5mmであることがさらに好ましい。 Further, the clearance between the plurality of rolls of the open roll should be as narrow as possible in order to apply a strong shearing force to the mixture, preferably 0.01 mm to 1 mm, and more preferably 0.05 mm to 0.5 mm. ..

また、オープンロールを用いた混練回数、混練時間は、材料が著しく劣化しない程度であれば、任意に調整できる。 Further, the number of kneading times and the kneading time using the open roll can be arbitrarily adjusted as long as the material is not significantly deteriorated.

<ポリオレフィン>
本発明で用いるポリオレフィンは、密度0.88〜0.94g/cm3かつ重量平均分子量25000〜130000のポリオレフィンである。
ポリオレフィンの密度が0.94g/cm3以下になるカーボンナノチューブを配合した際に、極端に高粘度化し難いため、混練が容易になる。また、密度が0.88g/cm3以上になると、ポリオレフィンの溶融粘度を適度な範囲に保てるため混練の際、適切なせん断力をカーボンナノチューブに加えることができるので分散性がより向上する。なお、ポリオレフィンの密度は、0.88〜0.92g/cm3が好ましく、0.88〜0.91g/cm3がより好ましい。
<Polyolefin>
The polyolefin used in the present invention is a polyolefin having a density of 0.88 to 0.94 g / cm 3 and a weight average molecular weight of 2500 to 130000.
When carbon nanotubes having a polyolefin density of 0.94 g / cm 3 or less are blended, it is difficult to make the viscosity extremely high, so that kneading becomes easy. Further, when the density is 0.88 g / cm 3 or more, the melt viscosity of the polyolefin is maintained in an appropriate range, and an appropriate shearing force can be applied to the carbon nanotubes during kneading, so that the dispersibility is further improved. The density of the polyolefin is preferably 0.88~0.92g / cm 3, 0.88~0.91g / cm 3 is more preferable.

ポリオレフィンの重量平均分子量が25000以上になると成形体の機械物性が向上する。また、成形の際、導電性樹脂組成物がドローダウンし難いなど成形性がより向上する。また、混練の際、適切なせん断力が加わりやすいので、凝集状態にあるカーボンナノチューブを適度に解すことができる。また、重量平均分子量が130000以下になると混練装置への負荷が過剰にならず混練できる。なお、ポリオレフィンの重量平均分子量は40000〜100000が好ましく、50000〜80000がさらに好ましい。 When the weight average molecular weight of the polyolefin is 25,000 or more, the mechanical properties of the molded product are improved. Further, during molding, the conductive resin composition is less likely to be drawn down, and the moldability is further improved. In addition, since an appropriate shearing force is likely to be applied during kneading, carbon nanotubes in an aggregated state can be appropriately unraveled. Further, when the weight average molecular weight is 130000 or less, the kneading device can be kneaded without excessive load. The weight average molecular weight of the polyolefin is preferably 40,000 to 100,000, more preferably 50,000 to 80,000.

ポリオレフィンは上記密度および上記重量平均分子量を満たせば良く特に制限されない。ポリオレフィンは、オレフィンモノマーを単独または2種類以上を併用して重合したポリマーである。ポリオレフィンは、ポリエチレンおよびポリプロピレンが好ましい。
ポリエチレンは、例えばポリエチレンホモポリマー、エチレン共重合体:エチレンと、炭素数4〜30の不飽和単量体との共重合体;
ポリプロピレンは、ポリプロピレンホモポリマー、プロピレンと炭素数4〜30の不飽和単量体との共重合体;
エチレンとプロピレンとの共重合体;
炭素数4以上のオレフィンモノマー(ポリブテン、ポリ−4−メチルペンテン−1、ポリスチレン等)の重合体;
上記オレフィンモノマーを組合せた多元系共重合体;等が挙げられる。
The polyolefin is not particularly limited as long as it satisfies the above density and the above weight average molecular weight. Polyolefins are polymers obtained by polymerizing olefin monomers alone or in combination of two or more. The polyolefin is preferably polyethylene and polypropylene.
Polyethylene is, for example, a polyethylene homopolymer, an ethylene copolymer: a copolymer of ethylene and an unsaturated monomer having 4 to 30 carbon atoms;
Polypropylene is a polypropylene homopolymer, a copolymer of propylene and an unsaturated monomer having 4 to 30 carbon atoms;
Copolymer of ethylene and propylene;
Polymers of olefin monomers with 4 or more carbon atoms (polybutene, poly-4-methylpentene-1, polystyrene, etc.);
Multiple copolymers in which the above olefin monomers are combined; and the like can be mentioned.

炭素数4〜30の不飽和単量体は、プテン(例えば1−ブテン等)、炭素数5〜30のα−オレフィン(例えば1−ヘキセン、4−メチルペンテン−1、1−デセン、1−ドデセン等)、酢酸ビニル、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル等が挙げられる。
これらのポリオレフィンの中で低温物性を重視する場合、ポリエチレンが好ましい。なお、ポリエチレンは、メタロセン系触媒を用いて合成すると重量平均分子量を所定の範囲に調整し易い。
Unsaturated monomers having 4 to 30 carbon atoms include ptene (for example, 1-butene) and α-olefins having 5 to 30 carbon atoms (for example, 1-hexene, 4-methylpentene-1, 1-decene, 1-). Dodecene and the like), vinyl acetate, (meth) acrylic acid, (meth) acrylic acid alkyl ester and the like.
Among these polyolefins, polyethylene is preferable when low temperature physical properties are important. When polyethylene is synthesized using a metallocene-based catalyst, it is easy to adjust the weight average molecular weight to a predetermined range.

<カーボンナノチューブ>
本発明で用いるカーボンナノチューブは、グラフェンシートを丸めて円筒状にしたような構造のチューブ状物質である。カーボンナノチューブは、単層カーボンナノチューブ(SWCNT)と、多層カーボンナノチューブ(MWCNT)があり電子顕微鏡等で1本1本のカーボンナノチューブ(一次粒子)を観察することができる。カーボンナノチューブは、コスト面および強度面から多層カーボンナノチューブであることが好ましい。また、カーボンナノチューブの側壁がグラファイト構造ではなく、アモルファス構造をもったカーボンナノチューブであっても構わない。一般的に全てが均一なグラファイト構造のカーボンナノチューブの合成は困難であり、一部アモルファス構造を側面に有するものが汎用的に使用される。
また、カーボンナノチューブは、一次粒子同士が、凝集して絡み合い一次凝集体を形成するが、一次凝集体がさらに凝集して二次凝集体を形成することもある。
<Carbon nanotubes>
The carbon nanotube used in the present invention is a tubular substance having a structure in which a graphene sheet is rolled into a cylindrical shape. The carbon nanotubes include single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs), and each carbon nanotube (primary particles) can be observed with an electron microscope or the like. The carbon nanotubes are preferably multi-walled carbon nanotubes in terms of cost and strength. Further, the side wall of the carbon nanotube may be a carbon nanotube having an amorphous structure instead of the graphite structure. In general, it is difficult to synthesize carbon nanotubes having a uniform graphite structure, and those having a partially amorphous structure on the side surface are generally used.
Further, in carbon nanotubes, primary particles are aggregated and entangled to form a primary aggregate, but the primary aggregate may further aggregate to form a secondary aggregate.

カーボンナノチューブは、平均繊維径が0.5〜50nmであることが好ましく、1〜40nmがより好ましく、5〜20nmがより好ましい。平均繊維径を適度な範囲すると混練の際、カーボンナノチューブがオレフィンを内部に取り込み難くなるため、導電性樹脂組成物の粘度を適度な範囲に保ち易くなりカーボンナノチューブが分散し易くなる。なお、平均繊維径とは、カーボンナノチューブの直径であり、電子顕微鏡での拡大画像から求めた約20本程度を平均した値である。 The carbon nanotubes preferably have an average fiber diameter of 0.5 to 50 nm, more preferably 1 to 40 nm, and even more preferably 5 to 20 nm. When the average fiber diameter is set to an appropriate range , it becomes difficult for the carbon nanotubes to take in the olefin inside during kneading, so that the viscosity of the conductive resin composition can be easily maintained in an appropriate range and the carbon nanotubes can be easily dispersed. The average fiber diameter is the diameter of carbon nanotubes, and is a value obtained by averaging about 20 fibers obtained from a magnified image with an electron microscope.

カーボンナノチューブは、一般にレーザーアブレーション法、アーク放電法、化学気相成長法(CVD法)、燃焼法などで製造できるところ、本発明の課題が解決できれば製造方法にはこだわらない。これらの製造法の中でもCVD法は、通常、400〜1000℃の高温下において、シリカ、アルミナ、酸化マグネシウム、酸化チタン、珪酸塩、珪藻土、アルミナシリカ、シリカチタニア、およびゼオライトなどの担体に鉄やニッケルなどの金属触媒を担持した触媒微粒子と、原料の炭素含有ガスとを接触させることにより、カーボンナノチューブを安価に、かつ大量に生産することができるため好ましい。 Carbon nanotubes can generally be produced by a laser ablation method, an arc discharge method, a chemical vapor deposition method (CVD method), a combustion method, or the like, but if the problem of the present invention can be solved, the production method is not particular. Among these production methods, the CVD method usually uses iron or iron on a carrier such as silica, alumina, magnesium oxide, titanium oxide, silicate, diatomaceous earth, alumina silica, silica titania, and zeolite at a high temperature of 400 to 1000 ° C. It is preferable to bring the catalyst fine particles carrying a metal catalyst such as silica into contact with the carbon-containing gas as a raw material because carbon nanotubes can be produced in large quantities at low cost.

カーボンナノチューブは、ポリオレフィン100質量部に対して、カーボンナノチューブを15〜70質量部含むことが好ましく、20〜60質量部がより好ましく、25〜50質量部がさらに好ましい。カーボンナノチューブを15質量部以上含有することにで、導電性樹脂組成物は、粉砕性が容易になるため微細に加工し易くなる。また、70質量部以下含有することでカーボンナノチューブの分散性がより向上し、成形体表面にカーボンナノチューブ由来の異物が生じ難くなる。 The carbon nanotubes preferably contain 15 to 70 parts by mass of carbon nanotubes with respect to 100 parts by mass of polyolefin, more preferably 20 to 60 parts by mass, still more preferably 25 to 50 parts by mass. By containing 15 parts by mass or more of the carbon nanotubes, the conductive resin composition can be easily pulverized, so that it can be easily processed into fine particles. Further, when the content is 70 parts by mass or less, the dispersibility of the carbon nanotubes is further improved, and foreign substances derived from the carbon nanotubes are less likely to be generated on the surface of the molded body.

<導電性樹脂組成物>
本発明の導電性樹脂組成物は、必要に応じて、耐酸化安定剤、耐候安定剤、帯電防止剤、染料、顔料、分散剤、カップリング剤、結晶造核剤、樹脂充填材等の添加剤を含んでもよい。
本発明の導電性樹脂組成物は、引張り伸び率が30%以下であり、20%以下がより好ましい。前記数値にすることで、各種粉砕機でも粉砕容易になること所望の形状に成形し易い。なお、引張り伸び率の下限は0%程度である。
<Conductive resin composition>
The conductive resin composition of the present invention contains, if necessary, an oxidation-resistant stabilizer, a weather-resistant stabilizer, an antistatic agent, a dye, a pigment, a dispersant, a coupling agent, a crystal nucleating agent, a resin filler, and the like. It may contain an agent.
The conductive resin composition of the present invention has a tensile elongation rate of 30% or less, more preferably 20% or less. By setting the above values, it is easy to crush even with various crushers, and it is easy to mold into a desired shape. The lower limit of the tensile elongation is about 0%.

本発明の導電性樹脂組成物は、密度0.88〜0.94g/cm3かつ重量平均分子量25000〜130000のポリオレフィンと、カーボンナノチューブとをオープンロールで混練したのち、ハンマーミル粉砕機にて粉末とし、成形時の取扱いを容易にするため混練機で溶融混練(希釈工程)を行い、所望の形状に成形することが好ましい。この形状は、ペレット状、粉体状、顆粒状あるいはビーズ状等が好ましく、粉末およびペレット状がより好ましく、ペレット状がさらに好ましい。ペレット化は、通常ペレタイザーを使用する。 The conductive resin composition of the present invention is obtained by kneading a polyolefin having a density of 0.88 to 0.94 g / cm 3 and a weight average molecular weight of 2500 to 130000 with an open roll and then powdering it with a hammer mill crusher. In order to facilitate handling during molding, it is preferable to perform melt kneading (diluting step) with a kneading machine to mold into a desired shape. This shape is preferably in the form of pellets, powder, granules, beads, or the like, more preferably in the form of powder or pellets, and even more preferably in the form of pellets. Pelletizers are usually used for pelletization.

本発明の導電性樹脂組成物の使用方法は、そのまま成形して所望の成形体を作製できる。または、導電性樹脂組成物に希釈樹脂として熱可塑性樹脂を配合し混練した後、所望の形状(例えば、、ペレット状、粉体状、顆粒状あるいはビーズ状等)に形成することもできる。
導電性樹脂組成物は、希釈樹脂100質量部に対して、1〜1400質量部含むことが好ましく、2〜900質量部がより好ましく、10〜500質量部がさらに好ましい。前記範囲を満たすと導電性樹脂組成物を成形体中に分配しやすくなる。
希釈樹脂を用いることで、カーボンナノチューブの分散時に使用したポリオレフィンよりも熱劣化していない樹脂を加えることとなり、成形体の弾性や引っ張り物性がより向上する。
前記希釈樹脂は、ポリオレフィンが好ましいところ、所定のポリオレフィンと相溶可能であれば、ポリエステルやポリカーボネート等ポリオレフィン以外の樹脂を用いても良い。ポリオレフィンは、例えばポリエチレン、ポリプロピレン等が挙げられる。
前記混練は、オープンロールや、他の公知の混合装置を適宜選択して行うことができる。
According to the method of using the conductive resin composition of the present invention, a desired molded product can be produced by molding as it is. Alternatively, the conductive resin composition may be mixed with a thermoplastic resin as a diluting resin and kneaded, and then formed into a desired shape (for example, pellets, powder, granules, beads, etc.).
The conductive resin composition preferably contains 1 to 1400 parts by mass, more preferably 2 to 900 parts by mass, and even more preferably 10 to 500 parts by mass with respect to 100 parts by mass of the diluted resin. When the above range is satisfied, the conductive resin composition can be easily distributed in the molded product.
By using the diluted resin, a resin that is not thermally deteriorated as compared with the polyolefin used when dispersing the carbon nanotubes is added, and the elasticity and tensile characteristics of the molded product are further improved.
Where polyolefin is preferable, the diluted resin may be a resin other than polyolefin, such as polyester or polycarbonate, as long as it is compatible with a predetermined polyolefin. Examples of the polyolefin include polyethylene and polypropylene.
The kneading can be performed by appropriately selecting an open roll or another known mixing device.

<成形体>
本発明の成形体は、導電性樹脂組成物を溶融混練して、成形することで製造できる。前記溶融混練の際、さらに希釈用の熱可塑性樹脂を添加して導電性樹脂組成物と共に混合することが好ましい。希釈用の熱可塑性樹脂の添加量により成形体の導電性を調整できる。
成形体中のカーボンナノチューブ含有量は、所望に導電性の程度により適宜調整すればよい。カーボンナノチューブは、例えば、帯電防止用フィルム用途であれば成形体100質量%中1〜6質量%であることが好ましく、2〜5質量%がより好ましい。
<Molded body>
The molded product of the present invention can be produced by melt-kneading and molding the conductive resin composition. At the time of the melt-kneading, it is preferable to further add a thermoplastic resin for dilution and mix it with the conductive resin composition. The conductivity of the molded product can be adjusted by the amount of the thermoplastic resin for dilution added.
The carbon nanotube content in the molded product may be appropriately adjusted depending on the degree of conductivity, if desired. For example, the carbon nanotubes are preferably 1 to 6% by mass, more preferably 2 to 5% by mass in 100% by mass of the molded product for antistatic film applications.

成形は、溶融混練後の組成物を通常50℃〜350℃に設定した成形機に投入し所望の形状の成形体を作製し、冷却することで行う。
成形方法は、例えば、押出成形、射出成形、ブロー成形、圧縮成形、トランスファー成形、T−ダイ成形やインフレーション成形等のフィルム成形、カレンダー成形、紡糸等が挙げられる。
Molding is performed by putting the composition after melt-kneading into a molding machine usually set at 50 ° C. to 350 ° C. to prepare a molded product having a desired shape and cooling the molded product.
Examples of the molding method include extrusion molding, injection molding, blow molding, compression molding, transfer molding, film molding such as T-die molding and inflation molding, calendar molding, spinning and the like.

本発明の成形体は、用いる導電性樹脂組成物中のカーボンナノチューブが高度に分散され、かつ特定のポリオレフィンを使用しているため、フィルムやシート成形時に問題となるドローダウンを抑制している。そのため、成形方法は、各種方法を使用できるところT−ダイ成形、インフレーション成形が好ましく、インフレーション成形がより好ましい。なお、希釈用の熱可塑性樹脂は、ポリオレフィンであることが好ましいが、必ずしも密度0.88〜0.94g/cm3かつ重量平均分子量25000〜130000を満たす必要はない。また、所定のポリオレフィンと相溶可能であれば、ポリエステルやポリカーボネート等ポリオレフィン以外の樹脂を用いても良い。 In the molded product of the present invention, the carbon nanotubes in the conductive resin composition used are highly dispersed and a specific polyolefin is used, so that drawdown, which is a problem when molding a film or a sheet, is suppressed. Therefore, as the molding method, T-die molding and inflation molding are preferable, and inflation molding is more preferable, where various methods can be used. The thermoplastic resin for dilution is preferably polyolefin, but it does not necessarily have to satisfy a density of 0.88 to 0.94 g / cm 3 and a weight average molecular weight of 2500 to 130000. Further, a resin other than the polyolefin such as polyester or polycarbonate may be used as long as it is compatible with the predetermined polyolefin.

成形体の形状は、例えばプレート、棒状、繊維、チューブ、パイプ、ボトル、シート、フィルム等が挙げられる。これらの中でもカーボンナノチューブの凝集物が無く、表面が平滑な成形体の製造が可能であることから、シート、フィルムが好ましい。
本発明の成形体は、カーボンナノチューブが高度に分散されているため、帯電防止用途に使用することが好ましい。より具体的にいうと半導体等を搬送するトレイ、半導体等の梱包に用いる保護シート、保護袋等に使用することが好ましい。また、静電気による異物の付着を防止したい各種用途に使用できる。
なお、本発明では、成形体の厚さが250μm未満のシートをフィルムとする。また、厚さが250μm〜1000μmのシートをシートという、また、厚さが1000μmを超えるシートをプレートという
本発明の成形体の他の用途は、黒色意匠フィルムや電磁波シールド用シートや遮光フィルム等が好ましい。
Examples of the shape of the molded product include plates, rods, fibers, tubes, pipes, bottles, sheets, films and the like. Among these, sheets and films are preferable because they do not have agglomerates of carbon nanotubes and can produce a molded product having a smooth surface.
The molded product of the present invention is preferably used for antistatic applications because the carbon nanotubes are highly dispersed. More specifically, it is preferably used for trays for transporting semiconductors and the like, protective sheets used for packing semiconductors and the like, protective bags and the like. In addition, it can be used for various purposes in which foreign matter is to be prevented from adhering due to static electricity.
In the present invention, a sheet having a molded body thickness of less than 250 μm is used as a film. Further, a sheet having a thickness of 250 μm to 1000 μm is called a sheet, and a sheet having a thickness of more than 1000 μm is called a plate. preferable.

以下の実施例により、本発明をさらに詳細に説明するが、以下の実施例は、本発明を何ら制限するものではない。なお、実施例中、特に断りがない限り、「部」は「質量部」を、「%」は「質量%」を表す。 The present invention will be described in more detail with reference to the following examples, but the following examples do not limit the present invention in any way. In the examples, unless otherwise specified, "parts" represents "parts by mass" and "%" represents "% by mass".

表1と表2に、実施例および比較例で使用したポリオレフィン、およびカーボンナノチューブ物性値を示す。 Tables 1 and 2 show the physical property values of the polyolefins and carbon nanotubes used in Examples and Comparative Examples.

実施例で使用した原料は、以下のとおりである。
<ポリオレフィン(A)>
(A1)ポリエチレン(カーネルKJ−640T、日本ポリエチレン社製)融点:58℃、密度:0.88g/mL、重量平均分子量:43300:、分子量分布:2.2
(A2)ポリエチレン(ノバテックUF−420、日本ポリエチレン社製)融点:123℃、密度:0.90g/mL、重量平均分子量:113000、分子量分布:3.9
(A3)ポリエチレン(サンテックLD M2270、日本ポリエチレン社製)融点:92℃、密度:0.92g/mL、重量平均分子量:53300:、分子量分布:6.8
(A4)下記製造例1のポリプロピレン、融点110℃、密度:0.90g/mL、重量平均分子量55000:、分子量分布:7
(A5)ポリエチレン(サンテックHD B770、日本ポリエチレン社製)軟化点:127℃、密度:0.96g/mL、重量平均分子量:203000:、分子量分布:28
(A6)下記製造例2のポリプロピレン、融点161℃、密度:0.93g/mL、重量平均分子量301000:、分子量分布:22
なお、分子量分布とは、重量平均分子量を数平均分子量で除算した数値である。
The raw materials used in the examples are as follows.
<Polyolefin (A)>
(A1) Polyethylene (kernel KJ-640T, manufactured by Japan Polyethylene Corporation) Melting point: 58 ° C., Density: 0.88 g / mL, Weight average molecular weight: 43300 :, Molecular weight distribution: 2.2
(A2) Polyethylene (Novatec UF-420, manufactured by Japan Polyethylene Corporation) Melting point: 123 ° C., Density: 0.90 g / mL, Weight average molecular weight: 113000, Molecular weight distribution: 3.9
(A3) Polyethylene (Suntech LD M2270, manufactured by Japan Polyethylene Corporation) Melting point: 92 ° C., Density: 0.92 g / mL, Weight average molecular weight: 53300 :, Molecular weight distribution: 6.8
(A4) Polypropylene of Production Example 1 below, melting point 110 ° C., density: 0.90 g / mL, weight average molecular weight 55000 :, molecular weight distribution: 7
(A5) Polyethylene (Suntech HD B770, manufactured by Japan Polyethylene Corporation) Softening point: 127 ° C., Density: 0.96 g / mL, Weight average molecular weight: 203000 :, Molecular weight distribution: 28
(A6) Polypropylene of Production Example 2 below, melting point 161 ° C., density: 0.93 g / mL, weight average molecular weight 301000 :, molecular weight distribution: 22
The molecular weight distribution is a numerical value obtained by dividing the weight average molecular weight by the number average molecular weight.

<カーボンナノチューブ(B)>
(B1)製造例1のカーボンナノチューブ
(B2)製造例2のカーボンナノチューブ
(B3)昭和電工社製カーボンナノチューブ(製品名:VGCF−H)
<Carbon nanotube (B)>
(B1) Carbon nanotubes of Production Example 1 (B2) Carbon nanotubes of Production Example 2 (B3) Carbon nanotubes manufactured by Showa Denko KK (product name: VGCF-H)

(ポリプロピレンの製造例1)
攪拌機付きの内容積5Lのステンレス製反応器に、トルエンを1L/h、トリイソブチルアルミニウムを5mmol/h、さらに、ツィーグラー・ナッタ触媒を6μmol/h配合し、反応温度を70℃に設定し、反応器の気相部の水素濃度が0.8モル%、反応器内の全圧が0.75MPa・Gに保たれるように、プロピレンを連続供給し、重合反応を行った。溶媒であるトルエンを除去、テトラヒドロフラン溶液で重合体を洗浄することにより、ポリプロピレンを得た。反応温度を110℃、反応器内の全圧を0.9MPa・Gにすることにより、ポリオレフィン(A4)を得た。
(Polypropylene Production Example 1)
A stainless reactor with an internal volume of 5 L equipped with a stirrer was mixed with 1 L / h of toluene, 5 mmol / h of triisobutylaluminum, and 6 μmol / h of Ziegler-Natta catalyst, and the reaction temperature was set to 70 ° C. for the reaction. Propylene was continuously supplied and the polymerization reaction was carried out so that the hydrogen concentration in the gas phase portion of the reactor was maintained at 0.8 mol% and the total pressure in the reactor was maintained at 0.75 MPa · G. Polypropylene was obtained by removing toluene as a solvent and washing the polymer with a tetrahydrofuran solution. Polyolefin (A4) was obtained by setting the reaction temperature to 110 ° C. and the total pressure in the reactor to 0.9 MPa · G.

(ポリプロピレンの製造例2)
ポリプロピレンの製造例1に示す配合で、反応温度を110℃、反応器内の全圧を0.9MPa・Gにすることにより、ポリプロピレンポリオレフィン(A5)を得た。
(Polypropylene production example 2)
Polypropylene polyolefin (A5) was obtained by setting the reaction temperature to 110 ° C. and the total pressure in the reactor to 0.9 MPa · G with the formulation shown in Production Example 1 of polypropylene.

以下に、カーボンナノチューブの製造例について説明する。 An example of manufacturing carbon nanotubes will be described below.

(カーボンナノチューブ(B1)の製造例3)
水酸化コバルト・四水和物72g、酢酸マグネシウム・四水和物172g、アスコルビン酸125gをビーカーに秤取り、精製水を1000g加えて、完全に溶解するまで撹拌した。耐熱性容器に移し替え、電気オーブンを用いて、雰囲気温度170±5℃の温度で120分乾燥させ水分を蒸発させた後、乳鉢で粉砕して触媒(c)の前駆体を得た。得られた触媒(c)前駆体400gを耐熱容器に秤取り、マッフル炉にて、空気中500℃±5℃雰囲気下で30分焼成した後、乳鉢で粉砕して触媒(c)を得た。次いで、加圧可能で、外部ヒーターで加熱可能な、内容積が10リットルの横型反応管の中央部に、触媒(c)1.0gを散布した石英ガラス製耐熱皿を設置した。アルゴンガスを注入しながら排気を行い、反応管内の空気をアルゴンガスで置換し、横型反応管中の酸素濃度を1体積%以下とした。外部ヒーターにて加熱し、横型反応管の中心部が750℃まで加熱した。引き続き、水素を導入し、毎分0.1リットルで1分導入し触媒を活性化処理し、その後アセチレンガスを毎分1リットルの速度で注入し、4時間反応させてカーボンナノチューブを製造した。反応終了後、反応管内のガスをアルゴンガスで置換し、100℃以下の温度で取り出し、カーボンナノチューブ凝集体を得た。得られたカーボンナノチューブ凝集体を80メッシュの金網で粉砕ろ過して、カーボンナノチューブ(B1)を得た。
(Production example 3 of carbon nanotube (B1))
72 g of cobalt hydroxide / tetrahydrate, 172 g of magnesium acetate / tetrahydrate, and 125 g of ascorbic acid were weighed in a beaker, 1000 g of purified water was added, and the mixture was stirred until completely dissolved. The mixture was transferred to a heat-resistant container, dried in an electric oven at an ambient temperature of 170 ± 5 ° C. for 120 minutes to evaporate the water content, and then pulverized in a mortar to obtain a precursor of the catalyst (c). 400 g of the obtained precursor (c) precursor was weighed in a heat-resistant container, calcined in an air at 500 ° C. ± 5 ° C. for 30 minutes in a muffle furnace, and then pulverized in a mortar to obtain a catalyst (c). .. Next, a quartz glass bakeware sprayed with 1.0 g of the catalyst (c) was installed in the center of a horizontal reaction tube having an internal volume of 10 liters, which could be pressurized and heated by an external heater. Exhaust was performed while injecting argon gas, and the air in the reaction tube was replaced with argon gas to reduce the oxygen concentration in the horizontal reaction tube to 1% by volume or less. It was heated by an external heater, and the central part of the horizontal reaction tube was heated to 750 ° C. Subsequently, hydrogen was introduced, and the catalyst was activated at 0.1 liter per minute for 1 minute, and then acetylene gas was injected at a rate of 1 liter per minute and reacted for 4 hours to produce carbon nanotubes. After completion of the reaction, the gas in the reaction tube was replaced with argon gas, and the mixture was taken out at a temperature of 100 ° C. or lower to obtain carbon nanotube aggregates. The obtained carbon nanotube agglomerates were pulverized and filtered through an 80-mesh wire mesh to obtain carbon nanotubes (B1).

(カーボンナノチューブ(B2)の製造例4)
酢酸コバルト・四水和物200g、酢酸マグネシウム・四水和物172g、アスコルビン酸125gをビーカーに秤取り、精製水を1000g加えて、完全に溶解するまで撹拌した。耐熱性容器に移し替え、電気オーブンを用いて、雰囲気温度170±5℃の温度で120分乾燥させ水分を蒸発させた後、乳鉢で粉砕して触媒(a)の前駆体を得た。得られた触媒(a)前駆体400gを耐熱容器に秤取り、マッフル炉にて、空気中500℃±5℃雰囲気下で30分焼成した後、乳鉢で粉砕して触媒(a)を得た。次いで、加圧可能で、外部ヒーターで加熱可能な、内容積が10リットルの横型反応管の中央部に、触媒(a)1.0gを散布した石英ガラス製耐熱皿を設置した。アルゴンガスを注入しながら排気を行い、反応管内の空気をアルゴンガスで置換し、横型反応管中の酸素濃度を1体積%以下とした。外部ヒーターにて加熱し、横型反応管の中心部が750℃まで加熱した。引き続き、水素を毎分0.1リットルで1分導入し触媒を活性化処理し、その後、アセチレンガスを毎分1リットルの速度で注入し、4時間反応させてカーボンナノチューブを製造した。反応終了後、反応管内のガスをアルゴンガスで置換し、100℃以下の温度で取り出し、カーボンナノチューブ凝集体を得た。得られたカーボンナノチューブ凝集体を80メッシュの金網で粉砕ろ過して、カーボンナノチューブ(B2)を得た。
(Production example 4 of carbon nanotube (B2))
200 g of cobalt acetate / tetrahydrate, 172 g of magnesium acetate / tetrahydrate and 125 g of ascorbic acid were weighed in a beaker, 1000 g of purified water was added, and the mixture was stirred until completely dissolved. The mixture was transferred to a heat-resistant container, dried in an electric oven at an ambient temperature of 170 ± 5 ° C. for 120 minutes to evaporate the water content, and then pulverized in a mortar to obtain a precursor of the catalyst (a). 400 g of the obtained catalyst (a) precursor was weighed in a heat-resistant container, fired in a muffle furnace in an atmosphere of 500 ° C. ± 5 ° C. for 30 minutes, and then pulverized in a mortar to obtain a catalyst (a). .. Next, a quartz glass bakeware sprayed with 1.0 g of the catalyst (a) was installed in the center of a horizontal reaction tube having an internal volume of 10 liters, which could be pressurized and heated by an external heater. Exhaust was performed while injecting argon gas, and the air in the reaction tube was replaced with argon gas to reduce the oxygen concentration in the horizontal reaction tube to 1% by volume or less. It was heated by an external heater, and the central part of the horizontal reaction tube was heated to 750 ° C. Subsequently, hydrogen was introduced at 0.1 liter per minute for 1 minute to activate the catalyst, and then acetylene gas was injected at a rate of 1 liter per minute and reacted for 4 hours to produce carbon nanotubes. After completion of the reaction, the gas in the reaction tube was replaced with argon gas, and the mixture was taken out at a temperature of 100 ° C. or lower to obtain carbon nanotube aggregates. The obtained carbon nanotube agglomerates were pulverized and filtered through an 80-mesh wire mesh to obtain carbon nanotubes (B2).

以下、各原料の物性値の測定方法を示す。 Hereinafter, a method for measuring the physical property values of each raw material will be shown.

(密度測定)
ポリオレフィンの密度測定には、JIS7112−1999のA法で行った。測定する試験片は、樹脂組成物中の気泡を極力除くために、160℃に加熱されたプレス機にて、厚さ1cmのシートに加工してから測定した。
(Density measurement)
The density of the polyolefin was measured by the method A of JIS7112-1999. The test piece to be measured was processed into a sheet having a thickness of 1 cm by a press machine heated to 160 ° C. in order to remove air bubbles in the resin composition as much as possible, and then measured.

(重量平均分子量)
島津製作所製ProminenceGPCシステムを用いて、ゲル透過クロマトグラフ(GPC)法により、分子量分布曲線を測定し、重量平均分子量(Mw)と数平均分子量(Mn)を、ポリスチレン換算の値から算出した。分子量分布(Mw/Mn)は、得られた重量平均分子量及び数平均分子量の値から算出した。ポリスチレン換算に使用した標準ポリスチレンには、VARIAN社製ポリスチレンを用い、カラムは東ソー社製TSKgelGMH−HTを用い、測定時のキャリアにはオルトジクロロベンゼンを用いた。カラム温度は140℃、キャリア流速は1.0mLでおこなった。
(Weight average molecular weight)
The molecular weight distribution curve was measured by a gel permeation chromatograph (GPC) method using a Prominence GPC system manufactured by Shimadzu Corporation, and the weight average molecular weight (Mw) and the number average molecular weight (Mn) were calculated from polystyrene-equivalent values. The molecular weight distribution (Mw / Mn) was calculated from the obtained weight average molecular weight and number average molecular weight values. As the standard polystyrene used for polystyrene conversion, polystyrene manufactured by VARIAN was used, TSKgelGMH-HT manufactured by Tosoh Co., Ltd. was used as the column, and orthodichlorobenzene was used as the carrier at the time of measurement. The column temperature was 140 ° C. and the carrier flow rate was 1.0 mL.

(体積抵抗率)
粉体抵抗システムMCP−PD51(三菱化学アナリテック社製)を用いて体積抵抗率(Ω・cm)を測定した。具体的にはカーボンナノチューブ粉末を1.2g量り取り、20kNの荷重時の値を体積抵抗率とした。
(Volume resistivity)
The volume resistivity (Ω · cm) was measured using the powder resistivity system MCP-PD51 (manufactured by Mitsubishi Chemical Analytech). Specifically, 1.2 g of carbon nanotube powder was weighed, and the value under a load of 20 kN was taken as the volume resistivity.

(平均繊維径)
走査型電子顕微鏡(日本電子(JEOL)社製、JSM−6700M))を用いて加速電圧5kVにてカーボンナノチューブを観察し、5万倍の画像(画素数1024×1280)を撮影した。次いで、撮影された画像にて任意のカーボンナノチューブ20個について、各々の短軸長を測定し、それら短軸長の数平均値をカーボンナノチューブの平均直径とした。
(Average fiber diameter)
Carbon nanotubes were observed at an acceleration voltage of 5 kV using a scanning electron microscope (JSM-6700M, manufactured by JEOL Ltd.), and an image (number of pixels: 1024 x 1280) of 50,000 times was taken. Next, the minor axis lengths of each of the 20 arbitrary carbon nanotubes were measured in the captured image, and the number average value of the minor axis lengths was taken as the average diameter of the carbon nanotubes.

Figure 0006972517
Figure 0006972517

Figure 0006972517
Figure 0006972517

以下、導電性樹脂組成物の製造例を示す。 Hereinafter, an example of manufacturing the conductive resin composition will be shown.

[実施例1]
(導電性樹脂組成物C1の製造)
ポリオレフィン(A1)75%およびカーボンナノチューブ(B1)25%を加圧式ニーダーで混合し塊状の樹脂混合物を得た。次いで前記混合物をオープンロール混練機(三本ロール、アイメックス社製)に投入し、130℃で3回繰り返し混練することで混練物を得た。次に、得られた混練物を、ハンマーミルで粉砕し、直径1mm程度の粉状の導電性樹脂組成物(C1)を得た。次いで、粉状のポリオレフィン(A3)75%と粉状の導電性樹脂組成物(C1)25%と混合し、二軸押出機へ投入、180℃で溶融混練し、ペレタイザーでカットすることでペレットを得た。
[Example 1]
(Manufacturing of Conductive Resin Composition C1)
75% of polyolefin (A1) and 25% of carbon nanotubes (B1) were mixed with a pressure kneader to obtain a massive resin mixture. Next, the mixture was put into an open roll kneader (three rolls, manufactured by IMEX) and kneaded repeatedly at 130 ° C. three times to obtain a kneaded product. Next, the obtained kneaded material was pulverized with a hammer mill to obtain a powdery conductive resin composition (C1) having a diameter of about 1 mm. Next, 75% of the powdery polyolefin (A3) and 25% of the powdery conductive resin composition (C1) are mixed, put into a twin-screw extruder, melt-kneaded at 180 ° C., and cut with a pelletizer to pellet. Got

<引張り伸び率>
得られた導電性樹脂組成物(C1)を熱プレスシート成形機に投入し200℃に加熱して、縦200mm・横200mm・厚み1.5mmのプレスシートを作製後、2号ダンベル型に打抜いて試験片とした。次いで、引張り速度100mm/分の条件で、JIS K−7127に準じて、引張破壊点伸び率を測定した。また引張破壊点伸び率は、試験前のダンベル片を100%とし、その状態から120%の長さになった場合、伸び率20%という表記方法をとる。引張破壊点伸び率が低い程、伸長性に欠け、粉砕性が良好となる。引張り伸び率は、30%以下であることが好ましい、30%より高くなると粉砕時に導電性樹脂組成物が延伸し、粉砕が困難であったり、作製した粉砕物の形状が不均一となる不具合を生じる。
<Tensile elongation rate>
The obtained conductive resin composition (C1) is put into a hot press sheet molding machine and heated to 200 ° C. to prepare a press sheet having a length of 200 mm, a width of 200 mm and a thickness of 1.5 mm, and then hit into a No. 2 dumbbell mold. It was pulled out and used as a test piece. Next, the tensile fracture point elongation rate was measured according to JIS K-7127 under the condition of a tensile speed of 100 mm / min. Further, the tensile fracture point elongation rate is 100% for the dumbbell piece before the test, and when the length is 120% from that state, the elongation rate is 20%. The lower the tensile fracture point elongation rate, the less extensibility and the better the pulverizability. The tensile elongation is preferably 30% or less, and if it is higher than 30%, the conductive resin composition is stretched at the time of pulverization, which makes pulverization difficult or the shape of the produced pulverized material becomes non-uniform. Occurs.

<ロール加工性>
導電性樹脂組成物(C1)製造でのオープンロール混練時における操作性を次の基準で評価した。なお、加工性不良とは、混練中に樹脂組成物がロールに巻きつかずに剥離して混練できないこと又は一部剥離がみられることを指す。また、加工性良好とは、ロールから樹脂組成物が剥離せずに十分に混練できることを指す。
○:加工性良好
×:加工性不良
<Roll workability>
The operability during open roll kneading in the production of the conductive resin composition (C1) was evaluated according to the following criteria. The poor processability means that the resin composition does not wrap around the roll during kneading and cannot be kneaded or partially peeled off. Further, good processability means that the resin composition can be sufficiently kneaded without peeling from the roll.
◯: Good workability ×: Poor workability

<粉砕性>
得られた導電性樹脂組成物(C1)の樹脂塊を立方体(一辺:1cm)に切り出し、小型ハンマーミル(ラボネクスト社製)へ10個投入し、1分間でスクリーン(メッシュ開き:1mm)を通った粉砕物を評価した。粉砕物の観察には、ビデオマイクロスコープ「VHX−900」(キーエンス社製)を用いて倍率300倍にて表面観察を行なった。下記に評価の基準を示した。粉砕性良好とは、作製された粉砕物の粉の寸法が概ね一様であることを示す。粉の寸法(W×D×H)が一様であるほど、粉砕時に樹脂組成物の延伸がせずに粉砕されていることを示す。なお、一様とは、三方の寸法のいずれか高い数値と低い数値の倍率が5倍未満であることを指す。粉砕性不良とは、粉砕時に樹脂組成物が延伸され、三方の寸法のいずれか高い数値と低い数値の倍率が5倍以上の粉砕物となること、または投入して1分経過後、粉砕されずにミル内に残った樹脂塊の質量が投入した質量の20%以上であることを指す。
○:寸法が一様な粉(良好)
×:粉砕不可(使用不可)
<Crushability>
The resin lump of the obtained conductive resin composition (C1) is cut into a cube (one side: 1 cm), 10 pieces are put into a small hammer mill (manufactured by Labnext), and a screen (mesh opening: 1 mm) is opened in 1 minute. The crushed material that passed was evaluated. For the observation of the crushed material, the surface was observed at a magnification of 300 times using a video microscope "VHX-900" (manufactured by KEYENCE CORPORATION). The evaluation criteria are shown below. Good pulverizability means that the size of the powder of the produced pulverized product is substantially uniform. The more uniform the size of the powder (W × D × H), the more the resin composition is pulverized without stretching during pulverization. Note that uniform means that the magnification of the higher value and the lower value of any of the three dimensions is less than 5 times. Poor crushability means that the resin composition is stretched at the time of crushing, and the ratio of the higher value or the lower value of any of the three dimensions is 5 times or more, or the resin composition is crushed after 1 minute has passed. It means that the mass of the resin lump remaining in the mill is 20% or more of the input mass.
◯: Powder with uniform dimensions (good)
×: Cannot be crushed (cannot be used)

(成形体E1の製造)
得られたペレットを、インフレーション成形機(プラコー社製)を用いて200℃で加熱してインフレーション成形を行い、長さ100cm、幅15cm、厚み30μmの筒状の成形体(E1)を得た。
(成形体F1の製造)
得られたペレットを、Tダイシート成形機(東洋精機社製)を用いて200℃で加熱してシート成形を行うことで、長さ300cm、幅15cm、厚み100μmのシート状の成形体(F1)を得た。
(Manufacturing of molded product E1)
The obtained pellets were heated at 200 ° C. using an inflation molding machine (manufactured by PLACO Co., Ltd.) for inflation molding to obtain a tubular molded body (E1) having a length of 100 cm, a width of 15 cm, and a thickness of 30 μm.
(Manufacturing of molded product F1)
The obtained pellets are heated at 200 ° C. using a T-die sheet molding machine (manufactured by Toyo Seiki Co., Ltd.) to form a sheet, whereby a sheet-shaped molded product (F1) having a length of 300 cm, a width of 15 cm, and a thickness of 100 μm is formed. Got

得られた成形体(E1)および成形体(F1)についてそれぞれ下記の評価を行った。 The following evaluations were performed on the obtained molded product (E1) and the molded product (F1), respectively.

<表面抵抗値>
抵抗率計「ロレスタGP」(ロレスタGP MCP−T610型抵抗率計、JIS−K7194準拠、4端子4探針法定電流印加方式、三菱化学アナリテック社製)(0.5cm間隔の4端子プローブ)を用い、成形体の表面抵抗値(Ω/□)を測定した。
<Surface resistance value>
Resistivity meter "Loresta GP" (Loresta GP MCP-T610 type resistivity meter, JIS-K7194 compliant, 4-terminal 4-probe method constant current application method, manufactured by Mitsubishi Chemical Analytech) (4-terminal probe with 0.5 cm intervals) The surface resistivity value (Ω / □) of the molded product was measured using.

<外観評価>
ビデオマイクロスコープ「VHX−900」(キーエンス社製)を倍率500倍にて、成形体の表面観察を行い、長さ50cm、幅15cmに切り出した成形体表面上に縦横の一方が30μm以上ある異物の数を計測し、下記の基準にて評価した。異物の数が少ないほど良好である。
○:異物が10個未満(良好)
×:異物が10個以上(不良)
<Appearance evaluation>
The surface of the molded body was observed with a video microscope "VHX-900" (manufactured by KEYENCE) at a magnification of 500 times, and a foreign substance having a length and width of 30 μm or more on the surface of the molded body cut into a length of 50 cm and a width of 15 cm. Was measured and evaluated according to the following criteria. The smaller the number of foreign substances, the better.
◯: Less than 10 foreign substances (good)
×: 10 or more foreign substances (defective)

[実施例2〜9]および[比較例10〜19]
実施例1のポリオレフィン(A)およびカーボンナノチューブ(B)を表2および表3に記載された原料および配合量に変更した以外は、実施例1と同様に行うことでそれぞれ導電性樹脂組成物(C2)〜(C15)を作製した。なお、導電性樹脂組成物(C15)のみオープンロールの混練温度は170℃に設定して混練をおこなった。
[Examples 2-9] and [Comparative Examples 10-19]
The conductive resin composition (the conductive resin composition) was carried out in the same manner as in Example 1 except that the polyolefin (A) and the carbon nanotube (B) of Example 1 were changed to the raw materials and blending amounts shown in Tables 2 and 3. C2) to (C15) were prepared. Only the conductive resin composition (C15) was kneaded by setting the kneading temperature of the open roll to 170 ° C.

得られた導電性樹脂組成物(C2)〜(C15)を使用して、表5および表6に記載した原料の配合量を変更した以外は実施例1と同様に行うことでそれぞれ成形体E2〜F15および成形体F2〜F15を作製し、実施例1と同様に評価した。 Using the obtained conductive resin compositions (C2) to (C15), the molded product E2 was carried out in the same manner as in Example 1 except that the blending amounts of the raw materials shown in Tables 5 and 6 were changed. ~ F15 and molded products F2 to F15 were prepared and evaluated in the same manner as in Example 1.

Figure 0006972517
Figure 0006972517

Figure 0006972517
Figure 0006972517

Figure 0006972517
Figure 0006972517

Figure 0006972517
Figure 0006972517

Figure 0006972517
Figure 0006972517

Figure 0006972517
Figure 0006972517

表3および表4の結果から、実施例1〜9は、比較例10〜11と比較して導電性樹脂組成物のロール加工性と粉砕性が良好である。また、比較例12〜13と比較すると、カーボンナノチューブが所定の平均繊維径が特定の範囲内であると粉砕性が良好である。また、比較例14〜15と比較すると、ポリオレフィンの分子量と密度が本発明の範囲内であると、ロール加工性が優れることが分かる。 From the results of Tables 3 and 4, Examples 1 to 9 have better roll processability and pulverizability of the conductive resin composition as compared with Comparative Examples 10 to 11. Further, as compared with Comparative Examples 12 to 13, the pulverizability of the carbon nanotubes is good when the predetermined average fiber diameter is within a specific range. Further, as compared with Comparative Examples 14 to 15, it can be seen that when the molecular weight and density of the polyolefin are within the range of the present invention, the roll processability is excellent.

また、表7および表8の結果から、実施例1〜9の成形体E1〜E9ならびに成形体F1〜F9は、比較例11〜15の成形体E11〜15ならびに成形体F11〜15よりも、明らかに低い表面抵抗値を示すとともにブツが少なく外観が良好であることから、カーボンナノチューブが樹脂中に高度に分散されていることが分かる。 Further, from the results of Tables 7 and 8, the molded bodies E1 to E9 and the molded bodies F1 to F9 of Examples 1 to 9 are more than the molded bodies E11 to 15 and the molded bodies F11 to 15 of Comparative Examples 11 to 15. It can be seen that the carbon nanotubes are highly dispersed in the resin because the surface resistance value is clearly low and the appearance is good with few bumps.

Claims (5)

密度0.88〜0.94g/cmかつ重量平均分子量25000〜130000のポリオレフィンと、カーボンナノチューブとをオープンロールで混練する、導電性樹脂組成物の製造方法であって、
前記カーボンナノチューブの平均繊維径が0.5〜50nmであり、
前記ポリオレフィン100質量部に対して、前記カーボンナノチューブを15〜70質量部含み、
下記測定条件での引張り伸び率が、30%以下である、導電性樹脂組成物の製造方法。

引張り伸び率の測定;導電性樹脂組成物を熱プレスシート成形機に投入し200℃に加熱して、縦200mm・横200mm・厚み1.5mmのプレスシートを作製後、2号ダンベル型に打抜いて試験片とする。次いで、引張り速度100mm/分の条件で、JIS K −7127に準じて測定する。
A method for producing a conductive resin composition, wherein a polyolefin having a density of 0.88 to 0.94 g / cm 3 and a weight average molecular weight of 2500 to 130000 and carbon nanotubes are kneaded with an open roll.
The average fiber diameter of the carbon nanotubes is 0.5 to 50 nm, and the carbon nanotubes have an average fiber diameter of 0.5 to 50 nm.
The carbon nanotubes are contained in an amount of 15 to 70 parts by mass with respect to 100 parts by mass of the polyolefin.
A method for producing a conductive resin composition, wherein the tensile elongation rate under the following measurement conditions is 30% or less.

Measurement of tensile elongation; Put the conductive resin composition into a hot press sheet molding machine and heat it to 200 ° C to make a press sheet with a length of 200 mm, a width of 200 mm, and a thickness of 1.5 mm, and then hit it into a No. 2 dumbbell mold. Remove it to make a test piece. Then, the measurement is performed according to JIS K-7127 under the condition of a tensile speed of 100 mm / min.
オープンロールでの前記混練を50℃以上で行う、請求項1記載の導電性樹脂組成物の製造方法。 The method for producing a conductive resin composition according to claim 1, wherein the kneading with an open roll is performed at 50 ° C. or higher. 請求項1または2に記載の製造方法で得た導電性樹脂組成物を成形する、成形体の製造方法。 A method for producing a molded product, which comprises molding the conductive resin composition obtained by the production method according to claim 1 or 2. 前記成形がインフレーション成形である、請求項3記載の成形体の製造方法。 The method for manufacturing a molded product according to claim 3, wherein the molding is inflation molding. 密度0.88〜0.94g/cmかつ重量平均分子量25000〜130000のポリプロピレンと、カーボンナノチューブとの混練物である導電性樹脂組成物であって、
前記カーボンナノチューブの平均繊維径が0.5〜50nmであり、
前記ポリプロピレン100質量部に対して、カーボンナノチューブを15〜70質量部含み、
導電性樹脂組成物の下記測定条件での引張り伸び率が30%以下である、導電性樹脂組成物。

引張り伸び率の測定;導電性樹脂組成物を熱プレスシート成形機に投入し200℃に加熱して、縦200mm・横200mm・厚み1.5mmのプレスシートを作製後、2号ダンベル型に打抜いて試験片とする。次いで、引張り速度100mm/分の条件で、JIS K −7127に準じて測定する。

A conductive resin composition which is a kneaded product of polypropylene having a density of 0.88 to 0.94 g / cm 3 and a weight average molecular weight of 2500 to 130000 and carbon nanotubes.
The average fiber diameter of the carbon nanotubes is 0.5 to 50 nm, and the carbon nanotubes have an average fiber diameter of 0.5 to 50 nm.
It contains 15 to 70 parts by mass of carbon nanotubes with respect to 100 parts by mass of the polypropylene.
A conductive resin composition having a tensile elongation of 30% or less under the following measurement conditions.

Measurement of tensile elongation; Put the conductive resin composition into a hot press sheet molding machine and heat it to 200 ° C to make a press sheet with a length of 200 mm, a width of 200 mm, and a thickness of 1.5 mm, and then hit it into a No. 2 dumbbell mold. Remove it to make a test piece. Then, the measurement is performed according to JIS K-7127 under the condition of a tensile speed of 100 mm / min.

JP2016075921A 2016-04-05 2016-04-05 Method for manufacturing conductive resin composition and molded product Active JP6972517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016075921A JP6972517B2 (en) 2016-04-05 2016-04-05 Method for manufacturing conductive resin composition and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016075921A JP6972517B2 (en) 2016-04-05 2016-04-05 Method for manufacturing conductive resin composition and molded product

Publications (3)

Publication Number Publication Date
JP2017186440A JP2017186440A (en) 2017-10-12
JP2017186440A5 JP2017186440A5 (en) 2019-03-28
JP6972517B2 true JP6972517B2 (en) 2021-11-24

Family

ID=60044602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075921A Active JP6972517B2 (en) 2016-04-05 2016-04-05 Method for manufacturing conductive resin composition and molded product

Country Status (1)

Country Link
JP (1) JP6972517B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116003907A (en) * 2022-12-21 2023-04-25 武汉金发科技有限公司 Polypropylene composite material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004148634A (en) * 2002-10-30 2004-05-27 Toppan Printing Co Ltd Laminate having antistatic function
CN101283027A (en) * 2005-08-08 2008-10-08 卡伯特公司 Polymeric compositions containing nanotubes
JP2013227538A (en) * 2012-03-30 2013-11-07 Sanyo Chem Ind Ltd Electroconductive filler-containing polyolefin resin composition
EP3045497B1 (en) * 2013-09-10 2020-03-25 Riken Technos Corporation Electrically conductive resin composition, and film produced from same
JP6780835B2 (en) * 2015-09-14 2020-11-04 片野染革株式会社 Resin composition, method for producing resin composition, powdery mixture, bipolar plate for redox flow battery, and separator for fuel cell

Also Published As

Publication number Publication date
JP2017186440A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6780363B2 (en) Conductive resin composition, molded product and method for producing the same
Pang et al. Super-tough conducting carbon nanotube/ultrahigh-molecular-weight polyethylene composites with segregated and double-percolated structure
Shrivastava et al. Development of electrical conductivity with minimum possible percolation threshold in multi-wall carbon nanotube/polystyrene composites
Inuwa et al. Mechanical and thermal properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites
Al-Saleh Electrically conductive carbon nanotube/polypropylene nanocomposite with improved mechanical properties
TWI445768B (en) Compositions comprising propylene-olefin-copolymer waxes and carbon nanotubes
Inuwa et al. Characterization and mechanical properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites
Xiang et al. Comparative study on the deformation behavior, structural evolution, and properties of biaxially stretched high‐density polyethylene/carbon nanofiller (carbon nanotubes, graphene nanoplatelets, and carbon black) composites
CN103842290A (en) Carbon nanotube composite material
JP2018513230A (en) Method for manufacturing composite articles having improved electrical properties
CN102585349A (en) Antistatic material, preparation method and applications of antistatic material
Pavoski et al. Polyethylene/reduced graphite oxide nanocomposites with improved morphology and conductivity
JP2015061891A (en) Production method of conductive resin composition master batch and master batch
Beyou et al. Polymer nanocomposites containing functionalised multiwalled carbon nanotubes: a particular attention to polyolefin based materials
Xiang et al. Processability, structural evolution and properties of melt processed biaxially stretched HDPE/MWCNT nanocomposites
KR101164287B1 (en) Carbon Nanotube-polymer Nanocomposite Improved In Electrical Conductivity And Preparation Method Thereof
Sui et al. Achieving excellent dispersion and electrical conductivity of olefin block copolymer/MWCNTs composites efficiently via high-shear processing
CN108084627A (en) HIPS base conductive agglomerates based on carbon nanotubes and graphene compound system and preparation method thereof
JP2019094486A (en) Conductive resin composition and method for producing the same
JP4869615B2 (en) Method for producing fine carbon fiber-containing resin composition
Kim et al. Nylon 610/functionalized multiwalled carbon nanotubes composites by in situ interfacial polymerization
JP6972517B2 (en) Method for manufacturing conductive resin composition and molded product
JP2021509124A (en) Conductive concentrated resin composition, conductive polyamide resin composition, its manufacturing method and molded product
JP5267468B2 (en) Conductive resin composition and method for producing conductive film
TW201402671A (en) Masterbatch for electrically conductive resin, and electrically conductive resin

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6972517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350