JP6970887B2 - Precast members for buried formwork, their design methods, and reinforced concrete decks - Google Patents

Precast members for buried formwork, their design methods, and reinforced concrete decks Download PDF

Info

Publication number
JP6970887B2
JP6970887B2 JP2017233943A JP2017233943A JP6970887B2 JP 6970887 B2 JP6970887 B2 JP 6970887B2 JP 2017233943 A JP2017233943 A JP 2017233943A JP 2017233943 A JP2017233943 A JP 2017233943A JP 6970887 B2 JP6970887 B2 JP 6970887B2
Authority
JP
Japan
Prior art keywords
grid
flat plate
concrete
precast member
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017233943A
Other languages
Japanese (ja)
Other versions
JP2019100122A (en
Inventor
篤史 武田
康之 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2017233943A priority Critical patent/JP6970887B2/en
Publication of JP2019100122A publication Critical patent/JP2019100122A/en
Application granted granted Critical
Publication of JP6970887B2 publication Critical patent/JP6970887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主として床版を構築する際に適用される埋設型枠用プレキャスト部材及びその設計方法並びに鉄筋コンクリート床版に関する。 The present invention relates mainly to a precast member for an embedded formwork applied when constructing a deck, a design method thereof, and a reinforced concrete deck.

港湾施設の一つである係留施設は、船舶を安全確実に接岸係留させるためのものであって、適切な維持管理や保守が必要不可欠であるが、高度成長期に構築されたものについては、建設から50年を経過しているため、トンネルや橋梁といった他の土木構造物と同様に老朽化が進んでおり、地震や波浪で大きな被害が生じることが懸念されている。 The mooring facility, which is one of the port facilities, is for mooring vessels safely and reliably, and proper maintenance and maintenance are indispensable. Since it has been 50 years since its construction, it is aging like other civil engineering structures such as tunnels and bridges, and there is concern that earthquakes and waves will cause great damage.

そのため、老朽化の進行に応じた対策が急務となっているが、係留施設については、海水中の塩化物イオンによって鉄筋が腐食するという特殊な環境下におかれており、対策を講じるにあたっては、塩化物イオンに対する耐久性の向上が重要になるほか、対策工が海水面上方での作業となるため、施工時における作業性や安全性への配慮も欠かせない。 Therefore, there is an urgent need to take measures according to the progress of aging, but the mooring facilities are placed in a special environment where the reinforcing bars are corroded by chloride ions in seawater, so when taking measures, In addition to improving durability against chloride ions, it is also essential to consider workability and safety during construction because the countermeasure work is done above the seawater surface.

係留施設においては、エプロンを構成する床版、特にその下面が塩化物イオンに長期間曝されるため、鉄筋腐食によってコンクリートが剥離する場合が多く、かかる場合には、既存の床版を撤去した上、あらたな床版を構築し直す必要があるが、これを現場打ちコンクリートで構築しようとすると、足場の組立解体や型枠の組立解体を海上で行わねばならないため、構築コストの増大はもちろんのこと、係留施設として供用できない期間が長期間に及び、物流等への影響も多大となる。 In mooring facilities, the floor slabs that make up the apron, especially the underside of the floor slabs, are exposed to chloride ions for a long period of time, so concrete often peels off due to rebar corrosion. In such cases, the existing floor slabs were removed. Above, it is necessary to rebuild a new floor slab, but if you try to build this with cast-in-place concrete, you will have to assemble and disassemble the scaffold and the formwork at sea, which will of course increase the construction cost. In addition, the period during which the facility cannot be used as a mooring facility will be long, and the impact on logistics will be great.

一方、上述したあらたな床版を、プレキャスト部材を用いて構築するようにすれば、施工期間の短縮が可能になるとともに、該プレキャスト部材をハーフプレキャスト部材とすることで、その運搬コストを軽減するとともに、埋設型枠として用いることにより、工事中は作業床として使用することも可能となり、足場の構築も必要最小限にとどめることができるとともに、型枠の組立解体の負担も軽減される(特許文献1)。 On the other hand, if the above-mentioned new floor slab is constructed using precast members, the construction period can be shortened, and by using the precast members as half precast members, the transportation cost can be reduced. At the same time, by using it as a buried formwork, it can be used as a work floor during construction, scaffolding can be kept to the minimum necessary, and the burden of assembling and disassembling the formwork is reduced (patented). Document 1).

特開2011−220059号公報Japanese Unexamined Patent Publication No. 2011-220059

しかしながら、床版を構築するにあたってハーフプレキャスト部材を埋設型枠とする場合、現場打設されたコンクリートが強度発現するまで、その重量を支持すべく、ハーフプレキャスト部材を相応の厚さで製作する必要があり、運搬時や揚重時の作業性は、フルプレキャスト部材よりは軽減されるという程度にとどまる。 However, when the half precast member is used as an embedded formwork when constructing the floor slab, it is necessary to manufacture the half precast member with an appropriate thickness in order to support the weight of the concrete cast in the field until the strength is developed. Therefore, the workability during transportation and lifting is limited to the extent that it is reduced compared to the full precast member.

それに対し、現場打設されるコンクリートを複数回に分割し、先行コンクリートの強度発現を待ってから次のコンクリートを打設するという手順を踏めば(特許文献1)、上述したハーフプレキャスト部材の荷重支持負担が軽減されるが、現場打設されるコンクリートを複数回に分割することは即、水平打継目を設ける場合の対策が要求されることを意味するものであって、先行コンクリートの打設直後に遅延剤を散布し、下層部分が硬化した適当な時期にコンクリート表面を高圧水で洗浄するといった打継面の処理を余儀なくされるとともに、鉄筋工事も、コンクリート工事と同様に複数回に分けた分割施工が強いられる。 On the other hand, if the procedure of dividing the concrete to be cast on-site into a plurality of times, waiting for the strength of the preceding concrete to be developed, and then casting the next concrete (Patent Document 1), the load of the above-mentioned half precast member is applied. Although the support burden is reduced, dividing the concrete to be cast on-site into multiple times means that measures are immediately required when a horizontal joint is to be provided, and the casting of the preceding concrete is required. Immediately afterwards, a retarding agent is sprayed, and the concrete surface is forced to be treated with high-pressure water at an appropriate time when the lower layer is hardened. At the same time, the reinforcing bar work is divided into multiple times as in the concrete work. Separate construction is forced.

すなわち、ハーフプレキャスト部材を厚くすれば、現場の鉄筋コンクリート工事への影響を回避することができるものの、小型化あるいは軽量化に限度があるため、運搬や設置にコストがかかるという問題が生じ、ハーフプレキャスト部材を薄くすれば、運搬や設置の際の作業性が向上するものの、現場の鉄筋コンクリート工事に影響が及んで工事期間が長くなるという問題を生じていた。 That is, if the half precast member is made thicker, it is possible to avoid the influence on the reinforced concrete work at the site, but there is a limit to the miniaturization or weight reduction, which causes a problem that transportation and installation are costly. If the members are made thinner, the workability during transportation and installation is improved, but there is a problem that the reinforced concrete work at the site is affected and the construction period becomes longer.

何より、コンクリートのひび割れが塩化物イオンの侵入経路となるため、係留施設の場合には、ひび割れを最小限にとどめることが重要になるところ、埋設型枠として用いるハーフプレキャスト部材を薄くすると、現場打設されたコンクリートの重量によってひび割れが生じ、それ自体の耐久性が低下するとともに、該ひび割れを介した塩化物イオンが、現場施工された鉄筋コンクリートにも侵入してその耐久性をも低下させるという問題を生じていた。 Above all, cracks in concrete are the entry route for chloride ions, so in the case of mooring facilities, it is important to minimize cracks. The problem is that the weight of the installed concrete causes cracks, which reduces the durability of the concrete itself, and the chloride ions through the cracks also invade the reinforced concrete constructed on site and reduce the durability. Was occurring.

本発明は、上述した事情を考慮してなされたもので、現場の鉄筋コンクリート工事に影響を及ぼすことなく薄肉化を実現するとともに、ひび割れ発生を防止することで塩化物イオンに対する耐久性を高めることが可能な埋設型枠用プレキャスト部材及びその設計方法並びに鉄筋コンクリート床版を提供することを目的とする。 The present invention has been made in consideration of the above-mentioned circumstances, and it is possible to realize thinning without affecting the reinforced concrete work at the site and to improve the durability against chloride ions by preventing the occurrence of cracks. It is an object of the present invention to provide a possible precast member for an embedded formwork, a design method thereof, and a reinforced concrete deck.

上記目的を達成するため、本発明に係る埋設型枠用プレキャスト部材は請求項1に記載したように、格子状をなしコンクリート打設側に拡がる面とその背面側であるコンクリート非打設側に拡がる面とをそれぞれ第1のグリッド面、第2のグリッド面として有するグリッド部と、該グリッド部からその各格子空間に延設されコンクリート打設側に拡がる面とその背面側であるコンクリート非打設側に拡がる面とをそれぞれ第1の平板面、第2の平板面として有する複数の平板部とを備え、前記グリッド部及び前記各平板部を、前記第1の平板面が前記第1のグリッド面と面一になり、前記第2の平板面が前記第2のグリッド面から後退するように、かつ前記グリッド部及び前記各平板部が互いに一体となるように繊維補強コンクリートで構成するとともに、前記グリッド部にその材軸に沿うように棒状又は線状の引張抵抗材を埋設し、該引張抵抗材を、その断面中心が前記第2の平板面に相当する位置から前記第2のグリッド面の側にずれた位置となるように位置決めしたものである。 In order to achieve the above object, as described in claim 1, the precast member for an embedded formwork according to the present invention has a grid pattern and is formed on a surface extending to the concrete placing side and a surface on the back side thereof, which is the concrete non-casting side. A grid portion having an expanding surface as a first grid surface and a second grid surface, respectively, a surface extending from the grid portion to each grid space and expanding to the concrete placing side, and a concrete non-casting surface on the back side thereof. It is provided with a plurality of flat plate portions having a surface extending to the concrete side as a first flat plate surface and a second flat plate surface, respectively, and the grid portion and each flat plate portion are provided with the first flat plate surface having the first flat plate surface. It is made of fiber reinforced concrete so as to be flush with the grid surface, the second flat plate surface recedes from the second grid surface, and the grid portion and each flat plate portion are integrated with each other. A rod-shaped or linear tensile resistance material is embedded in the grid portion along the material axis, and the tensile resistance material is placed in the second grid from a position where the center of the cross section corresponds to the second flat plate surface. It is positioned so that it is displaced to the side of the surface.

また、本発明に係る埋設型枠用プレキャスト部材は、前記引張抵抗材を、耐薬品性材料で構成し、又は耐薬品性材料で被覆されてなる鋼材で構成したものである。 Further, in the precast member for an embedded formwork according to the present invention, the tensile resistance material is made of a chemical resistant material or a steel material coated with the chemical resistant material.

また、本発明に係る埋設型枠用プレキャスト部材は、前記繊維補強コンクリートを、常温硬化型の超高強度繊維補強コンクリートとしたものである。 Further, in the precast member for an embedded formwork according to the present invention, the fiber reinforced concrete is made of a room temperature curing type ultra-high strength fiber reinforced concrete.

また、本発明に係る鉄筋コンクリート床版は請求項4に記載したように、請求項1乃至請求項3のいずれか一記載の埋設型枠用プレキャスト部材と、該埋設型枠用プレキャスト部材を底版として該底版上にコンクリートが現場打設されてなる鉄筋コンクリート層とで構成したものである。 Further, as described in claim 4, the reinforced concrete deck according to the present invention uses the buried formwork precast member according to any one of claims 1 to 3 and the buried formwork precast member as a bottom slab. It is composed of a reinforced concrete layer in which concrete is cast on-site on the bottom slab.

また、本発明に係る埋設型枠用プレキャスト部材の設計方法は請求項5に記載したように、請求項1乃至請求項3のいずれか一記載の埋設型枠用プレキャスト部材を設計する方法であって、該埋設型枠用プレキャスト部材を埋設型枠としてそのコンクリート打設側にコンクリートを現場打設したとき、前記埋設型枠用プレキャスト部材及び前記コンクリートの重量によって前記平板部に生じる引張ひずみが、該平板部のひび割れひずみを上回らないように、前記平板部の厚さ、前記グリッド部の格子間隔又は前記グリッド部の断面係数を決定するものである。 Further, as described in claim 5, the method for designing the precast member for buried formwork according to the present invention is the method for designing the precast member for buried formwork according to any one of claims 1 to 3. When concrete is cast on-site on the concrete casting side using the buried formwork precast member as the buried formwork, the tensile strain generated in the flat plate portion due to the weight of the buried formwork precast member and the concrete is generated. The thickness of the flat plate portion, the grid spacing of the grid portion, or the cross-sectional coefficient of the grid portion is determined so as not to exceed the crack strain of the flat plate portion.

本発明に係る埋設型枠用プレキャスト部材においては、格子状をなすグリッド部と、該グリッド部からその各格子空間に延設された複数の平板部とを備えるが、グリッド部及び複数の平板部を、これらが互いに一体となるように繊維補強コンクリートで構成してあるので、十分な強度を確保しつつ平板部の薄肉化を図ることができるとともに、これらグリッド部及び複数の平板部を構成するにあたり、コンクリート打設側では、第1の平板面が第1のグリッド面と面一になり、コンクリート非打設側では、第2の平板面が第2のグリッド面から後退する、換言すれば第2のグリッド面が第2の平板面から突出するように、グリッド部及び複数の平板部を構成してあるので、グリッド部は、コンクリート打設側に打設されたコンクリートの荷重に対し、全体の曲げ剛性を高める役割を果たす。 The precast member for an embedded formwork according to the present invention includes a grid portion forming a grid shape and a plurality of flat plate portions extending from the grid portion to each of the grid spaces, and includes a grid portion and a plurality of flat plate portions. Since these are made of fiber reinforced concrete so as to be integrated with each other, it is possible to reduce the thickness of the flat plate portion while ensuring sufficient strength, and also constitute these grid portions and a plurality of flat plate portions. On the concrete casting side, the first flat plate surface is flush with the first grid surface, and on the concrete non-casting side, the second flat plate surface recedes from the second grid surface, in other words. Since the grid portion and the plurality of flat plate portions are configured so that the second grid surface protrudes from the second flat plate surface, the grid portion receives the load of the concrete placed on the concrete placing side. It plays a role in increasing the overall bending rigidity.

また、本発明に係る埋設型枠用プレキャスト部材においては、グリッド部にその材軸に沿うように棒状又は線状の引張抵抗材を埋設し、該引張抵抗材を、その断面中心が第2の平板面に相当する位置から第2のグリッド面の側にずれた位置となるように位置決めしてある。 Further, in the precast member for an embedded formwork according to the present invention, a rod-shaped or linear tensile resistance material is embedded in the grid portion along the material axis, and the tensile resistance material has a second cross-sectional center. It is positioned so as to be offset from the position corresponding to the flat plate surface to the side of the second grid surface.

このようにすると、上述したコンクリートの荷重及び埋設型枠用プレキャスト部材の自重による曲げモーメントに対し、横断面における圧縮側と引張側の境界位置、言い換えれば中立軸は、グリッド部を設けずに平板部のみで構成した場合に比べれば、コンクリート非打設側に大きくシフトし、無筋のグリッド部(引張抵抗材がないグリッド部)を設けた場合と比べても、コンクリート非打設側にシフトするので、平板部の厚さ、グリッド部の格子間隔、又はグリッド部の断面係数を適宜設定することによって、平板部に引張ひずみが発生しないか、少なくともひび割れが発生するほどの引張ひずみの発生が防止される。 In this way, the boundary position between the compression side and the tension side in the cross section, in other words, the neutral axis, is a flat plate without a grid portion with respect to the bending moment due to the load of the concrete and the weight of the precast member for the buried formwork. Compared to the case where it is composed of only parts, it shifts significantly to the concrete non-casting side, and even when it is provided with a non-reinforced grid part (grid part without tensile resistance material), it shifts to the concrete non-casting side. Therefore, by appropriately setting the thickness of the flat plate portion, the grid spacing of the grid portion, or the section modulus of the grid portion, tensile strain does not occur in the flat plate portion, or at least tensile strain occurs to the extent that cracks occur. Be prevented.

そのため、コンクリートのひび割れを経路とした塩化物イオンや二酸化炭素の侵入を防止することが可能となり、埋設型枠用プレキャスト部材、ひいてはそれを用いた鉄筋コンクリート構造の耐久性を大幅に向上させることができる。 Therefore, it is possible to prevent the intrusion of chloride ions and carbon dioxide through cracks in the concrete, and it is possible to greatly improve the durability of the precast member for the buried formwork and the reinforced concrete structure using the precast member. ..

本発明に係る埋設型枠用プレキャスト部材は、適用される鉄筋コンクリート構造の構築に必要なコンクリートを一括打設する場合に上述したひび割れ防止作用が発揮されるのが望ましいが、打継ぎを設けつつコンクリートを分割打設する場合が排除されるものではなく、このような場合であっても、従来の埋設型枠用プレキャスト部材であればひび割れが発生し、あるいは埋設型枠用プレキャスト部材を厚くせざるを得ない状況において、上述のひび割れ防止作用が発揮されることに何ら変わりはない。 It is desirable that the precast member for buried formwork according to the present invention exerts the above-mentioned crack prevention effect when the concrete necessary for constructing the reinforced concrete structure to be applied is cast all at once, but the concrete is provided with a joint. The case of split casting is not excluded, and even in such a case, cracks occur in the conventional precast member for the buried formwork, or the precast member for the buried formwork must be thickened. There is no difference in the above-mentioned anti-cracking effect being exerted in the situation where the above-mentioned is not obtained.

本発明でいう格子状とは、互いに直交する狭義の格子形態であってその各格子空間が正方形や長方形となる場合のみならず、各格子空間が三角形、ひし形、平行四辺形等の任意の多角形となるように交差する形態を意味するものとする。 The grid shape referred to in the present invention is not only a grid form in a narrow sense orthogonal to each other and each grid space is a square or a rectangle, but also an arbitrary multiple such as a triangle, a rhombus, a parallelogram, etc. It shall mean a form that intersects so as to form a square.

グリッド部は、それに埋設された引張抵抗材によって、中立軸をコンクリート非打設側にシフトさせて平板部にひび割れを発生させないようにするための構成要素であって、平板を単に補剛するだけのリブや、柱への荷重伝達を目的とした梁とは、その目的や作用が本質的に異なるものである。 The grid portion is a component for shifting the neutral axis to the concrete non-casting side by the tensile resistance material embedded in the grid portion so as not to cause cracks in the flat plate portion, and simply stiffens the flat plate. The purpose and action of the beam are essentially different from those of the ribs and beams intended to transmit the load to the columns.

ここで、本発明に係る埋設型枠用プレキャスト部材は、その自重及び現場打設されるコンクリートの荷重によるひび割れを防止する必要がある限り、柱、梁、壁等の任意の部位の鉄筋コンクリート構造に適用することができるし、適用される現場や環境も任意であるが、適用部位としては床版に適用する、すなわち、埋設型枠用プレキャスト部材と該埋設型枠用プレキャスト部材を底版として該底版上にコンクリートが現場打設されてなる鉄筋コンクリート層とで鉄筋コンクリート床版を構成する例が典型例となる。 Here, the precast member for an embedded formwork according to the present invention has a reinforced concrete structure of any part such as a pillar, a beam, a wall, etc., as long as it is necessary to prevent cracking due to its own weight and the load of concrete placed on site. It can be applied, and the site and environment to which it is applied are arbitrary, but the application site is applied to the floor slab, that is, the precast member for the buried formwork and the precast member for the buried formwork are used as the bottom slab. A typical example is a reinforced concrete slab composed of a reinforced concrete layer in which concrete is cast on site.

また、適用環境としては、港湾施設や海洋構造物を構成する鉄筋コンクリート構造に適用する場合が典型例であって、かかる典型例においては、ひび割れを経路とした塩化物イオンの侵入を防止し、埋設型枠用プレキャスト部材、さらにはそれを埋設型枠として現場構築される鉄筋コンクリート構造の耐久性を向上させることが可能となる。 In addition, as a typical application environment, the case where it is applied to a reinforced concrete structure constituting a port facility or an offshore structure is a typical example, and in such a typical example, chloride ions are prevented from entering through cracks and buried. It is possible to improve the durability of precast members for formwork and reinforced concrete structures constructed on-site using them as buried formwork.

上述した各発明において、棒状又は線状の引張抵抗材は任意のものを採用することができるが、該引張抵抗材を、耐薬品性材料で構成し、又は耐薬品性材料で被覆されてなる鋼材で構成したならば、第2のグリッド面近傍で発生したひび割れから塩化物イオンや二酸化炭素が侵入したとしても、該塩化物イオンや二酸化炭素による引張抵抗材の腐食は、未然に防止される。耐薬品性材料で構成された引張抵抗材としては、ステンレス鉄筋、連続繊維ロッド等が包摂され、耐薬品性材料で被覆されてなる鋼材で構成された引張抵抗材としては、エポキシ樹脂やナイロン等で被覆されてなる被覆鉄筋、溶融亜鉛めっき鉄筋、被覆PC鋼線等が包摂される。また、耐薬品性材料には、耐塩害性材料が包摂される。 In each of the above-mentioned inventions, any rod-shaped or linear tensile resistance material can be adopted, and the tensile resistance material is made of a chemical-resistant material or coated with a chemical-resistant material. If it is made of steel, even if chloride ions or carbon dioxide invade from cracks generated near the second grid surface, corrosion of the tensile resistance material due to the chloride ions or carbon dioxide can be prevented. .. The tensile resistance material made of a chemical resistant material includes stainless steel reinforcing bars, continuous fiber rods, etc., and the tensile resistance material made of a steel material coated with a chemical resistant material includes epoxy resin, nylon, etc. A coated reinforcing bar, a hot-dip galvanized reinforcing bar, a coated PC steel wire, etc., which are covered with a resin, are included. Further, the chemical resistant material includes a salt damage resistant material.

繊維補強コンクリートは、任意の配合のものを採用することができるが、高強度繊維補強コンクリート、さらには超高強度繊維補強コンクリート(UFC)とするのが望ましい。 As the fiber reinforced concrete, any composition can be adopted, but it is preferable to use high-strength fiber-reinforced concrete and even ultra-high-strength fiber-reinforced concrete (UFC).

超高強度繊維補強コンクリートとしては、圧縮強度が150N/mm2以上でかつ引張強度が5N/mm2のもの、あるいは圧縮強度が180N/mm2以上でかつ引張強度が8N/mm2以上のものが典型例となる。 The ultra-high strength fiber reinforced concrete has a compressive strength of 150 N / mm 2 or more and a tensile strength of 5 N / mm 2 , or a compressive strength of 180 N / mm 2 or more and a tensile strength of 8 N / mm 2 or more. Is a typical example.

ここで、上述の繊維補強コンクリートを、常温硬化型の超高強度繊維補強コンクリートとしたならば、埋設型枠用プレキャスト部材を現場で製作することが可能となり、該埋設型枠用プレキャスト部材を工場から現場に運搬する手間を省くことができる。 Here, if the above-mentioned fiber reinforced concrete is a room temperature curing type ultra-high-strength fiber reinforced concrete, it becomes possible to manufacture precast members for buried formwork on site, and the precast members for buried formwork can be manufactured at the factory. It is possible to save the trouble of transporting to the site.

本発明に係る埋設型枠用プレキャスト部材の設計方法においては、上述した本発明に係る埋設型枠用プレキャスト部材を埋設型枠としてそのコンクリート打設側にコンクリートを現場打設したとき、前記埋設型枠用プレキャスト部材及び前記コンクリートの重量によって前記平板部に生じる引張ひずみが、該平板部のひび割れひずみを上回らないように、前記平板部の厚さ、前記グリッド部の格子間隔又は前記グリッド部の断面係数を決定する。 In the method for designing a precast member for an embedded formwork according to the present invention, when the above-mentioned precast member for an embedded formwork according to the present invention is used as an embedded formwork and concrete is cast on the concrete casting side, the embedded mold is used. The thickness of the flat plate portion, the grid spacing of the grid portion, or the cross section of the grid portion so that the tensile strain generated in the flat plate portion due to the weight of the precast member for the frame and the concrete does not exceed the crack strain of the flat plate portion. Determine the coefficient.

このようにすれば、引張ひずみに起因する平板部のひび割れ発生を防止することが可能となり、かくして平板部の薄肉化を図りつつ、埋設型枠用プレキャスト部材、さらにはそれを埋設型枠として現場構築される鉄筋コンクリート構造の耐久性を向上させることが可能となる。 By doing so, it is possible to prevent the occurrence of cracks in the flat plate portion due to tensile strain, and thus while reducing the thickness of the flat plate portion, the precast member for the embedded formwork, and further, the site as the embedded formwork. It is possible to improve the durability of the reinforced concrete structure to be constructed.

設計の際に用いられるコンクリート打設量は、適用される鉄筋コンクリート構造の構築に必要なコンクリートを一括打設する場合に必要な量、鉄筋コンクリート床版であれば、床面まで打ち上げるのに必要な現場コンクリートの全量が典型例となるものの、打継ぎを設けつつコンクリートを分割打設する場合が排除されるものではなく、その場合、最初に打設されたコンクリートの強度発現を待って二回目以降のコンクリート打設が行われる場合には、初回分のコンクリート量で設計を行ってもかまわない。 The amount of concrete to be cast used at the time of design is the amount required to cast the concrete required to construct the applicable reinforced concrete structure in a batch, and if it is a reinforced concrete slab, the site required to launch it to the floor surface. Although the total amount of concrete is a typical example, the case where concrete is divided and placed while providing joints is not excluded. In that case, the strength of the first concrete is waited for the second and subsequent times. When concrete is placed, the design may be performed with the amount of concrete for the first time.

本実施形態に係る埋設型枠用プレキャスト部材の図であり、(a)は平面図、(b)は底面図。It is a figure of the precast member for an embedded formwork which concerns on this embodiment, (a) is a plan view, (b) is a bottom view. 同じく埋設型枠用プレキャスト部材の図であり、(a)はA−A線に沿う断面図、(b)はその部分拡大図。Similarly, it is a diagram of a precast member for an embedded formwork, (a) is a cross-sectional view along the AA line, and (b) is a partially enlarged view thereof. 本実施形態に係る埋設型枠用プレキャスト部材の作用を示した説明図。Explanatory drawing which showed the operation of the precast member for an embedded formwork which concerns on this embodiment. 本実施形態に係る埋設型枠用プレキャスト部材の設計方法に関する説明図。Explanatory drawing about the design method of the precast member for an embedded formwork which concerns on this embodiment. 本実施形態に係る埋設型枠用プレキャスト部材を用いて鉄筋コンクリート床版を構築する手順を示した施工図であり、(a)は、改修対象の床版を撤去する前の平面図、(b)は同じくB−B線に沿う鉛直断面図。It is a construction drawing which showed the procedure of constructing the reinforced concrete deck using the precast member for the buried formwork which concerns on this embodiment, (a) is the plan view before removing the deck to be repaired, (b). Is also a vertical cross-sectional view along the BB line. 引き続き鉄筋コンクリート床版の構築手順を示した施工図であり、(a)は、改修対象の床版を撤去した後の平面図、(b)は同じくC−C線に沿う鉛直断面図。It is a construction drawing showing the construction procedure of the reinforced concrete deck, (a) is a plan view after removing the deck to be repaired, and (b) is a vertical cross-sectional view along the CC line. 引き続き鉄筋コンクリート床版の構築手順を示した施工図であり、(a)は、本実施形態に係る埋設型枠用プレキャスト部材を配置した様子を示した平面図、(b)は同じくD−D線に沿う鉛直断面図。It is a construction drawing showing the construction procedure of the reinforced concrete deck, (a) is a plan view showing how the precast member for the buried formwork according to this embodiment is arranged, and (b) is the same line DD. Vertical cross-sectional view along. 引き続き鉄筋コンクリート床版の構築手順を示した施工図であり、(a)は、埋設型枠用プレキャスト部材の上方に鉄筋を配置した様子を示した平面図、(b)は同じくE−E線に沿う鉛直断面図。It is a construction drawing showing the construction procedure of the reinforced concrete deck, (a) is a plan view showing how the reinforcing bars are arranged above the precast member for the buried formwork, and (b) is also on the EE line. Vertical cross section along. 引き続き鉄筋コンクリート床版の構築手順を示した施工図であり、(a)は、埋設型枠用プレキャスト部材の上方にコンクリートを打設した様子を示した平面図、(b)は同じくF−F線に沿う鉛直断面図。It is a construction drawing showing the construction procedure of the reinforced concrete deck, (a) is a plan view showing how concrete is placed above the precast member for the buried formwork, and (b) is also the FF line. Vertical cross-sectional view along.

以下、本発明に係る埋設型枠用プレキャスト部材及びその設計方法並びに鉄筋コンクリート床版の実施の形態について、添付図面を参照して説明する。 Hereinafter, a precast member for an embedded formwork, a design method thereof, and an embodiment of a reinforced concrete deck according to the present invention will be described with reference to the accompanying drawings.

図1及び図2は、本実施形態に係る埋設型枠用プレキャスト部材1を示した平面図、底面図、A−A断面図及び該断面図の部分拡大図である。 1 and 2 are a plan view, a bottom view, an AA cross-sectional view, and a partially enlarged view of the cross-sectional view showing the precast member 1 for an embedded formwork according to the present embodiment.

本実施形態に係る埋設型枠用プレキャスト部材1は、鉄筋コンクリート床版を構築する際に用いる埋設型枠として製作されたものであって、図1及び図2に示されているように、格子状をなすグリッド部2と、該グリッド部からその各格子空間に延設された複数の平板部3とを備えてなる。 The precast member 1 for an embedded formwork according to the present embodiment is manufactured as an embedded formwork used when constructing a reinforced concrete deck, and has a grid pattern as shown in FIGS. 1 and 2. A grid portion 2 forming a grid portion 2 and a plurality of flat plate portions 3 extending from the grid portion to each of the grid spaces are provided.

グリッド部2は、互いに直交するようにかつその各格子空間の平面形状が正方形となるように構成してあり、横断面(図2(b)参照)は、例えば高さ125mm、幅100mm程度の長方形断面をなすとともに、平面2方向でいずれも800mm程度の格子間隔となるように構成してある。 The grid portion 2 is configured so as to be orthogonal to each other and the planar shape of each lattice space is square, and the cross section (see FIG. 2B) has, for example, a height of 125 mm and a width of about 100 mm. It has a rectangular cross section and is configured so that the lattice spacing is about 800 mm in each of the two plane directions.

各平板部3は、グリッド部2に合わせて平面形状が正方形となっており、その周縁が該平板部を取り囲むグリッド部2の4つの側面に一体的に接続されるように、該グリッド部の各格子空間にそれぞれ配置してあり、例えば25mm程度の厚さを有する。 Each flat plate portion 3 has a square planar shape in accordance with the grid portion 2, and the peripheral edge of each flat plate portion 3 is integrally connected to the four side surfaces of the grid portion 2 surrounding the flat plate portion. It is arranged in each lattice space and has a thickness of, for example, about 25 mm.

グリッド部2及び各平板部3は図2(b)でよくわかるように、コンクリート打設側(図2では埋設型枠用プレキャスト部材1の上方)に拡がる面である第1の平板面としての平板面12aが、同じくコンクリート打設側に拡がる面である第1のグリッド面としてのグリッド面11aと面一になるように構成してあるとともに、それらの背面側においては、コンクリート非打設側(図2では埋設型枠用プレキャスト部材1の下方)に拡がる面である第2の平板面としての平板面12bが、同じくコンクリート非打設側に拡がる面である第2のグリッド面としてのグリッド面11bから後退するように、換言すれば、グリッド面11bが平板面12bから突出するように構成してある。 As can be clearly seen in FIG. 2B, the grid portion 2 and each flat plate portion 3 serve as a first flat plate surface that extends to the concrete casting side (above the precast member 1 for the buried formwork in FIG. 2). The flat plate surface 12a is configured to be flush with the grid surface 11a as the first grid surface, which also extends to the concrete casting side, and on the back side thereof, the concrete non-casting side. The grid as the second grid surface where the flat plate surface 12b as the second flat plate surface, which is the surface extending to (below the precast member 1 for the buried formwork in FIG. 2), also extends to the concrete non-casting side. In other words, the grid surface 11b is configured to protrude from the flat plate surface 12b so as to recede from the surface 11b.

グリッド部2及び各平板部3は、これらが互いに一体となるように繊維補強コンクリートで構成してあるが、本実施形態では、かかる繊維補強コンクリートを、常温硬化型の超高強度繊維補強コンクリート(UFC)としてある。 The grid portion 2 and each flat plate portion 3 are made of fiber reinforced concrete so that they are integrated with each other. In the present embodiment, the fiber reinforced concrete is made of a room temperature hardening type ultra-high strength fiber reinforced concrete ( UFC).

ここで、グリッド部2には、その材軸に沿うように、棒状又は線状の引張抵抗材、特に耐薬品性材料で被覆されてなる鋼材としてのエポキシ樹脂塗装鉄筋で構成されてなる鉄筋13を埋設するとともに、該鉄筋を、その断面中心が第2の平板面12bに相当する位置から第2のグリッド面11bの側にずれた位置となるように位置決めしてある。 Here, the grid portion 2 is formed of a reinforcing bar 13 made of a rod-shaped or linear tensile resistance material, particularly an epoxy resin-coated reinforcing bar as a steel material coated with a chemical-resistant material so as to follow the material axis. And the reinforcing bar is positioned so that the center of the cross section is displaced from the position corresponding to the second flat plate surface 12b to the side of the second grid surface 11b.

鉄筋13は、グリッド部2の材軸に沿うように該グリッド部に水平2方向に埋設されるため、全体の平面配置形態は、互いに直交する格子配置となるが、それらの交差箇所については、図2(b)でわかるように鉄筋径の寸法だけ高さ方句にずらせばよい。 Since the reinforcing bars 13 are embedded in the grid portion in two horizontal directions along the material axis of the grid portion 2, the overall planar arrangement form is a grid arrangement orthogonal to each other. As can be seen in FIG. 2 (b), the reinforcing bar diameter may be shifted to the height phrase by the dimension.

なお、平板部2は、鉄筋が埋設されないため、無筋の繊維補強コンクリートとなる。 Since the reinforcing bar is not embedded in the flat plate portion 2, the flat plate portion 2 is made of unreinforced fiber reinforced concrete.

本実施形態に係る埋設型枠用プレキャスト部材1においては、格子状をなすグリッド部2と該グリッド部からその各格子空間に延設された複数の平板部3とを備えるが、グリッド部2及び複数の平板部3を、これらが互いに一体となるように超高強度繊維補強コンクリート(UFC)で構成してあるので、十分な強度を確保しつつ平板部の薄肉化を図ることができるとともに、これらグリッド部2及び複数の平板部3は、コンクリート打設側で平板面12aがグリッド面11aと面一になり、コンクリート非打設側でグリッド面11bが平板面12bから突出するように構成してあるので、グリッド部2は、コンクリート打設側に打設されたコンクリートの荷重に対し、全体の曲げ剛性を高める役割を果たす。 The precast member 1 for an embedded form according to the present embodiment includes a grid portion 2 forming a grid shape and a plurality of flat plate portions 3 extending from the grid portion to each of the grid spaces, but the grid portion 2 and the precast member 1 are provided. Since the plurality of flat plate portions 3 are made of ultra-high-strength fiber reinforced concrete (UFC) so as to be integrated with each other, it is possible to reduce the thickness of the flat plate portions while ensuring sufficient strength. The grid portion 2 and the plurality of flat plate portions 3 are configured such that the flat plate surface 12a is flush with the grid surface 11a on the concrete casting side and the grid surface 11b protrudes from the flat plate surface 12b on the concrete non-casting side. Therefore, the grid portion 2 plays a role of increasing the overall bending strength against the load of the concrete placed on the concrete placing side.

また、本実施形態に係る埋設型枠用プレキャスト部材1においては、グリッド部2にその材軸に沿うように鉄筋13を埋設し、該鉄筋を、その断面中心が平板面12bに相当する位置からグリッド面11bの側にずれた位置となるように位置決めしてあるので、平板部3の厚さ、グリッド部2の格子間隔、グリッド部2の断面係数、鉄筋13の断面積等を適宜設定することによって、平板部3に引張ひずみを発生させないか、発生したとしても、ひび割れが発生しない程度にその大きさを抑制することができる。 Further, in the precast member 1 for an embedded formwork according to the present embodiment, a reinforcing bar 13 is embedded in the grid portion 2 along the material axis, and the reinforcing bar is placed from a position where the center of the cross section corresponds to the flat plate surface 12b. Since the position is shifted to the side of the grid surface 11b, the thickness of the flat plate portion 3, the grid spacing of the grid portion 2, the section modulus of the grid portion 2, the cross-sectional area of the reinforcing bar 13, and the like are appropriately set. As a result, it is possible to prevent the flat plate portion 3 from generating tensile strain, or even if it does occur, its magnitude can be suppressed to the extent that cracks do not occur.

すなわち、現場打設されたフレッシュコンクリートの重量と埋設型枠の自重が該埋設型枠に作用して曲げモーメントが生じたとき、その横断面における圧縮側と引張側の境界位置、言い換えれば中立軸は、平板部のみで構成された埋設型枠(従来の埋設型枠)の場合、図3(a)に示したように、平板の断面中央に位置することとなり、平板の下半分には引張ひずみが発生する。そのため、所定の引張強度を有する超高強度繊維補強コンクリートを用いたとしても、従来の埋設型枠では、下面におけるひび割れ発生の防止は困難である。 That is, when the weight of the fresh concrete cast in the field and the weight of the buried formwork act on the buried formwork to generate a bending moment, the boundary position between the compression side and the tension side in the cross section, in other words, the neutral axis. Is located in the center of the cross section of the flat plate as shown in FIG. 3A in the case of a buried formwork (conventional buried formwork) composed of only the flat plate portion, and tension is applied to the lower half of the flat plate. Distortion occurs. Therefore, even if ultra-high-strength fiber-reinforced concrete having a predetermined tensile strength is used, it is difficult to prevent the occurrence of cracks on the lower surface with the conventional embedded formwork.

また、平板部に鉄筋が埋設されていないグリッド部が加わった埋設型枠を仮定すると、該埋設型枠の場合には、同図(b)に示すように、グリッド部が引張応力を負担する分、中立軸が(a)の場合よりも下方にシフトし、平板部に生じる引張ひずみの領域が減少するが、グリッド部近傍であればともかく、格子間中央付近では撓みが大きくなるため、平板部の下面でひび割れが発生しないようにすることはやはり困難である。 Further, assuming an embedded formwork in which a grid portion in which reinforcing bars are not embedded is added to the flat plate portion, in the case of the buried formwork, the grid portion bears the tensile stress as shown in FIG. The neutral axis shifts downward compared to the case of (a), and the area of tensile strain generated in the flat plate portion decreases. It is still difficult to prevent cracks from occurring on the lower surface of the portion.

一方、本実施形態における埋設型枠用プレキャスト部材1においては、同図(c)に示すように、鉄筋13が埋設されたグリッド部2が引張応力を十分に負担するため、中立軸はさらに下方にシフトし、平板部3のうち、グリッド部2の近傍(平板部3の周縁)では、引張ひずみが生じなくなる。 On the other hand, in the precast member 1 for an embedded formwork in the present embodiment, as shown in FIG. 3C, the grid portion 2 in which the reinforcing bar 13 is embedded sufficiently bears the tensile stress, so that the neutral axis is further lowered. In the vicinity of the grid portion 2 (periphery of the flat plate portion 3) of the flat plate portion 3, tensile strain does not occur.

そのため、平板部3の厚さ、グリッド部2の格子間隔、グリッド部2の断面係数、鉄筋13の断面積等を適宜設定することによって、平板部3のすべての平面位置で引張ひずみεがひび割れひずみεcを上回らないように、グリッド部2及び平板部3を構成することが可能となる。 Therefore, by appropriately setting the thickness of the flat plate portion 3, the grid spacing of the grid portion 2, the section modulus of the grid portion 2, the cross-sectional area of the reinforcing bar 13, and the like, the tensile strain ε is cracked at all the plane positions of the flat plate portion 3. The grid portion 2 and the flat plate portion 3 can be configured so as not to exceed the strain ε c.

したがって、本実施形態に係る埋設型枠用プレキャスト部材1を設計するにあたっては、該埋設型枠用プレキャスト部材を埋設型枠としてそのコンクリート打設側にコンクリートを現場打設したとき、該コンクリートの重量及び自重によって平板部3に生じる引張ひずみεが、該平板部のひび割れひずみεcを上回らないように、平板部3の厚さ、グリッド部2の格子間隔、グリッド部2の断面係数、鉄筋13の断面積等を決定すればよい。 Therefore, in designing the precast member 1 for the buried formwork according to the present embodiment, when the precast member for the buried formwork is used as the buried formwork and concrete is cast on the concrete casting side, the weight of the concrete is applied. The thickness of the flat plate portion 3, the grid spacing of the grid portion 2, the cross-sectional coefficient of the grid portion 2, and the reinforcing bar 13 so that the tensile strain ε generated in the flat plate portion 3 due to its own weight does not exceed the crack strain ε c of the flat plate portion. The cross-sectional area and the like may be determined.

具体的に説明すると、平板部3の板厚tは、図4(a)に示すように値が大きいほど、引張ひずみεが小さくなるので、グリッド部2の格子間隔Lやグリッド部2の断面係数Zが既に決定している場合には、引張ひずみεが、ひび割れひずみεc以下となる板厚tcを下限として、平板部3の板厚tを決定すればよい。 More specifically, as shown in FIG. 4A, the larger the value of the plate thickness t of the flat plate portion 3, the smaller the tensile strain ε. Therefore, the grid spacing L of the grid portion 2 and the cross section of the grid portion 2 When the coefficient Z has already been determined, the plate thickness t of the flat plate portion 3 may be determined with the plate thickness t c at which the tensile strain ε is equal to or less than the crack strain ε c as the lower limit.

なお、平板部3は、その上方に現場打設されるコンクリートのいわば被り部分となるため、その板厚tは、UFCに関する指針で規定されているように、20mm以上とするのが望ましい。 Since the flat plate portion 3 is a so-called covering portion of concrete cast on site above the flat plate portion 3, it is desirable that the plate thickness t be 20 mm or more as specified in the guideline for UFC.

また、グリッド部2の格子間隔Lは、図4(b)に示すように値が小さいほど、引張ひずみεが小さくなるので、平板部3の板厚tやグリッド部2の断面係数Zが既に決定している場合には、引張ひずみεが、ひび割れひずみεc以下となる格子間隔Lcを上限として、グリッド部2の格子間隔Lを決定すればよい。 Further, as shown in FIG. 4B, the smaller the value of the grid spacing L of the grid portion 2, the smaller the tensile strain ε, so that the plate thickness t of the flat plate portion 3 and the cross-sectional coefficient Z of the grid portion 2 have already been obtained. If it has been determined, the grid spacing L of the grid portion 2 may be determined with the grid spacing L c at which the tensile strain ε is equal to or less than the crack strain ε c as the upper limit.

また、グリッド部2の断面係数Zは、図4(c)に示すように値が大きいほど、引張ひずみεが小さくなるので、平板部3の板厚tやグリッド部2の格子間隔Lが既に決定している場合には、引張ひずみεが、ひび割れひずみεc以下となる断面係数Zcを下限として、グリッド部2の断面係数Zを決定すればよい。 Further, as the geometrical moment of inertia Z of the grid portion 2 has a larger value as shown in FIG. 4 (c), the tensile strain ε becomes smaller, so that the plate thickness t of the flat plate portion 3 and the lattice spacing L of the grid portion 2 have already been set. If it has been determined, the section coefficient Z of the grid portion 2 may be determined with the section coefficient Z c at which the tensile strain ε is equal to or less than the crack strain ε c as the lower limit.

なお、グリッド部2の鉄筋13については、UFCに関する指針で規定されているように、20mm以上の被りを確保する。 As for the reinforcing bar 13 of the grid portion 2, a cover of 20 mm or more is secured as specified in the guideline for UFC.

次に、係留施設である桟橋の老朽化対策として、図5に示す桟橋52を、本実施形態に係る埋設型枠用プレキャスト部材1を用いて改修する手順を以下に説明する。 Next, as a measure against the deterioration of the pier, which is a mooring facility, the procedure for repairing the pier 52 shown in FIG. 5 by using the precast member 1 for the buried formwork according to the present embodiment will be described below.

桟橋52は、陸地部54の前方において図示しない海底に打ち込まれた杭53と、該杭の上端に架け渡された梁55と、該梁に架け渡された鉄筋コンクリート床版56とからなるが、これらのうち、鉄筋コンクリート床版56を再構築という形で改修するには、まず、該鉄筋コンクリート床版を図6に示すように撤去する。 The pier 52 is composed of a pile 53 driven into the sea floor (not shown) in front of the land portion 54, a beam 55 bridged over the upper end of the pile, and a reinforced concrete deck 56 bridged over the beam. Of these, in order to repair the reinforced concrete deck 56 in the form of reconstruction, first, the reinforced concrete deck 56 is removed as shown in FIG.

このとき、梁55のうち、鉄筋コンクリート床版56の下面レベルよりも上方については、コンクリートのみ切除し、鉄筋61については、後工程で現場打設されるコンクリートとの一体化を図るべく、残置して露出させておく。 At this time, of the beams 55, only the concrete is excised above the lower surface level of the reinforced concrete deck 56, and the reinforcing bars 61 are left in order to be integrated with the concrete placed on site in the subsequent process. And expose it.

次に、図7に示すように、本実施形態に係る埋設型枠用プレキャスト部材1の各縁部を梁55の肩部にそれぞれ掛けることで、梁55,55間に架け渡す。 Next, as shown in FIG. 7, each edge portion of the precast member 1 for the buried formwork according to the present embodiment is hung on the shoulder portion of the beam 55 so as to be bridged between the beams 55 and 55.

次に、図8に示すように、埋設型枠用プレキャスト部材1の上方に下端筋81a,81bを直交配置するとともに、同様にして上端筋を直交配置する。 Next, as shown in FIG. 8, the lower end bars 81a and 81b are arranged orthogonally above the precast member 1 for the embedded formwork, and the upper end bars are arranged orthogonally in the same manner.

次に、図9に示すように、埋設型枠用プレキャスト部材1を底版として該底版の上方にコンクリートを打設する。コンクリートは、繊維補強コンクリートである必要はなく、普通コンクリートでかまわない。 Next, as shown in FIG. 9, the precast member 1 for the buried formwork is used as a bottom slab, and concrete is placed above the bottom slab. The concrete does not have to be fiber reinforced concrete and may be ordinary concrete.

最後に、打設されたコンクリートを養生するとともに、必要に応じてその上を舗装することにより、埋設型枠用プレキャスト部材1及びその上に形成された例えば厚さ175mm程度の鉄筋コンクリート層91からなる鉄筋コンクリート床版92の構築を完了する。 Finally, by curing the cast concrete and paving it as necessary, the precast member 1 for the buried formwork and the reinforced concrete layer 91 having a thickness of, for example, about 175 mm formed on the precast member 1 are formed. Complete the construction of the reinforced concrete floor slab 92.

ここで、コンクリート打設後は、該コンクリートの強度が発現するまでの間、流動体であるフレッシュコンクリートの重量が、グリッド面11a及び複数の平板面12aからなる埋設型枠用プレキャスト部材1の上面に作用するが、上述したように、平板部3にひび割れが生じるおそれはない。 Here, after the concrete is placed, the weight of the fresh concrete, which is a fluid, is the upper surface of the precast member 1 for the buried formwork composed of the grid surface 11a and the plurality of flat plate surfaces 12a until the strength of the concrete is developed. However, as described above, there is no possibility that the flat plate portion 3 will be cracked.

また、グリッド部2のうち、グリッド面11b近傍については、図3(c)でもわかる通り、引張ひずみが生じ、それに起因してひび割れが生じる場合があるが、その大きさはきわめて微細である。 Further, in the vicinity of the grid surface 11b of the grid portion 2, as can be seen in FIG. 3C, tensile strain may occur, which may cause cracks, but the size thereof is extremely fine.

以上説明したように、本実施形態に係る埋設型枠用プレキャスト部材1によれば、グリッド部2にその材軸に沿うように鉄筋13を埋設し、該鉄筋を、その断面中心が平板面12bに相当する位置からグリッド面11bの側にずれた位置となるように位置決めしたので、グリッド部2による曲げ剛性向上作用とも相俟って、平板部3に引張ひずみを発生させず、又はひび割れが発生しない程度の大きさに引張ひずみを抑制して、ひび割れ発生を防止することができる。 As described above, according to the precast member 1 for an embedded formwork according to the present embodiment, a reinforcing bar 13 is embedded in the grid portion 2 along the material axis, and the reinforcing bar is provided with a flat plate surface 12b at the center of the cross section. Since the position is shifted from the position corresponding to the grid surface 11b to the side of the grid surface 11b, tensile strain is not generated in the flat plate portion 3 or cracks occur in combination with the flexural rigidity improving effect of the grid portion 2. It is possible to prevent the occurrence of cracks by suppressing the tensile strain to a size that does not occur.

そのため、平板部3を介して塩化物イオンが侵入し、該塩化物イオンが、現場施工された鉄筋コンクリート層91の鉄筋を腐食させるといった事態を懸念する必要がなくなり、かくして平板部3の薄肉化を図りつつ、埋設型枠用プレキャスト部材1、ひいてはそれを用いた鉄筋コンクリート床版92の耐久性を大幅に向上させることが可能となる。 Therefore, it is not necessary to worry about a situation in which chloride ions invade through the flat plate portion 3 and the chloride ions corrode the reinforcing bars of the reinforced concrete layer 91 constructed on site, thus thinning the flat plate portion 3. While trying to do so, it is possible to significantly improve the durability of the precast member 1 for the buried formwork and, by extension, the reinforced concrete deck 92 using the precast member 1.

また、本実施形態に係る埋設型枠用プレキャスト部材1によれば、鉄筋13を、エポキシ樹脂塗装鉄筋で構成したので、グリッド部2のグリッド面11bに微細なひび割れが発生し、該ひび割れから塩化物イオンが仮に侵入したとしても、鉄筋13が腐食するおそれがなくなり、かくして平板部3による作用と相俟って、現場施工された鉄筋コンクリート層91を塩化物イオンから確実かつ長期にわたって保護することが可能となる。 Further, according to the precast member 1 for the embedded formwork according to the present embodiment, since the reinforcing bar 13 is composed of the epoxy resin coated reinforcing bar, fine cracks are generated on the grid surface 11b of the grid portion 2, and the cracks are chloride. Even if the material ions invade, there is no possibility that the reinforcing bar 13 will corrode, and thus, in combination with the action of the flat plate portion 3, the reinforced concrete layer 91 constructed on site can be reliably and long-term protected from chloride ions. It will be possible.

本実施形態では、埋設型枠用プレキャスト部材1を桟橋の鉄筋コンクリート床版92の構築に適用した例について説明したが、本発明に係る埋設型枠用プレキャスト部材のひび割れ防止作用は、塩化物イオンの侵入のみならず、空気中の二酸化炭素の侵入をも遮断してコンクリートの中性化による鉄筋腐食を防止する効果も有するため、港湾施設や海洋構造物以外の鉄筋コンクリート構造物に広く適用することができるし、部位としても床版に限られるものではなく、柱や壁に適用することが可能である。 In the present embodiment, an example in which the precast member 1 for the buried formwork is applied to the construction of the reinforced concrete deck 92 of the pier has been described, but the crack preventing action of the precast member for the buried formwork according to the present invention is the chloride ion. Since it has the effect of blocking not only the intrusion but also the invasion of carbon dioxide in the air and preventing the corrosion of reinforcing bars due to the neutralization of concrete, it can be widely applied to reinforced concrete structures other than port facilities and marine structures. It is possible, and the part is not limited to the floor slab, but can be applied to pillars and walls.

また、本実施形態では、鉄筋13をエポキシ樹脂塗装鉄筋で構成したが、グリッド部2のグリッド面11bに生じるひび割れが微細であるため、塩化物イオンの侵入による鉄筋腐食を実質的に懸念する必要がないのであれば、鉄筋13に代えて、耐薬品性材料で被覆されていない通常鉄筋で引張抵抗材を構成してもかまわない。 Further, in the present embodiment, the reinforcing bar 13 is composed of the epoxy resin coated reinforcing bar, but since the cracks generated on the grid surface 11b of the grid portion 2 are fine, it is necessary to substantially be concerned about the corrosion of the reinforcing bar due to the intrusion of chloride ions. If there is no such material, the tensile resistance material may be formed of a normal reinforcing bar that is not coated with a chemical resistant material instead of the reinforcing bar 13.

また、本実施形態では、繊維補強コンクリートを、常温硬化型の超高強度繊維補強コンクリートとしたが、薄肉化が可能である限り、高強度繊維補強コンクリートでも足りるし、埋設型枠用プレキャスト部材の運搬に問題がないのであれば、常温硬化型とする必要もない。 Further, in the present embodiment, the fiber reinforced concrete is a room temperature curing type ultra-high-strength fiber-reinforced concrete, but as long as the wall thickness can be reduced, the high-strength fiber-reinforced concrete is sufficient, and the precast member for the buried formwork. If there is no problem in transportation, it is not necessary to make it a room temperature curing type.

1 埋設型枠用プレキャスト部材
2 グリッド部
3 平板部
11a グリッド面(第1のグリッド面)
12a 平板面(第1の平板面)
11b グリッド面(第2のグリッド面)
12b 平板面(第2の平板面)
13 鉄筋
91 鉄筋コンクリート層
92 鉄筋コンクリート床版
1 Precast member for buried formwork 2 Grid part 3 Flat plate part 11a Grid surface (first grid surface)
12a Flat plate surface (first flat plate surface)
11b grid surface (second grid surface)
12b flat plate surface (second flat plate surface)
13 Reinforcing bar 91 Reinforced concrete layer 92 Reinforced concrete floor slab

Claims (5)

格子状をなしコンクリート打設側に拡がる面とその背面側であるコンクリート非打設側に拡がる面とをそれぞれ第1のグリッド面、第2のグリッド面として有するグリッド部と、該グリッド部からその各格子空間に延設されコンクリート打設側に拡がる面とその背面側であるコンクリート非打設側に拡がる面とをそれぞれ第1の平板面、第2の平板面として有する複数の平板部とを備え、前記グリッド部及び前記各平板部を、前記第1の平板面が前記第1のグリッド面と面一になり、前記第2の平板面が前記第2のグリッド面から後退するように、かつ前記グリッド部及び前記各平板部が互いに一体となるように繊維補強コンクリートで構成するとともに、前記グリッド部にその材軸に沿うように棒状又は線状の引張抵抗材を埋設し、該引張抵抗材を、その断面中心が前記第2の平板面に相当する位置から前記第2のグリッド面の側にずれた位置となるように位置決めしたことを特徴とする埋設型枠用プレキャスト部材。 A grid portion having a grid-like shape and a surface extending to the concrete placing side and a surface extending to the concrete non-casting side, which is the back side thereof, as a first grid surface and a second grid surface, respectively, and a grid portion from the grid portion thereof. A plurality of flat plate portions extending in each lattice space and having a surface extending to the concrete placing side and a surface extending to the concrete non-casting side on the back side thereof as a first flat plate surface and a second flat plate surface, respectively. The grid portion and each flat plate portion are provided so that the first flat plate surface is flush with the first grid surface and the second flat plate surface is retracted from the second grid surface. In addition, the grid portion and the flat plate portions are made of fiber reinforced concrete so as to be integrated with each other, and a rod-shaped or linear tensile resistance material is embedded in the grid portion along the material axis to obtain the tensile resistance. A precast member for an embedded formwork, characterized in that the material is positioned so that the center of the cross section is displaced from the position corresponding to the second flat plate surface to the side of the second grid surface. 前記引張抵抗材を、耐薬品性材料で構成し、又は耐薬品性材料で被覆されてなる鋼材で構成した請求項1記載の埋設型枠用プレキャスト部材。 The precast member for an embedded formwork according to claim 1, wherein the tensile resistance material is made of a chemical resistant material or is made of a steel material coated with the chemical resistant material. 前記繊維補強コンクリートを、常温硬化型の超高強度繊維補強コンクリートとした請求項1又は請求項2記載の埋設型枠用プレキャスト部材。 The precast member for an embedded formwork according to claim 1 or 2, wherein the fiber reinforced concrete is a room temperature curing type ultra-high strength fiber reinforced concrete. 請求項1乃至請求項3のいずれか一記載の埋設型枠用プレキャスト部材と、該埋設型枠用プレキャスト部材を底版として該底版上にコンクリートが現場打設されてなる鉄筋コンクリート層とで構成したことを特徴とする鉄筋コンクリート床版。 It is composed of the precast member for an embedded form according to any one of claims 1 to 3 and a reinforced concrete layer in which concrete is cast on the bottom slab with the precast member for the buried form as a bottom slab. Reinforced concrete floor slab featuring. 請求項1乃至請求項3のいずれか一記載の埋設型枠用プレキャスト部材を設計する方法であって、該埋設型枠用プレキャスト部材を埋設型枠としてそのコンクリート打設側にコンクリートを現場打設したとき、前記埋設型枠用プレキャスト部材及び前記コンクリートの重量によって前記平板部に生じる引張ひずみが、該平板部のひび割れひずみを上回らないように、前記平板部の厚さ、前記グリッド部の格子間隔又は前記グリッド部の断面係数を決定することを特徴とする埋設型枠用プレキャスト部材の設計方法。 The method for designing a precast member for an embedded form according to any one of claims 1 to 3, wherein the precast member for the buried formwork is used as an embedded formwork and concrete is cast on the concrete casting side thereof. Then, the thickness of the flat plate portion and the grid spacing of the grid portion so that the tensile strain generated in the flat plate portion due to the weight of the precast member for the embedded formwork and the concrete does not exceed the crack strain of the flat plate portion. Alternatively, a method for designing a precast member for an embedded formwork, which comprises determining the cross-sectional coefficient of the grid portion.
JP2017233943A 2017-12-06 2017-12-06 Precast members for buried formwork, their design methods, and reinforced concrete decks Active JP6970887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017233943A JP6970887B2 (en) 2017-12-06 2017-12-06 Precast members for buried formwork, their design methods, and reinforced concrete decks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017233943A JP6970887B2 (en) 2017-12-06 2017-12-06 Precast members for buried formwork, their design methods, and reinforced concrete decks

Publications (2)

Publication Number Publication Date
JP2019100122A JP2019100122A (en) 2019-06-24
JP6970887B2 true JP6970887B2 (en) 2021-11-24

Family

ID=66976314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017233943A Active JP6970887B2 (en) 2017-12-06 2017-12-06 Precast members for buried formwork, their design methods, and reinforced concrete decks

Country Status (1)

Country Link
JP (1) JP6970887B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073936A (en) * 1983-09-30 1985-04-26 株式会社鴻池組 Construction of synthetic floor panel by using precast concrete panel changed in thickness in grid-like form
JPH08120638A (en) * 1994-10-21 1996-05-14 Shimizu Corp Connecting structure of pile and beam and execution method of structure using connecting structure
JPH1193129A (en) * 1997-09-18 1999-04-06 Kajima Corp Construction method for superstructure work for landing pier
JP5513229B2 (en) * 2010-04-14 2014-06-04 鹿島建設株式会社 Offshore construction method
JP6316665B2 (en) * 2014-06-03 2018-04-25 オリエンタル白石株式会社 Composite structure of steel girder and precast slab and its construction method
WO2016183639A1 (en) * 2015-05-21 2016-11-24 Lifting Point Pre-Form Pty Limited A module for a structure
JP6988189B2 (en) * 2017-06-20 2022-01-05 株式会社大林組 Connection structure and connection method of precast concrete deck

Also Published As

Publication number Publication date
JP2019100122A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
CN102162305B (en) Construction process for installing elastic slippage shock isolation support
KR20010045640A (en) Precast Reinforced Concrete Slab, Composite Continuous Bridge Having Such Slab, and Constructing Method thereof
JP6755655B2 (en) Seismic reinforcement method for existing tubular walls made of reinforced concrete
JP6970887B2 (en) Precast members for buried formwork, their design methods, and reinforced concrete decks
JP3983002B2 (en) Method and structure for repairing and reinforcing steel structural members of existing construction structures
KR101118257B1 (en) Deck for concrete slab construction
JP2010265623A (en) Reinforcing structure of steel floor slab
KR100991017B1 (en) Thedeck plate
JP6878959B2 (en) Method of inducing cracks in concrete members and structure for inducing cracks in concrete members
JP2008144459A (en) Slab form and method of constructing composite floor slab
KR102166538B1 (en) Precast Concrete Deck System for Rapid Construction
KR102263272B1 (en) Bridge variable thickness girder for flood disaster prevention and construction method thereof
Yakut Reinforced concrete frame construction
JP2005264514A (en) Foundation slab structure of sea berth structure, and its construction method
JP5384603B2 (en) Concrete structure
JP2004316367A (en) Shearing reinforcement method of reinforced concrete column
KR100726115B1 (en) Round pre-concreting method
KR101434898B1 (en) Arch-type deck plate for structure, and method for constructing structure using the same
JP2023182311A (en) Cracking prevention structure for concrete structure body
KR20080056986A (en) Grid void deck slab
JP5624261B2 (en) Concrete crack growth control method
JP6827274B2 (en) Floor structure and construction method of floor structure
CN106049499B (en) Seamless harbor work's finished concrete composite construction in a kind of water
JP2024015866A (en) Structures with crack-inducing structures and their construction methods
JP5226964B2 (en) Concrete structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R150 Certificate of patent or registration of utility model

Ref document number: 6970887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150