JP6970263B2 - Etching method, semiconductor chip manufacturing method and article manufacturing method - Google Patents

Etching method, semiconductor chip manufacturing method and article manufacturing method Download PDF

Info

Publication number
JP6970263B2
JP6970263B2 JP2020169188A JP2020169188A JP6970263B2 JP 6970263 B2 JP6970263 B2 JP 6970263B2 JP 2020169188 A JP2020169188 A JP 2020169188A JP 2020169188 A JP2020169188 A JP 2020169188A JP 6970263 B2 JP6970263 B2 JP 6970263B2
Authority
JP
Japan
Prior art keywords
etching
mask layer
convex portion
semiconductor
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020169188A
Other languages
Japanese (ja)
Other versions
JP2021002689A (en
Inventor
圭一郎 松尾
進 小幡
光雄 佐野
和人 樋口
一生 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018021849A external-priority patent/JP2019140225A/en
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2020169188A priority Critical patent/JP6970263B2/en
Publication of JP2021002689A publication Critical patent/JP2021002689A/en
Application granted granted Critical
Publication of JP6970263B2 publication Critical patent/JP6970263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、エッチング方法、半導体チップの製造方法及び物品の製造方法に関する。 Embodiments of the present invention relate to an etching method, a method for manufacturing a semiconductor chip, and a method for manufacturing an article.

半導体ウエハに孔や溝を形成する方法として、エッチングが知られている。
エッチング方法としては、例えば、半導体ウエハにマスク層を形成し、レーザスクライビングによってマスク層をパターニングし、パターニングしたマスク層をエッチングマスクとして使用して、半導体ウエハをプラズマエッチングする方法が知られている。
Etching is known as a method for forming holes and grooves in a semiconductor wafer.
As an etching method, for example, a method of forming a mask layer on a semiconductor wafer, patterning the mask layer by laser scribing, and using the patterned mask layer as an etching mask to perform plasma etching of the semiconductor wafer is known.

また、エッチングとして、MacEtch(Metal−Assisted Chemical Etching)法が知られている。MacEtch法は、例えば、貴金属を触媒として用いて、シリコンを含む半導体基板をエッチングする方法である。 Further, as etching, a MacEtch (Metal-Assisted Chemical Etching) method is known. The MacEtch method is a method of etching a semiconductor substrate containing silicon by using, for example, a noble metal as a catalyst.

特開2015−57840号公報Japanese Unexamined Patent Publication No. 2015-57840 特表2015−509283号公報Special Table 2015-509283 Gazette

本発明が解決しようとする課題は、エッチング後に残留する部分が多孔質になるのを抑制することにある。 An object to be solved by the present invention is to prevent the portion remaining after etching from becoming porous.

第1側面によれば、半導体基板の表面に、凸部を含んだ凹凸構造を形成することと、貴金属を含む触媒層を、前記表面のうち前記凸部の上面に対して選択的に形成することと、前記触媒層へエッチング液を供給して、前記貴金属の触媒としての作用のもとで前記半導体基板をエッチングすることとを含み、前記凹凸構造の形成は、前記表面に、開口部を有する第1マスク層を形成することと、前記第1マスク層をエッチングマスクとして用いて、前記表面をエッチングすることと、前記第1マスク層を除去することとを含んだエッチング方法が提供される。
第2側面によれば、半導体基板の表面に、凸部を含んだ凹凸構造を形成することと、貴金属を含む触媒層を、前記表面のうち前記凸部の上面に対して選択的に形成することと、前記触媒層へエッチング液を供給して、前記貴金属の触媒としての作用のもとで前記半導体基板をエッチングすることとを含み、前記凹凸構造の形成は、前記表面に、開口部を有する第2マスク層を形成することと、前記表面上であって前記開口部の位置に、半導体層を形成することとを含んだエッチング方法が提供される。
第3側面によれば、半導体基板の表面に、凸部を含んだ凹凸構造を形成することと、貴金属を含む触媒層を、前記表面のうち前記凸部の上面に対して選択的に形成することと、前記触媒層へエッチング液を供給して、前記貴金属の触媒としての作用のもとで前記半導体基板をエッチングすることとを含んだエッチング方法により半導体ウエハをエッチングして半導体チップへと個片化することを含み、前記表面は前記半導体ウエハの表面である半導体チップの製造方法が提供される。
第4側面によれば、第1側面に係るエッチング方法により、前記表面をエッチングすることを含んだ物品の製造方法が提供される。
According to the first aspect, an uneven structure including a convex portion is formed on the surface of the semiconductor substrate, and a catalyst layer containing a noble metal is selectively formed on the upper surface of the convex portion among the surfaces. This includes supplying an etching solution to the catalyst layer and etching the semiconductor substrate under the action of the noble metal as a catalyst, and the formation of the uneven structure includes an opening on the surface. An etching method including forming a first mask layer to have, etching the surface using the first mask layer as an etching mask, and removing the first mask layer is provided. ..
According to the second aspect, the concave-convex structure including the convex portion is formed on the surface of the semiconductor substrate, and the catalyst layer containing the noble metal is selectively formed on the upper surface of the convex portion in the surface. This includes supplying an etching solution to the catalyst layer and etching the semiconductor substrate under the action of the noble metal as a catalyst, and the formation of the uneven structure includes an opening on the surface. An etching method including forming a second mask layer having a semiconductor layer and forming a semiconductor layer on the surface at the position of the opening is provided.
According to the third aspect, the concave-convex structure including the convex portion is formed on the surface of the semiconductor substrate, and the catalyst layer containing the noble metal is selectively formed on the upper surface of the convex portion in the surface. A semiconductor wafer is etched into a semiconductor chip by an etching method including supplying an etching solution to the catalyst layer and etching the semiconductor substrate under the action of the noble metal as a catalyst. Provided is a method for manufacturing a semiconductor chip, the surface of which is the surface of the semiconductor wafer, which includes dissociation.
According to the fourth aspect, the etching method according to the first aspect provides a method for manufacturing an article including etching the surface.

実施形態に係るエッチング方法における第1マスク層形成工程を概略的に示す断面図。FIG. 5 is a cross-sectional view schematically showing a first mask layer forming step in the etching method according to the embodiment. 実施形態に係るエッチング方法における第1マスク層をエッチングマスクとして用いて半導体基板の表面をエッチングする工程を概略的に示す断面図。FIG. 5 is a cross-sectional view schematically showing a step of etching the surface of a semiconductor substrate by using the first mask layer as an etching mask in the etching method according to the embodiment. 実施形態に係るエッチング方法における第1マスク層を除去する工程を概略的に示す断面図。FIG. 5 is a cross-sectional view schematically showing a step of removing the first mask layer in the etching method according to the embodiment. 実施形態に係るエッチング方法における第3マスク層形成工程を概略的に示す断面図。FIG. 3 is a cross-sectional view schematically showing a third mask layer forming step in the etching method according to the embodiment. 実施形態に係るエッチング方法における触媒層形成工程を概略的に示す断面図。The cross-sectional view schematically which shows the catalyst layer formation process in the etching method which concerns on embodiment. 実施形態に係るエッチング方法におけるエッチング工程開始状態を概略的に示す断面図。The cross-sectional view schematically which shows the etching process start state in the etching method which concerns on embodiment. 図6に示す状態から一定時間経過後の状態を概略的に示す断面図。FIG. 6 is a cross-sectional view schematically showing a state after a lapse of a certain period of time from the state shown in FIG. 比較例においてエッチングする半導体基板を概略的に示す断面図。FIG. 5 is a cross-sectional view schematically showing a semiconductor substrate to be etched in a comparative example. 比較例における触媒層形成工程を概略的に示す断面図。The cross-sectional view schematically which shows the catalyst layer formation process in a comparative example. 比較例におけるエッチング工程を概略的に示す断面図。The cross-sectional view schematically which shows the etching process in the comparative example. 実施形態に係るエッチング方法においてエッチングする半導体基板を概略的に示す断面図。FIG. 3 is a cross-sectional view schematically showing a semiconductor substrate to be etched in the etching method according to the embodiment. 実施形態に係るエッチング方法における触媒層形成方法を概略的に示す断面図。The cross-sectional view schematically which shows the catalyst layer formation method in the etching method which concerns on embodiment. 実施形態に係るエッチング方法におけるエッチング工程を概略的に示す断面図。FIG. 5 is a cross-sectional view schematically showing an etching process in the etching method according to the embodiment. 別の実施形態に係るエッチング方法における第2マスク層形成工程を概略的に示す断面図。FIG. 2 is a cross-sectional view schematically showing a second mask layer forming step in the etching method according to another embodiment. 別の実施形態に係るエッチング方法における半導体層形成工程を概略的に示す断面図。FIG. 5 is a cross-sectional view schematically showing a semiconductor layer forming step in the etching method according to another embodiment. 別の実施形態に係るエッチング方法における第3マスク層形成工程を概略的に示す断面図。FIG. 3 is a cross-sectional view schematically showing a third mask layer forming step in the etching method according to another embodiment. 実施形態に係る半導体チップ製造方法において使用する半導体ウエハを概略的に示す平面図。The plan view which shows schematic the semiconductor wafer used in the semiconductor chip manufacturing method which concerns on embodiment. 図17に示す半導体ウエハのXVIII−XVIII線に沿った断面図。FIG. 17 is a cross-sectional view taken along the line XVIII-XVIII of the semiconductor wafer shown in FIG. 実施形態に係る半導体チップ製造方法における半導体層形成工程を概略的に示す平面図。The plan view which shows schematic the semiconductor layer formation process in the semiconductor chip manufacturing method which concerns on embodiment. 図19に示す半導体ウエハのXX−XX線に沿った断面図。FIG. 19 is a cross-sectional view taken along the line XX-XX of the semiconductor wafer shown in FIG. 実施形態に係る半導体チップ製造方法における第3マスク層形成工程を概略的に示す平面図。FIG. 3 is a plan view schematically showing a third mask layer forming step in the semiconductor chip manufacturing method according to the embodiment. 図21に示す半導体ウエハのXXII−XXII線に沿った断面図。FIG. 21 is a cross-sectional view taken along the line XXII-XXII of the semiconductor wafer shown in FIG. 実施形態に係る半導体チップ製造方法における触媒層形成工程を概略的に示す平面図。The plan view which shows schematic the catalyst layer formation process in the semiconductor chip manufacturing method which concerns on embodiment. 図23に示す半導体ウエハのXXIV−XXIV線に沿った断面図。FIG. 23 is a cross-sectional view taken along the line XXIV-XXIV of the semiconductor wafer shown in FIG. 23. 図17乃至図24に示す方法によって得られる構造の一例を概略的に示す平面図。FIG. 6 is a plan view schematically showing an example of the structure obtained by the method shown in FIGS. 17 to 24. 図25に示す半導体ウエハのXXVI−XXVI線に沿った断面図。FIG. 25 is a cross-sectional view taken along the line XXVI-XXVI of the semiconductor wafer shown in FIG. 25. 凸部と第3マスク層とを形成した半導体ウエハの断面を示す顕微鏡写真。A photomicrograph showing a cross section of a semiconductor wafer in which a convex portion and a third mask layer are formed. 図27に示す構造物に触媒層を形成して得られる構造の断面を示す顕微鏡写真。A photomicrograph showing a cross section of a structure obtained by forming a catalyst layer on the structure shown in FIG. 27. 図28に示す構造物をエッチングして得られる構造の断面を示す顕微鏡写真。A photomicrograph showing a cross section of a structure obtained by etching the structure shown in FIG. 28. 凸部を含む凹凸構造を有していない半導体ウエハをエッチングして得られる構造物の断面を示す顕微鏡写真。A photomicrograph showing a cross section of a structure obtained by etching a semiconductor wafer having no uneven structure including a convex portion.

以下、実施形態について、図面を参照しながら詳細に説明する。なお、同様又は類似した機能を発揮する構成要素には全ての図面を通じて同一の参照符号を付し、重複する説明は省略する。また、本明細書において、「顕微鏡写真」は走査電子顕微鏡写真である。 Hereinafter, embodiments will be described in detail with reference to the drawings. Components that exhibit similar or similar functions are designated by the same reference numerals throughout the drawings, and duplicate description will be omitted. Further, in the present specification, the "micrograph" is a scanning electron micrograph.

先ず、図1乃至図7を参照しながら、一実施形態に係るエッチング方法について説明する。 First, the etching method according to the embodiment will be described with reference to FIGS. 1 to 7.

この方法では、先ず、図1に示す半導体基板1を準備する。
半導体基板1の表面の少なくとも一部は、半導体からなる。半導体は、例えば、シリコン(Si);ゲルマニウム(Ge);ヒ化ガリウム(GaAs)及び窒化ガリウム(GaN)などのIII族元素とV族元素との化合物からなる半導体;並びに炭化シリコン(SiC)から選択される。一例によれば、半導体基板1は、シリコンを含んでいる。なお、ここで使用する用語「族」は、短周期型周期表の「族」である。
In this method, first, the semiconductor substrate 1 shown in FIG. 1 is prepared.
At least a part of the surface of the semiconductor substrate 1 is made of a semiconductor. The semiconductor is, for example, from silicon (Si); germanium (Ge); a semiconductor composed of a compound of a group III element such as gallium arsenide (GaAs) and gallium nitride (GaN) and a group V element; and silicon carbide (SiC). Be selected. According to one example, the semiconductor substrate 1 contains silicon. The term "group" used here is "group" in the short-period periodic table.

半導体基板1は、例えば、半導体ウエハである。半導体ウエハには、不純物がドープされていてもよく、トランジスタやダイオードなどの半導体素子が形成されていてもよい。また、半導体ウエハの主面は、半導体の何れの結晶面に対して平行であってもよい。 The semiconductor substrate 1 is, for example, a semiconductor wafer. Impurities may be doped in the semiconductor wafer, and semiconductor elements such as transistors and diodes may be formed on the semiconductor wafer. Further, the main surface of the semiconductor wafer may be parallel to any crystal plane of the semiconductor.

次に、図1に示すように、半導体基板1の表面に、第1マスク層2を形成する。
第1マスク層2は、半導体基板1の表面に後述する凸部を形成するための層である。第1マスク層2は、1以上の開口部を有している。
Next, as shown in FIG. 1, the first mask layer 2 is formed on the surface of the semiconductor substrate 1.
The first mask layer 2 is a layer for forming a convex portion described later on the surface of the semiconductor substrate 1. The first mask layer 2 has one or more openings.

第1マスク層2の材料としては、半導体基板1の表面のうち、第1マスク層2によって被覆された領域をエッチングから保護するものであれば、任意の材料を用いることができる。そのような材料としては、例えば、ポリイミド、フッ素樹脂、フェノール樹脂、アクリル樹脂、及びノボラック樹脂などの有機材料が挙げられる。 As the material of the first mask layer 2, any material can be used as long as it protects the region of the surface of the semiconductor substrate 1 covered by the first mask layer 2 from etching. Examples of such a material include organic materials such as polyimide, fluororesin, phenol resin, acrylic resin, and novolak resin.

第1マスク層2は、例えば、既存の半導体プロセスによって形成することができる。有機材料からなる第1マスク層2は、例えば、フォトリソグラフィによって形成することができる。 The first mask layer 2 can be formed by, for example, an existing semiconductor process. The first mask layer 2 made of an organic material can be formed by, for example, photolithography.

次に、図2に示すように、第1マスク層2をエッチングマスクとして半導体基板1をエッチングする。
半導体基板1をエッチングすると、半導体基板1の表面に凸部3が形成される。
Next, as shown in FIG. 2, the semiconductor substrate 1 is etched using the first mask layer 2 as an etching mask.
When the semiconductor substrate 1 is etched, the convex portion 3 is formed on the surface of the semiconductor substrate 1.

エッチングは、例えば、ドライエッチングである。ドライエッチングとしては、例えば、SF、CF、C、C、CClF、CCl、PCl、又はCBrFなどのガスを用いたプラズマエッチングが挙げられる。 Etching is, for example, dry etching. Examples of the dry etching include plasma etching using a gas such as SF 6 , CF 4 , C 2 F 6 , C 3 F 8 , CCl F 2 , CCl 4 , PCl 3 , or CBr F 3.

凸部3の高さhは、0.001μm乃至1μmの範囲内にあることが好ましく、0.15μm乃至0.5μmの範囲内にあることがより好ましい。高さhが小さすぎると、後述する触媒層6を形成する際に貴金属元素が、半導体基板1のうち、後述する第3マスク層4の真下の領域へと拡散するため、半導体基板1の厚さ方向に対して交差する方向へのエッチングが進行しやすくなる。高さhの上限は、特に限定されないが、通常10μm以下である。 The height h 1 of the convex portion 3 is preferably in the range of 0.001 μm to 1 μm, and more preferably in the range of 0.15 μm to 0.5 μm. If the height h 1 is too small, the noble metal element diffuses into the region of the semiconductor substrate 1 directly below the third mask layer 4 described later when the catalyst layer 6 described later is formed. Etching in the direction intersecting with the thickness direction is likely to proceed. The upper limit of the height h 1 is not particularly limited, but is usually 10 μm or less.

なお、ここで、「高さh」は、以下の方法により得られる値である。先ず、凸部3を含む半導体基板1の断面を走査電子顕微鏡(SEM)で撮影する。倍率は、10000倍乃至100000倍の範囲内とする。次に、画像の中の凸部3について高さを測定する。具体的には、凸部3の左側の側壁の高さと凸部3の右側の側壁の高さとを測定する。凸部3の左右の側壁の高さが同じであった場合、何れか一方の側壁の高さを「高さh」とする。凸部3の左右の側壁の高さが異なる場合、より低い方の側壁の高さを「高さh」とする。 Here, "height h 1 " is a value obtained by the following method. First, a cross section of the semiconductor substrate 1 including the convex portion 3 is photographed with a scanning electron microscope (SEM). The magnification shall be in the range of 10,000 times to 100,000 times. Next, the height of the convex portion 3 in the image is measured. Specifically, the height of the side wall on the left side of the convex portion 3 and the height of the side wall on the right side of the convex portion 3 are measured. When the heights of the left and right side walls of the convex portion 3 are the same, the height of either side wall is defined as "height h 1 ". When the heights of the left and right side walls of the convex portion 3 are different, the height of the lower side wall is defined as "height h 1 ".

次に、図3に示すように、第1マスク層2を除去する。次いで、図4に示すように、半導体基板1の表面に第3マスク層4を形成する。
第3マスク層4は、凸部3の位置に開口部を有している。例えば、開口部の寸法及び形状は、凸部3の上面の寸法及び形状と等しい。第3マスク層4は、凸部3の上面と高さが等しいか又はそれよりも高さが高い上面を有している。
Next, as shown in FIG. 3, the first mask layer 2 is removed. Next, as shown in FIG. 4, the third mask layer 4 is formed on the surface of the semiconductor substrate 1.
The third mask layer 4 has an opening at the position of the convex portion 3. For example, the size and shape of the opening is equal to the size and shape of the upper surface of the convex portion 3. The third mask layer 4 has an upper surface having a height equal to or higher than the upper surface of the convex portion 3.

第3マスク層4は、半導体基板1をエッチングするためのエッチング液に対してエッチング耐性を有している。
第3マスク層4の材料としては、任意の材料を用いることができる。この材料としては、例えば、ポリイミド、フッ素樹脂、フェノール樹脂、アクリル樹脂、及びノボラック樹脂などの有機材料や、酸化シリコン及び窒化シリコンなどの無機材料が挙げられる。
The third mask layer 4 has etching resistance to an etching solution for etching the semiconductor substrate 1.
Any material can be used as the material of the third mask layer 4. Examples of this material include organic materials such as polyimide, fluororesin, phenol resin, acrylic resin, and novolak resin, and inorganic materials such as silicon oxide and silicon nitride.

第3マスク層4は、例えば、既存の半導体プロセスによって形成することができる。有機材料からなる第3マスク層4は、例えば、フォトリソグラフィによって形成することができる。無機材料からなる第3マスク層4は、例えば、気相堆積法による無機材料層の成膜と、フォトリソグラフィによるマスクの形成と、エッチングによる無機材料層のパターニングとによって成形することができる。或いは、無機材料からなる第3マスク層4は、半導体基板1の表面領域の酸化又は窒化と、フォトリソグラフィによるマスク形成と、エッチングによる酸化物又は窒化物層のパターニングとによって形成することができる。 The third mask layer 4 can be formed by, for example, an existing semiconductor process. The third mask layer 4 made of an organic material can be formed by, for example, photolithography. The third mask layer 4 made of an inorganic material can be formed, for example, by forming an inorganic material layer by a vapor phase deposition method, forming a mask by photolithography, and patterning the inorganic material layer by etching. Alternatively, the third mask layer 4 made of an inorganic material can be formed by oxidation or nitriding of the surface region of the semiconductor substrate 1, mask formation by photolithography, and patterning of the oxide or nitride layer by etching.

第3マスク層4の厚さt3は、0.001μm乃至10μmの範囲内にあることが好ましく、0.1μm乃至1μmの範囲内にあることがより好ましい。 The thickness t 3 of the third mask layer 4 is preferably in the range of 0.001 μm to 10 μm, and more preferably in the range of 0.1 μm to 1 μm.

なお、ここで「厚さt」は、以下の方法により得られる値である。即ち、第3マスク層4の厚さt3は、その厚さ方向に対して平行な断面を顕微鏡にて観察した画像における、第3マスク層4の上面から第3マスク層4の下面までの距離である。 Here, "thickness t 3 " is a value obtained by the following method. That is, the thickness t 3 of the third mask layer 4 is from the upper surface of the third mask layer 4 to the lower surface of the third mask layer 4 in the image obtained by observing the cross section parallel to the thickness direction with a microscope. The distance.

第3マスク層4の厚さtと凸部3の高さhとの比t/hは、1以上であることが好ましく1.5以上であることがより好ましい。比t/hが1未満である場合、後述する触媒層を凸部3の上面に形成するとき、凸部3の上面だけでなく、凸部3の側壁にも触媒層が形成される。触媒層のうち凸部3の側壁上に位置した部分は、半導体基板1のエッチングの過程で、半導体基板1の厚さ方向への触媒層の移動を妨げ、エッチングを進行させにくくする可能性がある。比t/hが1以上である場合、第3マスク層4は、凸部3の側壁に触媒層が付着することを抑制することができる。半導体基板1の比t/hの上限は、特に限定されないが、通常5以下である。 The ratio t 3 / h 1 of the thickness t 3 of the third mask layer 4 to the height h 1 of the convex portion 3 is preferably 1 or more, and more preferably 1.5 or more. When the ratio t 3 / h 1 is less than 1, when the catalyst layer described later is formed on the upper surface of the convex portion 3, the catalyst layer is formed not only on the upper surface of the convex portion 3 but also on the side wall of the convex portion 3. .. The portion of the catalyst layer located on the side wall of the convex portion 3 may hinder the movement of the catalyst layer in the thickness direction of the semiconductor substrate 1 in the process of etching the semiconductor substrate 1, making it difficult for the etching to proceed. be. When the ratio t 3 / h 1 is 1 or more, the third mask layer 4 can suppress the adhesion of the catalyst layer to the side wall of the convex portion 3. The upper limit of the ratio t 3 / h 1 of the semiconductor substrate 1 is not particularly limited, but is usually 5 or less.

第3マスク層4が有する開口部の幅(即ち、凸部3の幅)は、0.3μm乃至80μmの範囲内にあることが好ましく、1μm乃至20μmの範囲内にあることが好ましい。凸部3の幅が広すぎると、このエッチング方法を半導体基板から半導体チップへの個片化に利用した場合に、1枚の半導体基板1から製造可能な半導体チップの数が少なくなる可能性が高い。開口部の幅が狭すぎると、後述するエッチング液が半導体基板1の表面に到達しにくい。 The width of the opening portion (that is, the width of the convex portion 3) of the third mask layer 4 is preferably in the range of 0.3 μm to 80 μm, and preferably in the range of 1 μm to 20 μm. If the width of the convex portion 3 is too wide, the number of semiconductor chips that can be manufactured from one semiconductor substrate 1 may be reduced when this etching method is used for individualizing from a semiconductor substrate to a semiconductor chip. high. If the width of the opening is too narrow, it is difficult for the etching solution described later to reach the surface of the semiconductor substrate 1.

次に、図5に示すように、貴金属を含む触媒層6を、凸部3の上面に形成する。触媒層6は、例えば、貴金属粒子5を含む。貴金属は、例えば、Au、Ag、Pt、Pd、Ru及びRhからなる群より選ばれる1以上の金属である。 Next, as shown in FIG. 5, the catalyst layer 6 containing the noble metal is formed on the upper surface of the convex portion 3. The catalyst layer 6 contains, for example, precious metal particles 5. The noble metal is, for example, one or more metals selected from the group consisting of Au, Ag, Pt, Pd, Ru and Rh.

触媒層6の厚さは、0.01μm乃至0.3μmの範囲内にあることが好ましく、0.05μm乃至0.2μmの範囲内にあることがより好ましい。触媒層6が厚すぎると、後述するエッチング液7が半導体基板1に到達しにくいため、エッチングが進行しにくい。触媒層6が薄すぎると、エッチングすべき面積に対する、貴金属粒子5の表面積の合計の比が小さすぎるため、エッチングが進行しにくい。
なお、触媒層6の厚さは、その厚さ方向に対して平行な断面を顕微鏡にて観察した画像における、触媒層6の上面から凸部3の上面までの距離である。
The thickness of the catalyst layer 6 is preferably in the range of 0.01 μm to 0.3 μm, and more preferably in the range of 0.05 μm to 0.2 μm. If the catalyst layer 6 is too thick, the etching solution 7 described later does not easily reach the semiconductor substrate 1, so that etching does not proceed easily. If the catalyst layer 6 is too thin, the ratio of the total surface area of the noble metal particles 5 to the area to be etched is too small, so that etching does not proceed easily.
The thickness of the catalyst layer 6 is the distance from the upper surface of the catalyst layer 6 to the upper surface of the convex portion 3 in the image obtained by observing the cross section parallel to the thickness direction with a microscope.

触媒層6は、凸部3の上面を少なくとも部分的に被覆している。触媒層6は不連続部を有していてもよい。 The catalyst layer 6 covers the upper surface of the convex portion 3 at least partially. The catalyst layer 6 may have a discontinuous portion.

貴金属粒子5の形状は、球状であることが好ましい。貴金属粒子5の形状は、例えば、棒状または板状などの他の形状であってもよい。貴金属粒子5は、それと接している半導体表面の酸化反応の触媒として働く。 The shape of the precious metal particles 5 is preferably spherical. The shape of the noble metal particles 5 may be another shape such as a rod shape or a plate shape. The noble metal particles 5 act as a catalyst for an oxidation reaction on the surface of the semiconductor in contact with the noble metal particles 5.

貴金属粒子5の粒径dは、0.001μm乃至1μmの範囲内にあることが好ましく、0.01μm乃至0.5μmの範囲内にあることがより好ましい。 The particle size d 1 of the noble metal particles 5 is preferably in the range of 0.001 μm to 1 μm, and more preferably in the range of 0.01 μm to 0.5 μm.

なお、ここで、「粒径d」は、以下の方法により得られる値である。先ず、触媒層6の主面を走査電子顕微鏡(SEM)で撮影する。倍率は、10000倍乃至100000倍の範囲内とする。次に、画像の中から、貴金属粒子5の各々について面積を求める。次いで、各貴金属粒子5が球形であると仮定し、先の面積から貴金属粒子5の直径を求める。この直径を、貴金属粒子5の「粒径d」とする。 Here, "particle size d 1 " is a value obtained by the following method. First, the main surface of the catalyst layer 6 is photographed with a scanning electron microscope (SEM). The magnification shall be in the range of 10,000 times to 100,000 times. Next, the area of each of the precious metal particles 5 is obtained from the image. Next, assuming that each noble metal particle 5 is spherical, the diameter of the noble metal particle 5 is obtained from the above area. This diameter is defined as the "particle size d 1 " of the precious metal particles 5.

触媒層6は、例えば、電解めっき、還元めっき、又は置換めっきによって形成することができる。触媒層6は、貴金属粒子5を含む分散液の塗布、又は、蒸着及びスパッタリング法などの気相堆積法を用いて形成してもよい。これら手法の中でも、置換めっきは、凸部3上に貴金属を直接的且つ一様に析出させることができるため特に好ましい。以下、一例として、置換めっきによる触媒層6の形成について記載する。 The catalyst layer 6 can be formed by, for example, electrolytic plating, reduction plating, or replacement plating. The catalyst layer 6 may be formed by applying a dispersion liquid containing the noble metal particles 5 or by using a vapor phase deposition method such as a vapor deposition method and a sputtering method. Among these methods, substitution plating is particularly preferable because the noble metal can be deposited directly and uniformly on the convex portion 3. Hereinafter, as an example, the formation of the catalyst layer 6 by substitution plating will be described.

置換めっきによる貴金属の析出には、例えば、テトラクロロ金(III)酸塩水溶液又は硝酸銀溶液を用いることができる。以下に、このプロセスの一例を説明する。 For the precipitation of the noble metal by the replacement plating, for example, an aqueous solution of tetrachloroauric acid (III) or a silver nitrate solution can be used. An example of this process will be described below.

置換めっき液は、例えば、テトラクロロ金(III)酸四水和物の水溶液と弗化水素酸との混合液である。弗化水素酸は、半導体基板1の表面の自然酸化膜を除去する作用を有している。 The replacement plating solution is, for example, a mixed solution of an aqueous solution of tetrachloroauric acid (III) acid tetrahydrate and hydrofluoric acid. Hydrofluoric acid has the effect of removing the natural oxide film on the surface of the semiconductor substrate 1.

半導体基板1を置換めっき液中に浸漬させると、半導体基板1の表面の自然酸化膜が除去されるのに加え、凸部3の上面に、貴金属、ここでは金が析出する。これにより、触媒層6が得られる。 When the semiconductor substrate 1 is immersed in the replacement plating solution, the natural oxide film on the surface of the semiconductor substrate 1 is removed, and precious metal, here gold, is deposited on the upper surface of the convex portion 3. As a result, the catalyst layer 6 is obtained.

置換めっき液中におけるテトラクロロ金(III)酸四水和物の濃度は、0.0001mol/L乃至0.01mol/Lの範囲内にあることが好ましい。また、置換めっき液中における弗化水素濃度は、0.1mol/L乃至6.5mol/Lの範囲内にあることが好ましい。 The concentration of tetrachloroauric acid (III) acid tetrahydrate in the replacement plating solution is preferably in the range of 0.0001 mol / L to 0.01 mol / L. The hydrogen fluoride concentration in the replacement plating solution is preferably in the range of 0.1 mol / L to 6.5 mol / L.

なお、置換めっき液は、硫黄系錯化剤を更に含んでいてもよい。あるいは、置換めっき液は、グリシン及びクエン酸を更に含んでいてもよい。 The substitution plating solution may further contain a sulfur-based complexing agent. Alternatively, the replacement plating solution may further contain glycine and citric acid.

次に、図6に示すように、触媒層6へエッチング液7を供給する。例えば、凸部3と第3マスク層4と触媒層6とを形成した半導体基板1をエッチング液7に浸漬させる。エッチング液7は、例えば、腐食剤と酸化剤とを含んでいる。エッチング液7は、弗化アンモニウムを更に含んでいてもよい。 Next, as shown in FIG. 6, the etching solution 7 is supplied to the catalyst layer 6. For example, the semiconductor substrate 1 in which the convex portion 3, the third mask layer 4, and the catalyst layer 6 are formed is immersed in the etching solution 7. The etching solution 7 contains, for example, a corrosive agent and an oxidizing agent. The etching solution 7 may further contain ammonium fluoride.

エッチング液7が半導体基板1の表面に接触すると、酸化剤がその表面のうち貴金属粒子5が近接した部分を酸化させ、腐食剤がその酸化物を溶解除去する。そのため、エッチング液7は、図7に示すように、触媒層6の触媒としての作用のもとで、半導体基板1の表面を垂直方向(即ち、上記の厚さ方向)にエッチングする。 When the etching solution 7 comes into contact with the surface of the semiconductor substrate 1, the oxidizing agent oxidizes the portion of the surface where the noble metal particles 5 are close to, and the corrosive agent dissolves and removes the oxide. Therefore, as shown in FIG. 7, the etching solution 7 etches the surface of the semiconductor substrate 1 in the vertical direction (that is, the above-mentioned thickness direction) under the action of the catalyst layer 6 as a catalyst.

腐食剤は、上記酸化物を溶解させる。この酸化物は、例えば、SiOである。腐食剤は、例えば、弗化水素酸である。 The corrosive agent dissolves the above oxides. This oxide is, for example, SiO 2 . The corrosive agent is, for example, hydrofluoric acid.

エッチング液7における弗化水素濃度は、0.4mol/L乃至20mol/Lの範囲内にあることが好ましく、0.8mol/L乃至16mol/Lの範囲内にあることがより好ましく、2mol/L乃至10mol/Lの範囲内にあることが更に好ましい。弗化水素濃度が低すぎると、高いエッチングレートを達成することが難しい。弗化水素濃度が高すぎると、加工方向(例えば、半導体基板1の厚さ方向)のエッチングの制御性が低下する可能性がある。 The hydrogen fluoride concentration in the etching solution 7 is preferably in the range of 0.4 mol / L to 20 mol / L, more preferably in the range of 0.8 mol / L to 16 mol / L, and 2 mol / L. It is more preferably in the range of 10 mol / L. If the hydrogen fluoride concentration is too low, it is difficult to achieve a high etching rate. If the hydrogen fluoride concentration is too high, the controllability of etching in the processing direction (for example, the thickness direction of the semiconductor substrate 1) may decrease.

エッチング液7における酸化剤は、例えば、過酸化水素、硝酸、AgNO、KAuCl、HAuCl、KPtCl、HPtCl、Fe(NO、Ni(NO、Mg(NO、Na、K、KMnO及びKCrから選択することができる。有害な副生成物が発生せず、半導体素子の汚染も生じないことから、酸化剤としては過酸化水素が好ましい。 The oxidizing agents in the etching solution 7 are, for example, hydrogen peroxide, nitric acid, AgNO 3 , KAuCl 4 , HAuCl 4 , K 2 PtCl 6 , H 2 PtCl 6 , Fe (NO 3 ) 3 , Ni (NO 3 ) 2 , Mg. (NO 3 ) 2 , Na 2 S 2 O 8 , K 2 S 2 O 8 , KMn O 4 and K 2 Cr 2 O 7 can be selected. Hydrogen peroxide is preferable as the oxidizing agent because it does not generate harmful by-products and does not contaminate the semiconductor device.

エッチング液7における過酸化水素などの酸化剤の濃度は、0.2mol/L乃至8mol/Lの範囲内にあることが好ましく、0.5mol/L乃至5mol/Lの範囲内にあることがより好ましく、0.5mol/L乃至4mol/Lの範囲内にあることが更に好ましい。酸化剤の濃度が低すぎると、高いエッチングレートを達成することが難しい。酸化剤の濃度が過剰に高すぎると、過剰なサイドエッチングを生じる可能性がある。 The concentration of the oxidizing agent such as hydrogen peroxide in the etching solution 7 is preferably in the range of 0.2 mol / L to 8 mol / L, and more preferably in the range of 0.5 mol / L to 5 mol / L. It is more preferably in the range of 0.5 mol / L to 4 mol / L. If the concentration of oxidant is too low, it will be difficult to achieve a high etching rate. Excessive concentration of oxidant can result in excessive side etching.

なお、上述したエッチング方法によると、半導体基板1に針状残留部8が生じることがある。 According to the etching method described above, a needle-shaped residual portion 8 may be formed on the semiconductor substrate 1.

針状残留部8は、例えば、ウェットエッチング及びドライエッチングのうち少なくとも一方を用いて除去してもよい。ウェットエッチングにおけるエッチング液は、例えば、弗化水素酸と硝酸と酢酸との混合液、テトラメチルアンモニウムヒドロキシド(TMAH)、及びKOH等から選択することができる。ドライエッチングとしては、例えば、SF、CF、C、C、CClF、CCl、PCl、又はCBrFなどのガスを用いたプラズマエッチングが挙げられる。 The needle-shaped residue 8 may be removed by using at least one of wet etching and dry etching, for example. The etching solution in wet etching can be selected from, for example, a mixed solution of hydrofluoric acid, nitric acid and acetic acid, tetramethylammonium hydroxide (TMAH), KOH and the like. Examples of the dry etching include plasma etching using a gas such as SF 6 , CF 4 , C 2 F 6 , C 3 F 8 , CCl F 2 , CCl 4 , PCl 3 , or CBr F 3.

なお、触媒層6へのエッチング液7の供給は、第3マスク層4を取り除いてから行ってもよい。 The etching solution 7 may be supplied to the catalyst layer 6 after the third mask layer 4 is removed.

図1乃至図7に示す方法では、以上のようにして、半導体基板1のエッチングを行う。 In the method shown in FIGS. 1 to 7, the semiconductor substrate 1 is etched as described above.

ところで、上述した凸部を含む凹凸構造を有していない半導体基板をエッチングすると、エッチング後に残留する部分が多孔質になりやすい。以下に、これについて説明する。 By the way, when a semiconductor substrate having no uneven structure including the above-mentioned convex portions is etched, the portion remaining after etching tends to become porous. This will be described below.

比較例に係るエッチング方法では、先ず、図8に示すように、凸部3を有していない半導体基板1と第3マスク層4とを含む構造物を準備する。 In the etching method according to the comparative example, first, as shown in FIG. 8, a structure including the semiconductor substrate 1 having no convex portion 3 and the third mask layer 4 is prepared.

次に、図9に示すように、図8に示す構造物に上述の置換めっきを施すことで、触媒層6を半導体基板1の表面に形成する。触媒層6は、貴金属粒子5を含む。貴金属粒子5は、貴金属ナノ粒子5aと貴金属粒子5bとを含む。触媒層6を半導体基板1の表面に形成すると、半導体基板1の内部に貴金属元素が拡散する。半導体基板1のうち拡散した貴金属元素を含む部分を貴金属拡散部9とする。貴金属拡散部9は、半導体基板1の表面領域のうち、第3マスク層4の開口部に対応した部分だけでなく、第3マスク層4の真下の部分にも形成される。貴金属粒子5の一部は、第3マスク層4の真下の部分にも存在している。 Next, as shown in FIG. 9, the catalyst layer 6 is formed on the surface of the semiconductor substrate 1 by subjecting the structure shown in FIG. 8 to the above-mentioned substitution plating. The catalyst layer 6 contains precious metal particles 5. The noble metal particles 5 include noble metal nanoparticles 5a and noble metal particles 5b. When the catalyst layer 6 is formed on the surface of the semiconductor substrate 1, the noble metal element diffuses inside the semiconductor substrate 1. The portion of the semiconductor substrate 1 containing the diffused noble metal element is referred to as the noble metal diffusing portion 9. The precious metal diffusion portion 9 is formed not only in the portion corresponding to the opening of the third mask layer 4 but also in the portion directly below the third mask layer 4 in the surface region of the semiconductor substrate 1. A part of the precious metal particles 5 is also present in the portion directly below the third mask layer 4.

次に、図10に示すように、図9に示す構造物をエッチングする。エッチングの進行に伴い、貴金属粒子5と、貴金属拡散部9のうち第3マスク層4の開口部に対応した貴金属拡散部9aとは、半導体基板1の厚さ方向に移動する。一方、貴金属拡散部9のうち第3マスク層4の真下の貴金属拡散部9bは、エッチングの進行に伴って、上記厚さ方向と交差する方向へ移動する。その結果、半導体基板1の表面領域のうち第3マスク層4の真下の部分には、上記厚さ方向と交差する方向に伸びた複数の孔が形成される。 Next, as shown in FIG. 10, the structure shown in FIG. 9 is etched. As the etching progresses, the noble metal particles 5 and the noble metal diffusion portion 9a corresponding to the opening of the third mask layer 4 of the noble metal diffusion portions 9 move in the thickness direction of the semiconductor substrate 1. On the other hand, of the precious metal diffusing portions 9, the noble metal diffusing portion 9b directly below the third mask layer 4 moves in a direction intersecting the thickness direction as the etching progresses. As a result, a plurality of holes extending in the direction intersecting the thickness direction are formed in the portion of the surface region of the semiconductor substrate 1 directly below the third mask layer 4.

以上のとおり、凸部を含む凹凸構造を有していない半導体基板をエッチングすると、エッチング後に残留する部分が多孔質になりやすい。 As described above, when a semiconductor substrate having no uneven structure including convex portions is etched, the portion remaining after etching tends to become porous.

一方、図1乃至図7を参照しながら説明したエッチング方法によると、エッチング後に残留する部分が多孔質になりにくい。本発明者らは、これは、以下の理由によると考えている。 On the other hand, according to the etching method described with reference to FIGS. 1 to 7, the portion remaining after etching is unlikely to become porous. The present inventors believe that this is due to the following reasons.

先ず、図1乃至図4を用いて説明した方法によって、図11に示す構造が得られる。図11は、凸部3と第3マスク層4とが形成された半導体基板1を示す。 First, the structure shown in FIG. 11 is obtained by the method described with reference to FIGS. 1 to 4. FIG. 11 shows a semiconductor substrate 1 in which the convex portion 3 and the third mask layer 4 are formed.

次に、図5を用いて説明した方法によって、図12に示す構造が得られる。図12は、凸部3と第3マスク層4と触媒層6とが形成された半導体基板1を示す。触媒層6は貴金属粒子5を含み、貴金属粒子5は貴金属ナノ粒子5a及び貴金属粒子5bを含む。また、半導体基板1は、上述した貴金属拡散部9を備える。 Next, the structure shown in FIG. 12 is obtained by the method described with reference to FIG. FIG. 12 shows a semiconductor substrate 1 in which a convex portion 3, a third mask layer 4, and a catalyst layer 6 are formed. The catalyst layer 6 contains the noble metal particles 5, and the noble metal particles 5 include the noble metal nanoparticles 5a and the noble metal particles 5b. Further, the semiconductor substrate 1 includes the above-mentioned precious metal diffusion unit 9.

貴金属拡散部9は、半導体基板1の表面領域うち、第3マスク層4の開口部に対応した部分に形成されるが、第3マスク層4の真下の部分には形成されにくい。これは、凸部3の上面と第3マスク層4の下面とが十分に離れているからである。 The precious metal diffusion portion 9 is formed in a portion of the surface region of the semiconductor substrate 1 corresponding to the opening of the third mask layer 4, but is difficult to be formed in a portion directly below the third mask layer 4. This is because the upper surface of the convex portion 3 and the lower surface of the third mask layer 4 are sufficiently separated from each other.

次に、図6及び図7を用いて説明した方法によって、図12に示す構造物をエッチングすると、図13に示す構造が得られる。エッチングの進行に伴い、触媒層6は半導体基板1の厚さ方向に進行する。半導体基板1のうち、第3マスク層4の真下の部分には、貴金属拡散部9がほとんど存在しないことから、この部分においてエッチングは進行しにくい。 Next, when the structure shown in FIG. 12 is etched by the method described with reference to FIGS. 6 and 7, the structure shown in FIG. 13 is obtained. As the etching progresses, the catalyst layer 6 progresses in the thickness direction of the semiconductor substrate 1. Since the noble metal diffusion portion 9 is hardly present in the portion of the semiconductor substrate 1 directly below the third mask layer 4, etching does not easily proceed in this portion.

したがって、図1乃至図7を参照しながら説明したエッチング方法は、比較例に係るエッチング方法と比べて、半導体基板1には、その厚さ方向と交差する方向に伸びた複数の孔が形成されにくい。 Therefore, in the etching method described with reference to FIGS. 1 to 7, a plurality of holes extending in a direction intersecting the thickness direction thereof are formed on the semiconductor substrate 1 as compared with the etching method according to the comparative example. Hateful.

よって、実施形態に係るエッチング方法によると、エッチング後に残留する部分が多孔質になりにくい。 Therefore, according to the etching method according to the embodiment, the portion remaining after etching is unlikely to become porous.

以下、半導体基板1の表面に凸部3を含む凹凸構造を形成する方法の別の例について説明する。 Hereinafter, another example of a method of forming an uneven structure including the convex portion 3 on the surface of the semiconductor substrate 1 will be described.

先ず、図14に示すように、半導体基板1を準備し、半導体基板1の表面に、第2マスク層10を形成する。第2マスク層10は、半導体基板1の表面に、後述する半導体層11を形成するための層である。第2マスク層10は、1以上の開口部を有している。 First, as shown in FIG. 14, the semiconductor substrate 1 is prepared, and the second mask layer 10 is formed on the surface of the semiconductor substrate 1. The second mask layer 10 is a layer for forming the semiconductor layer 11 described later on the surface of the semiconductor substrate 1. The second mask layer 10 has one or more openings.

第2マスク層10の材料としては、後述する半導体層11の成膜プロセスに対する十分な耐性を有している材料であれば、任意の材料を用いることができる。 As the material of the second mask layer 10, any material can be used as long as it has sufficient resistance to the film forming process of the semiconductor layer 11 described later.

第2マスク層10の材料は、例えば、SiN、SiO又はAlである。第2マスク層10の材料は、上述した第3マスク層4の材料と同じ材料であってもよい。 The material of the second mask layer 10 is, for example, SiN, SiO 2 or Al. The material of the second mask layer 10 may be the same material as the material of the third mask layer 4 described above.

次に、図15に示すように、半導体基板1の表面のうち第2マスク層10の開口部に対応した領域に、半導体層11を形成する。半導体層11は、例えば、第2マスク層10が有する開口部の全域にわたって形成される。半導体層11は、上述した凸部3に相当する。 Next, as shown in FIG. 15, the semiconductor layer 11 is formed in a region of the surface of the semiconductor substrate 1 corresponding to the opening of the second mask layer 10. The semiconductor layer 11 is formed, for example, over the entire area of the opening of the second mask layer 10. The semiconductor layer 11 corresponds to the above-mentioned convex portion 3.

半導体層11は、例えば、半導体からなる。半導体は、図1を用いて説明した半導体であってもよい。半導体層11の材料は、半導体基板1の材料と同一であってもよく、半導体基板1をエッチングするためのエッチング条件下でエッチング可能であれば、半導体基板1の材料とは異なっていてもよい。 The semiconductor layer 11 is made of, for example, a semiconductor. The semiconductor may be the semiconductor described with reference to FIG. The material of the semiconductor layer 11 may be the same as the material of the semiconductor substrate 1, and may be different from the material of the semiconductor substrate 1 as long as it can be etched under the etching conditions for etching the semiconductor substrate 1. ..

半導体層11は、例えば、エピタキシャル成長によって形成することができる。一例によれば、半導体層11は、シリコンをエピタキシャル成長させることで形成することができる。 The semiconductor layer 11 can be formed by, for example, epitaxial growth. According to one example, the semiconductor layer 11 can be formed by epitaxially growing silicon.

次に、図16に示すように、第2マスク層10を取り除いて、第3マスク層4を形成する。なお、第2マスク層10を取り除かずに、第2マスク層10を第3マスク層4として用いてもよい。 Next, as shown in FIG. 16, the second mask layer 10 is removed to form the third mask layer 4. The second mask layer 10 may be used as the third mask layer 4 without removing the second mask layer 10.

以上、半導体基板1の表面に凸部3を含む凹凸構造を形成する方法の別の例について述べた。 The other example of the method of forming the concavo-convex structure including the convex portion 3 on the surface of the semiconductor substrate 1 has been described above.

上述したエッチング方法は、様々な物品の製造に利用することができる。また、上述したエッチング方法は、凹部若しくは貫通孔の形成、又は、半導体ウエハなどの構造物の分割に利用することもできる。例えば、上述したエッチング方法は、半導体装置の製造に利用することができる。 The etching method described above can be used for manufacturing various articles. Further, the etching method described above can also be used for forming recesses or through holes, or for dividing a structure such as a semiconductor wafer. For example, the etching method described above can be used for manufacturing a semiconductor device.

図17乃至図26を参照しながら、半導体ウエハをエッチングして複数の半導体チップへと個片化することを含んだ半導体チップの製造方法の一例について説明する。 With reference to FIGS. 17 to 26, an example of a method for manufacturing a semiconductor chip, which includes etching a semiconductor wafer and separating it into a plurality of semiconductor chips, will be described.

先ず、図17及び図18に示す構造を準備する。この構造は、半導体ウエハ12と、第2マスク層10と、ダイシングシート14とを含んでいる。半導体ウエハ12には、その表面に、半導体素子領域13が形成されている。第2マスク層10は、半導体ウエハ12の表面のうち、半導体素子が形成された領域である半導体素子領域13を被覆しており、半導体素子を損傷から保護する役割を果たす。ダイシングシート14は、半導体ウエハ12の第2マスク層10が設けられた面の裏側に貼り付けられている。 First, the structures shown in FIGS. 17 and 18 are prepared. This structure includes a semiconductor wafer 12, a second mask layer 10, and a dicing sheet 14. The semiconductor element region 13 is formed on the surface of the semiconductor wafer 12. The second mask layer 10 covers the semiconductor element region 13 which is a region on which the semiconductor element is formed on the surface of the semiconductor wafer 12, and plays a role of protecting the semiconductor element from damage. The dicing sheet 14 is attached to the back side of the surface of the semiconductor wafer 12 provided with the second mask layer 10.

次に、図19及び図20に示すように、図15を用いて参照しながら説明した方法により、半導体ウエハ12の表面に半導体層11を形成する。
次に、図21及び図22に示すように、図16を用いて参照しながら説明した方法により、第2マスク層10を取り除いて、第3マスク層4を形成する。
次に、図23及び図24に示すように、図5を参照しながら説明した方法により、半導体ウエハ12の表面に貴金属を含む触媒層6を形成する。
次に、図23及び図24に示す構造を、図6及び図7を参照しながら説明した方法によりエッチングして、図25及び図26に示す構造を得る。エッチングは、これによって生じる凹部の底面がダイシングシート14の表面に達するまで行う。
Next, as shown in FIGS. 19 and 20, the semiconductor layer 11 is formed on the surface of the semiconductor wafer 12 by the method described with reference to FIG.
Next, as shown in FIGS. 21 and 22, the second mask layer 10 is removed to form the third mask layer 4 by the method described with reference to FIG.
Next, as shown in FIGS. 23 and 24, the catalyst layer 6 containing a noble metal is formed on the surface of the semiconductor wafer 12 by the method described with reference to FIG.
Next, the structures shown in FIGS. 23 and 24 are etched by the method described with reference to FIGS. 6 and 7 to obtain the structures shown in FIGS. 25 and 26. Etching is performed until the bottom surface of the recess formed thereby reaches the surface of the dicing sheet 14.

以上の通り、上述した方法によると、図25及び図26に示すように、各々が半導体素子領域13を含む半導体チップ15を得ることができる。 As described above, according to the above-mentioned method, as shown in FIGS. 25 and 26, a semiconductor chip 15 each including a semiconductor element region 13 can be obtained.

また、この方法では、半導体チップの上面の形状は、正方形や長方形に限られない。例えば、半導体チップの上面の形状は、円形又は六角形であってもよい。また、この方法では、上面形状が異なる半導体チップを同時に形成することができる。 Further, in this method, the shape of the upper surface of the semiconductor chip is not limited to a square or a rectangle. For example, the shape of the upper surface of the semiconductor chip may be circular or hexagonal. Further, in this method, semiconductor chips having different top surface shapes can be formed at the same time.

以下、実施例及び比較例について説明する。
<実施例>
以下の方法により、半導体ウエハに、凸部と第3マスク層と触媒層とを形成し、これをエッチングした。そして、エッチング後に残留した部分が多孔質になるかを調べた。
Hereinafter, Examples and Comparative Examples will be described.
<Example>
A convex portion, a third mask layer, and a catalyst layer were formed on the semiconductor wafer by the following method, and these were etched. Then, it was investigated whether the portion remaining after etching became porous.

この方法では、半導体ウエハを個片化して半導体チップを得た。この個片化は、半導体ウエハを個片化する際に除去する体積が、半導体ウエハ全体の体積の5%となるように行った。 In this method, a semiconductor wafer was fragmented to obtain a semiconductor chip. This individualization was performed so that the volume removed when the semiconductor wafer was individualized was 5% of the volume of the entire semiconductor wafer.

具体的には、先ず、半導体ウエハの表面に第1マスク層を形成した。第1マスク層は、フォトレジストを用いたフォトリソグラフィによって形成した。第1マスク層には、開口部を格子状に形成した。開口部の幅は1μmであった。 Specifically, first, a first mask layer was formed on the surface of the semiconductor wafer. The first mask layer was formed by photolithography using a photoresist. The first mask layer has openings formed in a grid pattern. The width of the opening was 1 μm.

次に、第1マスク層をエッチングマスクとして用いたドライエッチングによって、半導体ウエハに凸部を形成した。凸部の高さは0.2μmであった。 Next, a convex portion was formed on the semiconductor wafer by dry etching using the first mask layer as an etching mask. The height of the convex portion was 0.2 μm.

次に、第1マスク層を除去し、凸部の位置に開口部を有する第3マスク層を半導体ウエハに形成した。開口部の寸法及び形状は、凸部の上面の寸法及び形状と等しくなるように形成した。また、第3マスク層は、その上面の高さが凸部の上面と高さが等しくなるように形成した。図27は、凸部及び第3マスク層を形成した半導体ウエハの走査電子顕微鏡で観察した結果を示す。 Next, the first mask layer was removed, and a third mask layer having an opening at the position of the convex portion was formed on the semiconductor wafer. The size and shape of the opening were formed to be equal to the size and shape of the upper surface of the convex portion. Further, the third mask layer was formed so that the height of the upper surface thereof was equal to the height of the upper surface of the convex portion. FIG. 27 shows the results of observation with a scanning electron microscope of the semiconductor wafer on which the convex portion and the third mask layer are formed.

図27は、凸部と第3マスク層とを形成した半導体基板の断面を示す顕微鏡写真である。図27に示すように、第3マスク層の上面の高さと凸部の上面の高さとは等しい。 FIG. 27 is a photomicrograph showing a cross section of a semiconductor substrate on which a convex portion and a third mask layer are formed. As shown in FIG. 27, the height of the upper surface of the third mask layer is equal to the height of the upper surface of the convex portion.

次に、テトラクロロ金(III)酸四水和物の水溶液と弗化水素酸を含む50mLのめっき液Aを調製した。 Next, a 50 mL plating solution A containing an aqueous solution of tetrachloroauric acid (III) acid tetrahydrate and hydrofluoric acid was prepared.

次に、凸部と第3マスク層とを形成した半導体ウエハを室温で60秒間めっき液Aに浸漬させて、凸部の上面に触媒層を形成した。浸漬は、半導体ウエハを回転させずに行った。図28に、触媒層を形成した半導体ウエハの走査電子顕微鏡で観察した結果を示す。図28は、図27に示す構造物に触媒層を形成して得られる構造の断面を示す顕微鏡写真である。 Next, the semiconductor wafer on which the convex portion and the third mask layer were formed was immersed in the plating solution A at room temperature for 60 seconds to form a catalyst layer on the upper surface of the convex portion. The immersion was performed without rotating the semiconductor wafer. FIG. 28 shows the results observed with a scanning electron microscope of the semiconductor wafer on which the catalyst layer was formed. FIG. 28 is a photomicrograph showing a cross section of a structure obtained by forming a catalyst layer on the structure shown in FIG. 27.

次に、27.5mLの弗化水素酸と8.6mLの過酸化水素と63.9mLの水とを混合して100mlのエッチング液を調製した。このエッチング液に、凸部と第3マスク層と触媒層とを形成した半導体ウエハを25℃で30分間浸漬させて、これをエッチングした。図29に、エッチングした半導体ウエハを走査電子顕微鏡で観察した結果を示す。 Next, 27.5 mL of hydrofluoric acid, 8.6 mL of hydrogen peroxide and 63.9 mL of water were mixed to prepare 100 ml of an etching solution. A semiconductor wafer having a convex portion, a third mask layer, and a catalyst layer was immersed in this etching solution at 25 ° C. for 30 minutes, and this was etched. FIG. 29 shows the results of observing the etched semiconductor wafer with a scanning electron microscope.

図29は、図28に示す構造物をエッチングして得られる構造物の断面を示す顕微鏡写真である。図29に示すように、実施例に係るエッチング方法によると、エッチング後に残留する部分は多孔質にならなかった。 FIG. 29 is a photomicrograph showing a cross section of the structure obtained by etching the structure shown in FIG. 28. As shown in FIG. 29, according to the etching method according to the example, the portion remaining after etching did not become porous.

<比較例>
半導体ウエハに凸部を形成しなかったこと以外は、実施例において説明したエッチング方法と同様の方法により、第3マスク層と触媒層とを半導体基板に形成し、これをエッチングした。
<Comparison example>
The third mask layer and the catalyst layer were formed on the semiconductor substrate by the same method as the etching method described in the examples except that the convex portions were not formed on the semiconductor wafer, and the third mask layer and the catalyst layer were etched.

図30は、凸部を含む凹凸構造を有していない半導体ウエハをエッチングして得られる構造物の断面を示す顕微鏡写真である。図30に示すように、半導体ウエハの領域のうち、エッチング後に残留する部分は多孔質であった。 FIG. 30 is a photomicrograph showing a cross section of a structure obtained by etching a semiconductor wafer having no uneven structure including a convex portion. As shown in FIG. 30, the portion of the semiconductor wafer region remaining after etching was porous.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
以下に、原出願の当初の特許請求の範囲に記載していた発明を付記する。
[1]
半導体基板の表面に、凸部を含んだ凹凸構造を形成することと、
貴金属を含む触媒層を、前記表面のうち前記凸部の上面に対して選択的に形成することと、
前記触媒層へエッチング液を供給して、前記貴金属の触媒としての作用のもとで前記半導体基板をエッチングすることと
を含んだエッチング方法。
[2]
前記凹凸構造の形成は、
前記表面に、開口部を有する第1マスク層を形成することと、
前記第1マスク層をエッチングマスクとして用いて、前記表面をエッチングすることと、
前記第1マスク層を除去することと
を含んだ項1に記載のエッチング方法。
[3]
前記凹凸構造の形成は、
前記表面に、開口部を有する第2マスク層を形成することと、
前記表面上であって前記開口部の位置に、半導体層を形成することと
を含んだ項1に記載のエッチング方法。
[4]
前記半導体層をエピタキシャル成長法によって形成する項3に記載のエッチング方法。
[5]
前記触媒層の形成は、前記凸部の位置で開口し且つ前記凸部の上面と高さが等しいか又はそれよりも高さが高い上面を有する第3マスク層の存在下で行う項1乃至4の何れか1項に記載のエッチング方法。
[6]
前記触媒層への前記エッチング液の供給は、前記第3マスク層を残したまま行う項5に記載のエッチング方法。
[7]
前記第3マスク層は、前記凸部と比較して、前記エッチング液に対するエッチング耐性がより高い項6に記載のエッチング方法。
[8]
前記エッチング液は腐食剤と酸化剤とを含む項1乃至7の何れか1項に記載のエッチング方法。
[9]
前記腐食剤は、弗化水素酸を含み、
前記酸化剤は、過酸化水素、硝酸、AgNO3、KAuCl4、HAuCl4、K2PtCl6、H2PtCl6、Fe(NO33、Ni(NO32、Mg(NO32、Na228、K228、KMnO4、及びK2Cr27のうち少なくとも1つを含んだ項8に記載のエッチング方法。
[10]
前記凸部の高さは、0.15μm乃至0.5μmの範囲内にある項1乃至9の何れか1項に記載のエッチング方法。
[11]
前記貴金属はAuである項1乃至10の何れか1項に記載のエッチング方法。
[12]
半導体ウエハを項1乃至11の何れか1項に記載のエッチング方法によりエッチングして半導体チップへと個片化することを含み、前記表面は前記半導体ウエハの表面である半導体チップの製造方法。
[13]
項1乃至12の何れか1項に記載のエッチング方法により、前記表面をエッチングすることを含んだ物品の製造方法。
The present invention is not limited to the above embodiment as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components may be removed from all the components shown in the embodiments. Further, components over different embodiments may be combined as appropriate.
The inventions described in the original claims are described below.
[1]
Forming a concavo-convex structure including convex parts on the surface of the semiconductor substrate,
To selectively form a catalyst layer containing a noble metal with respect to the upper surface of the convex portion of the surface.
An etching method comprising supplying an etching solution to the catalyst layer and etching the semiconductor substrate under the action of the noble metal as a catalyst.
[2]
The formation of the uneven structure is
To form a first mask layer having an opening on the surface,
Using the first mask layer as an etching mask to etch the surface,
Item 2. The etching method according to Item 1, which comprises removing the first mask layer.
[3]
The formation of the uneven structure is
To form a second mask layer having an opening on the surface,
Item 2. The etching method according to Item 1, which comprises forming a semiconductor layer on the surface at the position of the opening.
[4]
Item 3. The etching method according to Item 3, wherein the semiconductor layer is formed by an epitaxial growth method.
[5]
The formation of the catalyst layer is performed in the presence of a third mask layer which is open at the position of the convex portion and has an upper surface having a height equal to or higher than the upper surface of the convex portion. The etching method according to any one of 4.
[6]
Item 5. The etching method according to Item 5, wherein the etching solution is supplied to the catalyst layer while leaving the third mask layer.
[7]
Item 6. The etching method according to Item 6, wherein the third mask layer has higher etching resistance to the etching solution as compared with the convex portion.
[8]
Item 6. The etching method according to any one of Items 1 to 7, wherein the etching solution contains a corrosive agent and an oxidizing agent.
[9]
The corrosive agent contains hydrofluoric acid and
The oxidizing agents are hydrogen peroxide, nitric acid, AgNO 3 , KAuCl 4 , HAuCl 4 , K 2 PtCl 6 , H 2 PtCl 6 , Fe (NO 3 ) 3 , Ni (NO 3 ) 2 , Mg (NO 3 ) 2. Item 8. The etching method according to Item 8, which comprises at least one of Na 2 S 2 O 8 , K 2 S 2 O 8 , KMn O 4 , and K 2 Cr 2 O 7.
[10]
Item 6. The etching method according to any one of Items 1 to 9, wherein the height of the convex portion is in the range of 0.15 μm to 0.5 μm.
[11]
Item 6. The etching method according to any one of Items 1 to 10, wherein the precious metal is Au.
[12]
A method for manufacturing a semiconductor chip, which comprises etching a semiconductor wafer by the etching method according to any one of Items 1 to 11 and fragmenting the semiconductor wafer into semiconductor chips, the surface of which is the surface of the semiconductor wafer.
[13]
A method for producing an article, which comprises etching the surface by the etching method according to any one of Items 1 to 12.

1…半導体基板、2…第1マスク層、3…凸部、4…第3マスク層、5…貴金属粒子、5a…貴金属ナノ粒子、5b…貴金属粒子、6…触媒層、7…エッチング液、8…針状残留部、9…貴金属拡散部、9a…貴金属拡散部、9b…貴金属拡散部、10…第2マスク層、11…半導体層、12…半導体ウエハ、13…半導体素子領域、14…ダイシングシート、15…半導体チップ。 1 ... semiconductor substrate, 2 ... first mask layer, 3 ... convex part, 4 ... third mask layer, 5 ... noble metal particles, 5a ... noble metal nanoparticles, 5b ... noble metal particles, 6 ... catalyst layer, 7 ... etching solution, 8 ... Needle-shaped residual portion, 9 ... Noble metal diffusion portion, 9a ... Noble metal diffusion portion, 9b ... Noble metal diffusion portion, 10 ... Second mask layer, 11 ... Semiconductor layer, 12 ... Semiconductor wafer, 13 ... Semiconductor element region, 14 ... Dicing sheet, 15 ... Semiconductor chip.

Claims (13)

半導体基板の表面に、凸部を含んだ凹凸構造を形成することと、
貴金属を含む触媒層を、前記表面のうち前記凸部の上面に対して選択的に形成することと、
前記触媒層へエッチング液を供給して、前記貴金属の触媒としての作用のもとで前記半導体基板をエッチングすることと
を含み、
前記凹凸構造の形成は、
前記表面に、開口部を有する第1マスク層を形成することと、
前記第1マスク層をエッチングマスクとして用いて、前記表面をエッチングすることと、
前記第1マスク層を除去することと
を含んだエッチング方法。
Forming a concavo-convex structure including convex parts on the surface of the semiconductor substrate,
To selectively form a catalyst layer containing a noble metal with respect to the upper surface of the convex portion of the surface.
It includes supplying an etching solution to the catalyst layer and etching the semiconductor substrate under the action of the noble metal as a catalyst.
The formation of the uneven structure is
To form a first mask layer having an opening on the surface,
Using the first mask layer as an etching mask to etch the surface,
An etching method including removing the first mask layer.
半導体基板の表面に、凸部を含んだ凹凸構造を形成することと、
貴金属を含む触媒層を、前記表面のうち前記凸部の上面に対して選択的に形成することと、
前記触媒層へエッチング液を供給して、前記貴金属の触媒としての作用のもとで前記半導体基板をエッチングすることと
を含み、
前記凹凸構造の形成は、
前記表面に、開口部を有する第2マスク層を形成することと、
前記表面上であって前記開口部の位置に、半導体層を形成することと
を含んだエッチング方法。
Forming a concavo-convex structure including convex parts on the surface of the semiconductor substrate,
To selectively form a catalyst layer containing a noble metal with respect to the upper surface of the convex portion of the surface.
It includes supplying an etching solution to the catalyst layer and etching the semiconductor substrate under the action of the noble metal as a catalyst.
The formation of the uneven structure is
To form a second mask layer having an opening on the surface,
An etching method including forming a semiconductor layer on the surface at the position of the opening.
前記半導体層をエピタキシャル成長法によって形成する請求項2に記載のエッチング方法。 The etching method according to claim 2, wherein the semiconductor layer is formed by an epitaxial growth method. 前記触媒層の形成は、前記凸部の位置で開口し且つ前記凸部の上面と高さが等しいか又はそれよりも高さが高い上面を有する第3マスク層の存在下で行う請求項1乃至3の何れか1項に記載のエッチング方法。 The formation of the catalyst layer is performed in the presence of a third mask layer which is open at the position of the convex portion and has an upper surface having a height equal to or higher than the upper surface of the convex portion. The etching method according to any one of 3 to 3. 前記凹凸構造を形成した後であって、前記触媒層を形成する前に、前記凸部の位置で開口した第3マスク層を形成することを更に含み、前記触媒層は、前記凸部の上面及び前記第3マスク層のうち、前記凸部の上面に対して選択的に形成する請求項1乃至3の何れか1項に記載のエッチング方法。 It further comprises forming a third mask layer opened at the position of the convex portion after forming the uneven structure and before forming the catalyst layer, wherein the catalyst layer is the upper surface of the convex portion. The etching method according to any one of claims 1 to 3, wherein the third mask layer is selectively formed on the upper surface of the convex portion. 前記触媒層への前記エッチング液の供給は、前記第3マスク層を残したまま行う請求項4又は5に記載のエッチング方法。 The etching method according to claim 4 or 5, wherein the etching solution is supplied to the catalyst layer while leaving the third mask layer. 前記第3マスク層は、前記凸部と比較して、前記エッチング液に対するエッチング耐性がより高い請求項6に記載のエッチング方法。 The etching method according to claim 6, wherein the third mask layer has higher etching resistance to the etching solution as compared with the convex portion. 前記エッチング液は腐食剤と酸化剤とを含む請求項1乃至7の何れか1項に記載のエッチング方法。 The etching method according to any one of claims 1 to 7, wherein the etching solution contains a corrosive agent and an oxidizing agent. 前記腐食剤は、弗化水素酸を含み、
前記酸化剤は、過酸化水素、硝酸、AgNO、KAuCl、HAuCl、KPtCl、HPtCl、Fe(NO、Ni(NO、Mg(NO、Na、K、KMnO、及びKCrのうち少なくとも1つを含んだ請求項8に記載のエッチング方法。
The corrosive agent contains hydrofluoric acid and
The oxidizing agents are hydrogen peroxide, nitric acid, AgNO 3 , KAuCl 4 , HAuCl 4 , K 2 PtCl 6 , H 2 PtCl 6 , Fe (NO 3 ) 3 , Ni (NO 3 ) 2 , Mg (NO 3 ) 2. , Na 2 S 2 O 8 , K 2 S 2 O 8 , KMnO 4 , and K 2 Cr 2 O 7 according to claim 8.
前記凸部の高さは、0.15μm乃至0.5μmの範囲内にある請求項1乃至9の何れか1項に記載のエッチング方法。 The etching method according to any one of claims 1 to 9, wherein the height of the convex portion is in the range of 0.15 μm to 0.5 μm. 前記貴金属はAuである請求項1乃至10の何れか1項に記載のエッチング方法。 The etching method according to any one of claims 1 to 10, wherein the precious metal is Au. 半導体基板の表面に、凸部を含んだ凹凸構造を形成することと、
貴金属を含む触媒層を、前記表面のうち前記凸部の上面に対して選択的に形成することと、
前記触媒層へエッチング液を供給して、前記貴金属の触媒としての作用のもとで前記半導体基板をエッチングすることと
を含んだエッチング方法により半導体ウエハをエッチングして半導体チップへと個片化することを含み、前記表面は前記半導体ウエハの表面である半導体チップの製造方法。
Forming a concavo-convex structure including convex parts on the surface of the semiconductor substrate,
To selectively form a catalyst layer containing a noble metal with respect to the upper surface of the convex portion of the surface.
A semiconductor wafer is etched into a semiconductor chip by an etching method including supplying an etching solution to the catalyst layer and etching the semiconductor substrate under the action of the noble metal as a catalyst. A method for manufacturing a semiconductor chip whose surface is the surface of the semiconductor wafer.
請求項1乃至11の何れか1項に記載のエッチング方法により、前記表面をエッチングすることを含んだ物品の製造方法。 A method for manufacturing an article, which comprises etching the surface by the etching method according to any one of claims 1 to 11.
JP2020169188A 2018-02-09 2020-10-06 Etching method, semiconductor chip manufacturing method and article manufacturing method Active JP6970263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020169188A JP6970263B2 (en) 2018-02-09 2020-10-06 Etching method, semiconductor chip manufacturing method and article manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018021849A JP2019140225A (en) 2018-02-09 2018-02-09 Etching method, method for manufacturing semiconductor chips, and method for manufacturing articles
JP2020169188A JP6970263B2 (en) 2018-02-09 2020-10-06 Etching method, semiconductor chip manufacturing method and article manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018021849A Division JP2019140225A (en) 2018-02-09 2018-02-09 Etching method, method for manufacturing semiconductor chips, and method for manufacturing articles

Publications (2)

Publication Number Publication Date
JP2021002689A JP2021002689A (en) 2021-01-07
JP6970263B2 true JP6970263B2 (en) 2021-11-24

Family

ID=73995515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020169188A Active JP6970263B2 (en) 2018-02-09 2020-10-06 Etching method, semiconductor chip manufacturing method and article manufacturing method

Country Status (1)

Country Link
JP (1) JP6970263B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5322173B2 (en) * 2009-09-07 2013-10-23 国立大学法人 宮崎大学 Formation method of fine channel
JP6441025B2 (en) * 2013-11-13 2018-12-19 株式会社東芝 Manufacturing method of semiconductor chip
US10134634B2 (en) * 2014-11-04 2018-11-20 Georgia Tech Research Corporation Metal-assisted chemical etching of a semiconductive substrate with high aspect ratio, high geometic uniformity, and controlled 3D profiles
CN104900509B (en) * 2015-06-04 2017-10-24 苏州晶牧光材料科技有限公司 The surface treatment method and etching method of diamond wire saw silicon chip

Also Published As

Publication number Publication date
JP2021002689A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
CN110137078B (en) Etching method, method for manufacturing semiconductor chip, and method for manufacturing article
TWI647112B (en) Etching method, method of manufacturing semiconductor wafer, and method of manufacturing article
KR102271693B1 (en) Etching method, method of manufacturing article, and etching solution
JP6193321B2 (en) Etching method, article manufacturing method, and etching apparatus
JP7080781B2 (en) Porous layer forming method, etching method, article manufacturing method, semiconductor device manufacturing method, and plating solution
JP6970263B2 (en) Etching method, semiconductor chip manufacturing method and article manufacturing method
JP6444805B2 (en) Manufacturing method of semiconductor chip
Yan et al. Facile fabrication of wafer-scale, micro-spacing and high-aspect-ratio silicon microwire arrays
JP2018022926A (en) Etching method, manufacturing method of semiconductor chip and manufacturing method of article
US20060071207A1 (en) Selective deposition of ZnO nanostructures on a silicon substrate using a nickel catalyst and either patterned polysilicon or silicon surface modification
JP2022063074A (en) Etching method, manufacturing method for semiconductor chip, and manufacturing method for product
JP2017195383A (en) Etching method, article manufacturing method, and etching apparatus
KR20210035189A (en) Platinum patterning by alloying and etching platinum alloys
JP2018019058A (en) Etching method, manufacturing method of semiconductor chip and manufacturing method of article
JP6363245B2 (en) Etching method, article and semiconductor device manufacturing method, and etching solution
US20230077915A1 (en) Etching method
TWI785501B (en) Formation method of catalyst layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201006

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211028

R151 Written notification of patent or utility model registration

Ref document number: 6970263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151