JP6969751B2 - Tunnel magnetoresistive element and magnetization direction correction circuit - Google Patents

Tunnel magnetoresistive element and magnetization direction correction circuit Download PDF

Info

Publication number
JP6969751B2
JP6969751B2 JP2018564487A JP2018564487A JP6969751B2 JP 6969751 B2 JP6969751 B2 JP 6969751B2 JP 2018564487 A JP2018564487 A JP 2018564487A JP 2018564487 A JP2018564487 A JP 2018564487A JP 6969751 B2 JP6969751 B2 JP 6969751B2
Authority
JP
Japan
Prior art keywords
magnetic field
layer
magnetization
magnetic
magnetization direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018564487A
Other languages
Japanese (ja)
Other versions
JPWO2018139252A1 (en
Inventor
康夫 安藤
幹彦 大兼
耕輔 藤原
純一 城野
孝 寺内
孝二郎 関根
匡章 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Konica Minolta Inc
Original Assignee
Tohoku University NUC
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Konica Minolta Inc filed Critical Tohoku University NUC
Publication of JPWO2018139252A1 publication Critical patent/JPWO2018139252A1/en
Application granted granted Critical
Publication of JP6969751B2 publication Critical patent/JP6969751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Description

本発明は、トンネル磁気抵抗素子及び磁化方向補正回路に関する。 The present invention relates to a tunnel magnetoresistive element and a magnetization direction correction circuit.

トンネル磁気抵抗素子(TMR(Tunnel Magneto Resistive)素子)は、磁化の向きが固定された固定磁性層、外部からの磁場の影響を受けて磁化の向きが変化する自由磁性層、及び、固定磁性層と自由磁性層との間に配置された絶縁層を有し、磁気トンネル接合(MTJ(Magnetic Tunnel Junction))を形成する。この構成を利用したものとして、磁気メモリ・磁気ヘッド・磁気センサーなどが挙げられる(特許文献1,2)。
また、自由磁性層に、外部からの磁場に反応しやすい軟磁性層(NiFeやCoFeSiBなど)を配置し、基板に近い側から、自由磁性層、絶縁層、固定磁性層の順に積層した構造を磁場中熱処理することで、外部からの磁場によって引き起こされる固定磁性層の磁化の向きと自由磁性層の磁化の向きとの角度差に従ってトンネル効果により絶縁層の抵抗変化を利用した、リニアリティの高い高感度な磁気センサーを作製する技術がある(特許文献3)。
自由磁性層には、外部からの磁場に反応しやすい軟磁性層(NiFeやCoFeSiBなど)を配置し、さらに、絶縁層に接合する強磁性層と軟磁性層との間に磁気結合層(TaやRu)を介在させることで、磁気トンネル接合と軟磁性材料との固体物性上の結合は排除しつつ、磁気的な結合のみ発生させるシンセティック結合が利用されている(特許文献1−3)。
The tunnel magnetoresistive element (TMR (Tunnel Magneto Resistive) element) is a fixed magnetic layer in which the direction of magnetization is fixed, a free magnetic layer in which the direction of magnetization changes under the influence of an external magnetic field, and a fixed magnetic layer. It has an insulating layer arranged between the free magnetic layer and the free magnetic layer, and forms a magnetic tunnel junction (MTJ). Examples of the one using this configuration include a magnetic memory, a magnetic head, a magnetic sensor, and the like (Patent Documents 1 and 2).
In addition, a soft magnetic layer (NiFe, CoFeSiB, etc.) that easily reacts to an external magnetic field is placed on the free magnetic layer, and a structure in which the free magnetic layer, the insulating layer, and the fixed magnetic layer are laminated in this order from the side closer to the substrate is formed. By heat treatment in a magnetic field, the resistance change of the insulating layer is utilized by the tunnel effect according to the angular difference between the direction of magnetization of the fixed magnetic layer and the direction of magnetization of the free magnetic layer caused by the magnetic field from the outside, and the high linearity is high. There is a technique for manufacturing a sensitive magnetic sensor (Patent Document 3).
A soft magnetic layer (NiFe, CoFeSiB, etc.) that easily reacts to an external magnetic field is arranged in the free magnetic layer, and a magnetic coupling layer (Ta) is further formed between the ferromagnetic layer and the soft magnetic layer bonded to the insulating layer. And Ru), a synthetic bond that generates only a magnetic bond is used while eliminating the bond between the magnetic tunnel bond and the soft magnetic material in terms of solid properties (Patent Documents 1-3).

特開平9−25168号公報Japanese Unexamined Patent Publication No. 9-25168 特開2012−221549号公報Japanese Unexamined Patent Publication No. 2012-221549 特開2013−105825号公報Japanese Unexamined Patent Publication No. 2013-105825 特許5897719号公報Japanese Patent No. 5897719 特許5259802号公報Japanese Patent No. 5259802 特許4970033号公報Japanese Patent No. 4970033

「1- and 2-Axis Magnetic Sensors HMC1001/1002/1021/1022」 www.honeywell.com/magneticsensors Form #900248 Rev C August 2008"1- and 2-Axis Magnetic Sensors HMC1001 / 1002/1021/1022" www.honeywell.com/magneticsensors Form # 900248 Rev C August 2008

MTJを高感度な磁気センサーとして利用する場合、外部磁場に対して磁化されやすい軟磁性材料(NiFeやCoFeSiBなど)を用いて自由磁性層を形成する必要がある。
しかし、自由磁性層によって外部磁場に対しての応答性が向上する一方で、磁性材料層の特性が不安定になることで磁性材料由来のノイズが大きくなってしまう為に、結果として良好なSN比を得られなくなる可能性がある。
一方で、主には異方性磁気抵抗素子(AMR)を利用して、磁性材料内の磁化方向を制御するといった技術がある(特許文献4,5,6)。この技術は、コイルを利用してパルス磁場を磁気抵抗素子に印加し、磁性材料の磁化方向を強制的に一方向へ揃えて安定化させることを目的としている。
しかしながら、コイルを利用する為に数アンペアの電流で十mT程度の磁場しか発生することができず、反強磁性材料(IrMnなど)を用いて固定磁性層を形成している為に磁化方向の反転に大きな磁場(一般的に数百mT)が必要なMTJへの適用は困難である。
When MTJ is used as a highly sensitive magnetic sensor, it is necessary to form a free magnetic layer using a soft magnetic material (NiFe, CoFeSiB, etc.) that is easily magnetized by an external magnetic field.
However, while the free magnetic layer improves the responsiveness to an external magnetic field, the characteristics of the magnetic material layer become unstable and the noise derived from the magnetic material increases, resulting in a good SN. You may not be able to get the ratio.
On the other hand, there is a technique of controlling the magnetization direction in a magnetic material mainly by using an anisotropic magnetoresistive element (AMR) (Patent Documents 4, 5 and 6). The purpose of this technique is to apply a pulsed magnetic field to a magnetoresistive element using a coil to forcibly align and stabilize the magnetization direction of the magnetic material in one direction.
However, since a coil is used, a magnetic field of only about 10 mT can be generated with a current of several amperes, and a fixed magnetic layer is formed using an antiferromagnetic material (Irmn, etc.), so that the magnetization direction is different. It is difficult to apply to MTJs that require a large magnetic field (generally several hundred mT) for inversion.

本発明は以上の従来技術における問題に鑑みてなされたものであって、固定磁性層の磁化方向を強制的に反転処理することで、トンネル磁気抵抗素子の出力からノイズを除去することを課題とする。 The present invention has been made in view of the above problems in the prior art, and an object of the present invention is to remove noise from the output of a tunnel magnetoresistive element by forcibly inverting the magnetization direction of the fixed magnetic layer. do.

以上の課題を解決するための請求項1記載の発明は、外部磁場の影響を受けて磁化の向きが変化する少なくとも2つ以上の特定の方向に磁化された強磁性層の間に、絶縁層が配置されて磁気トンネル接合を形成し、前記絶縁層の両側の前記強磁性層の磁化方向の相対角度に従ってトンネル効果により前記絶縁層の抵抗を変化させるトンネル磁気抵抗素子であって、
前記絶縁層の両側の前記強磁性層のいずれもが、1μT以上10mT未満の磁場強度で磁化の方向が反転する組成と体積とを備え、
前記絶縁層及びこの両側の前記強磁性層は基板に近い側から、一方側の強磁性層、前記絶縁層、他方側の強磁性層の順で積層され、
前記他方側の強磁性層は、当該他方側の強磁性層に接触して軟磁性層が積層されていることで、外部磁場の影響を受けて磁化の向きが、前記一方側の強磁性層より変化しやすい自由磁性層として機能するトンネル磁気抵抗素子である。
The invention according to claim 1 for solving the above problems is an insulating layer between at least two or more ferromagnetic layers magnetized in a specific direction in which the direction of magnetization changes under the influence of an external magnetic field. Is a tunnel magnetoresistive element that forms a magnetic tunnel junction and changes the resistance of the insulating layer by a tunnel effect according to the relative angle of the magnetization direction of the ferromagnetic layer on both sides of the insulating layer.
Each of the ferromagnetic layers on both sides of the insulating layer has a composition and volume in which the direction of magnetization is reversed at a magnetic field strength of 1 μT or more and less than 10 mT.
The insulating layer and the ferromagnetic layers on both sides thereof are laminated in the order of the ferromagnetic layer on one side, the insulating layer, and the ferromagnetic layer on the other side from the side closer to the substrate.
The ferromagnetic layer on the other side is in contact with the ferromagnetic layer on the other side and the soft magnetic layer is laminated, so that the direction of magnetization is affected by the external magnetic field and the direction of magnetization is the ferromagnetic layer on the one side. It is a tunnel magnetic resistance element that functions as a free magnetic layer that is more variable.

請求項記載の発明は、前記一方側の強磁性層の磁化方向と、前記自由磁性層の磁化方向とがねじれの位置にある請求項1に記載のトンネル磁気抵抗素子である。 The invention according to claim 2 is the tunnel magnetoresistive element according to claim 1, wherein the magnetization direction of the ferromagnetic layer on one side and the magnetization direction of the free magnetic layer are twisted positions.

請求項記載の発明は、請求項1又は請求項2に記載のトンネル磁気抵抗素子が少なくとも1つ以上実装されたブリッジ回路と、
前記ブリッジ回路のトンネル磁気抵抗素子に前記強磁性層の磁化方向を互いに反転させるセットパルス磁場及びリセットパルス磁場を交互に印加するセット/リセット回路と、
セットパルス磁場及びリセットパルス磁場の交互の印加に同期して前記トンネル磁気抵抗素子からの信号出力を検出する検波回路とを備えた磁化方向補正回路である。
The invention according to claim 3 comprises a bridge circuit in which at least one or more tunnel magnetoresistive elements according to claim 1 or 2 are mounted.
A set / reset circuit that alternately applies a set pulse magnetic field and a reset pulse magnetic field that invert the magnetization directions of the ferromagnetic layer to the tunnel magnetoresistive element of the bridge circuit.
It is a magnetization direction correction circuit including a detection circuit for detecting a signal output from the tunnel magnetoresistive element in synchronization with the alternating application of a set pulse magnetic field and a reset pulse magnetic field.

請求項記載の発明は、セットパルス磁場及びリセットパルス磁場の交互の印加により、前記一方側の強磁性層の磁化方向を反転させるとともに、前記自由磁性層の磁化方向を反転させる請求項に記載の磁化方向補正回路である。 Fourth aspect of the present invention, by alternating application of the set pulse magnetic field and the reset pulse magnetic field, the one with reversing the magnetization direction of the side of the ferromagnetic layer, to claim 3 for reversing the magnetization direction of the free magnetic layer The magnetization direction correction circuit described.

本発明によれば、固定磁性層の磁化方向及び自由磁性層の磁化方向を強制的に反転処理することで、トンネル磁気抵抗素子の出力のうち外部磁場に応答する信号成分をノイズ成分から独立して反転し、分離することでノイズを除去することができる。 According to the present invention, by forcibly inverting the magnetization direction of the fixed magnetic layer and the magnetization direction of the free magnetic layer, the signal component corresponding to the external magnetic field in the output of the tunnel magnetoresistive element is made independent of the noise component. The noise can be removed by inverting and separating the magnets.

本発明が実現しようとする理想的な磁気抵抗特性を示すグラフ(欄d)と、グラフ上の各状態におけるトンネル磁気抵抗素子の磁化の向きを示す模式図(欄a)(欄b)(欄c)である。A graph (column d) showing the ideal magnetoresistive characteristics to be realized by the present invention and a schematic diagram (column a) (column b) (column d) showing the direction of magnetization of the tunnel magnetoresistive element in each state on the graph. c). 従来の一例のトンネル磁気抵抗素子の積層構造を示す断面図である。It is sectional drawing which shows the laminated structure of the tunnel magnetoresistive element of a conventional example. 図2の従来例で発現する磁気抵抗特性を示すグラフである。横軸は外部磁界(H(Oe))、縦軸はトンネル磁気抵抗素子の抵抗の変化率(TMR比(%))である。It is a graph which shows the magnetic resistance characteristic which appears in the conventional example of FIG. The horizontal axis is the external magnetic field (H (Oe)), and the vertical axis is the rate of change in the resistance of the tunnel magnetoresistive element (TMR ratio (%)). 従来の他の一例のトンネル磁気抵抗素子の積層構造を示す断面図である。It is sectional drawing which shows the laminated structure of the tunnel magnetoresistive element of another conventional example. 本発明の一比較例に係るトンネル磁気抵抗素子の積層構造を示す断面図である。It is sectional drawing which shows the laminated structure of the tunnel magnetoresistive element which concerns on one comparative example of this invention. 図5のトンネル磁気抵抗素子の製造プロセスを示す積層構造の断面図である。It is sectional drawing of the laminated structure which shows the manufacturing process of the tunnel magnetoresistive element of FIG. 図6Aに続く、図5のトンネル磁気抵抗素子の製造プロセスを示す積層構造の断面図である。It is sectional drawing of the laminated structure which shows the manufacturing process of the tunnel magnetoresistive element of FIG. 5 following FIG. 6A. 図6Bに続く、図5のトンネル磁気抵抗素子の製造プロセスを示す積層構造の断面図である。It is sectional drawing of the laminated structure which shows the manufacturing process of the tunnel magnetoresistive element of FIG. 5 following FIG. 6B. 図5のトンネル磁気抵抗素子の磁気抵抗特性を示すグラフである。横軸は外部磁界(H(Oe))、縦軸はトンネル磁気抵抗素子の抵抗の変化率(TMR比(%))である。It is a graph which shows the magnetic resistance characteristic of the tunnel magnetoresistive element of FIG. The horizontal axis is the external magnetic field (H (Oe)), and the vertical axis is the rate of change in the resistance of the tunnel magnetoresistive element (TMR ratio (%)). 図5のトンネル磁気抵抗素子の磁気抵抗特性を示すグラフであり、第2、第3の磁場中熱処理工程を実施後のものを示す。第2の磁場中熱処理工程の熱処理温度を200℃、第3の磁場中熱処理工程の熱処理温度を180℃とした場合を示す。横軸は外部磁界(H(Oe))、縦軸はトンネル磁気抵抗素子の抵抗の変化率(TMR比(%))である。It is a graph which shows the magnetoresistance characteristic of the tunnel magnetoresistive element of FIG. 5, and shows the thing after performing the 2nd and 3rd magnetic field heat treatment steps. The case where the heat treatment temperature of the second magnetic field heat treatment step is 200 ° C. and the heat treatment temperature of the third magnetic field heat treatment step is 180 ° C. is shown. The horizontal axis is the external magnetic field (H (Oe)), and the vertical axis is the rate of change in the resistance of the tunnel magnetoresistive element (TMR ratio (%)). 図5のトンネル磁気抵抗素子の磁気抵抗特性を示すグラフであり、第2、第3の磁場中熱処理工程を実施後のものを示す。第2の磁場中熱処理工程の熱処理温度を200℃、第3の磁場中熱処理工程の熱処理温度を200℃とした場合を示す。横軸は外部磁界(H(Oe))、縦軸はトンネル磁気抵抗素子の抵抗の変化率(TMR比(%))である。It is a graph which shows the magnetoresistance characteristic of the tunnel magnetoresistive element of FIG. 5, and shows the thing after performing the 2nd and 3rd magnetic field heat treatment steps. The case where the heat treatment temperature of the second magnetic field heat treatment step is 200 ° C. and the heat treatment temperature of the third magnetic field heat treatment step is 200 ° C. is shown. The horizontal axis is the external magnetic field (H (Oe)), and the vertical axis is the rate of change in the resistance of the tunnel magnetoresistive element (TMR ratio (%)). AMR素子にセット磁場を印加した時の磁化方向状態図である。It is a magnetization direction state diagram when a set magnetic field is applied to an AMR element. AMR素子にリセット磁場を印加した時の磁化方向状態図である。It is a magnetization direction state diagram when a reset magnetic field is applied to an AMR element. 図4や図5のトンネル磁気抵抗素子にセット磁場を印加した時の磁化方向状態図である。4 is a phase diagram of the magnetization direction when a set magnetic field is applied to the tunnel magnetoresistive element of FIGS. 4 and 5. 図4や図5のトンネル磁気抵抗素子にリセット磁場を印加した時の磁化方向状態図である。4 is a phase diagram of the magnetization direction when a reset magnetic field is applied to the tunnel magnetoresistive element of FIGS. 4 and 5. 本発明の一実施形態に係るトンネル磁気抵抗素子の積層構造を示す断面図である。It is sectional drawing which shows the laminated structure of the tunnel magnetoresistive element which concerns on one Embodiment of this invention. 図11のトンネル磁気抵抗素子にセット磁場を印加した時の磁化方向状態図である。It is a magnetization direction state diagram when a set magnetic field is applied to the tunnel magnetoresistive element of FIG. 図11のトンネル磁気抵抗素子にリセット磁場を印加した時の磁化方向状態図である。11 is a phase diagram of the magnetization direction when a reset magnetic field is applied to the tunnel magnetoresistive element of FIG. 本発明の一実施形態に係る検波回路による信号処理の概要を示す。The outline of the signal processing by the detection circuit which concerns on one Embodiment of this invention is shown. 本発明の一実施形態に係る磁化方向補正回路の概要を示すブロック図である。It is a block diagram which shows the outline of the magnetization direction correction circuit which concerns on one Embodiment of this invention. 本発明の一実施例に係るトンネル磁気抵抗素子の有する自由磁性層における磁化特性グラフである。It is a magnetization characteristic graph in the free magnetic layer of the tunnel magnetoresistive element which concerns on one Example of this invention. 本発明の一実施例に係るトンネル磁気抵抗素子の有する固定磁性層における磁化特性グラフである。It is a magnetization characteristic graph in the fixed magnetic layer of the tunnel magnetoresistive element which concerns on one Example of this invention.

以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings. The following is an embodiment of the present invention and does not limit the present invention.

まず、図1を参照してトンネル磁気抵抗素子の基本構造及び本発明が実現しようとする理想的な磁気抵抗特性につき説明する。
図1に示すようにトンネル磁気抵抗素子1は、磁化の向きが固定された固定磁性層10、外部からの磁場の影響を受けて磁化の向きが変化する自由磁性層30、及び、固定磁性層10と自由磁性層30との間に配置された絶縁層20により、磁気トンネル接合を形成し、固定磁性層10の磁化の向きと自由磁性層30の磁化の向きとの角度差に従ってトンネル効果により絶縁層20の抵抗を変化させるものである。
図1(欄a)(欄b)(欄c)は、図1(欄d)に示す各磁場状態における固定磁性層10の磁化の向き10Aと自由磁性層30の磁化の向き30Aを示す。
図1(欄a)は検出磁場ゼロの状態(中立位置、図1(欄d)のグラフ上の位置P0)におけるものを、図1(欄b)は所定のプラス磁場が負荷された状態(図1(欄d)のグラフ上の位置P1)におけるものを、図1(欄c)は所定のマイナス磁場が負荷された状態(図1(欄d)のグラフ上の位置P2)におけるものを示す。
図1(欄a)は検出磁場ゼロの状態(中立位置P0)においては、固定磁性層10の磁化の向き10Aと自由磁性層30の磁化の向き30Aとが略90度のねじれの位置で安定している。これは、それぞれ磁化容易軸の方向に磁化しているからである。すなわち、図1に示すトンネル磁気抵抗素子1は、自由磁性層30の磁化容易軸が固定磁性層10の磁化容易軸に対して略90度ねじれた位置に形成されたものであり、図1(欄a)に示す矢印10Aが固定磁性層10の磁化容易軸の方向を、矢印30Aが自由磁性層30磁化容易軸の方向を示している。
図1(欄a)(欄b)(欄c)に示すように固定磁性層10の磁化の向き10Aは、外部磁場の影響を比較的受けにくく安定しており、自由磁性層30の磁化の向き30Aは、外部磁場(H1,H2)の影響を受けて変化する。
図1(欄b)に示すように、固定磁性層10の磁化の向き10Aに対して反対方向の外部磁場H1がトンネル磁気抵抗素子1に印加されると、自由磁性層30の磁化の向き30Aが固定磁性層10の磁化の向き10Aの逆方向側へスピンし、トンネル効果により絶縁層20の抵抗が増大する(図1(欄d)で抵抗がR0からR1に増加)。抵抗の変化を図1(欄a)(欄b)(欄c)において電流I0、I1,I2の矢印の太さで模式的に示す。
図1(欄c)に示すように、固定磁性層10の磁化の向き10Aに対して同方向の外部磁場H2がトンネル磁気抵抗素子1に印加されると、自由磁性層30の磁化の向き30Aが固定磁性層10の磁化の向き10Aと同方向側へスピンし、トンネル効果により絶縁層20の抵抗が減少する(図1(欄d)で抵抗がR0からR2に減少)。
図1(欄d)に示すように抵抗(縦軸)を増大させる方向にも、減少させる方向にも、外部磁場の強さに対して比例的に(グラフが直線的に)抵抗変化を起こす性質(リニアリティ)を有するトンネル磁気抵抗素子1が理想的である。
First, the basic structure of the tunnel magnetoresistive element and the ideal magnetoresistive characteristics to be realized by the present invention will be described with reference to FIG.
As shown in FIG. 1, the tunnel magnetic resistance element 1 includes a fixed magnetic layer 10 in which the direction of magnetization is fixed, a free magnetic layer 30 in which the direction of magnetization changes under the influence of an external magnetic field, and a fixed magnetic layer. A magnetic tunnel junction is formed by the insulating layer 20 arranged between the 10 and the free magnetic layer 30, and the tunnel effect is applied according to the angular difference between the magnetization direction of the fixed magnetic layer 10 and the magnetization direction of the free magnetic layer 30. It changes the resistance of the insulating layer 20.
FIG. 1 (column a) (column b) (column c) shows the magnetization direction 10A of the fixed magnetic layer 10 and the magnetization direction 30A of the free magnetic layer 30 in each magnetic field state shown in FIG. 1 (column d).
FIG. 1 (column a) shows a state in which the detected magnetic field is zero (neutral position, position P0 on the graph in FIG. 1 (column d)), and FIG. 1 (column b) shows a state in which a predetermined positive magnetic field is applied (column a). The one at the position P1) on the graph of FIG. 1 (column d), and the one at the state where a predetermined negative magnetic field is applied (the position P2 on the graph of FIG. 1 (column d)) in FIG. 1 (column c). show.
In FIG. 1 (column a), in the state where the detected magnetic field is zero (neutral position P0), the magnetization direction 10A of the fixed magnetic layer 10 and the magnetization direction 30A of the free magnetic layer 30 are stable at a twisted position of approximately 90 degrees. doing. This is because they are magnetized in the direction of the easy axis of magnetization. That is, the tunnel magnetoresistive element 1 shown in FIG. 1 is formed at a position where the easily magnetized axis of the free magnetic layer 30 is twisted by approximately 90 degrees with respect to the easily magnetized axis of the fixed magnetic layer 10. The arrow 10A shown in column a) indicates the direction of the easy axis of magnetization of the fixed magnetic layer 10, and the arrow 30A indicates the direction of the easy axis of magnetization of the free magnetic layer 30.
As shown in FIGS. 1 (column a), (column b), and (column c), the magnetization direction 10A of the fixed magnetic layer 10 is relatively insensitive to the influence of an external magnetic field and is stable, and the magnetization of the free magnetic layer 30 is increased. The orientation 30A changes under the influence of the external magnetic fields (H1, H2).
As shown in FIG. 1 (column b), when an external magnetic field H1 in the direction opposite to the magnetization direction 10A of the fixed magnetic layer 10 is applied to the tunnel magnetoresistive element 1, the magnetization direction 30A of the free magnetic layer 30 is applied. Spins in the opposite direction of the magnetization direction 10A of the fixed magnetic layer 10, and the resistance of the insulating layer 20 increases due to the tunnel effect (the resistance increases from R0 to R1 in FIG. 1 (column d)). The change in resistance is schematically shown by the thickness of the arrows of the currents I0, I1 and I2 in FIG. 1 (column a) (column b) (column c).
As shown in FIG. 1 (column c), when an external magnetic field H2 in the same direction with respect to the magnetization direction 10A of the fixed magnetic layer 10 is applied to the tunnel magnetoresistive element 1, the magnetization direction 30A of the free magnetic layer 30 is applied. Spins in the same direction as the magnetization direction 10A of the fixed magnetic layer 10, and the resistance of the insulating layer 20 decreases due to the tunnel effect (the resistance decreases from R0 to R2 in FIG. 1 (column d)).
As shown in FIG. 1 (column d), the resistance changes proportionally (the graph is linear) with respect to the strength of the external magnetic field in both the direction of increasing the resistance (vertical axis) and the direction of decreasing the resistance (vertical axis). The tunnel magnetoresistive element 1 having a property (linearity) is ideal.

図2に示す従来例のトンネル磁気抵抗素子101は、特許文献1−3に記載の類のもので、絶縁層20の下部に固定磁性層10、上部に自由磁性層30が形成され、自由磁性層30は、強磁性層(CoFeB)31と軟磁性層(NiFe又はCoFeSi)33との間に磁気結合層(Ru)32が介在する積層構造である。
詳しくは、従来例のトンネル磁気抵抗素子101は、基板(Si,SiO2)2上に、下地層(Ta)3が形成され、その上に固定磁性層10として、下から反強磁性層(IrMn)11、強磁性層(CoFe)12、磁気結合層(Ru)13、強磁性層(CoFeB)14が積層され、絶縁層(MgO)20を介して、その上に、自由磁性層30として、下から強磁性層(CoFeB)31、磁気結合層(Ru)32、軟磁性層(NiFe又はCoFeSi)33が積層された積層構造を有する。
このような従来例のトンネル磁気抵抗素子101にあっては、都度向きを異ならせて外部磁場を印加しながら熱処理する磁場中熱処理を複数回行っても、すべての磁性層の磁化容易軸の方向が揃って磁気抵抗特性が図3に示すようなヒステリシスの高い形態となってしまい、上述したリニアリティを実現できない。図2に示す矢印A1が磁性層の磁化容易軸の方向である。
The conventional tunnel magnetoresistive element 101 shown in FIG. 2 is of the type described in Patent Documents 1-3, in which a fixed magnetic layer 10 is formed at the lower part of the insulating layer 20 and a free magnetic layer 30 is formed at the upper part, and free magnetism is formed. The layer 30 has a laminated structure in which the magnetic coupling layer (Ru) 32 is interposed between the ferromagnetic layer (CoFeB) 31 and the soft magnetic layer (NiFe or CoFeSi) 33.
Specifically, in the conventional tunnel magnetic resistance element 101 , the base layer (Ta) 3 is formed on the substrate (Si, SiO 2 ) 2, and the fixed magnetic layer 10 is formed on the base layer (Ta) 3 as a fixed magnetic layer 10 from below. IrMn) 11, the ferromagnetic layer (CoFe) 12, the magnetic coupling layer (Ru) 13, and the ferromagnetic layer (CoFeB) 14 are laminated, and the free magnetic layer 30 is formed on the insulating layer (MgO) 20 via the insulating layer (MgO) 20. It has a laminated structure in which a ferromagnetic layer (CoFeB) 31, a magnetic coupling layer (Ru) 32, and a soft magnetic layer (NiFe or CoFeSi) 33 are laminated from the bottom.
In such a conventional tunnel magnetoresistive element 101, the direction of the easy axis of magnetization of all magnetic layers even if the heat treatment is performed in a magnetic field a plurality of times while applying an external magnetic field in different directions each time. The magnetic resistance characteristics become high hysteresis as shown in FIG. 3, and the above-mentioned linearity cannot be realized. The arrow A1 shown in FIG. 2 is the direction of the easy axis of magnetization of the magnetic layer.

一方、図4に示す従来例のトンネル磁気抵抗素子102は、特許文献3に記載の類のもので、図2に対し固定磁性層10と自由磁性層30とを上下逆にした積層構造を有する。
このような従来例のトンネル磁気抵抗素子102にあっては、自由磁性層30の磁化容易軸の方向(矢印A1)を固定磁性層10の容易磁化軸の方向(矢印A2)と異なる方向に形成できるとともに、自由磁性層30の形状を大きく(Hkが改善、ノイズが低減すると期待)することができるが、上層の絶縁層20や固定磁性層10に悪影響(均一性や結晶性の悪化が原因と予想される)が生じ、磁気センサーとしての性能を高めることが困難になった。
On the other hand, the conventional tunnel magnetoresistive element 102 shown in FIG. 4 is of the type described in Patent Document 3, and has a laminated structure in which the fixed magnetic layer 10 and the free magnetic layer 30 are turned upside down with respect to FIG. ..
In such a conventional tunnel magnetoresistive element 102, the direction of the easy magnetization axis of the free magnetic layer 30 (arrow A1) is formed in a direction different from the direction of the easy magnetization axis of the fixed magnetic layer 10 (arrow A2). It is possible to increase the shape of the free magnetic layer 30 (expected to improve Hk and reduce noise), but it adversely affects the insulating layer 20 and the fixed magnetic layer 10 of the upper layer (caused by deterioration of uniformity and crystallinity). It is expected), and it has become difficult to improve the performance as a magnetic sensor.

そこで、図5に示すように比較例のトンネル磁気抵抗素子1Aは、従来例のトンネル磁気抵抗素子101と同様に、磁性層10,30及び絶縁層20を支持する基板2に近い側から、固定磁性層10、絶縁層20、自由磁性層30の順で積層され、従来例のトンネル磁気抵抗素子101の積層構造に対し磁気結合層(Ru)32を排し、自由磁性層30は、下面を絶縁層20に接合する強磁性層31、及び当該強磁性層31の上面に接触して積層された軟磁性層33を有する積層構造とする。
かかる積層構造によれば、自由磁性層30を構成する強磁性層31及び軟磁性層33の磁化容易軸は互いに同方向にあり、かつ、固定磁性層10の磁化容易軸に対して異なる方向(ねじれの位置、例えば略90度ねじれた方向)にある磁化特性に形成することができ、上述したリニアリティを実現できる。
Therefore, as shown in FIG. 5, the tunnel magnetic resistance element 1A of the comparative example is fixed from the side close to the substrate 2 that supports the magnetic layers 10 and 30 and the insulating layer 20, similarly to the tunnel magnetic resistance element 101 of the conventional example. The magnetic layer 10, the insulating layer 20, and the free magnetic layer 30 are laminated in this order, and the magnetic coupling layer (Ru) 32 is eliminated from the laminated structure of the conventional tunnel magnetic resistance element 101, and the free magnetic layer 30 has a lower surface. The laminated structure has a ferromagnetic layer 31 bonded to the insulating layer 20 and a soft magnetic layer 33 laminated in contact with the upper surface of the ferromagnetic layer 31.
According to such a laminated structure, the easily magnetized axes of the ferromagnetic layer 31 and the soft magnetic layer 33 constituting the free magnetic layer 30 are in the same direction as each other, and are in different directions with respect to the easily magnetized axes of the fixed magnetic layer 10. It can be formed into a magnetization characteristic at a twisted position (for example, a direction twisted by about 90 degrees), and the above-mentioned linearity can be realized.

(製造方法)
比較例のトンネル磁気抵抗素子1Aの製造のための、製造方法を説明する。
まず、図6Aに示すように、基板2から少なくとも強磁性層31までの層を積層した後、この積層体に対し、所定方向(矢印A1)の外部磁場を印加しながら熱処理を行い、自由磁性層30を構成する強磁性層31の磁化容易軸と固定磁性層10の磁化容易軸とを同方向に形成する第1の磁場中熱処理工程を実施する。
かかる第1の磁場中熱処理工程の後、図6Bに示すように第1の磁場中熱処理工程のときとは向きをねじるように異ならせて(矢印A2方向にした)外部磁場を印加しながら自由磁性層30を構成する軟磁性層33を成膜することで、自由磁性層30の磁化容易軸を、固定磁性層10の磁化容易軸に対して異なる方向(例えば略90度ねじれた方向)に形成する磁場中成膜工程を実施し、図6Cに示す積層構造を得る。
図6Cに示すように、以上の第1の磁場中熱処理工程、磁場中成膜工程を経ることで、自由磁性層30を構成する強磁性層31及び軟磁性層33の磁化容易軸は互いに同方向にあり、かつ、固定磁性層10の磁化容易軸に対して異なる方向(好ましくは略90度ねじれた方向)にある磁化特性に形成することができる。すなわち、固定磁性層10の磁化容易軸は、第1の磁場中熱処理工程のときに印加された磁場方向(矢印A1)に形成され、自由磁性層30の磁化容易軸は、磁場中成膜工程のときに印加された磁場方向(矢印A2)に形成される。
この時点で、図7に示すようなリニアリティのある磁気抵抗特性が得られる。
(Production method)
A manufacturing method for manufacturing the tunnel magnetoresistive element 1A of the comparative example will be described.
First, as shown in FIG. 6A, after laminating the layers from the substrate 2 to at least the ferromagnetic layer 31, heat treatment is performed on the laminated body while applying an external magnetic field in a predetermined direction (arrow A1) to perform free magnetism. The first magnetic field heat treatment step of forming the easily magnetized axis of the ferromagnetic layer 31 constituting the layer 30 and the easily magnetized axis of the fixed magnetic layer 10 in the same direction is carried out.
After the first magnetic field heat treatment step, as shown in FIG. 6B, the direction is twisted differently from that of the first magnetic field heat treatment step, and an external magnetic field (in the direction of arrow A2) is applied freely. By forming the soft magnetic layer 33 constituting the magnetic layer 30, the easy-to-magnetize axis of the free magnetic layer 30 is oriented in a different direction (for example, a direction twisted by approximately 90 degrees) with respect to the easy-to-magnetize axis of the fixed magnetic layer 10. The film forming step in the magnetic field to be formed is carried out to obtain the laminated structure shown in FIG. 6C.
As shown in FIG. 6C, the easy axes of magnetization of the ferromagnetic layer 31 and the soft magnetic layer 33 constituting the free magnetic layer 30 are the same as each other through the first heat treatment step in a magnetic field and the film forming step in a magnetic field. It can be formed with magnetization characteristics that are in the direction and are in different directions (preferably in a direction twisted by approximately 90 degrees) with respect to the easy axis of magnetization of the fixed magnetic layer 10. That is, the easy-to-magnetize axis of the fixed magnetic layer 10 is formed in the direction of the magnetic field (arrow A1) applied during the first heat treatment step in the magnetic field, and the easy-to-magnetize axis of the free magnetic layer 30 is the film-forming step in the magnetic field. It is formed in the direction of the magnetic field applied at this time (arrow A2).
At this point, the reluctance characteristic with linearity as shown in FIG. 7 is obtained.

さらに上記磁場中成膜工程の後、次の工程を実施することが好ましい。すなわち、磁場中成膜工程のときと同じ方向(矢印A2)に外部磁場を印加しながら熱処理を行う第2の磁場中熱処理工程を実施する。さらに、第2の磁場中熱処理工程の後、第1の磁場中熱処理工程のときと同じ方向(矢印A1)に外部磁場を印加しながら熱処理を行う第3の磁場中熱処理工程を実施する。これにより、図8A,図8Bに示すようにHk,Hcを小さくして高感度化を図ることができる。 Further, it is preferable to carry out the following step after the film forming step in the magnetic field. That is, a second magnetic field heat treatment step is carried out in which the heat treatment is performed while applying an external magnetic field in the same direction (arrow A2) as in the magnetic field film forming step. Further, after the second magnetic field heat treatment step, a third magnetic field heat treatment step is carried out in which the heat treatment is performed while applying an external magnetic field in the same direction (arrow A1) as in the first magnetic field heat treatment step. As a result, as shown in FIGS. 8A and 8B, Hk and Hc can be reduced to increase the sensitivity.

(セット/リセット磁場が各種磁気抵抗センサーに与える影響)
(AMRの場合)
図9A,図9Bに示すように2つのAMR素子51,52を一定ギャップ間に繋いだブリッジ回路にセット磁場53及びリセット磁場54を印加しつつ所定方向の外部磁場55に応答する信号をAMR素子51,52の接続点56の電位により出力させる。
図9Aに示すようにAMR素子51の有する軟磁性層の磁化方向57と、AMR素子52の有する軟磁性層の磁化方向58とが、電流59が流れる方向に対して互いに逆側に変位したものを組み合わせる。磁化方向57,58の存在面で電流59が流れる方向に垂直な方向の外部磁場55の影響により、磁化方向57,58がそれぞれ破線で示すようにスピンする。AMR素子では、電流59が流れる方向と軟磁性層の磁化方向57,58との相対角度θで抵抗値Rが次式(1)により決まる。すなわち、R=R0+ΔR・sin2θ・・・式(1) である。ここで、R0は、無磁界中の強磁性薄膜金属の抵抗値、ΔRは抵抗値変化量である。
したがって、図9AにおいてはAMR素子51の抵抗値は下がり、AMR素子52の抵抗値は上がるので、接続点56の電位がプラスに変位する(+ΔV)。
図9Aのセット磁場53の印加時と、図9Bのリセット磁場54の印加時とでは、互いに軟磁性層の磁化方向57、58が反転する。
そのため図9BにおいてはAMR素子51の抵抗値は上がり、AMR素子52の抵抗値は下がるので、接続点56の電位がマイナスに変位する(−ΔV)。
以上により、セット磁場53の印加時と、リセット磁場54の印加時とで、同じ方向の外部磁場55に対して、外部磁場55に応答する信号成分の極性が反転する。接続点56からの出力にノイズ成分が載るが、ノイズ成分は反転しない。
(Effect of set / reset magnetic field on various reluctance sensors)
(In the case of AMR)
As shown in FIGS. 9A and 9B, an AMR element sends a signal that responds to an external magnetic field 55 in a predetermined direction while applying a set magnetic field 53 and a reset magnetic field 54 to a bridge circuit in which two AMR elements 51 and 52 are connected between constant gaps. It is output by the potential of the connection point 56 of 51 and 52.
As shown in FIG. 9A, the magnetization direction 57 of the soft magnetic layer of the AMR element 51 and the magnetization direction 58 of the soft magnetic layer of the AMR element 52 are displaced opposite to each other with respect to the direction in which the current 59 flows. To combine. Due to the influence of the external magnetic field 55 in the direction perpendicular to the direction in which the current 59 flows on the existing planes of the magnetization directions 57 and 58, the magnetization directions 57 and 58 spin as shown by the broken lines, respectively. In the AMR element, the resistance value R is determined by the following equation (1) by the relative angle θ between the direction in which the current 59 flows and the magnetization directions 57 and 58 of the soft magnetic layer. That is, R = R0 + ΔR · sin 2 θ ... Equation (1). Here, R0 is the resistance value of the ferromagnetic thin film metal in a non-magnetic field, and ΔR is the amount of change in the resistance value.
Therefore, in FIG. 9A, the resistance value of the AMR element 51 decreases and the resistance value of the AMR element 52 increases, so that the potential of the connection point 56 is positively displaced (+ ΔV).
The magnetization directions 57 and 58 of the soft magnetic layer are reversed between the application of the set magnetic field 53 of FIG. 9A and the application of the reset magnetic field 54 of FIG. 9B.
Therefore, in FIG. 9B, the resistance value of the AMR element 51 increases and the resistance value of the AMR element 52 decreases, so that the potential of the connection point 56 is negatively displaced (−ΔV).
As described above, the polarity of the signal component that responds to the external magnetic field 55 is reversed with respect to the external magnetic field 55 in the same direction when the set magnetic field 53 is applied and when the reset magnetic field 54 is applied. A noise component appears on the output from the connection point 56, but the noise component is not inverted.

以上のブリッジ回路のAMR素子に軟磁性層の磁化方向を互いに反転させるセットパルス磁場及びリセットパルス磁場を交互に印加するセット/リセット回路として、非特許文献1に記載の技術で実施する。
接続点56からの出力を検波回路に与え、セット磁場53の印加時の出力と、リセット磁場54の印加時の出力とを、いずれか一方を反転して加算することで、ノイズ成分が相殺されるので、ノイズが除去される。
The technique described in Non-Patent Document 1 is used as a set / reset circuit in which a set pulse magnetic field and a reset pulse magnetic field that invert the magnetization directions of the soft magnetic layers are alternately applied to the AMR element of the bridge circuit.
The noise component is canceled by giving the output from the connection point 56 to the detection circuit and inverting and adding one of the output when the set magnetic field 53 is applied and the output when the reset magnetic field 54 is applied. Therefore, noise is removed.

(従来のTMRの場合)
従来例のトンネル磁気抵抗素子102や比較例のトンネル磁気抵抗素子1Aにあっては、共通して固定磁性層10に反強磁性層(IrMn)11が存在して磁化方向が強力に固定されているために、図10A,図10Bに示すように、セット磁場53、リセット磁場54の切り替わりによっては固定磁性層の磁化の向き63,64は変わらない。
すなわち、図10A,図10Bに示すように、図9A,図9BのAMR素子51,52に代えてTMR素子61,62によりブリッジ回路を構成し、セット磁場53、リセット磁場54を印加した場合、自由磁性層の磁化の向き67,68は反転するものの、固定磁性層の磁化の向き63,64は変わらない。
TMR素子では、抵抗値の変化は電流が流れる方向とは無関係であり、自由磁性層の磁化の向きと固定磁性層の磁化の向きの相対角度θで抵抗値Rが次式(2)により決まる。すなわち、R=R0+ΔR・sinθ・・・式(2)である。ここで、R0は、無磁界中のMTJの抵抗値、ΔRは抵抗値変化量である。
したがって、図10AにおいてはTMR素子61の抵抗値は上がり、TMR素子62の抵抗値は下がるので、接続点56の電位がマイナスに変位する(−ΔV)。
図10BにおいてはTMR素子61の抵抗値は上がり、TMR素子62の抵抗値は下がるので、接続点56の電位が同じくマイナスに変位する(−ΔV)。
以上のとおり、セット磁場53の印加時と、リセット磁場54の印加時とで、同じ方向の外部磁場55に対して、外部磁場55に応答する信号成分の極性が反転しないので、上記のAMRの場合のようにしてノイズを除去することができない。
(In the case of conventional TMR)
In the tunnel magnetic resistance element 102 of the conventional example and the tunnel magnetic resistance element 1A of the comparative example, the antiferromagnetic layer (Irmn) 11 is commonly present in the fixed magnetic layer 10 and the magnetization direction is strongly fixed. Therefore, as shown in FIGS. 10A and 10B, the magnetization directions 63 and 64 of the fixed magnetic layer do not change depending on the switching between the set magnetic field 53 and the reset magnetic field 54.
That is, as shown in FIGS. 10A and 10B, when a bridge circuit is configured by TMR elements 61 and 62 instead of the AMR elements 51 and 52 of FIGS. 9A and 9B and a set magnetic field 53 and a reset magnetic field 54 are applied. Although the magnetization directions 67 and 68 of the free magnetic layer are reversed, the magnetization directions 63 and 64 of the fixed magnetic layer do not change.
In the TMR element, the change in the resistance value is irrelevant to the direction in which the current flows, and the resistance value R is determined by the following equation (2) by the relative angle θ between the magnetization direction of the free magnetic layer and the magnetization direction of the fixed magnetic layer. .. That is, R = R0 + ΔR · sinθ ... Equation (2). Here, R0 is the resistance value of MTJ in a non-magnetic field, and ΔR is the amount of change in resistance value.
Therefore, in FIG. 10A, the resistance value of the TMR element 61 increases and the resistance value of the TMR element 62 decreases, so that the potential of the connection point 56 is negatively displaced (−ΔV).
In FIG. 10B, the resistance value of the TMR element 61 increases and the resistance value of the TMR element 62 decreases, so that the potential of the connection point 56 is also displaced negatively (−ΔV).
As described above, when the set magnetic field 53 is applied and when the reset magnetic field 54 is applied, the polarity of the signal component responding to the external magnetic field 55 does not reverse with respect to the external magnetic field 55 in the same direction. Noise cannot be removed as in the case.

(本発明のTMRの場合)
そこで、本発明の一実施形態のトンネル磁気抵抗素子1Bは、図11に示すように、上述したトンネル磁気抵抗素子1Aに対して、反強磁性層(IrMn)11、強磁性層(CoFe)12、磁気結合層(Ru)13を排除し、固定磁性層10を強磁性層(CoFeB)14のみとした。本発明のトンネル磁気抵抗素子1Bの製造方法は、固定磁性層10を強磁性層(CoFeB)14のみとする点のみ異なり、その他は比較例のトンネル磁気抵抗素子1Aと同様である。
反強磁性層(IrMn)11を排したことで、図12A,図12Bに示すようにセット磁場53、リセット磁場54の切り替わりによっては固定磁性層の磁化の向き73,74が反転する。コイルによる十mT程度のセット磁場53、リセット磁場54の印加により反転するように、自由磁性層30のみならず、固定磁性層10も1μT以上10mT未満の磁場強度で磁化の方向が反転するように、その組成と体積(層厚と面積)とを設定する。固定磁性層10の組成としては、反強磁性層を除く強磁性層(CoFeB)とし、さらに全部又は一部が軟磁性層とされることで、外部磁場の影響を受けて磁化の向きが変化(反転)しやすくされていてもよい。
図12A,図12Bに示すように、図9A,図9BのAMR素子51,52に代えてTMR素子71,72(ともに図11のTMR素子1B)によりブリッジ回路を構成し、セット磁場53、リセット磁場54を印加した場合、自由磁性層の磁化の向き77,78及び固定磁性層の磁化の向き73,74が反転する。
抵抗値Rが上記式(2)により決まる。
したがって、図12AにおいてはTMR素子71の抵抗値は上がり、TMR素子72の抵抗値は下がるので、接続点56の電位がマイナスに変位する(−ΔV)。
図12BにおいてはTMR素子71の抵抗値は下がり、TMR素子72の抵抗値は上がるので、接続点56の電位がプラスに変位する(+ΔV)。
以上により、AMRと同様にセット磁場53の印加時と、リセット磁場54の印加時とで、同じ方向の外部磁場55に対して、外部磁場55に応答する信号成分の極性が反転する。接続点56からの出力にノイズ成分が載るが、ノイズ成分は反転しない。
(In the case of TMR of the present invention)
Therefore, as shown in FIG. 11, the tunnel magnetic resistance element 1B according to the embodiment of the present invention has the antiferromagnetic layer (Irmn) 11 and the ferromagnetic layer (CoFe) 12 with respect to the tunnel magnetic resistance element 1A described above. , The magnetic coupling layer (Ru) 13 was eliminated, and the fixed magnetic layer 10 was only the ferromagnetic layer (CoFeB) 14. The method for manufacturing the tunnel magnetoresistive element 1B of the present invention is the same as the tunnel magnetoresistive element 1A of the comparative example except that the fixed magnetic layer 10 is only the ferromagnetic layer (CoFeB) 14.
By eliminating the antiferromagnetic layer (IrMn) 11, the magnetization directions 73 and 74 of the fixed magnetic layer are reversed depending on the switching between the set magnetic field 53 and the reset magnetic field 54 as shown in FIGS. 12A and 12B. Not only the free magnetic layer 30 but also the fixed magnetic layer 10 is reversed in the direction of magnetization with a magnetic field strength of 1 μT or more and less than 10 mT so that it is reversed by applying a set magnetic field 53 and a reset magnetic field 54 of about 10 mT by the coil. , Its composition and volume (layer thickness and area) are set. The composition of the fixed magnetic layer 10 is a ferromagnetic layer (CoFeB) excluding the antiferromagnetic layer, and a soft magnetic layer in whole or in part, so that the direction of magnetization changes under the influence of an external magnetic field. It may be easy to (reverse).
As shown in FIGS. 12A and 12B, a bridge circuit is configured by TMR elements 71 and 72 (both are TMR elements 1B in FIG. 11) instead of the AMR elements 51 and 52 in FIGS. 9A and 9B, and the set magnetic field 53 and reset are performed. When the magnetic field 54 is applied, the magnetization directions 77 and 78 of the free magnetic layer and the magnetization directions 73 and 74 of the fixed magnetic layer are reversed.
The resistance value R is determined by the above equation (2).
Therefore, in FIG. 12A, the resistance value of the TMR element 71 increases and the resistance value of the TMR element 72 decreases, so that the potential of the connection point 56 is negatively displaced (−ΔV).
In FIG. 12B, the resistance value of the TMR element 71 decreases and the resistance value of the TMR element 72 increases, so that the potential of the connection point 56 is positively displaced (+ ΔV).
As described above, the polarity of the signal component that responds to the external magnetic field 55 is reversed with respect to the external magnetic field 55 in the same direction when the set magnetic field 53 is applied and when the reset magnetic field 54 is applied, as in the AMR. A noise component appears on the output from the connection point 56, but the noise component is not inverted.

AMR素子の場合と同様にセット/リセット回路を適用するとともに、接続点56からの出力を検波回路に与える。本実施形態の磁化方向補正回路は、以上のようなTMR素子71,72を含むブリッジ回路と、セット/リセット回路と、検波回路とを備えて構成される。
セット磁場53の印加時の出力と、リセット磁場54の印加時の出力とを、いずれか一方を反転して加算することで、ノイズ成分が相殺されるので、ノイズが除去される。
図13は、検波回路による信号処理の概要を示す。
図13(欄a)に、セット磁場53の印加時の信号成分SS1と、リセット磁場54の印加時の信号成分SR1とが示される。信号成分SS1と信号成分SR1とは互いに反転している。さらに図13(欄a)に、セット磁場53の印加時のノイズ成分NS1と、リセット磁場54の印加時のノイズ成分NR1とが示されている。ノイズ成分NS1とノイズ成分NR1とは互いの反転は無く同じ波形である。
ノイズ成分NS1が載った信号成分SS1と、ノイズ成分NR1が載った信号成分SR1とが検波回路に交互に入力される。
セットパルス磁場及びリセットパルス磁場の交互の印加に同期して、図13(欄b)に示すように検波回路が入力信号を、セットパルス磁場印加時は増幅し(反転なし)、リセットパルス磁場印加時は反転増幅して、互いに反転していない信号成分SS2,SR2を得るとともに、互いに反転しているノイズ成分NS2,NR2を得て、両者を加算することで、ノイズ成分を相殺しノイズを除去する。
The set / reset circuit is applied as in the case of the AMR element, and the output from the connection point 56 is given to the detection circuit. The magnetization direction correction circuit of the present embodiment includes a bridge circuit including the TMR elements 71 and 72 as described above, a set / reset circuit, and a detection circuit.
By inverting and adding one of the output when the set magnetic field 53 is applied and the output when the reset magnetic field 54 is applied, the noise component is canceled out, so that noise is removed.
FIG. 13 shows an outline of signal processing by the detection circuit.
FIG. 13 (column a) shows the signal component SS1 when the set magnetic field 53 is applied and the signal component SR1 when the reset magnetic field 54 is applied. The signal component SS1 and the signal component SR1 are inverted from each other. Further, FIG. 13 (column a) shows a noise component NS1 when the set magnetic field 53 is applied and a noise component NR1 when the reset magnetic field 54 is applied. The noise component NS1 and the noise component NR1 have the same waveform without mutual inversion.
The signal component SS1 on which the noise component NS1 is mounted and the signal component SR1 on which the noise component NR1 is mounted are alternately input to the detection circuit.
Synchronized with the alternating application of the set pulse magnetic field and the reset pulse magnetic field, the detection circuit amplifies the input signal when the set pulse magnetic field is applied (no inversion) as shown in FIG. 13 (column b), and applies the reset pulse magnetic field. Time is inverted and amplified to obtain signal components SS2 and SR2 that are not inverted to each other, and noise components NS2 and NR2 that are inverted to each other. do.

図14を参照して磁化方向補正回路について説明する。
図14は、磁化方向補正回路の概要を説明するブロック図である。
標準信号発生器(SSG)81からトリガー信号(TG)82を形成し、Power AMP83並びにMultiplier84にトリガー信号を送る。
Power AMP83からの出力によりセット/リセット磁場発生用のコイル85に電流が流れ、TMR素子71a,72a,71b,72bにパルス磁場が印可される。
上記のパルス磁場発生を高速に繰り返す(数百Hz以上)ことで、ブリッジ回路からは信号極性が反転の関係にある信号成分SS1と信号成分SR1とが、Pre AMP86に高速で出力される。
Multiplier84では、トリガー信号(TG)82を基に、Pre AMP86からの信号出力を、INV AMP(反転回路)87を介して読み込むか否かの切り替えを行ない、互い反転した信号極性を同一方向に揃える。この時、ノイズ成分NS1とノイズ成分NR1とが反転した関係となる。
サンプルホールド回路(S/H)88では、Multiplier84からの信号出力の必要な成分のみを抜き出して、ローパスフィルタ回路(LPF)89に送る。この時、LPF89の働きによってサンプリング数の小さい帯域では、高速で繰り返し出力されるノイズ成分NS1とノイズ成分NR1とが相殺されるため、低周波の領域におけるノイズ(1/fノイズ)が相殺された状態で信号がMain AMP90に出力される。
The magnetization direction correction circuit will be described with reference to FIG.
FIG. 14 is a block diagram illustrating an outline of the magnetization direction correction circuit.
A trigger signal (TG) 82 is formed from the standard signal generator (SSG) 81, and the trigger signal is sent to the Power AMP 83 and the Multiplier 84.
A current flows through the coil 85 for generating a set / reset magnetic field by the output from the Power AMP 83, and a pulse magnetic field is applied to the TMR elements 71a, 72a, 71b, 72b.
By repeating the above-mentioned pulse magnetic field generation at high speed (several hundred Hz or more), the signal component SS1 and the signal component SR1 having a signal polarity inversion relationship are output from the bridge circuit to the Pre AMP 86 at high speed.
The Multiplier 84 switches whether to read the signal output from the Pre AMP 86 via the INV AMP (inverting circuit) 87 based on the trigger signal (TG) 82, and aligns the mutually inverted signal polarities in the same direction. .. At this time, the noise component NS1 and the noise component NR1 are in an inverted relationship.
In the sample hold circuit (S / H) 88, only the necessary component of the signal output from the Multiplier 84 is extracted and sent to the low-pass filter circuit (LPF) 89. At this time, in the band where the sampling number is small due to the action of LPF89, the noise component NS1 and the noise component NR1 that are repeatedly output at high speed are canceled out, so that the noise (1 / f noise) in the low frequency region is canceled out. The signal is output to the Main AMP 90 in the state.

なお、図11のTMR素子1Bによれば、強磁性層(CoFe)12、磁気結合層(Ru)13を排除したので、次のような効果もある。
磁気トンネル接合(MTJ)は磁場中でのアニール処理によって高いTMR比を発現させる。高性能なMTJを製作するためには、より高温下でのアニール処理が必要になるが、磁気メモリや磁気センサーなどの用途で必要なMTJ以外の機能材料、例えば磁気結合層や反強磁性材料層などは、高温下(一般的には400℃位上)ではその特性を失うことが分かっており、温度条件に制約があることから、高いTMR比を発現させることができない。
したがって、図11のTMR素子1Bによれば、強磁性層(CoFe)12、磁気結合層(Ru)13を排除したので、上記アニール処理の高温化に制約が少なくなり、高いTMR比を発現させることが容易となる。
According to the TMR element 1B of FIG. 11, since the ferromagnetic layer (CoFe) 12 and the magnetic coupling layer (Ru) 13 are eliminated, the following effects are also obtained.
Magnetic tunnel junction (MTJ) develops a high TMR ratio by annealing in a magnetic field. In order to manufacture a high-performance MTJ, annealing treatment at a higher temperature is required, but functional materials other than MTJ required for applications such as magnetic memory and magnetic sensors, such as magnetic coupling layers and antiferromagnetic materials, are required. It is known that layers and the like lose their characteristics at high temperatures (generally about 400 ° C. above), and because of restrictions on temperature conditions, it is not possible to develop a high TMR ratio.
Therefore, according to the TMR element 1B of FIG. 11, since the ferromagnetic layer (CoFe) 12 and the magnetic coupling layer (Ru) 13 are eliminated, there are less restrictions on the temperature increase of the annealing treatment, and a high TMR ratio is exhibited. Will be easy.

(実施例)
図15A,図15Bは、以上のセットパルス磁場及びリセットパルス磁場により反転し、外部磁場に対して磁化方向の相対角度をリニアに変化させる自由磁性層と固定磁性層との組合せ例を示す。
図15Aは、図11に示したTMR素子1Bにおいて、強磁性層31としてCoFeBを選択し3nm未満の所定厚とし、軟磁性層33としてCoFeSiBを選択し100nmの厚みとした自由磁性層における磁化特性を示す。
図15Bは、図11に示したTMR素子1Bにおいて、強磁性層14としてCoFeBを選択し3nmの厚みとした固定磁性層における磁化特性を示す。
図15Bに示すように固定磁性層にあっては、±5〔Oe〕程度の振り幅でセット磁場及びリセット磁場を印加することで磁化の方向が反転する。そのとき、図15Aに示すように自由磁性層でも磁化の方向が反転するが、±5〔Oe〕程度の振り幅で反転転位した位置から外部磁場の影響により磁化の方向がリニアに変化する。したがって、このような特性の自由磁性層と固定磁性層とを組合せたTMR素子(1B)は、固定磁性層の磁化の向きとの相対角度をリニアに変化させることで、図1に示したような磁気抵抗特性を持つ。さらに上記磁化方向補正回路に組み込むことで、ノイズレスで高精度、高感度の磁気センサーとして機能し得る。
(Example)
15A and 15B show an example of a combination of a free magnetic layer and a fixed magnetic layer that are inverted by the above set pulse magnetic field and reset pulse magnetic field and linearly change the relative angle in the magnetization direction with respect to the external magnetic field.
FIG. 15A shows the magnetization characteristics of the TMR element 1B shown in FIG. 11 in a free magnetic layer in which CoFeB is selected as the ferromagnetic layer 31 and has a predetermined thickness of less than 3 nm, and CoFeSiB is selected as the soft magnetic layer 33 and has a thickness of 100 nm. Is shown.
FIG. 15B shows the magnetization characteristics of the fixed magnetic layer in which CoFeB is selected as the ferromagnetic layer 14 and has a thickness of 3 nm in the TMR element 1B shown in FIG.
As shown in FIG. 15B, in the fixed magnetic layer, the direction of magnetization is reversed by applying a set magnetic field and a reset magnetic field with a swing width of about ± 5 [Oe]. At that time, as shown in FIG. 15A, the direction of magnetization is reversed even in the free magnetic layer, but the direction of magnetization changes linearly due to the influence of the external magnetic field from the position of the reverse shift with a swing width of about ± 5 [Oe]. Therefore, the TMR element (1B), which is a combination of the free magnetic layer and the fixed magnetic layer having such characteristics, linearly changes the relative angle with the magnetization direction of the fixed magnetic layer, as shown in FIG. Has excellent magnetic resistance characteristics. Further, by incorporating it into the magnetization direction correction circuit, it can function as a noiseless, high-precision, high-sensitivity magnetic sensor.

本発明は、磁気の測定等に利用することができる。 The present invention can be used for magnetic measurement and the like.

1 トンネル磁気抵抗素子
1A,1B トンネル磁気抵抗素子
2 基板
3 下地層
10 固定磁性層
20 絶縁層
30 自由磁性層
14,31 強磁性層
33 軟磁性層
1 Tunnel magnetoresistive element 1A, 1B Tunnel magnetoresistive element 2 Substrate 3 Underlayer 10 Fixed magnetic layer 20 Insulation layer 30 Free magnetic layer 14, 31 Ferromagnetic layer 33 Soft magnetic layer

Claims (4)

外部磁場の影響を受けて磁化の向きが変化する少なくとも2つ以上の特定の方向に磁化された強磁性層の間に、絶縁層が配置されて磁気トンネル接合を形成し、前記絶縁層の両側の前記強磁性層の磁化方向の相対角度に従ってトンネル効果により前記絶縁層の抵抗を変化させるトンネル磁気抵抗素子であって、
前記絶縁層の両側の前記強磁性層のいずれもが、1μT以上10mT未満の磁場強度で磁化の方向が反転する組成と体積とを備え、
前記絶縁層及びこの両側の前記強磁性層は基板に近い側から、一方側の強磁性層、前記絶縁層、他方側の強磁性層の順で積層され
前記他方側の強磁性層は、当該他方側の強磁性層に接触して軟磁性層が積層されていることで、外部磁場の影響を受けて磁化の向きが、前記一方側の強磁性層より変化しやすい自由磁性層として機能するトンネル磁気抵抗素子。
An insulating layer is arranged between ferromagnetic layers magnetized in at least two specific directions whose magnetization direction changes under the influence of an external magnetic field to form a magnetic tunnel junction, and both sides of the insulating layer are formed. A tunnel magnetoresistive element that changes the resistance of the insulating layer by the tunnel effect according to the relative angle of the magnetization direction of the ferromagnetic layer.
Each of the ferromagnetic layers on both sides of the insulating layer has a composition and volume in which the direction of magnetization is reversed at a magnetic field strength of 1 μT or more and less than 10 mT.
The insulating layer and the ferromagnetic layers on both sides thereof are laminated in the order of the ferromagnetic layer on one side, the insulating layer, and the ferromagnetic layer on the other side from the side closer to the substrate, and the ferromagnetic layer on the other side is the said. Since the soft magnetic layer is laminated in contact with the ferromagnetic layer on the other side, it functions as a free magnetic layer whose direction of magnetization is more likely to change than the ferromagnetic layer on the other side under the influence of an external magnetic field. Tunnel magnetic resistance element.
前記一方側の強磁性層の磁化方向と、前記自由磁性層の磁化方向とがねじれの位置にある請求項1に記載のトンネル磁気抵抗素子。 The tunnel magnetoresistive element according to claim 1, wherein the magnetization direction of the ferromagnetic layer on one side and the magnetization direction of the free magnetic layer are in a twisted position. 請求項1又は請求項2に記載のトンネル磁気抵抗素子が少なくとも1つ以上実装されたブリッジ回路と、
前記ブリッジ回路のトンネル磁気抵抗素子に前記強磁性層の磁化方向を互いに反転させるセットパルス磁場及びリセットパルス磁場を交互に印加するセット/リセット回路と、
セットパルス磁場及びリセットパルス磁場の交互の印加に同期して前記トンネル磁気抵抗素子からの信号出力を検出する検波回路とを備えた磁化方向補正回路。
A bridge circuit in which at least one or more tunnel magnetoresistive elements according to claim 1 or 2 are mounted.
A set / reset circuit that alternately applies a set pulse magnetic field and a reset pulse magnetic field that invert the magnetization directions of the ferromagnetic layer to the tunnel magnetoresistive element of the bridge circuit.
A magnetization direction correction circuit including a detection circuit that detects a signal output from the tunnel magnetoresistive element in synchronization with alternating application of a set pulse magnetic field and a reset pulse magnetic field.
セットパルス磁場及びリセットパルス磁場の交互の印加により、前記一方側の強磁性層の磁化方向を反転させるとともに、前記自由磁性層の磁化方向を反転させる請求項に記載の磁化方向補正回路。 The magnetization direction correction circuit according to claim 3 , wherein the magnetization direction of the ferromagnetic layer on one side is reversed and the magnetization direction of the free magnetic layer is reversed by alternately applying a set pulse magnetic field and a reset pulse magnetic field.
JP2018564487A 2017-01-24 2018-01-16 Tunnel magnetoresistive element and magnetization direction correction circuit Active JP6969751B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017010212 2017-01-24
JP2017010212 2017-01-24
PCT/JP2018/000930 WO2018139252A1 (en) 2017-01-24 2018-01-16 Tunnel magnetoresistive element, and magnetization direction correcting circuit

Publications (2)

Publication Number Publication Date
JPWO2018139252A1 JPWO2018139252A1 (en) 2019-12-19
JP6969751B2 true JP6969751B2 (en) 2021-11-24

Family

ID=62978414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018564487A Active JP6969751B2 (en) 2017-01-24 2018-01-16 Tunnel magnetoresistive element and magnetization direction correction circuit

Country Status (2)

Country Link
JP (1) JP6969751B2 (en)
WO (1) WO2018139252A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102181854B1 (en) * 2020-01-09 2020-11-24 (주)나우시스템즈 Method of reducing internal noise of magnetic field sensor
KR102181853B1 (en) * 2020-01-09 2020-11-24 (주)나우시스템즈 Apparatus for reducing internal noise of magnetic field sensor and magnetic field sensor using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3231313B2 (en) * 1990-08-22 2001-11-19 株式会社日立製作所 Magnetic head
JP4245007B2 (en) * 2001-10-29 2009-03-25 ヤマハ株式会社 Magnetic sensor
US7265543B2 (en) * 2003-04-15 2007-09-04 Honeywell International Inc. Integrated set/reset driver and magneto-resistive sensor
DE102004056384A1 (en) * 2004-07-01 2006-02-02 Sensitec Gmbh Offset elimination method for magnetoresistive sensor, involves separating signal components by high pass filter provided in direct path of signal, and sending signal of differential amplifier to filter
JP5956793B2 (en) * 2012-03-16 2016-07-27 株式会社東芝 Magnetoresistive element, magnetic head assembly, magnetic recording / reproducing apparatus, and magnetic memory
JPWO2015008718A1 (en) * 2013-07-19 2017-03-02 コニカミノルタ株式会社 Magnetic sensor and manufacturing method thereof
WO2017221896A1 (en) * 2016-06-20 2017-12-28 国立大学法人東北大学 Tunnel magnetoresistance element and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2018139252A1 (en) 2019-12-19
WO2018139252A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6514707B2 (en) Magnetoresistive element with an improved seed layer for promoting an improved response to a magnetic field
TWI616007B (en) Spin valve magnetoresistance element with improved response to magnetic fields
JP6193212B2 (en) Single chip 2-axis bridge type magnetic field sensor
US9207290B2 (en) Magnetic field sensor for sensing external magnetic field
WO2012092831A1 (en) Thin-film magnetoresistance sensing element, combination thereof, and electronic device coupled to the combination
CN102435963B (en) Monolithic dual-axis bridge-type magnetic field sensor
JP5843079B2 (en) Magnetic sensor and magnetic sensor system
US9915710B2 (en) Magnetic sensor, method of manufacturing magnetic sensor, and method of designing magnetic sensor
JP2015125019A (en) Current sensor, current measuring module, and smart meter
US20160313412A1 (en) Anisotropic Magnetoresistance Sensor
US20190178954A1 (en) Magnetoresistance Element Having Selected Characteristics To Achieve A Desired Linearity
US20200333407A1 (en) Magnetic field sensor, system, and method for speed measurement
TW201327956A (en) Magnetic sensor
JP6969751B2 (en) Tunnel magnetoresistive element and magnetization direction correction circuit
US11217626B2 (en) Dual tunnel magnetoresistance (TMR) element structure
JP6321323B2 (en) Magnetic sensor
JP2012119613A (en) Magnetic detection element and magnetic sensor using the same
JP6525314B2 (en) Magnetic field detector
CN111465868A (en) Magnetoresistive magnetic field sensor bridge with compensation for cross-axis effects
US9939498B2 (en) Magnetic sensor
JP2015001467A (en) Magnetic sensor
JP5184380B2 (en) Magnetic detector
Amelichev et al. Combined technology fabrication of spin-valve magnetoresistive elements and micromagnets
JP5417325B2 (en) Magnetic sensor and magnetic encoder
JPWO2008102786A1 (en) Magnetic detector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211020

R150 Certificate of patent or registration of utility model

Ref document number: 6969751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350