JP6969110B2 - Ground judgment method and drilling device - Google Patents

Ground judgment method and drilling device Download PDF

Info

Publication number
JP6969110B2
JP6969110B2 JP2017034672A JP2017034672A JP6969110B2 JP 6969110 B2 JP6969110 B2 JP 6969110B2 JP 2017034672 A JP2017034672 A JP 2017034672A JP 2017034672 A JP2017034672 A JP 2017034672A JP 6969110 B2 JP6969110 B2 JP 6969110B2
Authority
JP
Japan
Prior art keywords
drilling
ground
drilling bit
bit
rotational energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017034672A
Other languages
Japanese (ja)
Other versions
JP2018141280A (en
Inventor
武志 鈴木
崇 東芝
倫太郎 奥野
Original Assignee
日本基礎技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本基礎技術株式会社 filed Critical 日本基礎技術株式会社
Priority to JP2017034672A priority Critical patent/JP6969110B2/en
Publication of JP2018141280A publication Critical patent/JP2018141280A/en
Application granted granted Critical
Publication of JP6969110B2 publication Critical patent/JP6969110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地盤の補強工事の際に確実に根入れできているか否かを判定する地盤判定方法及び削孔装置に関する。 The present invention relates to a ground determination method and a drilling device for determining whether or not the ground has been reliably rooted during ground reinforcement work.

地盤の補強工事は、先端駆動式の削孔システムによる削孔作業を地中の支持層に到達するまで実行した後、セメントミルク又はセメントモルタル等のグラウト材が加圧注入される(例えば特許文献1及び特許文献2参照)。一般的に、上述した削孔作業では、削孔時に排出される排土スライムの成分や既存の柱状図を見合わせて地中の支持層まで到達した(根入れできている)か否かを判定している。 In the ground reinforcement work, a grout material such as cement milk or cement mortar is pressure-injected after performing drilling work by a tip-driven drilling system until it reaches the support layer in the ground (for example, Patent Document). 1 and Patent Document 2). Generally, in the above-mentioned drilling work, it is determined whether or not the soil-removed slime component discharged at the time of drilling and the existing columnar chart have reached (rooted) the support layer in the ground. doing.

特許2592079号公報Japanese Patent No. 2592079 特許5695307号公報Japanese Patent No. 5695307

近年、地盤の補強工事における根入れ管理の厳格化が求められる。したがって、従来使用していた排土スライムの状態、既存の柱状図の他、削孔時の速度(削孔速度)を参照した定性的な地盤判定方法ではなく、削孔時に得られる様々なデータ(数値)を用いた定量的な地盤判定方法を新たに開発する必要がある。 In recent years, stricter rooting management in ground reinforcement work has been required. Therefore, in addition to the state of soil drainage slime used in the past and the existing columnar chart, various data obtained at the time of drilling are not used as a qualitative ground determination method with reference to the speed at the time of drilling (drilling speed). It is necessary to develop a new quantitative ground determination method using (numerical value).

本発明は、削孔時に得られる様々なデータを用いた定量的な地盤判定方法及び削孔装置を新たに提供することである。 The present invention is to newly provide a quantitative ground determination method and a drilling device using various data obtained at the time of drilling.

上述した課題を解決するために、本発明の地盤判定方法は、二重管式ダウンザホールハンマを用いて削孔及び鋼管の打設を行う際の地盤判定方法であって、削孔用ビットを用いた削孔を、削孔時の給進力及び前記削孔用ビットの回転数を一定に保持して実行する第1の削孔工程と、前記第1の削孔工程における、前記削孔用ビットの回転数、前記削孔用ビットに掛かる回転トルク、前記削孔用ビットにおける削孔速度及び前記削孔用ビットの深度を取得する取得工程と、地盤判定用の係数をα、前記削孔用ビットにおける底面積をAとし、前記取得工程により得られる前記削孔用ビットの回転数をN、前記削孔用ビットに掛かる回転トルクをT、前記削孔用ビットにおける削孔速度をBとして、以下の(1)式で表される回転エネルギーを算出する工程と、前記回転エネルギーの変動に基づいて、前記削孔及び鋼管の打設が地中の支持層に到達したか否かを判定する評価工程と、を有することを特徴とする。
回転エネルギー=α・(2π・N・T)/(A・B)・・・(1)
In order to solve the above-mentioned problems, the ground determination method of the present invention is a ground determination method for drilling holes and placing steel pipes using a double pipe type down-the-hole hammer, and uses a drilling bit. For the drilling in the first drilling step and the first drilling step of performing the drilling while keeping the feeding force at the time of drilling and the rotation speed of the drilling bit constant. The acquisition process for acquiring the number of rotations of the bit, the rotational torque applied to the drilling bit, the drilling speed in the drilling bit, and the depth of the drilling bit, the coefficient for ground determination is α, and the drilling The bottom area of the drilling bit is A, the rotation speed of the drilling bit obtained by the acquisition step is N, the rotational torque applied to the drilling bit is T, and the drilling speed of the drilling bit is B. Based on the step of calculating the rotational energy represented by the following equation (1) and the fluctuation of the rotational energy, it is determined whether or not the drilling and the placement of the steel pipe have reached the support layer in the ground. It is characterized by having an evaluation process to be performed.
Rotational energy = α ・ (2π ・ N ・ T) / (A ・ B) ・ ・ ・ (1)

また、前記削孔用ビットの回転数、前記削孔用ビットに掛かる回転トルク、前記削孔用ビットにおける削孔速度、前記削孔用ビットの深度及び前記指標のうち、少なくとも前記指標を表示する表示工程を有することを特徴とする。 Further, at least the index among the rotation speed of the drilling bit, the rotational torque applied to the drilling bit, the drilling speed in the drilling bit, the depth of the drilling bit, and the index is displayed. It is characterized by having a display process.

また、地中の支持層の深度を推定する推定工程と、前記地中の支持層付近の深度まで削孔を行う第2の削孔工程と、を有し、前記第1の削孔工程は、前記第2の削孔工程に引き続いて実行されることを特徴とする。 Further, the first drilling step includes an estimation step of estimating the depth of the support layer in the ground and a second drilling step of drilling holes to a depth near the support layer in the ground. , The second drilling step is subsequently carried out.

前記削孔は、小口径鋼管杭工法を用いて実行されることを特徴とする。 The drilling is characterized by being carried out using a small diameter steel pipe pile method.

また、本発明の削孔装置は、二重管式ダウンザホールハンマを用いて地中の支持層に到達するまで削孔及び鋼管の打設を行う削孔装置において、前記削孔を行う削孔用ビットの回転数、前記削孔用ビットに掛かる回転トルク、前記削孔用ビットにおける削孔速度及び前記削孔用ビットの深度を取得する取得部と、地盤判定用の係数をα、前記削孔用ビットにおける底面積をAとし、前記取得部により得られる前記削孔用ビットの回転数をN、前記削孔用ビットに掛かる回転トルクをT、前記削孔用ビットにおける削孔速度をBとして、以下の(2)式で表される回転エネルギーを算出する算出部と、前記回転エネルギーの変動に基づいて、前記削孔及び鋼管の打設が支持層に到達したか否かを判定する評価部と、を有することを特徴とする。
回転エネルギー=α・(2π・N・T)/(A・B)・・・(2)
Further, the drilling device of the present invention is a drilling device for drilling holes and driving steel pipes until it reaches the support layer in the ground using a double pipe type down-the-hole hammer . The acquisition unit that acquires the number of rotations of the bit, the rotational torque applied to the drilling bit, the drilling speed in the drilling bit, and the depth of the drilling bit, the coefficient for determining the ground is α, and the drilling Let A be the bottom area of the drilling bit, N be the rotation speed of the drilling bit obtained by the acquisition unit, T be the rotational torque applied to the drilling bit, and B be the drilling speed of the drilling bit. , An evaluation unit that calculates the rotational energy represented by the following equation (2), and an evaluation that determines whether or not the drilling and the placement of the steel pipe have reached the support layer based on the fluctuation of the rotational energy. It is characterized by having a part and.
Rotational energy = α ・ (2π ・ N ・ T) / (A ・ B) ・ ・ ・ (2)

本発明によれば、削孔時に得られる様々なデータを用いた定量的な地盤判定方法を新たに提供することができる。 According to the present invention, it is possible to newly provide a quantitative ground determination method using various data obtained at the time of drilling.

小口径鋼管杭工法で用いる削孔装置の一例を示す側面図である。It is a side view which shows an example of the drilling apparatus used in the small-diameter steel pipe pile construction method. 模擬地盤の形状を示す斜視図である。It is a perspective view which shows the shape of the simulated ground. 軟岩地盤を模擬地盤とした場合の削孔試験で得られる、削孔速度、給進力、回転トルク、回転数、回転エネルギーの変動を示すグラフである。It is a graph which shows the fluctuation of the drilling speed, the feeding force, the rotational torque, the rotational speed, and the rotational energy obtained in the drilling test when the soft rock ground is used as the simulated ground. 中硬岩地盤を模擬地盤とした場合の削孔試験で得られる、削孔速度、給進力、回転トルク、回転数、回転エネルギーの変動を示すグラフである。It is a graph which shows the fluctuation of the drilling speed, the feeding force, the rotational torque, the rotational speed, and the rotational energy obtained in the drilling test when the medium hard rock ground is used as the simulated ground. 削孔試験によって得られるデータの相関をまとめた表である。It is a table summarizing the correlation of the data obtained by the drilling test. (a)軟岩地盤を用いた削孔試験で得られる各種データの平均値、標準偏差、変動係数をまとめた表、(b)中硬岩地盤を用いた削孔試験で得られる各種データの平均値、標準偏差、変動係数をまとめた表である。(A) A table summarizing the average value, standard deviation, and coefficient of variation of various data obtained in the drilling test using soft rock ground, and (b) Average of various data obtained in the drilling test using medium-hard rock ground. It is a table that summarizes the values, standard deviations, and coefficients of variation. 回転トルク、回転エネルギー及び動力の変化を示すグラフである。It is a graph which shows the change of the rotational torque, the rotational energy, and the power.

以下、本発明について図面を用いて説明する。図1に示すように、削孔装置10は、一例としてダウンザホールハンマを用いた乾式二重管方式を用いて削孔を行う装置である。削孔装置10は、走行台車11、回転リングスライドベース12、ガイドセル13、ドリフタ14、セントライザ15を有する。本実施形態では、走行台車11として装軌車両型の走行台車の一例を挙げているが、装輪車両型の走行台車であってもよい。符号16,17は、施工時に走行台車11の姿勢を安定させるアウトリガーである。 Hereinafter, the present invention will be described with reference to the drawings. As shown in FIG. 1, the drilling device 10 is a device for drilling holes by using a dry double pipe method using a down-the-hole hammer as an example. The drilling device 10 includes a traveling carriage 11, a rotating ring slide base 12, a guide cell 13, a drifter 14, and a centricer 15. In the present embodiment, an example of a tracked vehicle type traveling vehicle is given as the traveling vehicle 11, but a wheeled vehicle type traveling vehicle may be used. Reference numerals 16 and 17 are outriggers that stabilize the posture of the traveling bogie 11 during construction.

回転リングスライドベース12は、走行台車11に支持された支持ロッド21及び油圧シリンダ22が軸支される基体部25と、基体部25に対して回転自在な回転リング部26とを有する。基体部25は、走行台車11に支持された支持ロッド21及び油圧シリンダ22に軸支され、油圧シリンダ22の伸縮や、油圧シリンダ23の伸縮による支持ロッド21の回動により傾動される。 The rotary ring slide base 12 has a base portion 25 on which a support rod 21 supported by the traveling carriage 11 and a hydraulic cylinder 22 are pivotally supported, and a rotary ring portion 26 that is rotatable with respect to the base portion 25. The base portion 25 is pivotally supported by the support rod 21 and the hydraulic cylinder 22 supported by the traveling carriage 11, and is tilted by the expansion and contraction of the hydraulic cylinder 22 and the rotation of the support rod 21 due to the expansion and contraction of the hydraulic cylinder 23.

回転リング部26は、油圧シリンダ27の駆動により基体部25に対して回転する。回転リング部26は、ガイドセル13の上端部に連結される油圧シリンダ28を有する。油圧シリンダ28は、回転リング部26に対するガイドセル13の相対位置を変動させる。一例として、油圧シリンダ28は、地上面に対して直立した状態のガイドセル13を上下方向にスライドさせ、回転リング部26に対するガイドセル13の相対位置を変動させる。 The rotary ring portion 26 is driven by the hydraulic cylinder 27 to rotate with respect to the base portion 25. The rotary ring portion 26 has a hydraulic cylinder 28 connected to the upper end portion of the guide cell 13. The hydraulic cylinder 28 changes the relative position of the guide cell 13 with respect to the rotating ring portion 26. As an example, the hydraulic cylinder 28 slides the guide cell 13 in an upright position with respect to the ground surface in the vertical direction to change the relative position of the guide cell 13 with respect to the rotating ring portion 26.

ガイドセル13は、ドリフタ14を長手方向にスライド可能に支持する。図示は省略するが、ガイドセル13は、ドリフタ14をガイドセル13の長手方向に沿ってスライドさせるスライド機構(図示省略)を有する。なお、スライド機構としては、チェーン、スプロケット及びモータなどから構成された機構が挙げられる。 The guide cell 13 slidably supports the drifter 14 in the longitudinal direction. Although not shown, the guide cell 13 has a slide mechanism (not shown) that slides the drifter 14 along the longitudinal direction of the guide cell 13. Examples of the slide mechanism include a mechanism composed of a chain, a sprocket, a motor, and the like.

ドリフタ14は、例えば油圧モータで回転駆動されるシャンクロッドと、油圧又は空気圧により駆動され、シャンクロッドの上端を打撃するハンマー(図示省略)とを有する。ドリフタ14は、シャンクロッドに連結されたインナーロッドに回転を与え、また打設する鋼管に対して打撃力を与える。なお、インナーロッドの先端には、削孔用ビットが装着される。 The drifter 14 has, for example, a shank rod that is rotationally driven by a hydraulic motor and a hammer (not shown) that is driven by hydraulic or pneumatic pressure and strikes the upper end of the shank rod. The drifter 14 gives rotation to the inner rod connected to the shank rod, and also gives a striking force to the steel pipe to be driven. A drilling bit is attached to the tip of the inner rod.

セントライザ15は、ガイドセル13の下端部に固定される。セントライザ15は、打設される鋼管や、鋼管のねじ継ぎ手や削孔用ビットに連結されるインナーロッドのねじ継ぎ手を把持する。 The centriser 15 is fixed to the lower end of the guide cell 13. The centriser 15 grips the steel pipe to be driven, the threaded joint of the steel pipe, and the threaded joint of the inner rod connected to the drilling bit.

削孔装置10は、施工管理装置30を有する。施工管理装置30は、計測制御部31と、操作盤32とを有する。計測制御部31は、削孔装置10のドリフタ14に設けたロータリーエンコーダ、圧力センサ、電流交換機、電磁流量計、傾斜センサ、深度センサなどの各種センサと接続され、削孔装置10を用いた削孔作業時に各種センサからの検出信号を受信する。計測制御部31は、各種センサから得られた検出信号を演算処理して計測データを生成し、図示を省略した記憶装置に記憶する。なお、施工時の計測データは、計測制御部31に設けた記憶装置に記憶される他、施工管理装置30に接続されたデータ管理装置に送信される。また、計測制御部31は、計測データを用いた表示を操作盤32に指示する。 The drilling device 10 has a construction management device 30. The construction management device 30 has a measurement control unit 31 and an operation panel 32. The measurement control unit 31 is connected to various sensors such as a rotary encoder, a pressure sensor, a current exchanger, an electromagnetic flow meter, an inclination sensor, and a depth sensor provided in the drifter 14 of the drilling device 10, and drilling using the drilling device 10. Receives detection signals from various sensors during hole work. The measurement control unit 31 calculates and processes the detection signals obtained from various sensors to generate measurement data, and stores the measurement data in a storage device (not shown). The measurement data at the time of construction is stored in the storage device provided in the measurement control unit 31, and is also transmitted to the data management device connected to the construction management device 30. Further, the measurement control unit 31 instructs the operation panel 32 to display using the measurement data.

操作盤32は、一例として、タッチパネルを有する表示装置である。操作盤32は、施工時の計測データを項目毎に一括表示する、又は必要な項目のみの計測データをグラフ表示する。操作盤32における表示の切り替えは、操作盤3に設けたタッチパネルへの入力操作により実施される。 The operation panel 32 is, for example, a display device having a touch panel. The operation panel 32 collectively displays the measurement data at the time of construction for each item, or displays the measurement data of only the necessary items as a graph. The display switching on the operation panel 32 is performed by an input operation on the touch panel provided on the operation panel 3.

次に、地盤判定方法を確立するために、地上面側から模擬地盤40、土地の地盤(以下、現地地盤)の順となるように、模擬地盤40を現地地盤に設置し、上述した削孔装置10を用いた小口径鋼管杭工法により削孔試験を行った。 Next, in order to establish the ground determination method, the simulated ground 40 is installed on the local ground so that the simulated ground 40 and the ground of the land (hereinafter referred to as the local ground) are in this order from the ground surface side, and the above-mentioned drilling is performed. A drilling test was performed by a small-diameter steel pipe pile method using the device 10.

図2に示すように、削孔試験に用いた模擬地盤40は、幅W=1.5m、奥行きD=1.0m、高さH=1.5mのブロック状の地盤である。なお、模擬地盤40は、地盤が軟岩である場合を模した模擬地盤(以下、軟岩地盤)と、地盤が中硬岩である場合を模した模擬地盤(以下、中硬岩地盤)との2つの模擬地盤とを作成した。軟岩地盤の強度は18N/mmに設定し、中硬岩地盤の強度は40N/mmに設定した。なお、現地地盤は、地盤の硬さを示す指標であるN値が例えば5程度の地盤である。削孔試験では、模擬地盤40の上面の4カ所に削孔を各々行っている。図2では、削孔される箇所を二点鎖線で示し、各箇所に対して符号40a,40b,40c,40dを付している。また、削孔試験では、直径165.2mm、長さ1.0mの鋼管杭1本、直径165.2mm、長さ0.75mの鋼管杭3本を使用し、最大3.25m(図1中符号Hmax)の深さまで削孔を行った。また、上記削孔試験は、削孔用ビットの回転数や給進力を一定値を保持した。詳細には、削孔用ビットの回転数は20rpm、給進力は2kNである。 As shown in FIG. 2, the simulated ground 40 used in the drilling test is a block-shaped ground having a width W = 1.5 m, a depth D = 1.0 m, and a height H = 1.5 m. The simulated ground 40 consists of two parts: a simulated ground that imitates the case where the ground is soft rock (hereinafter, soft rock ground) and a simulated ground that imitates the case where the ground is medium hard rock (hereinafter, medium hard rock ground). Created two simulated grounds. Strength of soft rock ground is set to 18N / mm 2, the strength of the medium hard rock ground was set to 40N / mm 2. The local ground has an N value of, for example, about 5, which is an index indicating the hardness of the ground. In the drilling test, drilling is performed at four locations on the upper surface of the simulated ground 40. In FIG. 2, the locations to be drilled are indicated by two-dot chain lines, and the reference numerals 40a, 40b, 40c, and 40d are attached to each location. In the drilling test, one steel pipe pile with a diameter of 165.2 mm and a length of 1.0 m and three steel pipe piles with a diameter of 165.2 mm and a length of 0.75 m were used, and the maximum length was 3.25 m (in FIG. 1). Drilling was performed to a depth of reference numeral H max). Further, in the above-mentioned drilling test, the rotation speed and the feeding force of the drilling bit were kept constant. Specifically, the rotation speed of the drilling bit is 20 rpm, and the feeding force is 2 kN.

図3は、軟岩地盤を模擬地盤とした場合の削孔試験で得られる、削孔速度、給進力、回転トルク、回転数、回転エネルギーの変動を示すグラフである。上述したように、削孔試験では、削孔用ビットの回転数や給進力は一定値に保持していることから、削孔用ビットの回転数や給進力の変動は小さい。なお、削孔用ビットの回転数や給進力の変動が大きい箇所は、地盤に対する削孔用ビットの滑りや噛み込みなどの影響を受けていると考えられる。また、削孔速度、回転トルク及び回転エネルギーは、地盤に対する削孔用ビットの滑りや噛み込みなどの影響を受けて変動する。 FIG. 3 is a graph showing fluctuations in drilling speed, feeding force, rotational torque, rotation speed, and rotational energy obtained in a drilling test when the soft rock ground is used as a simulated ground. As described above, in the drilling test, since the rotation speed and the feeding force of the drilling bit are held at a constant value, the fluctuation of the rotation speed and the feeding force of the drilling bit is small. It is considered that the parts where the rotation speed and the feeding force of the drilling bit fluctuate greatly are affected by the slipping and biting of the drilling bit with respect to the ground. Further, the drilling speed, the rotational torque, and the rotational energy fluctuate due to the influence of slippage and biting of the drilling bit with respect to the ground.

そして、削孔用ビットが軟岩地盤と現地地盤との境界に到達し、軟岩地盤の削孔から現地地盤の削孔に移行すると(削孔作業における深度が1500mmを超えると)、給進力や削孔用ビットの回転数は、軟岩地盤を削孔作業したときに得られる値とほぼ同一の値で推移する。一方で、削孔速度は、軟岩地盤の硬さと現地地盤の硬さの違いから上昇し、回転トルク及び回転エネルギーは減少する。 Then, when the drilling bit reaches the boundary between the soft rock ground and the local ground and shifts from the drilling of the soft rock ground to the drilling of the local ground (when the depth in the drilling work exceeds 1500 mm), the feeding force and The rotation speed of the drilling bit changes at almost the same value as that obtained when drilling the soft rock ground. On the other hand, the drilling speed increases due to the difference between the hardness of the soft rock ground and the hardness of the local ground, and the rotational torque and the rotational energy decrease.

図4は、中硬岩地盤を模擬地盤とした場合の削孔試験で得られる、削孔速度、給進力、回転トルク、回転数、回転エネルギーの変動を示すグラフである。中硬岩地盤を用いた削孔試験の場合も、軟岩地盤を用いた削孔試験と同様に、削孔用ビットの回転数や給進力は一定値に保持していることから、削孔用ビットの回転数や給進力の変動は小さい。なお、削孔用ビットの回転数や給進力の変動が大きい箇所は、地盤に対する削孔用ビットの滑りや噛み込みなどの影響を受けていると考えられる。また、削孔速度、回転トルク及び回転エネルギーは、地盤に対する削孔用ビットの滑りや噛み込みなどの影響を受けて変動する。なお、中硬岩地盤は、軟岩地盤よりも硬いので、削孔速度、回転トルクは、軟岩地盤を用いた削孔試験で得られる値よりも小さい値となる。また、中硬岩地盤を用いた削孔試験は、軟岩地盤を用いた削孔試験よりも、地盤に対する削孔用ビットの滑りや噛み込みなどの影響を受けやすいため、削孔用ビットの回転数、給進力、削孔速度、回転トルク及び回転エネルギーの変動が大きくなると考えられる。 FIG. 4 is a graph showing fluctuations in drilling speed, feeding force, rotational torque, rotation speed, and rotational energy obtained in a drilling test when a medium-hard rock ground is used as a simulated ground. In the case of the drilling test using medium-hard rock ground, as in the drilling test using soft rock ground, the rotation speed and feeding force of the drilling bit are maintained at constant values, so drilling is performed. Fluctuations in the number of revolutions of the bit and the feeding force are small. It is considered that the parts where the rotation speed and the feeding force of the drilling bit fluctuate greatly are affected by the slipping and biting of the drilling bit with respect to the ground. Further, the drilling speed, the rotational torque, and the rotational energy fluctuate due to the influence of slippage and biting of the drilling bit with respect to the ground. Since the medium-hard rock ground is harder than the soft rock ground, the drilling speed and the rotational torque are smaller than the values obtained in the drilling test using the soft rock ground. In addition, the drilling test using medium-hard rock ground is more susceptible to the effects of slipping and biting of the drilling bit on the ground than the drilling test using soft rock ground, so the rotation of the drilling bit Fluctuations in number, feeding force, drilling speed, rotational torque and rotational energy are expected to increase.

そして、削孔用ビットが中硬岩地盤と現地地盤との境界に到達し、中硬岩地盤の削孔から現地地盤の削孔に移行すると(削孔作業における深度が1500mmを超えると)、給進力や削孔用ビットの回転数は、中硬岩地盤を削孔作業したときに得られる値とほぼ同一の値で推移する。一方で、削孔速度は、中硬岩地盤の硬さと現地地盤の硬さの違いから上昇し、回転トルク及び回転エネルギーは減少する。 Then, when the drilling bit reaches the boundary between the medium-hard rock ground and the local ground and shifts from the drilling of the medium-hard rock ground to the drilling of the local ground (when the depth in the drilling work exceeds 1500 mm), The feeding force and the rotation speed of the drilling bit change at almost the same values as those obtained when drilling the medium-hard rock ground. On the other hand, the drilling speed increases due to the difference between the hardness of the medium-hard rock ground and the hardness of the local ground, and the rotational torque and the rotational energy decrease.

なお、上述した回転エネルギーは、地盤判定用の係数をα、回転数をN、回転トルクをT、削孔底面積をA、削孔速度をBとした場合、以下の(1)式で算出される。 The above-mentioned rotational energy is calculated by the following equation (1) when the coefficient for determining the ground is α, the rotation speed is N, the rotation torque is T, the drilling bottom area is A, and the drilling speed is B. Will be done.

回転エネルギー=α・(2π・N・T)/(A・B)・・・(1) Rotational energy = α ・ (2π ・ N ・ T) / (A ・ B) ・ ・ ・ (1)

また、動力(仕事率)は、以下の(2)式で算出される。 Further, the power (power) is calculated by the following equation (2).

動力(仕事率)=(2・π・T・N)/60・・・(2) Power (power) = (2, π, TN) / 60 ... (2)

図5は、削孔試験によって得られるデータの相関をまとめた表である。図5に示す表は、削孔速度、給進力、回転トルク、回転数の4つのデータのうち、2つのデータを例えば最小二乗法などを用いた相関により得られる相関関数を示す。また、軟岩1は、図2に示す模擬地盤40の符号40aの箇所で上記削孔試験を行った場合を示し、軟岩2は、図2に示す模擬地盤40の符号40bの箇所で上記削孔試験を行った場合を示す。軟岩3は、図2に示す模擬地盤40の符号40cで示す位置で上記削孔試験を行った場合を示し、軟岩4は、図2に示す模擬地盤40の符号40dで示す位置で上記削孔試験を行った場合を示す。また、中硬岩1は、図2に示す模擬地盤40の符号40aの箇所で上記削孔試験を行った場合を示し、中硬岩2は、図2に示す模擬地盤40の符号40bの箇所で上記削孔試験を行った場合を示す。中硬岩3は、図2に示す模擬地盤40の符号40cで示す位置で上記削孔試験を行った場合を示し、中硬岩4は、図2に示す模擬地盤40の符号40dで示す位置で上記削孔試験を行った場合を示す。 FIG. 5 is a table summarizing the correlation of the data obtained by the drilling test. The table shown in FIG. 5 shows a correlation function obtained by correlating two data out of the four data of drilling speed, feeding force, rotational torque, and rotational speed by using, for example, the minimum square method. Further, the soft rock 1 shows the case where the drilling test is performed at the place of reference numeral 40a of the simulated ground 40 shown in FIG. 2, and the soft rock 2 shows the case where the hole is drilled at the place of reference numeral 40b of the simulated ground 40 shown in FIG. The case where the test was performed is shown. The soft rock 3 shows the case where the drilling test is performed at the position indicated by the reference numeral 40c of the simulated ground 40 shown in FIG. 2, and the soft rock 4 shows the case where the drilling test is performed at the position indicated by the reference numeral 40d of the simulated ground 40 shown in FIG. The case where the test was performed is shown. Further, the medium hard rock 1 shows the case where the drilling test is performed at the portion of the simulated ground 40 shown in FIG. 2 at the location of the reference numeral 40a, and the medium hard rock 2 is the location of the simulated ground 40 shown at FIG. The case where the above drilling test is performed is shown in. The medium hard rock 3 shows the case where the drilling test is performed at the position indicated by the reference numeral 40c of the simulated ground 40 shown in FIG. 2, and the medium hard rock 4 is the position indicated by the reference numeral 40d of the simulated ground 40 shown in FIG. The case where the above drilling test is performed is shown in.

図5において、2つのデータを用いた相関において、相関係数が0.7以上であるときに2つのデータに相関があると判断した場合、軟岩地盤、中硬岩地盤の各地盤において、回転数と回転トルクとの2つのデータに相関があると判断できる。 In FIG. 5, when it is determined that there is a correlation between the two data when the correlation coefficient is 0.7 or more in the correlation using the two data, the rotation occurs in each part of the soft rock ground and the medium hard rock ground. It can be determined that there is a correlation between the number and the rotational torque.

図6(a)は、軟岩地盤を用いた削孔試験で得られる各種データの平均値、標準偏差、変動係数をまとめた表である。また、図6(b)は、中硬岩地盤を用いた削孔試験で得られる各種データの平均値、標準偏差、変動係数をまとめた表である。なお、これら値を求める際に用いたデータ数(サンプル数)は、軟岩地盤を用いた削孔試験で1824、中硬岩地盤を用いた削孔試験で2143である。なお、軟岩地盤及び中硬岩地盤の各地盤におけるサンプル数が異なるのは、得られたデータのうち、例えば給進力が2kNに近似するデータのみを使用しているからである。 FIG. 6A is a table summarizing the average value, standard deviation, and coefficient of variation of various data obtained in the drilling test using soft rock ground. Further, FIG. 6B is a table summarizing the average value, standard deviation, and coefficient of variation of various data obtained in the drilling test using the medium-hard rock ground. The number of data (number of samples) used to obtain these values was 1824 in the drilling test using soft rock ground and 2143 in the drilling test using medium hard rock ground. The number of samples differs between the soft rock ground and the medium hard rock ground because, of the obtained data, for example, only the data whose feeding force is close to 2 kN is used.

ここで、図6に示す推進エネルギーは以下の(3)式で求められる。 Here, the propulsion energy shown in FIG. 6 is obtained by the following equation (3).

推進エネルギー=β×(給進力/削孔断面積)・・・(3) Propulsion energy = β × (feeding force / drilling cross-sectional area) ・ ・ ・ (3)

なお、(3)式で示す記号βは、推進係数である。 The symbol β represented by the equation (3) is a propulsion coefficient.

上述したように削孔試験では、給進力及び削孔ビットの回転数を一定としていることから、給進力、回転数、及び推進エネルギーの変動係数は、模擬地盤が軟岩地盤であっても、中硬岩地盤であっても小さい値となる。一方、削孔速度、回転トルク、回転エネルギー及び動力の変動係数は、模擬地盤が軟岩地盤であっても、中硬岩地盤であっても変動係数が高い。 As described above, in the drilling test, since the feeding force and the rotation speed of the drilling bit are constant, the coefficient of variation of the feeding force, the rotation speed, and the propulsion energy can be determined even if the simulated ground is soft rock ground. , Even in medium-hard rock ground, the value is small. On the other hand, the coefficient of variation of drilling speed, rotational torque, rotational energy and power is high regardless of whether the simulated ground is soft rock ground or medium hard rock ground.

最後に、回転トルク、回転エネルギー及び動力の関係について図7を用いて説明する。図7において、記号「■」は回転トルク、記号「●」は回転エネルギー、記号「▲」は動力を示す。なお、回転トルクの値は左縦軸で示し、回転トルクの単位はkNmである。また、回転エネルギーの値は右縦軸で示し、回転エネルギーの単位はkN/cm(=kNcm/cm)である。さらに、動力の値は右縦軸で示し、動力の単位はkwである。なお、回転エネルギーと動力とは単位が異なるが、数値範囲が近似していることから、図7では、回転エネルギーと動力との値を右縦軸にまとめて表している。 Finally, the relationship between rotational torque, rotational energy, and power will be described with reference to FIG. 7. In FIG. 7, the symbol “■” indicates rotational torque, the symbol “●” indicates rotational energy, and the symbol “▲” indicates power. The value of the rotational torque is shown on the left vertical axis, and the unit of the rotational torque is kNm. The value of the rotational energy is shown on the right vertical axis, and the unit of the rotational energy is kN / cm 2 (= kN cm / cm 3 ). Further, the value of power is shown on the right vertical axis, and the unit of power is kW. Although the units of the rotational energy and the power are different, since the numerical ranges are similar, the values of the rotational energy and the power are shown on the right vertical axis in FIG. 7.

図7に示すように、動力は、模擬地盤が軟岩地盤であっても中硬岩地盤であっても、変動係数は小さく、各模擬地盤の硬度の違いに対する変動が小さい。その一方で、回転エネルギーは、模擬地盤の各々における変動係数は大きく、また、各模擬地盤の硬度の違いに対する変動も大きい。また、回転トルクは、模擬地盤の各々における変動係数は小さい一方で、各模擬地盤の硬度の違いに対する変動は大きい。しかしながら、地盤によっては削孔用ビットが滑って、トルクがかからない状態になることもあり、この場合は、削孔速度を考慮する必要がある。したがって、変動係数が大きいが、模擬地盤の硬度の違いに対する変動が大きく表れる回転エネルギーを用いた定量的な地盤判定方法により、対象地盤の硬軟を判定することができる。 As shown in FIG. 7, the coefficient of variation of the power is small regardless of whether the simulated ground is soft rock ground or medium hard rock ground, and the fluctuation with respect to the difference in hardness of each simulated ground is small. On the other hand, the rotational energy has a large coefficient of variation in each of the simulated grounds, and also has a large variation with respect to the difference in hardness of each simulated ground. Further, the coefficient of variation of the rotational torque is small in each of the simulated grounds, but the fluctuation with respect to the difference in hardness of each simulated ground is large. However, depending on the ground, the drilling bit may slip and torque may not be applied. In this case, it is necessary to consider the drilling speed. Therefore, the hardness of the target ground can be determined by a quantitative ground determination method using rotational energy, which has a large coefficient of variation but a large variation with respect to the difference in hardness of the simulated ground.

その結果、本実施形態では、上記削孔試験を行うことで、地盤補強工事において、各種データから演算される回転エネルギーの推移を観察しながら削孔作業を行い、回転エネルギーが大幅に変動する(地中の支持層の硬さは地上付近の地盤の硬さよりも硬いので、実際には、地中の支持層に到達すると回転エネルギーは上昇する)か否かにより、地中の支持層に到達したか否か(根入れできたか否か)を判定する方法を見いだした。 As a result, in the present embodiment, by performing the above-mentioned drilling test, the drilling work is performed while observing the transition of the rotational energy calculated from various data in the ground reinforcement work, and the rotational energy fluctuates significantly ( Since the hardness of the support layer in the ground is harder than the hardness of the ground near the ground, the rotational energy actually increases when it reaches the support layer in the ground), and it reaches the support layer in the ground. I found a way to determine if it was done (whether it was rooted or not).

したがって、図1に示す削孔装置10を用いて、本実施形態の地盤判定方法を用いた地盤補強工事を施工することが可能となる。詳細には、図1に示す削孔装置10を用いて削孔及び鋼管の打設作業を行う際に、施工管理装置30の計測制御部31は、取得された検出信号を演算処理して計測データを算出し、これら算出した計測データを操作盤32の表示部に表示する。また、施工管理装置30の計測制御部31は、操作盤32の表示部に表示される回転エネルギーと深度とから、削孔及び鋼管の打設作業が地中の支持層に到達した否かを判定(評価)する。この判定は、回転エネルギーが大幅に変動したか否かの判定である。そして、施工管理装置30の計測制御部31が地中の支持層に到達したと判定したときに、施工管理装置30の計測制御部31は、操作盤32の表示部に、その旨の表示を行う。上記判定を行う際には、施工管理装置30の計測制御部31は、地中の支持層に到達したときの回転エネルギーの変動量を予め閾値として記憶する。施工管理装置30が閾値を記憶する場合、施工管理装置30の計測制御部31は、閾値を用いて削孔作業が地中の支持層に到達した否かを自動的に判定(評価)できる。なお、上記判定を、施工管理者が行ってもよい。 Therefore, using the drilling device 10 shown in FIG. 1, it is possible to carry out ground reinforcement work using the ground determination method of the present embodiment. Specifically, when the drilling device 10 shown in FIG. 1 is used to drill a hole and place a steel pipe, the measurement control unit 31 of the construction management device 30 calculates and processes the acquired detection signal for measurement. The data is calculated, and the calculated measurement data is displayed on the display unit of the operation panel 32. Further, the measurement control unit 31 of the construction management device 30 determines whether or not the drilling and steel pipe placing work has reached the support layer in the ground from the rotational energy and depth displayed on the display unit of the operation panel 32. Judgment (evaluation). This determination is a determination as to whether or not the rotational energy has changed significantly. Then, when it is determined that the measurement control unit 31 of the construction management device 30 has reached the support layer in the ground, the measurement control unit 31 of the construction management device 30 displays a display to that effect on the display unit of the operation panel 32. conduct. When making the above determination, the measurement control unit 31 of the construction management device 30 stores in advance the amount of fluctuation of the rotational energy when it reaches the support layer in the ground as a threshold value. When the construction management device 30 stores the threshold value, the measurement control unit 31 of the construction management device 30 can automatically determine (evaluate) whether or not the drilling work has reached the support layer in the ground using the threshold value. The construction manager may make the above determination.

上記地盤補強工事の際には、既存の柱状図等から地中の支持層までの深さ(深度)が予測(算出)されている場合もある。このような場合には、地中の支持層付近まで削孔用ビットの回転数及び給進力を一定とせずに削孔作業を行い、目的の深度まで削孔及び鋼管の打設作業が行われた後、削孔用ビットの回転数及び給進力を一定にして削孔及び鋼管の打設作業を行うこともできる。 At the time of the above-mentioned ground reinforcement work, the depth (depth) from the existing columnar chart or the like to the support layer in the ground may be predicted (calculated). In such a case, the drilling work is performed without keeping the rotation speed and feeding force of the drilling bit constant up to the vicinity of the support layer in the ground, and the drilling work and the steel pipe driving work are performed to the desired depth. After the drilling, the drilling and the casting of the steel pipe can be performed by keeping the rotation speed and the feeding force of the drilling bit constant.

本実施形態では、回転エネルギーを用いた定量的な地盤判定にて、対象地盤の硬軟を判定しているが、回転エネルギーと推進エネルギーとを加算した値(以下、加算値)によって、対象地盤の硬軟を判定することも可能である。例えば、給進力を一定として削孔作業を行う場合には、推進エネルギーの値は、ほぼ一定の値となる。その結果、加算値の変動分は、推進エネルギーの変動ではなく、回転エネルギーの変動であると考えられる。したがって、この場合も、本実施形態と同様にして、対象地盤の硬軟を判定することができる。 In the present embodiment, the hardness of the target ground is determined by quantitative ground determination using rotational energy, but the value obtained by adding the rotational energy and the propulsion energy (hereinafter referred to as the added value) is used to determine the hardness of the target ground. It is also possible to determine the hardness. For example, when the drilling work is performed with the feeding force constant, the value of the propulsion energy becomes a substantially constant value. As a result, it is considered that the fluctuation of the added value is not the fluctuation of the propulsion energy but the fluctuation of the rotational energy. Therefore, in this case as well, the hardness of the target ground can be determined in the same manner as in the present embodiment.

本実施形態では、地盤補強工法として、小口径鋼管杭工法を例に挙げているが、地中の支持層に到達するまで削孔作業を行った後に合成杭を生成する工法であれば、本発明を適用することが可能である。 In this embodiment, the small-diameter steel pipe pile method is taken as an example of the ground reinforcement method, but if it is a method of forming a synthetic pile after drilling work until it reaches the support layer in the ground, this method is used. It is possible to apply the invention.

10…削孔装置、30…施工管理装置、31…計測制御部、32…操作盤、40…模擬地盤
10 ... Drilling device, 30 ... Construction management device, 31 ... Measurement control unit, 32 ... Operation panel, 40 ... Simulated ground

Claims (5)

二重管式ダウンザホールハンマを用いて削孔及び鋼管の打設を行う際の地盤判定方法であって、
削孔用ビットを用いた前記削孔を、削孔時の給進力及び前記削孔用ビットの回転数を一定に保持して実行する第1の削孔工程と、
前記第1の削孔工程における、前記削孔用ビットの回転数、前記削孔用ビットに掛かる回転トルク、前記削孔用ビットにおける削孔速度及び前記削孔用ビットの深度を取得する取得工程と、
地盤判定用の係数をα、前記削孔用ビットにおける底面積をAとし、前記取得工程により得られる前記削孔用ビットの回転数をN、前記削孔用ビットに掛かる回転トルクをT、前記削孔用ビットにおける削孔速度をBとして、以下の(1)式で表される回転エネルギー
回転エネルギー=α・(2π・N・T)/(A・B)・・・(1)
を算出する工程と、
前記回転エネルギーの変動に基づいて、前記削孔及び前記鋼管の打設が地中の支持層に到達したか否かを判定する評価工程と、
を有することを特徴とする地盤判定方法。
It is a ground judgment method when drilling holes and placing steel pipes using a double pipe type down-the-hole hammer.
The drilling using the drilling bit, and the first boring step of executing holds KyuSusumu force during drilling and the rotational speed of the drilling bit constant,
Acquisition step for acquiring the rotation speed of the drilling bit, the rotational torque applied to the drilling bit, the drilling speed of the drilling bit, and the depth of the drilling bit in the first drilling step. When,
The coefficient for determining the ground is α, the bottom area of the drilling bit is A, the rotation speed of the drilling bit obtained by the acquisition step is N, the rotation torque applied to the drilling bit is T, and the above. Rotational energy represented by the following equation (1), where B is the drilling speed of the drilling bit. Rotational energy = α · (2π · N · T) / (A · B) ... (1)
And the process of calculating
An evaluation step of determining whether or not the drilling and the placement of the steel pipe have reached the support layer in the ground based on the fluctuation of the rotational energy.
A ground determination method characterized by having.
請求項1に記載の地盤判定方法において、
前記削孔用ビットの回転数、前記削孔用ビットに掛かる回転トルク、前記削孔用ビットにおける削孔速度、前記削孔用ビットの深度及び前記回転エネルギーのうち、少なくとも前記回転エネルギーを表示する表示工程を有する
ことを特徴とする地盤判定方法。
In the ground determination method according to claim 1,
At least the rotational energy of the number of rotations of the drilling bit, the rotational torque applied to the drilling bit, the drilling speed of the drilling bit, the depth of the drilling bit, and the rotational energy is displayed. A ground determination method characterized by having a display process.
請求項1又は請求項2に記載の地盤判定方法において、
地中の支持層の深度を推定する推定工程と、
前記地中の支持層付近の深度まで削孔を行う第2の削孔工程と、
を有し、
前記第1の削孔工程は、前記第2の削孔工程に引き続いて実行される
ことを特徴とする地盤判定方法。
In the ground determination method according to claim 1 or 2.
An estimation process that estimates the depth of the support layer in the ground, and
A second drilling step of drilling to a depth near the support layer in the ground, and
Have,
The ground determination method, characterized in that the first drilling step is executed following the second drilling step.
請求項1から請求項3のいずれか1項に記載の地盤判定方法において、
前記削孔は、小口径鋼管杭工法を用いて実行される
ことを特徴とする地盤判定方法。
In the ground determination method according to any one of claims 1 to 3,
The ground determination method is characterized in that the drilling is performed by using the small-diameter steel pipe pile method.
二重管式ダウンザホールハンマを用いて地中の支持層に到達するまで削孔及び鋼管の打設を行う削孔装置において、
前記削孔を行う削孔用ビットの回転数、前記削孔用ビットに掛かる回転トルク、前記削孔用ビットにおける削孔速度及び前記削孔用ビットの深度を取得する取得部と、
地盤判定用の係数をα、前記削孔用ビットにおける底面積をAとし、前記取得部により得られる前記削孔用ビットの回転数をN、前記削孔用ビットに掛かる回転トルクをT、前記削孔用ビットにおける削孔速度をBとして、以下の(2)式で表される回転エネルギー
回転エネルギー=α・(2π・N・T)/(A・B)・・・(2)
を算出する算出部と、
前記回転エネルギーの変動に基づいて、前記削孔及び鋼管の打設が支持層に到達したか否かを判定する評価部と、
を有することを特徴とする削孔装置。
In a drilling device that drills holes and drives steel pipes until it reaches the support layer in the ground using a double-tube down-the-hole hammer.
An acquisition unit that acquires the rotation speed of the drilling bit for drilling, the rotational torque applied to the drilling bit, the drilling speed of the drilling bit, and the depth of the drilling bit.
The coefficient for determining the ground is α, the bottom area of the drilling bit is A, the rotation speed of the drilling bit obtained by the acquisition unit is N, the rotation torque applied to the drilling bit is T, and the above. Rotational energy represented by the following equation (2), where B is the drilling speed of the drilling bit. Rotational energy = α · (2π · N · T) / (A · B) ... (2)
And the calculation unit that calculates
An evaluation unit that determines whether or not the drilling and the placement of the steel pipe have reached the support layer based on the fluctuation of the rotational energy.
A drilling device characterized by having.
JP2017034672A 2017-02-27 2017-02-27 Ground judgment method and drilling device Active JP6969110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017034672A JP6969110B2 (en) 2017-02-27 2017-02-27 Ground judgment method and drilling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017034672A JP6969110B2 (en) 2017-02-27 2017-02-27 Ground judgment method and drilling device

Publications (2)

Publication Number Publication Date
JP2018141280A JP2018141280A (en) 2018-09-13
JP6969110B2 true JP6969110B2 (en) 2021-11-24

Family

ID=63527748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017034672A Active JP6969110B2 (en) 2017-02-27 2017-02-27 Ground judgment method and drilling device

Country Status (1)

Country Link
JP (1) JP6969110B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111783B2 (en) 2019-08-06 2021-09-07 Halliburton Energy Services, Inc. Estimating formation properties from drill bit motion
CN116479851B (en) * 2023-06-26 2023-09-08 江西富利建筑装饰有限责任公司 Building foundation soil layer borer surveys device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361440U (en) * 1986-10-03 1988-04-23
JPH0629497B2 (en) * 1988-01-27 1994-04-20 大成建設株式会社 Multi-purpose survey method for ground
JPH09177063A (en) * 1995-12-22 1997-07-08 Fujita Corp Degree-of-compaction testing device for filled ground
JP3117637B2 (en) * 1996-03-06 2000-12-18 ライト工業株式会社 Ground survey device and ground survey method
EP0988520A4 (en) * 1997-06-11 2003-03-12 Dynamic In Situ Geotechnical T Soil testing assemblies

Also Published As

Publication number Publication date
JP2018141280A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
USRE47105E1 (en) Method and apparatus for directional drilling
AU2013396723B2 (en) Arrangement for controlling percussive drilling process
US6918453B2 (en) Method of and apparatus for directional drilling
US9145768B2 (en) Method for reducing stick-slip during wellbore drilling
CN103608545A (en) System, method, and computer program for predicting borehole geometry
JP6969110B2 (en) Ground judgment method and drilling device
Hareland et al. The field tests for measurement of downhole weight on bit (DWOB) and the calibration of a real-time DWOB Model
US20200277823A1 (en) Drilling apparatus and method for the determination of formation location
JP2878255B1 (en) Geological survey method
US9816368B2 (en) Active control of drill bit walking
JP6914780B2 (en) How to drill a hole for burying a ground anchor
US20200072046A1 (en) Method and system for determining a soil class and use during determination of a soil class
JP3943430B2 (en) Method for predicting natural conditions ahead of face and excavation method
AU2016335480B2 (en) A method and a system for optimising energy usage at a drilling arrangement
JP2016011499A (en) Method for determining drilling state, method for calculating drilling length, and geological logging method
Sun et al. A numerical method for determining the stuck point in extended reach drilling
Masoud et al. High quality and cost effective drilling system for prebored pressuremeter testing
JP2024042606A (en) Test method for supporting ground
JP2022089863A (en) Method for confirming bearing ground in construction of foundation pile and auger for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210608

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210608

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210622

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210712

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6969110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150