JP6966306B2 - Temperature sensor accommodation structure and battery pack - Google Patents

Temperature sensor accommodation structure and battery pack Download PDF

Info

Publication number
JP6966306B2
JP6966306B2 JP2017234489A JP2017234489A JP6966306B2 JP 6966306 B2 JP6966306 B2 JP 6966306B2 JP 2017234489 A JP2017234489 A JP 2017234489A JP 2017234489 A JP2017234489 A JP 2017234489A JP 6966306 B2 JP6966306 B2 JP 6966306B2
Authority
JP
Japan
Prior art keywords
temperature sensor
temperature
accommodating
cylindrical battery
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017234489A
Other languages
Japanese (ja)
Other versions
JP2019100952A (en
Inventor
誠 成
彬宜 坂本
隆太郎 時津
知宏 松島
康弘 杉森
誠 本野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Yazaki Corp
Original Assignee
Toyota Motor Corp
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Yazaki Corp filed Critical Toyota Motor Corp
Priority to JP2017234489A priority Critical patent/JP6966306B2/en
Publication of JP2019100952A publication Critical patent/JP2019100952A/en
Application granted granted Critical
Publication of JP6966306B2 publication Critical patent/JP6966306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element

Landscapes

  • Secondary Cells (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、円筒型電池の温度を測定するための温度センサの収容構造、及び、その収容構造を利用した電池パック、に関する。 The present invention relates to an accommodating structure of a temperature sensor for measuring the temperature of a cylindrical battery, and a battery pack utilizing the accommodating structure.

従来から、ハイブリッド自動車および電気自動車などに搭載されるバッテリの過充電および過放電を防止する等の目的から、バッテリの温度を測定するための温度センサが提案されている。この種の温度センサは、一般に、バッテリを構成する複数のバッテリセルの表面に密着するように装着され、バッテリセルの温度を監視するようになっている(例えば、特許文献1を参照。)。 Conventionally, a temperature sensor for measuring the temperature of a battery has been proposed for the purpose of preventing overcharging and overdischarging of a battery mounted on a hybrid vehicle, an electric vehicle, or the like. This type of temperature sensor is generally mounted so as to be in close contact with the surface of a plurality of battery cells constituting the battery, and monitors the temperature of the battery cells (see, for example, Patent Document 1).

特開2011−17638号公報Japanese Unexamined Patent Publication No. 2011-17638

上述した従来の温度センサは、金属製の伝熱板の表面(測温面)を角型のバッテリセルの表面に押圧接触させると共に、伝熱板の近傍に設けられた測温素子(サーミスタ等)によってバッテリセルの温度を間接的に測定するように構成されている。更に、この従来の温度センサでは、角型のバッテリセルの表面と伝熱板の表面との接触面積を大きくするべく、測温面が平面形状を有している。 In the conventional temperature sensor described above, the surface of the metal heat transfer plate (temperature measurement surface) is pressed and contacted with the surface of the square battery cell, and the temperature measurement element (thermistor or the like) provided near the heat transfer plate is provided. ) Is configured to indirectly measure the temperature of the battery cell. Further, in this conventional temperature sensor, the temperature measuring surface has a planar shape in order to increase the contact area between the surface of the square battery cell and the surface of the heat transfer plate.

ところで、種々の理由から、角型のバッテリセルに代えて円筒型のバッテリセル(円筒型電池)を用いてバッテリが構成される場合がある。この場合、上述した従来の温度センサをそのまま用いると、伝熱板の平面形状の測温面と円筒型のバッテリセルの外周曲面との接触面積は、当然に、角型のバッテリセルへの適用時の接触面積に比べて小さくなる。このように接触面積が小さくなることに起因し、上述した従来の温度センサは、円筒型のバッテリセルの温度を適正に測定できない可能性がある。 By the way, for various reasons, a battery may be configured by using a cylindrical battery cell (cylindrical battery) instead of the square battery cell. In this case, if the above-mentioned conventional temperature sensor is used as it is, the contact area between the planar temperature measuring surface of the heat transfer plate and the outer peripheral curved surface of the cylindrical battery cell is naturally applied to the square battery cell. It is smaller than the contact area at the time. Due to such a small contact area, the conventional temperature sensor described above may not be able to properly measure the temperature of the cylindrical battery cell.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、円筒型電池の温度を適正に測定可能な温度センサの収容構造、及び、その収容構造を利用した電池パックを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an accommodating structure of a temperature sensor capable of appropriately measuring the temperature of a cylindrical battery, and a battery pack using the accommodating structure. There is.

前述した目的を達成するために、本発明に係る「温度センサの収容構造」は、下記(1)〜(4)を特徴としている。
(1)
円筒型電池の外周曲面の形状に対応するように湾曲した測温面を有する温度センサと、
前記温度センサを収容する収容部、前記測温面と前記外周曲面との当接が可能であるように前記収容部を構成する壁体に設けられる開口部、及び、前記当接の際に前記円筒型電池と前記温度センサとに挟まれることになる空間に向けて前記壁体から突出する凸部、を有するセンサ収容体と、を備えた、
温度センサの収容構造であること。
(2)
上記(1)に記載の温度センサの収容構造において、
前記センサ収容体は、
前記凸部として、前記開口部の周縁から前記円筒型電池の前記外周曲面に沿って延びる延出箇所を有する、
温度センサの収容構造であること。
(3)
上記(1)又は上記(2)に記載の温度センサの収容構造において、
前記温度センサは、
前記測温面を前記円筒型電池の前記外周曲面に当接させる向きに押圧された状態にて、前記センサ収容体の前記収容部に収容される、
温度センサの収容構造であること。
(4)
上記(1)〜上記(3)の何れか一つに記載の温度センサの収容構造において、
前記温度センサが、
前記測温面を構成する第1伝熱板、及び、前記外周曲面の周方向における前記第1伝熱板の両端部から延びる一対の第2伝熱板、を有する伝熱体と、
前記第1伝熱板及び前記一対の第2伝熱板に囲まれるように配置される測温素子と、
前記測温素子と前記伝熱体との間に設けられる絶縁体と、を有する、
温度センサの収容構造であること。
In order to achieve the above-mentioned object, the "temperature sensor accommodating structure" according to the present invention is characterized by the following (1) to (4).
(1)
A temperature sensor with a temperature measuring surface curved to correspond to the shape of the outer peripheral curved surface of the cylindrical battery,
An accommodating portion for accommodating the temperature sensor, an opening provided in a wall body constituting the accommodating portion so that the temperature measuring surface and the outer peripheral curved surface can be brought into contact with each other, and the contact at the time of the abutting. A sensor accommodating body having a convex portion protruding from the wall body toward a space sandwiched between the cylindrical battery and the temperature sensor.
Must have a temperature sensor accommodation structure.
(2)
In the temperature sensor accommodating structure described in (1) above,
The sensor housing is
The convex portion has an extension portion extending from the peripheral edge of the opening along the outer peripheral curved surface of the cylindrical battery.
Must have a temperature sensor accommodation structure.
(3)
In the temperature sensor accommodating structure according to the above (1) or (2).
The temperature sensor
A state in which the temperature measuring surface is pressed in a direction of abutting against the outer peripheral curved surface of the cylindrical battery is accommodated in the accommodating portion of the sensor accommodating body.
Must have a temperature sensor accommodation structure.
(4)
In the temperature sensor accommodating structure according to any one of (1) to (3) above,
The temperature sensor
A heat transfer body having a first heat transfer plate constituting the temperature measuring surface and a pair of second heat transfer plates extending from both ends of the first heat transfer plate in the circumferential direction of the outer peripheral curved surface.
A temperature measuring element arranged so as to be surrounded by the first heat transfer plate and the pair of second heat transfer plates.
It has an insulator provided between the temperature measuring element and the heat transfer body.
Must have a temperature sensor accommodation structure.

上記(1)の構成の温度センサの収容構造によれば、温度センサの測温面が円筒型電池の外周曲面の形状に対応するように湾曲した形状を有するため、従来の温度センサのように平面形状の測温面を有する場合に比べ、測温面と円筒型電池の外周曲面との接触面積を拡大させられる。このように接触面積が拡大することに起因し、本構成の温度センサの収容構造は、円筒型電池の温度を適正に測定できる。 According to the accommodation structure of the temperature sensor having the configuration of (1) above, the temperature measuring surface of the temperature sensor has a curved shape corresponding to the shape of the outer peripheral curved surface of the cylindrical battery, so that the temperature sensor has a curved shape like a conventional temperature sensor. Compared with the case where the temperature measuring surface has a planar shape, the contact area between the temperature measuring surface and the outer peripheral curved surface of the cylindrical battery can be expanded. Due to the expansion of the contact area in this way, the accommodation structure of the temperature sensor of this configuration can appropriately measure the temperature of the cylindrical battery.

更に、温度センサの測温面が円筒型電池の外周曲面に当接された状態にて、円筒型電池と温度センサとに挟まれることになる空間に向けてセンサ収容体の壁体から凸部が突出するように、センサ収容体が構成されている。この構成により、凸部が無い場合に比べ、円筒型電池とセンサ収容体との間の空間を流体が通過する際の圧力損失が大きくなる。よって、例えば、作動中に昇温する円筒型電池を冷却するための冷却風がその空間に流入し得るとしても、凸部が無い場合に比べて圧力損失が大きくなっている分だけ、その空間への冷却風の流入量が減ることになる。冷却風の流入量の低減によって測温面などの意図しない冷却を抑制することにより、凸部が無い場合に比べ、温度センサによる測温精度が向上し得る。 Further, in a state where the temperature measuring surface of the temperature sensor is in contact with the outer peripheral curved surface of the cylindrical battery, a convex portion from the wall body of the sensor housing toward the space sandwiched between the cylindrical battery and the temperature sensor. The sensor housing is configured so that With this configuration, the pressure loss when the fluid passes through the space between the cylindrical battery and the sensor housing is larger than that in the case where there is no convex portion. Therefore, for example, even if cooling air for cooling a cylindrical battery that heats up during operation can flow into the space, the space is increased by the amount of pressure loss as compared with the case where there is no convex portion. The amount of cooling air flowing into the air will be reduced. By suppressing unintended cooling of the temperature measuring surface or the like by reducing the inflow amount of the cooling air, the temperature measuring accuracy by the temperature sensor can be improved as compared with the case where there is no convex portion.

したがって、本構成の温度センサの収容構造は、円筒型電池の温度を適切に測定できる。 Therefore, the accommodation structure of the temperature sensor of this configuration can appropriately measure the temperature of the cylindrical battery.

上記(2)の構成の温度センサの収容構造によれば、円筒型電池と温度センサとに挟まれる空間に冷却風が流入する際の流入口にあたる箇所(開口部の周縁の箇所)において、延出箇所(凸部)の延出長さの分だけ冷却風が移動する流路を長くできる。このように流路を長くすることにより、流入口での圧力損失を大きくできる。よって、流入口にあたる箇所とは異なる箇所に凸部を設ける場合に比べ、冷却風の流入量をより効率良く低減できる。なお、センサ収容体は、この凸部(延出箇所)に加え、他の箇所に設けられた凸部を有してもよい。 According to the accommodation structure of the temperature sensor having the configuration of (2) above, the temperature sensor is extended at the inflow port (the peripheral edge of the opening) when the cooling air flows into the space sandwiched between the cylindrical battery and the temperature sensor. The flow path through which the cooling air moves can be lengthened by the length of the extension of the protruding part (convex part). By lengthening the flow path in this way, the pressure loss at the inflow port can be increased. Therefore, the inflow amount of the cooling air can be reduced more efficiently than in the case where the convex portion is provided at a portion different from the portion corresponding to the inflow port. In addition to the convex portion (extending portion), the sensor accommodating body may have a convex portion provided at another portion.

上記(3)の構成の温度センサの収容構造によれば、温度センサの測温面が円筒型電池の外周曲面に押圧されることにより、実際の測温の際、測温面と外周曲面とが当接した状態をより確実に維持できる。なお、仮にそのような押圧を実現するための機構等に起因して温度センサとセンサ収容体との間の空間(冷却風が流入し得る空間)が拡大しても、センサ収容体に設けられた凸部によって冷却風の流入が抑制できるため、温度センサの測温精度が低下することを抑制できる。 According to the accommodation structure of the temperature sensor having the configuration of (3) above, the temperature measuring surface of the temperature sensor is pressed against the outer peripheral curved surface of the cylindrical battery, so that the temperature measuring surface and the outer peripheral curved surface are pressed during actual temperature measurement. Can be more reliably maintained in contact with each other. Even if the space between the temperature sensor and the sensor housing (the space where the cooling air can flow in) expands due to a mechanism or the like for realizing such pressing, the sensor housing is provided. Since the inflow of the cooling air can be suppressed by the convex portion, it is possible to suppress the deterioration of the temperature measurement accuracy of the temperature sensor.

上記(4)の構成の温度センサの収容構造によれば、第1伝熱板と第2伝熱板とに囲まれるように測温素子が配置される。よって、円筒型電池の表面から第1伝熱板の測温面に伝わった熱を、第1伝熱板及び第2伝熱板を介し、測温素子を包み込むように多方向から伝達できる。よって、円筒型電池から伝わった熱を一方向から測温素子に伝達する場合に比べ、円筒型電池の温度をより適正に測定できる。 According to the accommodation structure of the temperature sensor having the configuration of (4) above, the temperature measuring element is arranged so as to be surrounded by the first heat transfer plate and the second heat transfer plate. Therefore, the heat transferred from the surface of the cylindrical battery to the temperature measuring surface of the first heat transfer plate can be transferred from multiple directions so as to wrap the temperature measuring element through the first heat transfer plate and the second heat transfer plate. Therefore, the temperature of the cylindrical battery can be measured more accurately than when the heat transferred from the cylindrical battery is transferred to the temperature measuring element from one direction.

更に、測温素子と伝熱体との間に絶縁体が設けられている。そのため、伝熱体として導電性の高い材料(例えば、金属)を用いる場合であっても、円筒型電池と測温素子との間を確実に絶縁させることができる。この絶縁により、円筒型電池と測温素子との間の電気的短絡による測温素子の故障等を防止できる。 Further, an insulator is provided between the temperature measuring element and the heat transfer body. Therefore, even when a highly conductive material (for example, metal) is used as the heat transfer body, the cylindrical battery and the temperature measuring element can be reliably insulated from each other. This insulation can prevent the temperature measuring element from failing due to an electrical short circuit between the cylindrical battery and the temperature measuring element.

前述した目的を達成するために、本発明に係る「電池パック」は、下記(5)を特徴としている。
(5)
円筒型電池と、前記円筒型電池の温度を測定する温度センサと、前記温度センサを収容するセンサ収容体と、を備えた電池パックであって、
前記温度センサ及び前記センサ収容体は、
上記(1)〜上記(4)の何れか一つに記載の収容構造を構成する、
電池パックであること。
In order to achieve the above-mentioned object, the "battery pack" according to the present invention is characterized by the following (5).
(5)
A battery pack including a cylindrical battery, a temperature sensor for measuring the temperature of the cylindrical battery, and a sensor accommodating body for accommodating the temperature sensor.
The temperature sensor and the sensor accommodating body
The accommodation structure according to any one of the above (1) to (4) is configured.
Must be a battery pack.

上記(5)の構成の電池パックによれば、温度センサの測温面が円筒型電池の外周曲面の形状に対応するように湾曲した形状を有するため、従来の温度センサのように平面形状の測温面を有する場合に比べ、測温面と円筒型電池の外周曲面との接触面積を拡大させられる。このように接触面積が拡大することに起因し、本構成の温度センサの収容構造は、円筒型電池の温度を適正に測定できる。 According to the battery pack having the configuration of (5) above, since the temperature measuring surface of the temperature sensor has a curved shape corresponding to the shape of the outer peripheral curved surface of the cylindrical battery, it has a planar shape like a conventional temperature sensor. The contact area between the temperature measuring surface and the outer peripheral curved surface of the cylindrical battery can be expanded as compared with the case where the temperature measuring surface is provided. Due to the expansion of the contact area in this way, the accommodation structure of the temperature sensor of this configuration can appropriately measure the temperature of the cylindrical battery.

更に、温度センサの測温面が円筒型電池の外周曲面に当接された状態にて、円筒型電池と温度センサとに挟まれることになる空間に向けてセンサ収容体の壁体から凸部が突出するように、センサ収容体が構成されている。この構成により、凸部が無い場合に比べ、円筒型電池とセンサ収容体との間の空間を流体が通過する際の圧力損失が大きくなる。よって、例えば、作動中に昇温する円筒型電池を冷却するための冷却風がその空間に流入し得るとしても、凸部が無い場合に比べて圧力損失が大きくなっている分だけ、その空間への冷却風の流入量が減ることになる。冷却風の流入量の低減によって測温面などの意図しない冷却を抑制することにより、凸部が無い場合に比べ、温度センサによる測温精度が向上し得る。 Further, in a state where the temperature measuring surface of the temperature sensor is in contact with the outer peripheral curved surface of the cylindrical battery, a convex portion from the wall body of the sensor housing toward the space sandwiched between the cylindrical battery and the temperature sensor. The sensor housing is configured so that With this configuration, the pressure loss when the fluid passes through the space between the cylindrical battery and the sensor housing is larger than that in the case where there is no convex portion. Therefore, for example, even if cooling air for cooling a cylindrical battery that heats up during operation can flow into the space, the space is increased by the amount of pressure loss as compared with the case where there is no convex portion. The amount of cooling air flowing into the air will be reduced. By suppressing unintended cooling of the temperature measuring surface or the like by reducing the inflow amount of the cooling air, the temperature measuring accuracy by the temperature sensor can be improved as compared with the case where there is no convex portion.

したがって、本構成の電池パックは、円筒型電池の温度を適切に測定できる。 Therefore, the battery pack having this configuration can appropriately measure the temperature of the cylindrical battery.

本発明によれば、円筒型電池の温度を適正に測定可能な温度センサの収容構造、及び、その収容構造を利用した電池パック、を提供できる。 According to the present invention, it is possible to provide an accommodating structure of a temperature sensor capable of appropriately measuring the temperature of a cylindrical battery, and a battery pack using the accommodating structure.

以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態(以下、「実施形態」という。)を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。 The present invention has been briefly described above. Further, the details of the present invention will be further clarified by reading through the embodiments described below (hereinafter referred to as "embodiments") with reference to the accompanying drawings. ..

図1は、本発明の実施形態に係る温度センサの収容構造に含まれる温度センサの斜視図である。FIG. 1 is a perspective view of a temperature sensor included in the accommodation structure of the temperature sensor according to the embodiment of the present invention. 図2は、温度センサの分解斜視図である。FIG. 2 is an exploded perspective view of the temperature sensor. 図3(a)は温度センサの側面図であり、図3(b)は図3(a)のB部の拡大図である。FIG. 3A is a side view of the temperature sensor, and FIG. 3B is an enlarged view of a portion B of FIG. 3A. 図4は、温度センサの下面図である。FIG. 4 is a bottom view of the temperature sensor. 図5は本発明の実施形態に係る電池パックにおける図3(a)のA−A断面に相当する断面図である。FIG. 5 is a cross-sectional view corresponding to the AA cross section of FIG. 3A in the battery pack according to the embodiment of the present invention. 図6は、図5における測温面の周囲を拡大した拡大図である。FIG. 6 is an enlarged view of the periphery of the temperature measuring surface in FIG. 図7は、冷却風が電池セルの外部から円筒型電池に吹き付けられた場合におけるセンサ収容体の延出箇所の作用を説明するための図である。FIG. 7 is a diagram for explaining the action of the extension portion of the sensor accommodating body when the cooling air is blown from the outside of the battery cell to the cylindrical battery. 図8は、比較例に係る電池パックにおける図7に対応する図である。FIG. 8 is a diagram corresponding to FIG. 7 in the battery pack according to the comparative example.

<実施形態>
以下、図面を参照しながら、本発明の実施形態に係る温度センサの収容構造、及び、収容構造を利用した電池パック、について説明する。
<Embodiment>
Hereinafter, the temperature sensor accommodating structure and the battery pack using the accommodating structure according to the embodiment of the present invention will be described with reference to the drawings.

本実施形態においては、温度センサ1と、温度センサ1を収容するセンサ収容体2と、によって収容構造3を構成した上で、円筒型電池4を所定箇所に配置するように、電池パック5が構成されている(図5を参照)。以下、温度センサ1、センサ収容体2、収容構造3、円筒型電池4、電池パック5の詳細な構造について、順に説明していく。 In the present embodiment, the battery pack 5 is arranged so that the cylindrical battery 4 is arranged at a predetermined position after the accommodating structure 3 is configured by the temperature sensor 1 and the sensor accommodating body 2 accommodating the temperature sensor 1. It is configured (see FIG. 5). Hereinafter, the detailed structures of the temperature sensor 1, the sensor accommodating body 2, the accommodating structure 3, the cylindrical battery 4, and the battery pack 5 will be described in order.

先ず、図1〜図6を参照しながら、温度センサ1について説明する。温度センサ1は、センサ本体10と、押圧体20と、支持壁30と、規制部40と、を備える。以下、説明の便宜上、図1に示すように、「前後方向」、「上下方向」、「幅方向」、「前」、「後」、「上」及び「下」を定義する。「前後方向」、「上下方向」及び「幅方向」は、互いに直交している。幅方向は、本発明の「周方向」にも相当している。 First, the temperature sensor 1 will be described with reference to FIGS. 1 to 6. The temperature sensor 1 includes a sensor main body 10, a pressing body 20, a support wall 30, and a regulating portion 40. Hereinafter, for convenience of explanation, as shown in FIG. 1, "front-back direction", "vertical direction", "width direction", "front", "rear", "top" and "bottom" are defined. The "front-back direction", "vertical direction", and "width direction" are orthogonal to each other. The width direction also corresponds to the "circumferential direction" of the present invention.

図3(a)のA−A断面に相当する断面図である図5に示すように、センサ本体10は、ハウジング11と、伝熱体12と、測温素子13と、を備える。 As shown in FIG. 5, which is a cross-sectional view corresponding to the AA cross section of FIG. 3A, the sensor main body 10 includes a housing 11, a heat transfer body 12, and a temperature measuring element 13.

ハウジング11は、樹脂製であり、図2及び図5から理解できるように、前後方向に延びる角筒状の形状を有している。ハウジング11は、前端面が塞がれ、後端面が開口している。ハウジング11の後端面の開口からは、測温素子13に接続された後述する電線18が延出している(図1を参照)。 The housing 11 is made of resin and has a square cylindrical shape extending in the front-rear direction, as can be seen from FIGS. 2 and 5. The front end surface of the housing 11 is closed and the rear end surface is open. An electric wire 18 to be described later, which is connected to the temperature measuring element 13, extends from the opening on the rear end surface of the housing 11 (see FIG. 1).

伝熱体12は、導電性の高い材料(例えば、金属)から構成される。図2及び図5から理解できるように、伝熱体12は、前後方向に延びる第1伝熱板14と、第1伝熱板14の幅方向両端部から上方に立設すると共に前後方向に平板状に延びる一対の第2伝熱板15と、を備える。伝熱体12は、例えば、1枚の金属板を折り曲げることによって形成されている。 The heat transfer body 12 is made of a highly conductive material (for example, metal). As can be understood from FIGS. 2 and 5, the heat transfer body 12 is erected upward from the first heat transfer plate 14 extending in the front-rear direction and both ends in the width direction of the first heat transfer plate 14 and in the front-rear direction. A pair of second heat transfer plates 15 extending in a flat plate shape are provided. The heat transfer body 12 is formed, for example, by bending one metal plate.

第1伝熱板14の下面は、円筒型電池4の外周曲面4a(図5を参照)に当接される測温面14aとして機能する面である。測温面14aと円筒型電池4の外周曲面4aとの接触部分を増すため、第1伝熱板14の測温面14aは、前後方向に直交する断面形状(図5に示す断面形状)が、外周曲面4aの形状に対応するように上方に湾曲した円弧状の形状を有している。測温面14aの曲率半径は、円筒型電池4の外周曲面4aの曲率半径に対し、基本的に若干小さい値となっており、公差の範囲内で同じ値になる。測温面14aの曲率半径をこのような値に設計することにより、円筒型電池4の外周曲面4aに対して測温面14aを常に2線接触(又は、公差の範囲内で両者の曲率半径が同じ値になったときには面接触)させることができる。なお、仮に、測温面14aと外周曲面4aとが同じ曲率半径を有するように設計した場合、公差の範囲内で両者が1線接触する可能性がある。1線接触の場合、2線接触の場合に比べて温度センサ1の測温性能が低下し得る。このような1線接触を避けるべく、上記のように、測温面14aの曲率半径が外周曲面4aの曲率半径よりも若干小さい値に設計されている。 The lower surface of the first heat transfer plate 14 is a surface that functions as a temperature measuring surface 14a that comes into contact with the outer peripheral curved surface 4a (see FIG. 5) of the cylindrical battery 4. In order to increase the contact portion between the temperature measuring surface 14a and the outer peripheral curved surface 4a of the cylindrical battery 4, the temperature measuring surface 14a of the first heat transfer plate 14 has a cross-sectional shape (cross-sectional shape shown in FIG. 5) orthogonal to the front-rear direction. It has an arcuate shape curved upward so as to correspond to the shape of the outer peripheral curved surface 4a. The radius of curvature of the temperature measuring surface 14a is basically a slightly smaller value than the radius of curvature of the outer peripheral curved surface 4a of the cylindrical battery 4, and is the same value within the tolerance range. By designing the radius of curvature of the temperature measuring surface 14a to such a value, the temperature measuring surface 14a is always in two-line contact with the outer peripheral curved surface 4a of the cylindrical battery 4 (or the radius of curvature of both within the range of the tolerance). When the values are the same, surface contact) can be performed. If the temperature measuring surface 14a and the outer peripheral curved surface 4a are designed to have the same radius of curvature, there is a possibility that they will make one-line contact within the tolerance range. In the case of 1-wire contact, the temperature measurement performance of the temperature sensor 1 may be lower than in the case of 2-wire contact. In order to avoid such one-line contact, the radius of curvature of the temperature measuring surface 14a is designed to be slightly smaller than the radius of curvature of the outer peripheral curved surface 4a as described above.

図5から理解されるように、伝熱体12は、ハウジング11にインサート成形されて一体化されている。具体的には、一対の第2伝熱板15の全体は、ハウジング11の一対の側壁の内部に埋設されており(図5を参照)、第1伝熱板14の全体(測温面14aの全体)は、ハウジング11の下壁の直下に露出している(図4を参照)。 As can be seen from FIG. 5, the heat transfer body 12 is insert-molded and integrated into the housing 11. Specifically, the entire pair of second heat transfer plates 15 is embedded inside the pair of side walls of the housing 11 (see FIG. 5), and the entire first heat transfer plates 14 (temperature measuring surface 14a). Is exposed directly below the lower wall of the housing 11 (see FIG. 4).

図2に示すように、測温素子13は、サーミスタ素子であって、樹脂13aによって封止されている。樹脂封止された測温素子13の後端には、測温素子13に接続された一対のリード線16が延出しており、一対のリード線16はそれぞれ、加締め部品17を介して、一対の電線18の導体部分に接続されている。一対の電線18は、温度測定装置または温度測定回路基板(図示省略)に接続されるようになっている。 As shown in FIG. 2, the temperature measuring element 13 is a thermistor element and is sealed with a resin 13a. A pair of lead wires 16 connected to the temperature measuring element 13 extend to the rear end of the resin-sealed temperature measuring element 13, and each of the pair of lead wires 16 is interposed via a crimping component 17. It is connected to the conductor portion of the pair of electric wires 18. The pair of electric wires 18 are connected to a temperature measuring device or a temperature measuring circuit board (not shown).

測温素子13は、角筒状のハウジング11の後端面の開口から挿入されて、図5に示すように、ハウジング11の内部空間において、第1伝熱板14及び一対の第2伝熱板15に囲まれるように配置されている。ハウジング11の内部空間には、測温素子13の周囲においてポッティング樹脂材19が充填されている。このポッティング樹脂材19により、測温素子13は、ハウジング11内にて固定され且つ保護されている。 The temperature measuring element 13 is inserted through the opening on the rear end surface of the square cylindrical housing 11, and as shown in FIG. 5, the first heat transfer plate 14 and the pair of second heat transfer plates are inserted in the internal space of the housing 11. It is arranged so as to be surrounded by 15. The internal space of the housing 11 is filled with a potting resin material 19 around the temperature measuring element 13. The temperature measuring element 13 is fixed and protected in the housing 11 by the potting resin material 19.

次いで、支持壁30について説明する。本例では、支持壁30は、押圧体20(具体的には、片持ち梁状の押圧体20の固定端)を固定する機能を有する。 Next, the support wall 30 will be described. In this example, the support wall 30 has a function of fixing the pressing body 20 (specifically, the fixed end of the cantilever-shaped pressing body 20).

図1〜図3に示すように、支持壁30は、一対の支持壁本体31を備える。一対の支持壁本体31は、角筒状のハウジング11の両側壁の下端部にて前端近傍位置から前後方向中央付近までに亘って、幅方向外側に一体で突出し、且つ、平板状に前後方向に延びている。 As shown in FIGS. 1 to 3, the support wall 30 includes a pair of support wall main bodies 31. The pair of support wall main bodies 31 integrally project outward in the width direction from the position near the front end to the vicinity of the center in the front-rear direction at the lower ends of the side walls of the square cylindrical housing 11, and form a flat plate in the front-rear direction. Extends to.

支持壁本体31の上面には、押圧体20を係止して固定するための係止部32と、係止部32の後方にて押圧体20の先端面を突き当てるストッパ部33と、が形成されている。係止部32には、押圧体20を挿入するための挿入孔(前後方向に貫通する貫通孔)が形成されている。 On the upper surface of the support wall main body 31, there are a locking portion 32 for locking and fixing the pressing body 20, and a stopper portion 33 for abutting the tip surface of the pressing body 20 behind the locking portion 32. It is formed. The locking portion 32 is formed with an insertion hole (through hole penetrating in the front-rear direction) for inserting the pressing body 20.

次いで、押圧体20について説明する。押圧体20は、一対の支持壁30にそれぞれ設けられている。一対の押圧体20は、センサ本体10の測温面14aを下向き(即ち、円筒型電池4の外周曲面4aに当接させる向き)に弾性的に押圧するようになっている。換言すると、一対の押圧体20は、下向きの弾性力を発生する機能を有している。 Next, the pressing body 20 will be described. The pressing body 20 is provided on each of the pair of support walls 30. The pair of pressing bodies 20 elastically press the temperature measuring surface 14a of the sensor body 10 downward (that is, the direction in which the temperature measuring surface 14a of the sensor body 10 is brought into contact with the outer peripheral curved surface 4a of the cylindrical battery 4). In other words, the pair of pressing bodies 20 have a function of generating a downward elastic force.

押圧体20は、板バネから構成されている。特に、図3に示すように、押圧体20は、板バネの一端から前方に延びる第1部分21と、第1部分21の前端部から屈曲して上方且つ後方に向けて斜めに延びる第2部分22と、第2部分22の上端部から屈曲して下方且つ後方に向けて斜めに延びる第3部分23と、第3部分23の下端部から屈曲して板バネの他端まで上方且つ後方に向けて斜めに延びる第4部分24と、で構成される。 The pressing body 20 is composed of a leaf spring. In particular, as shown in FIG. 3, the pressing body 20 has a first portion 21 extending forward from one end of the leaf spring and a second portion 21 bent from the front end portion of the first portion 21 and extending diagonally upward and rearward. The portion 22, the third portion 23 that bends from the upper end of the second portion 22 and extends downward and diagonally backward, and the third portion 23 that bends from the lower end of the third portion 23 and bends upward and backward to the other end of the leaf spring. It is composed of a fourth portion 24 extending diagonally toward.

第1部分21は、支持壁本体31の係止部32の挿入孔に前方から挿入され、後端(板バネの一端)が支持壁本体31のストッパ部33に突き当てられた状態で、支持壁本体31に固定されている。第1部分21の前端部(第2部分22の下端部)は、押圧体20の固定端26として機能している。 The first portion 21 is inserted into the insertion hole of the locking portion 32 of the support wall main body 31 from the front, and is supported in a state where the rear end (one end of the leaf spring) is abutted against the stopper portion 33 of the support wall main body 31. It is fixed to the wall body 31. The front end portion of the first portion 21 (the lower end portion of the second portion 22) functions as a fixed end 26 of the pressing body 20.

また、第3部分23の下端部(第4部分24の下端部)は、押圧体20の自由端27として機能している。第2部分22の上端部(第3部分23の上端部)は、ハウジング11の上壁より上方に位置しており、センサ収容体2の上壁51(図5を参照)に押し当てられる押圧体20の頂部28として機能する。このように、押圧体20は、片持ち梁状の構成を有する。 Further, the lower end portion of the third portion 23 (the lower end portion of the fourth portion 24) functions as a free end 27 of the pressing body 20. The upper end portion of the second portion 22 (the upper end portion of the third portion 23) is located above the upper wall of the housing 11, and is pressed against the upper wall 51 (see FIG. 5) of the sensor housing 2. It functions as the top 28 of the body 20. As described above, the pressing body 20 has a cantilever-like structure.

次いで、規制部40について説明する。規制部40は、押圧体20の自由端27の移動可能範囲(可動範囲)を制限する機能を有する。図1〜図3に示すように、規制部40は、内部空間(収容室)を有する箱状部分であり、角筒状のハウジング11の両側壁のそれぞれの後端部から、幅方向外側に一体で突出するように設けられている。 Next, the regulation unit 40 will be described. The regulating unit 40 has a function of limiting the movable range (movable range) of the free end 27 of the pressing body 20. As shown in FIGS. 1 to 3, the regulating portion 40 is a box-shaped portion having an internal space (accommodation chamber), and is outward in the width direction from the rear end portions of the side walls of the square cylindrical housing 11. It is provided so as to protrude integrally.

特に、図3に示すように、規制部40の前壁41は、押圧体20の第3部分23の延在方向に沿うように、斜めに延びている。前壁41には、前壁41の延在方向に延びると共に規制部40の収容室と連通する窓(貫通孔)42が形成されている。この窓42を介して、押圧体20の第4部分24(自由端27を含む)が、規制部40の収容室に進入・収容されている。 In particular, as shown in FIG. 3, the front wall 41 of the regulating portion 40 extends diagonally along the extending direction of the third portion 23 of the pressing body 20. The front wall 41 is formed with a window (through hole) 42 that extends in the extending direction of the front wall 41 and communicates with the accommodation chamber of the regulation unit 40. Through the window 42, the fourth portion 24 (including the free end 27) of the pressing body 20 enters and is accommodated in the accommodating chamber of the regulating portion 40.

押圧体20の自由状態(弾性復元力が作用していない状態)では、図3に示すように、自由端27と窓42の下壁面との間には、一対の頂部28をセンサ収容体2の上壁51に押し当てた際に発生する押圧体20の最大弾性変形量に応じた十分な隙間が確保されている。 In the free state of the pressing body 20 (a state in which the elastic restoring force is not acting), as shown in FIG. 3, a pair of tops 28 are provided between the free end 27 and the lower wall surface of the window 42. A sufficient gap is secured according to the maximum elastic deformation amount of the pressing body 20 generated when the pressing body 20 is pressed against the upper wall 51.

また、自由端27と窓42の上壁面43(図3(b)を参照)との間には、僅かな隙間しか確保されていない。これにより、意図せずに押圧体20に対して上向きに過度の荷重(図3(b)の白矢印を参照)が作用した場合であっても、自由端27が窓42の上壁面43に当接してそれ以上の上向きの移動が規制されることで、押圧体20が上向きに過度に変形することが防止される。なお、押圧体20の自由状態において、自由端27と窓42の上壁面43との間に隙間が確保されていなくてもよい(即ち、自由端27と窓42の上壁面43とが当接していてもよい)。 Further, only a small gap is secured between the free end 27 and the upper wall surface 43 of the window 42 (see FIG. 3B). As a result, even when an excessive load (see the white arrow in FIG. 3B) is unintentionally applied to the pressing body 20, the free end 27 is placed on the upper wall surface 43 of the window 42. By abutting and restricting further upward movement, the pressing body 20 is prevented from being excessively deformed upward. In the free state of the pressing body 20, a gap may not be secured between the free end 27 and the upper wall surface 43 of the window 42 (that is, the free end 27 and the upper wall surface 43 of the window 42 come into contact with each other. May be).

また、自由端27と窓42の幅方向両側壁面との間には、僅かな隙間しか確保されていない。これにより、意図せずに押圧体20に対して幅方向に過度の外力が作用した場合であっても、押圧体20が幅方向に過度に変形することが防止される。 Further, only a small gap is secured between the free end 27 and the wall surfaces on both sides in the width direction of the window 42. As a result, even when an excessive external force is unintentionally applied to the pressing body 20 in the width direction, the pressing body 20 is prevented from being excessively deformed in the width direction.

次いで、図5を参照しながら、センサ収容体2について説明する。センサ収容体2は、樹脂製の壁体50を有している。壁体50は、前後方向に平板状に延びる上壁51と、上壁51の幅方向両端部から垂下すると共に前後方向に平板状に延びる一対の側壁52と、を備える。 Next, the sensor housing 2 will be described with reference to FIG. The sensor accommodating body 2 has a wall body 50 made of resin. The wall body 50 includes an upper wall 51 extending in a flat plate shape in the front-rear direction, and a pair of side walls 52 hanging from both ends in the width direction of the upper wall 51 and extending in a flat plate shape in the front-rear direction.

上壁51と一対の側壁52とにより、温度センサ1を収容するための収容部53が構成(画成)されている。壁体50の下方には、一対の側壁52の下端部の間に位置する開口部54が形成されている。この開口部54を通して、センサ本体10の測温面14aと円筒型電池4の外周曲面4aとが当接可能となっている。上壁51には、軽量化等のため、1つ又は複数の貫通孔51aが設けられている。一対の側壁52にも同様の貫通孔が設けられていてもよい。 The upper wall 51 and the pair of side walls 52 form (define) the accommodating portion 53 for accommodating the temperature sensor 1. An opening 54 located between the lower ends of the pair of side walls 52 is formed below the wall body 50. Through this opening 54, the temperature measuring surface 14a of the sensor body 10 and the outer peripheral curved surface 4a of the cylindrical battery 4 can come into contact with each other. The upper wall 51 is provided with one or more through holes 51a for weight reduction and the like. Similar through holes may be provided in the pair of side walls 52.

壁体50は、更に、一対の側壁52の下端部(即ち、開口部54の周縁)から一体で幅方向内側且つ上方に斜めに延びる一対の延出箇所55を備えている。図5に示すように、収容部53に収容された温度センサ1の測温面14aと円筒型電池4の外周曲面4aとが当接した状態(電池パック5の組付完了状態)では、一対の延出箇所55は、温度センサ1(より具体的には、一対の支持壁本体31)と円筒型電池4とに挟まれた空間56に向けて一対の側壁52から突出(延出)し、且つ、円筒型電池4の外周曲面4aに沿って延びている。空間56は、収容部53の一部(下部領域)を構成している。 The wall body 50 further includes a pair of extension points 55 extending obliquely inward and upward in the width direction integrally from the lower ends of the pair of side walls 52 (that is, the peripheral edge of the opening 54). As shown in FIG. 5, in a state where the temperature measuring surface 14a of the temperature sensor 1 housed in the housing portion 53 and the outer peripheral curved surface 4a of the cylindrical battery 4 are in contact with each other (the battery pack 5 assembly is completed), a pair. The extension point 55 protrudes (extends) from the pair of side walls 52 toward the space 56 sandwiched between the temperature sensor 1 (more specifically, the pair of support wall main bodies 31) and the cylindrical battery 4. Moreover, it extends along the outer peripheral curved surface 4a of the cylindrical battery 4. The space 56 constitutes a part (lower region) of the accommodating portion 53.

なお、図5に示すように、測温面14aとの外周曲面4aとが当接した状態(電池パック5の組付完了状態)において、各部品の製造誤差などに起因して、外周曲面4aと一対の延出箇所55との間に隙間Sが発生し得る。 As shown in FIG. 5, in the state where the temperature measuring surface 14a and the outer peripheral curved surface 4a are in contact with each other (the battery pack 5 assembly completed state), the outer peripheral curved surface 4a is caused by a manufacturing error of each component or the like. A gap S may occur between the surface and the pair of extension points 55.

以上の構成を有する温度センサ1とセンサ収容体2とで、温度センサの収容構造3が構成される。そして、この収容構造3の所定箇所に円筒型電池4を配置するように、電池パック5が構成されている。 The temperature sensor 1 and the sensor accommodating body 2 having the above configuration constitute a temperature sensor accommodating structure 3. The battery pack 5 is configured so that the cylindrical battery 4 is arranged at a predetermined position in the housing structure 3.

次いで、以上の構成を有する電池パック5の使用状態について説明する。センサ収容体2(よって、壁体50)と円筒型電池4とは、上下方向および幅方向に(図5の紙面上下左右方向に)相対移動不能に配置される。但し、円筒型電池4は、前後方向(紙面の手前・奥方向)に移動可能に配置されてもよく、周方向に回転可能に配置されてもよい。温度センサ1は、センサ収容体2と円筒型電池4との間(より具体的には、上壁51と円筒型電池4との間)にて、上下方向(測温面14aと外周曲面4aとの対向方向)において、センサ収容体2に対して相対移動可能に配置され、図5に示すように、一対の押圧体20の頂部28を上壁51に押し当てた状態で装着される。なお、温度センサ1は、前後方向及び幅方向においては、センサ収容体2に対して相対移動不能に配置されることが好適である。 Next, the usage state of the battery pack 5 having the above configuration will be described. The sensor accommodating body 2 (hence, the wall body 50) and the cylindrical battery 4 are arranged so as to be relatively immovable in the vertical direction and the width direction (in the vertical and horizontal directions of the paper surface in FIG. 5). However, the cylindrical battery 4 may be arranged so as to be movable in the front-rear direction (front / back direction of the paper surface), or may be arranged so as to be rotatable in the circumferential direction. The temperature sensor 1 is located between the sensor housing 2 and the cylindrical battery 4 (more specifically, between the upper wall 51 and the cylindrical battery 4) in the vertical direction (temperature measuring surface 14a and outer peripheral curved surface 4a). It is arranged so as to be relatively movable with respect to the sensor accommodating body 2), and is mounted in a state where the top 28 of the pair of pressing bodies 20 is pressed against the upper wall 51 as shown in FIG. It is preferable that the temperature sensor 1 is arranged so as not to move relative to the sensor housing 2 in the front-rear direction and the width direction.

温度センサ1の装着状態において、一対の押圧体20は、上壁51から受ける反力によって、自由端27が下方に移動する(より正確には、下方且つ後方に斜めに移動する)ように弾性変形している。この結果、一対の押圧体20は、支持壁本体31を介してセンサ本体10(測温面14a)を、円筒型電池4の外周曲面4aに向けて下向きに押圧する弾性復元力を発生している。この弾性復元力によって、温度センサ1の測温面14aと、円筒型電池4の外周曲面4aとの間の密着状態が維持されている(図6を参照)。このように温度センサ1がセンサ収容体2及び円筒型電池4に装着されることによって、電池パック5の組み付けが完了する(電池パック5の組付完了状態)。 In the mounted state of the temperature sensor 1, the pair of pressing bodies 20 are elastic so that the free end 27 moves downward (more accurately, moves downward and diagonally backward) due to the reaction force received from the upper wall 51. It is deformed. As a result, the pair of pressing bodies 20 generate an elastic restoring force that presses the sensor body 10 (temperature measuring surface 14a) downward toward the outer peripheral curved surface 4a of the cylindrical battery 4 via the support wall body 31. There is. Due to this elastic restoring force, the close contact state between the temperature measuring surface 14a of the temperature sensor 1 and the outer peripheral curved surface 4a of the cylindrical battery 4 is maintained (see FIG. 6). By mounting the temperature sensor 1 on the sensor housing 2 and the cylindrical battery 4 in this way, the assembly of the battery pack 5 is completed (the assembly of the battery pack 5 is completed).

温度センサ1の装着状態(温度センサ1の測温面14aと円筒型電池4の外周曲面4aとが密着された状態)では、円筒型電池4の外周曲面4aの温度に応じた量の熱が測温面14aに伝達され、測温面14aに伝達された熱が、第1伝熱板14及び一対の第2伝熱板15を介して測温素子13に伝達される。そして、温度測定装置又は温度測定回路基板に接続された測温素子13により、円筒型電池4の外周曲面4aの温度が測定される。 In the mounted state of the temperature sensor 1 (the state in which the temperature measuring surface 14a of the temperature sensor 1 and the outer peripheral curved surface 4a of the cylindrical battery 4 are in close contact with each other), an amount of heat corresponding to the temperature of the outer peripheral curved surface 4a of the cylindrical battery 4 is generated. The heat transferred to the temperature measuring surface 14a and transferred to the temperature measuring surface 14a is transferred to the temperature measuring element 13 via the first heat transfer plate 14 and the pair of second heat transfer plates 15. Then, the temperature of the outer peripheral curved surface 4a of the cylindrical battery 4 is measured by the temperature measuring element 13 connected to the temperature measuring device or the temperature measuring circuit board.

次いで、センサ収容体2が備える一対の延出箇所55による作用・効果について説明する。電池パック5の使用状態では、円筒型電池4の充放電による円筒型電池4の温度の過度の上昇を防止するため、円筒型電池4に対して冷却風が吹き付けられる。 Next, the action / effect of the pair of extension points 55 included in the sensor housing 2 will be described. In the used state of the battery pack 5, cooling air is blown to the cylindrical battery 4 in order to prevent an excessive rise in the temperature of the cylindrical battery 4 due to charging / discharging of the cylindrical battery 4.

以下、図5に示すように、外周曲面4aと一対の延出箇所55との間に隙間Sが形成された状態において、冷却風が下方から上方へ向けて円筒型電池4に対して吹き付けられる場合を想定する。 Hereinafter, as shown in FIG. 5, in a state where a gap S is formed between the outer peripheral curved surface 4a and the pair of extension points 55, the cooling air is blown from the lower side to the upper side to the cylindrical battery 4. Imagine a case.

この場合、図7において矢印に示すように、冷却風の一部は、隙間Sを介して壁体50内の空間56に流入し得る。空間56に流入した冷却風は、温度センサ1に当たりながら、壁体50の内部空間(即ち、収容部53)を通過し、貫通孔51aを介して外部に排出されていく。 In this case, as shown by the arrow in FIG. 7, a part of the cooling air may flow into the space 56 in the wall body 50 through the gap S. The cooling air that has flowed into the space 56 passes through the internal space of the wall body 50 (that is, the accommodating portion 53) while hitting the temperature sensor 1, and is discharged to the outside through the through hole 51a.

このように、冷却風が温度センサ1に当たると、温度センサ1の温度(ひいては、測温素子13に伝達される熱量)が低下することに起因し、温度センサ1の測温精度が低下し得る。よって、温度センサ1の測温精度の低下を抑制するためには、冷却風の隙間Sからの流入を抑制することが好ましい。一対の延出箇所55は、冷却風の隙間Sからの流入を抑制するために設けられている。 As described above, when the cooling air hits the temperature sensor 1, the temperature of the temperature sensor 1 (and thus the amount of heat transferred to the temperature measuring element 13) is lowered, so that the temperature measuring accuracy of the temperature sensor 1 may be lowered. .. Therefore, in order to suppress the decrease in the temperature measurement accuracy of the temperature sensor 1, it is preferable to suppress the inflow of the cooling air from the gap S. The pair of extension points 55 are provided to suppress the inflow of the cooling air from the gap S.

具体的には、本実施形態のように一対の延出箇所55がセンサ収容体2に設けられていると、図8に示す一対の延出箇所55が設けられていない比較例と比べ、空間56の体積が小さくなる。空間56の体積が小さくなると、隙間Sを介して流入した冷却風が空間56を通過する際の圧力損失が大きくなるため、冷却風が空間56に流入し難くなる。よって、比較例に比べ、冷却風の流入に起因する温度センサ1の測温精度の低下を抑制できることになる。 Specifically, when the sensor accommodating body 2 is provided with the pair of extension points 55 as in the present embodiment, the space is compared with the comparative example in which the pair of extension points 55 shown in FIG. 8 is not provided. The volume of 56 becomes smaller. When the volume of the space 56 becomes small, the pressure loss when the cooling air flowing in through the gap S passes through the space 56 becomes large, so that it becomes difficult for the cooling air to flow into the space 56. Therefore, as compared with the comparative example, it is possible to suppress a decrease in temperature measurement accuracy of the temperature sensor 1 due to the inflow of cooling air.

更に、一対の延出箇所55が、空間56に冷却風が流入する際の流入口にあたる箇所にて、円筒型電池4の外周曲面4aに沿って延びている。この延出箇所55により、比較例と比べ、冷却風の流入口にあたる箇所にて、延出箇所55の延出長さの分だけ隙間Sの長さ(流入口近傍における冷却風の流路長さ)を長くできる。この流路長さの延長により、流入口近傍における冷却風の圧力損失を大きくできる。よって、冷却風の流入口にあたる箇所とは異なる箇所に延出箇所55に相当する凸部を設ける場合に比べ、冷却風の流入をより効率良く抑制でき、冷却風の流入に起因する温度センサ1の測温精度の低下をより一層抑制できる。 Further, the pair of extension points 55 extend along the outer peripheral curved surface 4a of the cylindrical battery 4 at the points corresponding to the inflow port when the cooling air flows into the space 56. Due to this extension point 55, the length of the gap S (the flow path length of the cooling air in the vicinity of the inflow port) is equal to the extension length of the extension point 55 at the place corresponding to the inflow port of the cooling air as compared with the comparative example. Can be lengthened. By extending the length of the flow path, the pressure loss of the cooling air in the vicinity of the inflow port can be increased. Therefore, the inflow of the cooling air can be suppressed more efficiently than in the case where the convex portion corresponding to the extension portion 55 is provided at a portion different from the portion corresponding to the inflow port of the cooling air, and the temperature sensor 1 caused by the inflow of the cooling air It is possible to further suppress the decrease in temperature measurement accuracy.

以上、本発明の実施形態に係る温度センサの収容構造3及び電池パック5によれば、温度センサ1の測温面14aが円筒型電池4の外周曲面4aの形状に対応するように湾曲した形状を有するため、従来の温度センサのように平面形状の測温面を有する場合に比べ、測温面14aと円筒型電池4の外周曲面4aとの接触面積を増大させられる。その結果、本構成の温度センサの収容構造3は、円筒型電池4の温度を適正に測定できる。 As described above, according to the temperature sensor accommodating structure 3 and the battery pack 5 according to the embodiment of the present invention, the temperature measuring surface 14a of the temperature sensor 1 is curved so as to correspond to the shape of the outer peripheral curved surface 4a of the cylindrical battery 4. Therefore, the contact area between the temperature measuring surface 14a and the outer peripheral curved surface 4a of the cylindrical battery 4 can be increased as compared with the case where the temperature measuring surface has a planar shape like a conventional temperature sensor. As a result, the temperature sensor accommodating structure 3 of the present configuration can appropriately measure the temperature of the cylindrical battery 4.

更に、センサ収容体2に収容された温度センサ1の測温面14aが円筒型電池4の外周曲面4aに当接された状態にて、円筒型電池4と温度センサ1とに挟まれることになる空間56に向けてセンサ収容体2の側壁52(壁体50)から延出箇所55(凸部)が突出するようになっている。この延出箇所55により、延出箇所55が無い場合に比べて空間56の体積が小さくなり、円筒型電池4を冷却するための冷却風が円筒型電池4とセンサ収容体2との間の隙間Sを通じて空間56に流入する場合における圧力損失が大きくなる。この圧力損失の増大により、空間56に冷却風が流入し難くなる。よって、延出箇所55が無い場合に比べ、温度センサ1による測温精度が向上し得る。したがって、本構成の温度センサの収容構造3は、円筒型電池4の温度を適切に測定できる。 Further, the temperature measuring surface 14a of the temperature sensor 1 housed in the sensor housing 2 is sandwiched between the cylindrical battery 4 and the temperature sensor 1 in a state of being in contact with the outer peripheral curved surface 4a of the cylindrical battery 4. The extension portion 55 (convex portion) protrudes from the side wall 52 (wall body 50) of the sensor accommodating body 2 toward the space 56. Due to the extension portion 55, the volume of the space 56 is smaller than that in the case where the extension portion 55 is not provided, and the cooling air for cooling the cylindrical battery 4 is provided between the cylindrical battery 4 and the sensor accommodating body 2. The pressure loss when flowing into the space 56 through the gap S becomes large. Due to this increase in pressure loss, it becomes difficult for the cooling air to flow into the space 56. Therefore, the temperature measurement accuracy by the temperature sensor 1 can be improved as compared with the case where the extension portion 55 is not provided. Therefore, the accommodation structure 3 of the temperature sensor of the present configuration can appropriately measure the temperature of the cylindrical battery 4.

更に、空間56に冷却風が流入する際の流入口にあたる箇所(壁体50の開口部54の周縁の箇所)において、延出箇所55の長さの分だけ冷却風の流路を延長させ、流入口での圧力損失を大きくできる。この結果、流入口にあたる箇所とは異なる箇所に凸部を設ける場合に比べ、冷却風の流入をより効率良く抑制できる。 Further, at a portion corresponding to the inflow port when the cooling air flows into the space 56 (a portion on the periphery of the opening 54 of the wall body 50), the flow path of the cooling air is extended by the length of the extension portion 55. The pressure loss at the inflow port can be increased. As a result, the inflow of the cooling air can be suppressed more efficiently than in the case where the convex portion is provided at a portion different from the portion corresponding to the inflow port.

更に、押圧体20が温度センサ1を押圧することにより、測温面14aと円筒型電池4の外周曲面4aとが当接した状態をより確実に維持できる。更には、そのような押圧体20を温度センサ1に設けることによって温度センサ1とセンサ収容体2との間の空間56(冷却風が流入し得る空間)が大きくなっても、センサ収容体2に設けられた延出箇所55によって冷却風の流入が抑制されているため、温度センサ1による測温精度が低下することを抑制できる。 Further, when the pressing body 20 presses the temperature sensor 1, the state in which the temperature measuring surface 14a and the outer peripheral curved surface 4a of the cylindrical battery 4 are in contact with each other can be more reliably maintained. Further, even if the space 56 (the space where the cooling air can flow in) between the temperature sensor 1 and the sensor accommodating body 2 becomes large by providing such a pressing body 20 in the temperature sensor 1, the sensor accommodating body 2 Since the inflow of the cooling air is suppressed by the extension portion 55 provided in the above, it is possible to suppress the deterioration of the temperature measurement accuracy by the temperature sensor 1.

更に、第1伝熱板14と一対の第2伝熱板15とに囲まれるように測温素子13が配置される。よって、円筒型電池4の表面から第1伝熱板14の測温面14aに伝わった熱を、第1伝熱板14及び第2伝熱板15を介し、測温素子13を包み込むように多方向から伝達できる。よって、円筒型電池4から伝わった熱を一方向から測温素子13に伝達する場合に比べ、円筒型電池4の温度をより適正に測定できる。 Further, the temperature measuring element 13 is arranged so as to be surrounded by the first heat transfer plate 14 and the pair of second heat transfer plates 15. Therefore, the heat transferred from the surface of the cylindrical battery 4 to the temperature measuring surface 14a of the first heat transfer plate 14 is wrapped around the temperature measuring element 13 via the first heat transfer plate 14 and the second heat transfer plate 15. Can be transmitted from multiple directions. Therefore, the temperature of the cylindrical battery 4 can be measured more appropriately than in the case where the heat transferred from the cylindrical battery 4 is transferred to the temperature measuring element 13 from one direction.

更に、測温素子13と伝熱体12との間にポッティング樹脂材19が設けられている。よって、伝熱体12として導電性の高い材料(例えば、金属)を用いる場合であっても、円筒型電池4と測温素子13との間を確実に絶縁させることができる。したがって、円筒型電池4と測温素子13との間の電気的短絡による測温素子13の故障等を防止できる。 Further, a potting resin material 19 is provided between the temperature measuring element 13 and the heat transfer body 12. Therefore, even when a highly conductive material (for example, metal) is used as the heat transfer body 12, the cylindrical battery 4 and the temperature measuring element 13 can be reliably insulated from each other. Therefore, it is possible to prevent the temperature measuring element 13 from failing due to an electrical short circuit between the cylindrical battery 4 and the temperature measuring element 13.

<他の態様>
なお、本発明は上記各実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用できる。例えば、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。
<Other aspects>
The present invention is not limited to each of the above embodiments, and various modifications can be adopted within the scope of the present invention. For example, the present invention is not limited to the above-described embodiment, and can be appropriately modified, improved, and the like. In addition, the material, shape, dimensions, number, arrangement location, etc. of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.

例えば、上記実施形態では、本発明に係る凸部として、壁体50の側壁52の下端部から幅方向内側且つ上方に斜めに延びる延出箇所55が採用されている。これに対し、本発明に係る凸部として、円筒型電池4と温度センサ1とに挟まれることになる空間56の体積が小さくなる限りにおいて、例えば、凸部が、温度センサ1の表面の凹凸形状に対応した嵌め合い形状を有していてもよい。 For example, in the above embodiment, as the convex portion according to the present invention, an extension portion 55 extending diagonally inward and upward in the width direction from the lower end portion of the side wall 52 of the wall body 50 is adopted. On the other hand, as the convex portion according to the present invention, as long as the volume of the space 56 sandwiched between the cylindrical battery 4 and the temperature sensor 1 becomes small, for example, the convex portion is the unevenness of the surface of the temperature sensor 1. It may have a fitting shape corresponding to the shape.

更に、上記実施形態では、温度センサ1の測温素子13としてサーミスタが用いられている。しかし、測温素子13として、ポジスタ、熱電対、半導体素子、及び、バイメタル等が用いられてもよい。 Further, in the above embodiment, the thermistor is used as the temperature measuring element 13 of the temperature sensor 1. However, as the temperature measuring element 13, a positor, a thermocouple, a semiconductor element, a bimetal, or the like may be used.

更に、上記実施形態では、一対の押圧体20がハウジング11の幅方向両側に設けられているが、例えば、単一の押圧体20がハウジング11の上側の幅方向中央位置に設けられていてもよい。また、上記実施形態では、押圧体20が支持壁30に設けられているが、押圧体20が支持壁30とは別の箇所に設けられていてもよい。 Further, in the above embodiment, the pair of pressing bodies 20 are provided on both sides in the width direction of the housing 11, but for example, even if a single pressing body 20 is provided at the center position in the width direction on the upper side of the housing 11. good. Further, in the above embodiment, the pressing body 20 is provided on the support wall 30, but the pressing body 20 may be provided at a place different from the support wall 30.

ここで、上述した本発明に係る温度センサの収容構造3及び電池パック5の特徴をそれぞれ以下(1)〜(5)に簡潔に纏めて列記する。
(1)
円筒型電池(4)の外周曲面(4a)の形状に対応するように湾曲した測温面(14a)を有する温度センサ(1)と、
前記温度センサ(1)を収容する収容部(53)、前記測温面(14a)と前記外周曲面(4a)との当接が可能であるように前記収容部(53)を構成する壁体(50)に設けられる開口部(54)、及び、前記当接の際に前記円筒型電池(4)と前記温度センサ(1)とに挟まれることになる空間(56)に向けて前記壁体(50)から突出する凸部(55)、を有するセンサ収容体(2)と、を備えた、
温度センサの収容構造。
(2)
上記(1)に記載の温度センサの収容構造(3)において、
前記センサ収容体(2)は、
前記凸部として、前記開口部(54)の周縁から前記円筒型電池(4)の前記外周曲面(4a)に沿って延びる延出箇所(55)を有する、
温度センサの収容構造。
(3)
上記(1)又は上記(2)に記載の温度センサの収容構造(3)において、
前記温度センサ(1)は、
前記測温面(14a)を前記円筒型電池の前記外周曲面(4a)に当接させる向きに押圧された状態にて、前記センサ収容体(2)の前記収容部(53)に収容される、
温度センサの収容構造。
(4)
上記(1)〜上記(3)の何れか一つに記載の温度センサの収容構造(3)において、
前記温度センサ(1)が、
前記測温面(14a)を構成する第1伝熱板(14)、及び、前記外周曲面(4a)の周方向における前記第1伝熱板(14)の両端部から延びる一対の第2伝熱板(15)を有する伝熱体(12)と、
前記第1伝熱板(14)及び前記一対の第2伝熱板(15)に囲まれるように配置される測温素子(13)と、
前記測温素子(13)と前記伝熱体(12)との間に設けられる絶縁体(19)と、を有する、
温度センサの収容構造。
(5)
円筒型電池(4)と、前記円筒型電池の温度を測定する温度センサ(1)と、前記温度センサを収容するセンサ収容体(2)と、を備えた電池パック(5)であって、
前記温度センサ及び前記センサ収容体は、
上記(1)〜上記(4)の何れか一つに記載の温度センサの収容構造(3)を構成する、
電池パック。
Here, the features of the temperature sensor accommodating structure 3 and the battery pack 5 according to the present invention described above are briefly summarized and listed below (1) to (5), respectively.
(1)
A temperature sensor (1) having a temperature measuring surface (14a) curved so as to correspond to the shape of the outer peripheral curved surface (4a) of the cylindrical battery (4).
The accommodating portion (53) accommodating the temperature sensor (1), and the wall body constituting the accommodating portion (53) so that the temperature measuring surface (14a) and the outer peripheral curved surface (4a) can be brought into contact with each other. The wall toward the opening (54) provided in (50) and the space (56) that will be sandwiched between the cylindrical battery (4) and the temperature sensor (1) at the time of the contact. A sensor housing (2) having a convex portion (55) protruding from the body (50).
Accommodation structure of temperature sensor.
(2)
In the temperature sensor accommodating structure (3) described in (1) above,
The sensor housing (2) is
The convex portion has an extension portion (55) extending from the peripheral edge of the opening (54) along the outer peripheral curved surface (4a) of the cylindrical battery (4).
Accommodation structure of temperature sensor.
(3)
In the temperature sensor accommodating structure (3) according to the above (1) or (2).
The temperature sensor (1) is
The temperature measuring surface (14a) is accommodated in the accommodating portion (53) of the sensor accommodating body (2) in a state of being pressed in a direction in which the temperature measuring surface (14a) is brought into contact with the outer peripheral curved surface (4a) of the cylindrical battery. ,
Accommodation structure of temperature sensor.
(4)
In the temperature sensor accommodating structure (3) according to any one of the above (1) to (3).
The temperature sensor (1)
A pair of second heat transfer plates extending from both ends of the first heat transfer plate (14) constituting the temperature measuring surface (14a) and the first heat transfer plate (14) in the circumferential direction of the outer peripheral curved surface (4a). A heat transfer body (12) having a heat plate (15) and
A temperature measuring element (13) arranged so as to be surrounded by the first heat transfer plate (14) and the pair of second heat transfer plates (15).
It has an insulator (19) provided between the temperature measuring element (13) and the heat transfer body (12).
Accommodation structure of temperature sensor.
(5)
A battery pack (5) including a cylindrical battery (4), a temperature sensor (1) for measuring the temperature of the cylindrical battery, and a sensor housing (2) for accommodating the temperature sensor.
The temperature sensor and the sensor accommodating body
The temperature sensor accommodating structure (3) according to any one of the above (1) to (4) is configured.
Battery pack.

1 温度センサ
2 センサ収容体
3 温度センサの収容構造
4 円筒型電池
4a 外周曲面
5 電池パック
12 伝熱体
13 測温素子
14 第1伝熱板
14a 測温面
15 第2伝熱板
19 ポッティング樹脂材(絶縁体)
20 押圧体
50 壁体
53 収容部
54 開口部
55 延出箇所(凸部)
56 空間
1 Temperature sensor 2 Sensor housing 3 Temperature sensor housing structure 4 Cylindrical battery 4a Outer curved surface 5 Battery pack 12 Heat transfer body 13 Heat transfer element 14 1st heat transfer plate 14a Temperature measurement surface 15 2nd heat transfer plate 19 Potting resin Material (insulator)
20 Pressing body 50 Wall body 53 Accommodating part 54 Opening part 55 Extension point (convex part)
56 space

Claims (5)

円筒型電池の外周曲面の形状に対応するように湾曲した測温面を有する温度センサと、
前記温度センサを収容する収容部、前記測温面と前記外周曲面との当接が可能であるように前記収容部を構成する壁体に設けられる開口部、及び、前記当接の際に前記円筒型電池と前記温度センサとに挟まれることになる空間に向けて前記壁体から突出する凸部、を有するセンサ収容体と、を備えた、
温度センサの収容構造。
A temperature sensor with a temperature measuring surface curved to correspond to the shape of the outer peripheral curved surface of the cylindrical battery,
An accommodating portion for accommodating the temperature sensor, an opening provided in a wall body constituting the accommodating portion so that the temperature measuring surface and the outer peripheral curved surface can be brought into contact with each other, and the contact at the time of the abutting. A sensor accommodating body having a convex portion protruding from the wall body toward a space sandwiched between the cylindrical battery and the temperature sensor.
Accommodation structure of temperature sensor.
請求項1に記載の温度センサの収容構造において、
前記センサ収容体は、
前記凸部として、前記開口部の周縁から前記円筒型電池の前記外周曲面に沿って延びる延出箇所を有する、
温度センサの収容構造。
In the temperature sensor accommodating structure according to claim 1,
The sensor housing is
The convex portion has an extension portion extending from the peripheral edge of the opening along the outer peripheral curved surface of the cylindrical battery.
Accommodation structure of temperature sensor.
請求項1又は請求項2に記載の温度センサの収容構造において、
前記温度センサは、
前記測温面を前記円筒型電池の前記外周曲面に当接させる向きに押圧された状態にて、前記センサ収容体の前記収容部に収容される、
温度センサの収容構造。
In the temperature sensor accommodating structure according to claim 1 or 2.
The temperature sensor
A state in which the temperature measuring surface is pressed in a direction of abutting against the outer peripheral curved surface of the cylindrical battery is accommodated in the accommodating portion of the sensor accommodating body.
Accommodation structure of temperature sensor.
請求項1〜請求項3の何れか一項に記載の温度センサの収容構造において、
前記温度センサが、
前記測温面を構成する第1伝熱板、及び、前記外周曲面の周方向における前記第1伝熱板の両端部から延びる一対の第2伝熱板、を有する伝熱体と、
前記第1伝熱板及び前記一対の第2伝熱板に囲まれるように配置される測温素子と、
前記測温素子と前記伝熱体との間に設けられる絶縁体と、を有する、
温度センサの収容構造。
In the temperature sensor accommodating structure according to any one of claims 1 to 3.
The temperature sensor
A heat transfer body having a first heat transfer plate constituting the temperature measuring surface and a pair of second heat transfer plates extending from both ends of the first heat transfer plate in the circumferential direction of the outer peripheral curved surface.
A temperature measuring element arranged so as to be surrounded by the first heat transfer plate and the pair of second heat transfer plates.
It has an insulator provided between the temperature measuring element and the heat transfer body.
Accommodation structure of temperature sensor.
円筒型電池と、前記円筒型電池の温度を測定する温度センサと、前記温度センサを収容するセンサ収容体と、を備えた電池パックであって、
前記温度センサ及び前記センサ収容体は、
請求項1〜請求項4の何れか一項に記載の収容構造を構成する、
電池パック。
A battery pack including a cylindrical battery, a temperature sensor for measuring the temperature of the cylindrical battery, and a sensor accommodating body for accommodating the temperature sensor.
The temperature sensor and the sensor accommodating body
The accommodating structure according to any one of claims 1 to 4.
Battery pack.
JP2017234489A 2017-12-06 2017-12-06 Temperature sensor accommodation structure and battery pack Active JP6966306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017234489A JP6966306B2 (en) 2017-12-06 2017-12-06 Temperature sensor accommodation structure and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017234489A JP6966306B2 (en) 2017-12-06 2017-12-06 Temperature sensor accommodation structure and battery pack

Publications (2)

Publication Number Publication Date
JP2019100952A JP2019100952A (en) 2019-06-24
JP6966306B2 true JP6966306B2 (en) 2021-11-10

Family

ID=66976827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017234489A Active JP6966306B2 (en) 2017-12-06 2017-12-06 Temperature sensor accommodation structure and battery pack

Country Status (1)

Country Link
JP (1) JP6966306B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111811669B (en) * 2020-07-08 2022-01-07 上海祎久科技有限公司 Thermosensitive sensor
CN115516697A (en) * 2020-10-21 2022-12-23 株式会社Lg新能源 Battery pack, electronic device, and vehicle
CN114061774B (en) * 2020-11-16 2022-10-28 中国科学院理化技术研究所 Assembly structure of low-temperature sensor, low-temperature detection device and assembly method thereof
CN113639889A (en) * 2021-09-07 2021-11-12 长春捷翼汽车零部件有限公司 Temperature measurement structure, charging device and motor vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124305A (en) * 2000-10-13 2002-04-26 Matsushita Electric Ind Co Ltd Battery pack
JP3979981B2 (en) * 2003-08-29 2007-09-19 三洋電機株式会社 Charger
JP5173540B2 (en) * 2008-04-04 2013-04-03 矢崎総業株式会社 Temperature sensor
JP5710375B2 (en) * 2011-05-13 2015-04-30 日立オートモティブシステムズ株式会社 Power storage device

Also Published As

Publication number Publication date
JP2019100952A (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6966306B2 (en) Temperature sensor accommodation structure and battery pack
EP3314677B1 (en) Battery module with a temperature monitoring assembly
JP5360951B2 (en) Temperature sensor mounting structure
CN109029753B (en) Temperature sensor and battery pack
EP2453513B1 (en) Thermistor device and secondary battery
JP6488393B2 (en) connector
JP4791416B2 (en) Temperature detector mounting structure
JP6970875B2 (en) Capacitor
US20160240835A1 (en) Power storage module
KR102184368B1 (en) Battery pack
JP6558311B2 (en) Temperature detection module
JP7372281B2 (en) voltage detection unit
JP6744249B2 (en) Temperature sensor and battery pack
JP6585580B2 (en) Connection structure of storage members and storage case
JP7440458B2 (en) Voltage detection unit
JP5173540B2 (en) Temperature sensor
JP6556782B2 (en) Temperature sensor and battery pack
JP5601221B2 (en) Assembled battery bus bar and bus bar module
JP6011460B2 (en) Electronic equipment
JP2018206607A (en) Relay terminal module and relay terminal
JP2018162973A (en) Temperature detection device
JP5083427B2 (en) Terminal and connector using the same
JP2018151348A (en) Temperature sensor
JP2022047796A (en) Electric connection box

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211021

R150 Certificate of patent or registration of utility model

Ref document number: 6966306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350