JP6963260B2 - Wood decomposition products containing fulvic acid and fulvic acid, and methods for producing them. - Google Patents
Wood decomposition products containing fulvic acid and fulvic acid, and methods for producing them. Download PDFInfo
- Publication number
- JP6963260B2 JP6963260B2 JP2018135497A JP2018135497A JP6963260B2 JP 6963260 B2 JP6963260 B2 JP 6963260B2 JP 2018135497 A JP2018135497 A JP 2018135497A JP 2018135497 A JP2018135497 A JP 2018135497A JP 6963260 B2 JP6963260 B2 JP 6963260B2
- Authority
- JP
- Japan
- Prior art keywords
- wood
- fulvic acid
- decomposition product
- producing
- white
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002023 wood Substances 0.000 title claims description 160
- PUKLDDOGISCFCP-JSQCKWNTSA-N 21-Deoxycortisone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2=O PUKLDDOGISCFCP-JSQCKWNTSA-N 0.000 title claims description 127
- FCYKAQOGGFGCMD-UHFFFAOYSA-N Fulvic acid Natural products O1C2=CC(O)=C(O)C(C(O)=O)=C2C(=O)C2=C1CC(C)(O)OC2 FCYKAQOGGFGCMD-UHFFFAOYSA-N 0.000 title claims description 127
- 239000002509 fulvic acid Substances 0.000 title claims description 127
- 229940095100 fulvic acid Drugs 0.000 title claims description 127
- 238000000354 decomposition reaction Methods 0.000 title claims description 97
- 238000000034 method Methods 0.000 title description 42
- 241000233866 Fungi Species 0.000 claims description 63
- 239000007788 liquid Substances 0.000 claims description 51
- 239000000843 powder Substances 0.000 claims description 50
- 238000004519 manufacturing process Methods 0.000 claims description 44
- 239000002994 raw material Substances 0.000 claims description 42
- 239000000203 mixture Substances 0.000 claims description 26
- 241000593922 Quercus acutissima Species 0.000 claims description 18
- 235000018185 Betula X alpestris Nutrition 0.000 claims description 17
- 235000018212 Betula X uliginosa Nutrition 0.000 claims description 17
- 239000011121 hardwood Substances 0.000 claims description 17
- 239000003125 aqueous solvent Substances 0.000 claims description 16
- 239000002253 acid Substances 0.000 claims description 13
- 238000000926 separation method Methods 0.000 claims description 13
- 238000001035 drying Methods 0.000 claims description 11
- 235000001553 Betula platyphylla Nutrition 0.000 claims description 5
- 241001313086 Betula platyphylla Species 0.000 claims description 5
- 241000219495 Betulaceae Species 0.000 claims description 3
- 241000219428 Fagaceae Species 0.000 claims description 2
- 241001480065 Quercus serrata Species 0.000 claims description 2
- 239000000047 product Substances 0.000 description 82
- 238000012360 testing method Methods 0.000 description 26
- 239000002609 medium Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 241000894006 Bacteria Species 0.000 description 18
- 239000007864 aqueous solution Substances 0.000 description 18
- 239000000126 substance Substances 0.000 description 16
- 241000219492 Quercus Species 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 13
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 11
- 239000004021 humic acid Substances 0.000 description 11
- 238000011081 inoculation Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 239000003864 humus Substances 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000002054 inoculum Substances 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- 244000274847 Betula papyrifera Species 0.000 description 4
- 235000009113 Betula papyrifera Nutrition 0.000 description 4
- 235000009109 Betula pendula Nutrition 0.000 description 4
- 235000010928 Betula populifolia Nutrition 0.000 description 4
- 235000002992 Betula pubescens Nutrition 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 244000184734 Pyrus japonica Species 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000006562 flour medium Substances 0.000 description 4
- 238000002329 infrared spectrum Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 235000013312 flour Nutrition 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000002211 ultraviolet spectrum Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- 240000006499 Flammulina velutipes Species 0.000 description 2
- 235000016640 Flammulina velutipes Nutrition 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 240000000599 Lentinula edodes Species 0.000 description 2
- 235000001715 Lentinula edodes Nutrition 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 241001557934 Phanerochaete sp. Species 0.000 description 2
- 241000222355 Trametes versicolor Species 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000012479 in-house spinning solution Substances 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- -1 methoxyl group Chemical group 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000008635 plant growth Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N 1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,10,10a-octahydrophenanthrene-1-carboxylic acid Chemical compound C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- 241000157282 Aesculus Species 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 229920000862 Arboform Polymers 0.000 description 1
- 235000005638 Austrian pine Nutrition 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- 240000005109 Cryptomeria japonica Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 244000004281 Eucalyptus maculata Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 241000899717 Itaya Species 0.000 description 1
- 241000218652 Larix Species 0.000 description 1
- 235000005590 Larix decidua Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000004580 Magnolia hypoleuca Species 0.000 description 1
- 240000007182 Ochroma pyramidale Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 240000002834 Paulownia tomentosa Species 0.000 description 1
- 235000010678 Paulownia tomentosa Nutrition 0.000 description 1
- 241000222385 Phanerochaete Species 0.000 description 1
- 241000222393 Phanerochaete chrysosporium Species 0.000 description 1
- 241000722346 Phlebia aurea Species 0.000 description 1
- 241000410076 Phlebia lindtneri Species 0.000 description 1
- 241000410088 Phlebia tremellosa Species 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 235000008565 Pinus banksiana Nutrition 0.000 description 1
- 244000019397 Pinus jeffreyi Species 0.000 description 1
- 235000013264 Pinus jeffreyi Nutrition 0.000 description 1
- 235000008578 Pinus strobus Nutrition 0.000 description 1
- 235000008585 Pinus thunbergii Nutrition 0.000 description 1
- 235000007685 Pleurotus columbinus Nutrition 0.000 description 1
- 240000001462 Pleurotus ostreatus Species 0.000 description 1
- 235000001603 Pleurotus ostreatus Nutrition 0.000 description 1
- 235000014030 Podocarpus spicatus Nutrition 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- 241001106462 Ulmus Species 0.000 description 1
- 241000190021 Zelkova Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 235000010181 horse chestnut Nutrition 0.000 description 1
- 239000002663 humin Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 235000017985 rocky mountain lodgepole pine Nutrition 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000003516 soil conditioner Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/78—Recycling of wood or furniture waste
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Processing Of Solid Wastes (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
本発明は、原料木材から人工的にフルボ酸を含有する木材分解物を製造する方法、並びに当該方法によって製造される木材分解物及びフルボ酸に関する。 The present invention relates to a method for artificially producing a wood decomposition product containing fulvic acid from raw wood, and a wood decomposition product and fulvic acid produced by the method.
腐植物質は、生体有機物が微生物的作用に変化して生成する多種多様な有機化合物の混合物であり、自然界では落葉や倒木などの植物由来の腐植土から主に生成されている。
腐植物質は、アルカリや酸によって分画され、アルカリ可溶、酸可溶の画分がフルボ酸(fulvic acid)と称され、アルカリ性で水に可溶であり且つ酸性で沈殿する物質であるフミン酸(humic acid)や、溶解しない物質であるフミン(humin)と区別されている。
Humus is a mixture of a wide variety of organic compounds produced by the transformation of bioorganic matter into microbial action, and is naturally produced mainly from plant-derived humus such as fallen leaves and fallen trees.
The rot plant is fractionated by alkali or acid, and the alkali-soluble and acid-soluble fractions are called fulvic acid, which is alkaline, water-soluble, and acidic precipitate. It is distinguished from acid (humic acid) and humin, which is an insoluble substance.
フルボ酸は、キレート作用、植物生長促進作用等の様々な有用な作用を有することから近年特に注目されている。
フルボ酸は、自然界の腐植物質から精製分離することで得ることができる。例えば、特許文献1には、米国ユタ産の腐植物質から得られたFT−IR法における赤外線吸収スペクトルにおいて波数3362,2875,1675,1559,1360,1200,1047及び835cm−1に赤外線吸収ピークを有し、4,000よりも小さい平均分子量を有するフルボ酸を含む組成物が開示されている。
一方、自然界の腐植物質からフルボ酸を抽出する方法では、腐植物質の原料や産地による依存が大きく、得られるフルボ酸の化学構造が異なり、たとえ、同じ産地であっても得られるフルボ酸の品質が一定しないという課題がある。
Fulvic acid has attracted particular attention in recent years because it has various useful actions such as a chelating action and a plant growth promoting action.
Fulvic acid can be obtained by purification and separation from natural humus. For example,
On the other hand, in the method of extracting fulvic acid from humic acid in the natural world, the chemical structure of fulvic acid obtained differs greatly depending on the raw material of humic acid and the place of origin, and the quality of fulvic acid obtained even in the same place of origin. There is a problem that is not constant.
一方、フルボ酸やその応用品を人為的かつ工業的に製造するフルボ酸の製造方法も報告されている。例えば、特許文献2には、製紙排水に、Si/Feのモル比が0.1〜1.0の範囲であるポリシリカ鉄凝集剤を添加して製紙スラッジを生成させ、製紙スラッジ中の腐植物質を鉄化してフルボ酸鉄を生成させる方法が報告されている。また、特許文献3においては、低品位炭を加圧下で高温熱水処理することによるフルボ酸の製造方法が開示されている。また、特許文献4には、木又は草又は残滓からなる未分解の有機物を炭の製造過程で産出される極強酸性の酢液に適量漬け込み、長時間にわたって養生をするフルボ酸を含有する腐植液の製造方法が開示されている。
On the other hand, a method for producing fulvic acid for artificially and industrially producing fulvic acid and its applied products has also been reported. For example, in
上述の特許文献2の方法は、製紙排水をリサイクルするという点では有望であるが、原料である製紙排水の組成や供給量が一定しないため、一定品質のフルボ酸を安定的に供給するという面では課題がある。また、特許文献3や特許文献4の方法は、低品位炭や木や草由来の残滓を原料として使用できる点では有望であるが、加圧下で高温熱水処理や極強酸性の薬液処理を行うための製造設備が必要となり、製造コストが高くなるという問題がある。
The method of
このように有益な作用を有するフルボ酸を安定的に高効率で製造することが困難であるのが実情である。
かかる状況下、本発明の目的は、フルボ酸を含有する木材分解物を製造する方法、及び当該木材分解物から得られるフルボ酸を提供することである。
In reality, it is difficult to stably and highly efficiently produce fulvic acid having such a beneficial effect.
Under such circumstances, an object of the present invention is to provide a method for producing a wood decomposition product containing fulvic acid, and a fulvic acid obtained from the wood decomposition product.
本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。 As a result of diligent research to solve the above problems, the present inventor has found that the following invention meets the above object, and has arrived at the present invention.
すなわち、本発明は、以下の発明に係るものである。
<1> 広葉樹を含む原料木材に、白色腐朽菌を接種し、前記原料木材を分解してフルボ酸を含有する木材分解物を得る工程を有する木材分解物の製造方法。
<2> 前記白色腐朽菌が、受託番号NITE P-02428で特定される白色腐朽菌である<1>に記載の木材分解物の製造方法。
<3> 前記広葉樹が、ブナ科コナラ属の広葉樹及び/又はカバノキ科カバノキ属の広葉樹である<1>又は<2>に記載の木材分解物の製造方法。
<4> 前記広葉樹が、クヌギ(Quercus acutissima)及び/又はシラカバ(Betula platyphylla Sukatch var.japonica Hara)である<3>に記載の木材分解物の製造方法。
<5> 前記原料木材をチッパー状に粉砕し、解繊機で粉末状に解繊して粉末にする<1>から<4>のいずれかに記載の木材分解物の製造方法。
<6> 前記原料木材の分解を行う期間が、20日以上である<1>から<5>のいずれかに記載の木材分解物の製造方法。
<7> <1>から<6>のいずれかに記載の製造方法で製造され、固形分と液体の混合物からなる木材分解物。
<8> <1>から<6>のいずれかに記載の製造方法で製造され、液体である木材分解物。
<9> クヌギ(Quercus acutissima)及び/又はシラカバ(Betula platyphylla Sukatch var.japonica Hara)を受託番号NITE P-02428で特定される白色腐朽菌で分解して得られるフルボ酸を含有する木材分解物。
That is, the present invention relates to the following invention.
<1> A method for producing a wood decomposition product, which comprises a step of inoculating a raw wood containing a broad-leaved tree with a white-rot fungus and decomposing the raw wood to obtain a wood decomposition product containing fulvic acid.
<2> The method for producing a wood decomposition product according to <1>, wherein the white-rot fungus is a white-rot fungus specified by accession number NITE P-02428.
<3> The method for producing a wood decomposition product according to <1> or <2>, wherein the broad-leaved tree is a broad-leaved tree belonging to the genus Quercus serrata in the family Fagaceae and / or a broad-leaved tree belonging to the genus Birch in the family Betulaceae.
<4> The method for producing a wood decomposition product according to <3>, wherein the hardwood is Quercus acutissima and / or birch (Betula platyphylla Sukatch var. Japonica Hara).
<5> The method for producing a wood decomposition product according to any one of <1> to <4>, wherein the raw material wood is crushed into a chipper shape and defibrated into a powder by a defibrator to make a powder.
<6> The method for producing a wood decomposition product according to any one of <1> to <5>, wherein the raw material wood is decomposed for 20 days or more.
<7> A wood decomposition product produced by the production method according to any one of <1> to <6> and composed of a mixture of a solid content and a liquid.
<8> A liquid wood decomposition product produced by the production method according to any one of <1> to <6>.
<9> A wood decomposition product containing fulvic acid obtained by decomposing Quercus acutissima and / or birch (Betula platyphylla Sukatch var. Japonica Hara) with a white-rot fungus specified by accession number NITE P-02428.
<10> <1>から<6>のいずれかに記載の製造方法で得られたフルボ酸を含有する木材分解物に、水系溶媒を接触させてフルボ酸を含有する液状組成物を得る工程と、
前記液状組成物を固液分離して得られる液体を、乾燥させてフルボ酸を含有する乾燥粉末を得る工程と、
得られた乾燥粉末に含有されるフルボ酸を分離精製する工程と、
を有するフルボ酸の製造方法。
<10> A step of contacting a wood decomposition product containing fulvic acid obtained by the production method according to any one of <1> to <6> with an aqueous solvent to obtain a liquid composition containing fulvic acid. ,
A step of drying the liquid obtained by solid-liquid separation of the liquid composition to obtain a dry powder containing fulvic acid.
A step of separating and purifying fulvic acid contained in the obtained dry powder, and
A method for producing fulvic acid having.
<11> クヌギ(Quercus acutissima)を受託番号NITE P-02428で特定される白色腐朽菌で分解して得られる木材分解物から分離精製して得られるフルボ酸。
<12> シラカバ(Betula platyphylla Sukatch var.japonica Hara)を受託番号NITE P-02428で特定される白色腐朽菌で分解して得られる木材分解物から分離精製して得られるフルボ酸。
<11> Fulvic acid obtained by separating and purifying Quercus acutissima from wood decomposition products obtained by decomposing Quercus acutissima with the white-rot fungus specified by accession number NITE P-02428.
<12> Fulvic acid obtained by separating and purifying white birch (Betula platyphylla Sukatch var. Japonica Hara) from a wood decomposition product obtained by decomposing it with a white-rot fungus specified by accession number NITE P-02428.
本発明によれば、広葉樹を含む原料木材から有益なフルボ酸を含有する木材分解物、及びフルボ酸が提供される。 According to the present invention, a wood decomposition product containing beneficial fulvic acid and fulvic acid are provided from raw wood containing hardwood.
以下、本発明について例示物等を示して詳細に説明するが、本発明は以下の例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、本明細書において、「〜」とはその前後の数値又は物理量を含む表現として用いるものとする。 Hereinafter, the present invention will be described in detail by showing examples and the like, but the present invention is not limited to the following examples and the like, and can be arbitrarily modified and implemented without departing from the gist of the present invention. In addition, in this specification, "~" shall be used as an expression including numerical values or physical quantities before and after it.
本発明の第1の態様は、広葉樹を含む原料木材に、白色腐朽菌を接種し、前記原料木材を分解してフルボ酸を含有する木材分解物を得る工程を有する、フルボ酸を含有する木材分解物の製造方法(以下、「本発明の木材分解物の製造方法」と称す場合がある。)に関する。 A first aspect of the present invention is a wood containing fulboic acid, which comprises a step of inoculating a raw material wood containing a broadleaf tree with a white-rot fungus and decomposing the raw material wood to obtain a wood decomposition product containing fulboic acid. The present invention relates to a method for producing a decomposition product (hereinafter, may be referred to as "a method for producing a wood decomposition product of the present invention").
また、本発明の第2の態様は、本発明の第1の態様により得られたフルボ酸を含有する木材分解物に、水系溶媒を接触させてフルボ酸を含有する液状組成物を得る工程と、前記液状組成物を固液分離して得られる液体を、乾燥させてフルボ酸を含有する乾燥粉末を得る工程と、得られた乾燥粉末に含有されるフルボ酸を分離精製する工程と、を有するフルボ酸の製造方法(以下、「本発明のフルボ酸の製造方法」と称す場合がある。)に関する。 A second aspect of the present invention is a step of contacting a fulvic acid-containing wood decomposition product obtained according to the first aspect of the present invention with an aqueous solvent to obtain a liquid composition containing fulvic acid. A step of drying the liquid obtained by solid-liquid separation of the liquid composition to obtain a dry powder containing fulvic acid, and a step of separating and purifying the fulvic acid contained in the obtained dry powder. The present invention relates to a method for producing fulvic acid (hereinafter, may be referred to as "the method for producing fulvic acid of the present invention").
以下において、本発明の第1の態様(木材分解物の製造方法)と第2の態様(フルボ酸の製造方法)を併せて本願発明と総称する場合がある。
また、本発明の第1の態様に係る工程を「工程(1)」、本発明の第2の態様に係る、「フルボ酸を含有する液状組成物を得る工程」を「工程(2)」、「フルボ酸を含有する乾燥粉末を得る工程」を「工程(3)」、「フルボ酸を分離精製する工程」を「工程(4)」と称す。
Hereinafter, the first aspect (method for producing a wood decomposition product) and the second aspect (method for producing fulvic acid) of the present invention may be collectively referred to as the present invention.
Further, the step according to the first aspect of the present invention is "step (1)", and the "step to obtain a liquid composition containing fulvic acid" according to the second aspect of the present invention is "step (2)". , "Step of obtaining a dry powder containing fulvic acid" is referred to as "step (3)", and "step of separating and purifying fulvic acid" is referred to as "step (4)".
本発明に係るフルボ酸及びこれに関係する腐植物質、フミン酸について説明する。
本発明に係るフルボ酸(fulvic acid)は、いわゆる腐植物質に含まれる物質であり、酸によって沈殿しない無定形高分子有機酸を意味する。フルボ酸は、化学構造がただ一つ決まった分子ではなく、その分子内にカルボキシル基、フェノール性水酸基を多く含んだ多価有機酸である。
Fulvic acid according to the present invention and related humic acid and humic acid will be described.
The fulvic acid according to the present invention is a substance contained in so-called rot plant matter, and means an amorphous high molecular weight organic acid that is not precipitated by an acid. Fulvic acid is not a molecule with a single chemical structure, but a polyvalent organic acid containing many carboxyl groups and phenolic hydroxyl groups in the molecule.
本明細書において「腐植物質」とは、植物の葉や茎などの有機物が多種多様な微生物によって分解し、二次的に生成された有機成分で、糖、タンパク質、脂質などに分類されない有機物の総称をいう。
腐植物質には、フルボ酸と共にフミン酸(humic acid)が含まれる。日本腐植学会によると「腐植物質の定義はあくまで疑念的定義」であるが、土壌や堆積物からの腐植物質は、一般には酸及び塩基に対する溶解性に基づいて、フミン酸は一般に塩基性水溶液に可溶であり、フルボ酸は一般に酸性及び塩基性水溶液に可溶であると定義されている。
本発明においては、「フルボ酸」を、「腐植物質(木材分解物を含む)から分離精製することができる物質であって、酸性及び塩基性水溶液に可溶な無定形高分子有機酸」と定義するものとする。
As used herein, the term "rot plant" is an organic component secondary to the decomposition of organic substances such as leaves and stems of plants by a wide variety of microorganisms, and is an organic substance that is not classified into sugars, proteins, lipids, etc. It is a generic term.
Humic acid contains humic acid as well as fulvic acid. According to the Japanese Society of Rotation, "the definition of rot plant is a suspicious definition", but humic acid from soil and deposits is generally based on the solubility in acids and bases, and humic acid is generally in a basic aqueous solution. Soluble, humic acid is generally defined as soluble in acidic and basic aqueous solutions.
In the present invention, "fulvic acid" is referred to as "a non-standard polymer organic acid that is a substance that can be separated and purified from rot plant matter (including wood decomposition products) and is soluble in acidic and basic aqueous solutions". It shall be defined.
以下、本発明の各工程について詳述する。 Hereinafter, each step of the present invention will be described in detail.
1.木材分解物の製造方法
本発明の第1の態様である木材分解物の製造方法は、以下に詳述する工程(1)からなる。
<工程(1)>
工程(1)は、広葉樹を含む原料木材に、白色腐朽菌を接種し、前記原料木材を分解してフルボ酸を含有する木材分解物を得る工程である。
1. 1. Method for Producing Decomposed Wood Product The method for producing the decomposed wood product, which is the first aspect of the present invention, comprises the step (1) described in detail below.
<Process (1)>
The step (1) is a step of inoculating the raw wood containing broad-leaved trees with white-rot fungi and decomposing the raw wood to obtain a wood decomposition product containing fulvic acid.
(原料木材)
本発明のフルボ酸の製造方法では、原料となる木材(原料木材)として、広葉樹を必須とする。広葉樹を白色腐朽菌で分解することにより、フルボ酸を含有する木材分解物を得ることができる。
広葉樹としては、具体的には、ブナ、シナ、シラカバ、ポプラ、ユーカリ、アカシア、ナラ、イタヤカエデ、センノキ、ニレ、キリ、ホオノキ、ヤナギ、セン、コナラ、クヌギ、トチノキ、ケヤキ、ミズメ、ミズキ、アオダモ等及びこれらの関連樹種が例示される。これらの1種を用いても、2種以上を併せて用いてもよい。
この中でも、ブナ科コナラ属及び/又はカバノキ科カバノキ属の広葉樹であることが好ましく、特にはクヌギ(Quercus acutissima)及び/又はシラカバ(Betula platyphylla Sukatch var.japonica Hara)であることが好ましい。
(Raw wood)
In the method for producing fulvic acid of the present invention, hardwood is indispensable as the raw material wood (raw material wood). By decomposing hardwoods with white-rot fungi, wood decomposition products containing fulvic acid can be obtained.
Specific examples of hardwoods include beech, cinnamon, white birch, poplar, eucalyptus, acacia, oak, itaya maple, sennoki, elm, kiri, magnolia obovata, yanagi, sen, konara, oak, horse chestnut, zelkova, mizume, mizuki, and ash. Etc. and their related tree species are exemplified. One of these types may be used, or two or more types may be used in combination.
Among these, broad-leaved trees of the genus Birch and / or the genus Birch of the family Betulaceae are preferable, and in particular, Quercus acutissima and / or birch (Betula platyphylla Sukatch var. Japonica Hara) are preferable.
また、本発明においては、原料木材として広葉樹を用いるが、原料木材には本発明の目的を損なわない範囲で広葉樹以外の原料が含まれていてもよい。
広葉樹以外の原料としては、針葉樹(スギ、エゾマツ、カラマツ、クロマツ、トドマツ等)や竹などが挙げられる。これらは例えば、原料となる広葉樹の回収の際に混在する場合がある。
広葉樹とその他の原料を併用する場合、広葉樹の重量割合は50重量%以上が好ましく、75重量%以上がより好ましく、90重量%以上がさらに好ましい。但し、当然に広葉樹のみ(広葉樹100重量%)であってもよい。
Further, in the present invention, hardwood is used as the raw material wood, but the raw material wood may contain a raw material other than hardwood as long as the object of the present invention is not impaired.
Examples of raw materials other than hardwoods include conifers (sugi, spruce, larch, black pine, fir, etc.) and bamboo. These may be mixed, for example, when recovering a hardwood as a raw material.
When the hardwood and other raw materials are used in combination, the weight ratio of the hardwood is preferably 50% by weight or more, more preferably 75% by weight or more, still more preferably 90% by weight or more. However, as a matter of course, only hardwoods (100% by weight of hardwoods) may be used.
原料木材となる広葉樹の使用部位は、本発明に係る白色腐朽菌によりフルボ酸が生産できる部位であればよく、好ましくは幹の部位が使用される。但し、廃棄物処理等の観点から、幹以外のすべての部位を使用してもよい。 The part of the broad-leaved tree used as the raw material wood may be a part where fulvic acid can be produced by the white-rot fungus according to the present invention, and a part of the trunk is preferably used. However, from the viewpoint of waste treatment and the like, all parts other than the trunk may be used.
工程(1)において、前記原料木材をチッパー(チップ)状に粉砕し、解繊機で粉末状に解繊して粉末にすることが好ましい。このように粉末化することにより、白色腐朽菌による原料木材の分解が進行しやすくなるという利点がある。
原料木材をチッパー状に粉砕する方法は任意であり、適当な大きさの原料木材を公知の木材粉砕機を使用して、100μm程度の大きさまで粉砕する。
In the step (1), it is preferable that the raw material wood is crushed into a chipper shape and defibrated into a powder by a defibrator to make a powder. By powdering in this way, there is an advantage that the decomposition of the raw material wood by the white-rot fungus easily proceeds.
The method of crushing the raw material wood into a chipper shape is arbitrary, and the raw material wood of an appropriate size is crushed to a size of about 100 μm using a known wood crusher.
次いで、粉砕後のチップを解繊機で粉末状に解繊する。解繊機としては、目的とする原料木材の粉末が得られる点で、西邦機工株式会社製解繊機(製品名:ラブマシーン)が好ましく用いられる。
解繊機は、二軸スクリュー破砕機と二次破砕機を破砕物の移動方向に連続して設けているため、二軸スクリュー破砕機の作動開始部分に投入された粉砕後のチップは、相対する各回転軸のスクリュー歯の間に巻き込まれ、ほぐされながら破砕される。この二軸スクリュー破砕機で処理した状態では、原料木材の粉末は完全には破砕されず、部分的に連続した状態にあるという特徴がある。
Next, the crushed chips are defibrated into powder with a defibrator. As the defibrator, a defibrator (product name: Love Machine) manufactured by Seiho Kiko Co., Ltd. is preferably used in that the powder of the target raw wood can be obtained.
Since the defibrator has a twin-screw crusher and a secondary crusher continuously provided in the direction of movement of the crushed material, the crushed chips put into the operation start portion of the twin-screw crusher face each other. It is caught between the screw teeth of each rotating shaft and crushed while being loosened. In the state of being processed by this twin-screw crusher, the raw wood powder is not completely crushed and is characterized in that it is in a partially continuous state.
解繊後の粉末の粒径は、詳しくは後述する本発明に係る白色腐朽菌によってフルボ酸が生産できる大きさであればよく、通常、10〜200μmの範囲であり、好ましくは50〜150μmの範囲である。解繊条件は、使用する解繊機により異なり、解繊後の粉末の粒径が、上記粒径の範囲になるように適宜設定される。 The particle size of the powder after defibration may be a size that allows fulvic acid to be produced by the white-rot fungus according to the present invention, which will be described in detail later, and is usually in the range of 10 to 200 μm, preferably 50 to 150 μm. The range. The defibration conditions differ depending on the defibrator used, and are appropriately set so that the particle size of the powder after defibration is within the above particle size range.
(白色腐朽菌)
本発明で使用する白色腐朽菌は、フルボ酸を産生することができる白色腐朽菌であれば制限はない。好適な一例としては、受託番号NITE P-02428で特定される白色腐朽菌、より詳しくはファネロカエテ(Phanerochaete)属に属し、独立行政法人製品評価技術基盤機構 特許微生物寄託センターに受託番号NITE P-02428で寄託されている菌株(識別のための表示:BMC-110012)である。この受託番号NITE P-02428で特定される白色腐朽菌は、常温近傍において優れたリグニンの分解作用とフルボ酸産生能のバランスに優れる。
(White-rot fungus)
The white-rot fungus used in the present invention is not limited as long as it is a white-rot fungus capable of producing fulvic acid. A suitable example is the white-rot fungus identified by accession number NITE P-02428, more specifically belonging to the genus Phanerochaete, and the accession number NITE P-02428 to the Patent Microorganisms Depositary Center of the National Institute of Technology and Evaluation. It is a strain deposited in (Indication for identification: BMC-110012). The white-rot fungus identified by this accession number NITE P-02428 has an excellent balance between the excellent lignin decomposition action and the fulvic acid-producing ability near room temperature.
なお、以下の説明において、フルボ酸を産生することができる白色腐朽菌を、「本発明に係る白色腐朽菌」と呼ぶ場合がある。また、好適な白色腐朽菌である「受託番号NITE P-02428で特定される白色腐朽菌」を以下、白色腐朽菌(NITE P-02428)と称す。 In the following description, a white-rot fungus capable of producing fulvic acid may be referred to as "white-rot fungus according to the present invention". In addition, "white-rot fungus specified by accession number NITE P-02428", which is a suitable white-rot fungus, is hereinafter referred to as white-rot fungus (NITE P-02428).
なお、白色腐朽菌(NITE P-02428)の変異株は、フルボ酸の産生能を保持していれば、本発明に係る白色腐朽菌に該当する。当該変異株は、例えば、白色腐朽菌(NITE P-02428)を公知の変異処理に供すること、又は経代培養による適応や自然変異により生産できる。なお、本発明の白色腐朽菌は、白色腐朽菌(NITE P-02428)のみでもよいし、白色腐朽菌(NITE P-02428)の変異株のみでもよいし、これらの共存したものであってもよい。 A mutant strain of white-rot fungus (NITE P-02428) corresponds to the white-rot fungus according to the present invention as long as it retains the ability to produce fulvic acid. The mutant strain can be produced, for example, by subjecting a white-rot fungus (NITE P-02428) to a known mutation treatment, adaptation by subculture, or natural mutation. The white-rot fungus of the present invention may be only white-rot fungus (NITE P-02428), only a mutant strain of white-rot fungus (NITE P-02428), or a coexistence of these. good.
本発明に係る白色腐朽菌は、原料木材である広葉樹(特には幹の部分)を分解し、フルボ酸を生産することができる。特に好適な一例である白色腐朽菌(NITE P-02428)は、常温近傍(20〜35℃)においても、原料木材である広葉樹(特には幹の部分)を分解し、高効率にフルボ酸を生産することができる。
特に上述したチッパー(チップ)状に粉砕し、解繊機で粉末状に解繊して粉末を原料木材として使用した場合、白色腐朽菌(NITE P-02428)は、原料木材の腐朽能と、液化能(フルボ酸の産生能に相当)のバランスに優れ、より高効率にフルボ酸を生産することができる。
The white-rot fungus according to the present invention can decompose hardwood (particularly the trunk portion) which is a raw material wood to produce fulvic acid. A particularly suitable example, white-rot fungus (NITE P-02428) decomposes hardwood (particularly the trunk), which is the raw material wood, even at around room temperature (20 to 35 ° C), and efficiently produces fulvic acid. Can be produced.
In particular, when the above-mentioned chipper (chip) is crushed and defibrated into powder with a defibrator and the powder is used as the raw wood, the white-rot fungus (NITE P-02428) has the decay ability and liquefaction of the raw wood. It has an excellent balance of ability (corresponding to the ability to produce fulvic acid) and can produce fulvic acid with higher efficiency.
工程(1)において、本発明に係る白色腐朽菌を接種した後の原料木材を分解させる期間は分解対象の原料の種類や培養条件等によって異なり、白色腐朽菌の種類を考慮して適宜選択される。フルボ酸を有意に含有する分解物を得るためには、例えば、20日以上、好ましくは30日以上が例示される。20日未満であると原料木材の分解が不十分で生産されるフルボ酸の量が少なすぎる場合がある。
また、白色腐朽菌(NITE P-02428)の場合では、原料木材を液体化することができる。分解物の液体化は分解初期から起こり、分解対象の原料の種類や培養条件等によって異なるが、より液体化を進行させるためには60日以上が好ましい。なお、分解が進みすぎるとフルボ酸の含有量が減少するおそれがあるため、通常180日以下で行われる。
In the step (1), the period for decomposing the raw material wood after inoculating the white-rot fungus according to the present invention differs depending on the type of the raw material to be decomposed, the culture conditions, etc., and is appropriately selected in consideration of the type of the white-rot fungus. NS. In order to obtain a decomposition product containing a significant amount of fulvic acid, for example, 20 days or more, preferably 30 days or more is exemplified. If it is less than 20 days, the decomposition of the raw material wood may be insufficient and the amount of fulvic acid produced may be too small.
Moreover, in the case of white-rot fungus (NITE P-02428), the raw material wood can be liquefied. The liquefaction of the decomposition product occurs from the initial stage of decomposition and varies depending on the type of raw material to be decomposed, the culture conditions and the like, but 60 days or more is preferable in order to further proceed with the liquefaction. If the decomposition proceeds too much, the content of fulvic acid may decrease, so it is usually carried out in 180 days or less.
本発明の木材分解物は、上記工程(1)の製造方法で得られる、フルボ酸を含有する木材分解物である。本発明の木材分解物は固形分と液体の混合物であってもよく、残渣以外の固形分を含まない液体であってもよい。木材分解物の液体化には白色腐朽菌(NITE P-02428)が好ましく使用される。 The wood decomposition product of the present invention is a wood decomposition product containing fulvic acid obtained by the production method of the above step (1). The wood decomposition product of the present invention may be a mixture of a solid content and a liquid, or may be a liquid containing no solid content other than a residue. White-rot fungi (NITE P-02428) are preferably used for liquefaction of wood decomposition products.
なお、上述の通り、本発明の木材分解物の製造方法によってクヌギは好適な原料木材である。原料木材がクヌギである場合、白色腐朽菌(NITE P-02428)を接種した後、20〜35℃で、固形分が多い木材分解物を得るためには20日以上60日未満、好適には30日以上60日未満であり、液体の多い木材分解物を得るためには60日以上180日未満、好適には100日以上150日未満である。なお、120日程度でほぼ全体が液体化する(残渣除く)。 As described above, Quercus acutissima is a suitable raw material wood according to the method for producing a wood decomposition product of the present invention. When the raw material wood is Quercus acutissima, after inoculating white-rot fungus (NITE P-02428), it takes 20 to 35 days at 20 to 35 ° C to obtain wood decomposition products with a high solid content, preferably 20 days or more and less than 60 days. It is 30 days or more and less than 60 days, and it is 60 days or more and less than 180 days, preferably 100 days or more and less than 150 days in order to obtain a wood decomposition product containing a large amount of liquid. Almost the whole is liquefied in about 120 days (excluding the residue).
また、原料木材がシラカバである場合、白色腐朽菌(NITE P-02428)を接種した後、20〜35℃で、固形分が多い木材分解物を得るためには20日以上60日未満、液体の多い木材分解物を得るためには60日以上180日未満である。なお、120日程度でほぼ全体が液体化する(残渣除く)。 When the raw material wood is white hippo, after inoculating white-rot fungus (NITE P-02428), it takes 20 to 35 days at 20 to 35 ° C to obtain a wood decomposition product with a high solid content, which is a liquid for 20 days or more and less than 60 days. It takes 60 days or more and less than 180 days to obtain a large amount of wood decomposition products. Almost the whole is liquefied in about 120 days (excluding the residue).
本発明の木材分解物は、更に必要に応じて、粉砕処理、マイクロ波照射、蒸煮処理、放射線照射処理、化学処理(例えば、オゾン処理、アルカリ処理、酸処理、酸化剤処理、還元剤処理等)、菌処理、酵素処理、及びこれらの複合処理等の処理に供してもよい。 The wood decomposition product of the present invention is further subjected to crushing treatment, microwave irradiation, steaming treatment, radiation irradiation treatment, chemical treatment (for example, ozone treatment, alkali treatment, acid treatment, oxidizing agent treatment, reducing agent treatment, etc.), if necessary. ), Bacterial treatment, enzyme treatment, and combined treatment thereof.
本発明の木材分解物の使用用途には制限はなく、フルボ酸を含む組成物が使用される任意の用途に使用することができる。例えば、土壌改良、環境浄化、植物成長促進等が挙げられるがこれらに限定されない。
本発明の木材分解物は、その使用目的に応じて他の任意の成分と共に使用することができる。
The use of the wood decomposition product of the present invention is not limited, and the composition containing fulvic acid can be used in any use. Examples include, but are not limited to, soil improvement, environmental purification, plant growth promotion, and the like.
The wood decomposition product of the present invention can be used together with any other component depending on its intended use.
2.フルボ酸の製造方法
本発明の第2の態様は、工程(1)で得られた木材分解物からフルボ酸を得る方法であり、以下に詳述する工程(2)〜(4)からなる。
2. Method for Producing Fulvic Acid A second aspect of the present invention is a method for obtaining fulvic acid from the wood decomposition product obtained in step (1), which comprises steps (2) to (4) described in detail below.
<工程(2)>
工程(2)は、工程(1)で得られた木材分解物に、水系溶媒を接触させてフルボ酸を含有する液状組成物を得る工程である。
<Process (2)>
The step (2) is a step of bringing the wood decomposition product obtained in the step (1) into contact with an aqueous solvent to obtain a liquid composition containing fulvic acid.
本明細書において、「水系溶媒」とは、水のみならず、水と他の溶媒の混合溶媒を意味する。混合溶媒の場合の水と水以外の溶媒との割合は、溶媒全体を100重量%として水50重量%以上を必須とし、好ましくは70重量%以上である。
混合溶媒の場合の水以外の溶媒としては、本発明の目的を損なわない限り任意であるが、水と任意の割合で相溶し、適度な極性を有するアルコールが好適であり、中でもメタノール、エタノールが好ましい。
As used herein, the term "aqueous solvent" means not only water but also a mixed solvent of water and another solvent. In the case of a mixed solvent, the ratio of water to a solvent other than water is 100% by weight of the whole solvent, and 50% by weight or more of water is essential, preferably 70% by weight or more.
In the case of a mixed solvent, the solvent other than water is arbitrary as long as the object of the present invention is not impaired, but an alcohol that is compatible with water at an arbitrary ratio and has an appropriate polarity is preferable, and methanol and ethanol are particularly preferable. Is preferable.
木材分解物と水系溶媒とを接触させることによって、水系溶媒中にフルボ酸が抽出される。すなわち、工程(2)の液状組成物には、木材分解物の残渣(固相)及びフルボ酸を含有する水系溶媒(液相)が含まれる。 Fulvic acid is extracted into the aqueous solvent by contacting the wood decomposition product with the aqueous solvent. That is, the liquid composition of the step (2) contains a residue of the wood decomposition product (solid phase) and an aqueous solvent (liquid phase) containing fulvic acid.
木材分解物に対する水系溶媒の量は、木材分解物に含有されるフルボ酸が溶出するのに十分な量であればよい。但し、水系溶媒の量が多すぎると工程(3)における乾燥時間がかかるため、通常、原料木材1kgから得られる木材分解物に対し、1〜5L程度である。 The amount of the aqueous solvent with respect to the wood decomposition product may be an amount sufficient for fulvic acid contained in the wood decomposition product to elute. However, if the amount of the aqueous solvent is too large, it takes a long time to dry in the step (3), so that it is usually about 1 to 5 L with respect to the wood decomposition product obtained from 1 kg of the raw material wood.
木材分解物と水系溶媒とを接触させる方法は任意であるが、例えば、木材分解物と水系溶媒とを容器に入れて、撹拌機で撹拌する方法が挙げられる。 The method of bringing the wood decomposition product into contact with the aqueous solvent is arbitrary, and examples thereof include a method in which the wood decomposition product and the aqueous solvent are placed in a container and stirred with a stirrer.
木材分解物と水系溶媒とを接触させる時間は、温度や撹拌の有無等を考慮して木材分解物に含有されるフルボ酸が水系溶媒に十分に溶出できる条件で適宜決定される。 The time for contacting the wood decomposition product with the aqueous solvent is appropriately determined under conditions in which the fulvic acid contained in the wood decomposition product can be sufficiently eluted with the aqueous solvent in consideration of the temperature, the presence or absence of stirring, and the like.
<工程(3)>
工程(3)は、工程(2)で得られた液状組成物を固液分離して得られる液体を、乾燥させてフルボ酸を含有する乾燥粉末を得る工程である。
上述の通り、工程(2)で得られた液状組成物は、木材分解物の残渣(固相)及びフルボ酸を含有する水系溶媒(液相)で構成される。工程(3)では、液状組成物から液相を回収し、溶媒を留去して乾燥させることで、フルボ酸を含有する乾燥粉末を得る。
<Process (3)>
The step (3) is a step of drying the liquid obtained by solid-liquid separation of the liquid composition obtained in the step (2) to obtain a dry powder containing fulvic acid.
As described above, the liquid composition obtained in step (2) is composed of a wood decomposition product residue (solid phase) and an aqueous solvent (liquid phase) containing fulvic acid. In the step (3), the liquid phase is recovered from the liquid composition, the solvent is distilled off and the mixture is dried to obtain a dry powder containing fulvic acid.
木材分解物の残渣(固相)とフルボ酸を含有する水系溶媒(液相)との分離は、ろ過や遠心分離等の公知の固液分離の方法が採用でき、生産性の観点から遠心分離が好ましく採用される。 For the separation of the residue (solid phase) of the wood decomposition product and the aqueous solvent (liquid phase) containing fulvic acid, a known solid-liquid separation method such as filtration or centrifugation can be adopted, and centrifugation is performed from the viewpoint of productivity. Is preferably adopted.
固液分離後の木材分解物の残渣(固相)は、必要に応じて、残存するフルボ酸を回収するために溶媒で洗浄したり、再度工程(2)に供して、残存するフルボ酸を再抽出してもよい。 The residue (solid phase) of the wood decomposition product after solid-liquid separation is washed with a solvent to recover the remaining fulvic acid, or is subjected to the step (2) again to remove the remaining fulvic acid, if necessary. It may be re-extracted.
回収した液体から溶媒を留去して乾燥粉末を得る。乾燥に用いる手段としては特に制限はなく、公知の乾燥方法を採用すればよい。より好適な乾燥方法は、余計な加熱を行わない減圧乾燥であり、特に凍結乾燥が好ましく採用される。凍結乾燥では、冷凍処理における温度が−10℃以下であることが好ましい。減圧乾燥は、時間を1〜10時間、乾燥室内温度を5〜20℃として、これを目的とする乾燥程度になるまで繰り返してもよい。 The solvent is distilled off from the recovered liquid to obtain a dry powder. The means used for drying is not particularly limited, and a known drying method may be adopted. A more preferable drying method is vacuum drying without extra heating, and freeze drying is particularly preferably adopted. In freeze-drying, the temperature in the freezing process is preferably −10 ° C. or lower. The vacuum drying may be repeated with the time being 1 to 10 hours and the drying chamber temperature being 5 to 20 ° C. until the desired drying degree is reached.
<工程(4)>
工程(4)は、工程(3)で得られた乾燥粉末に含有されるフルボ酸を分離精製する工程であり、フルボ酸を製造することができる。
<Process (4)>
The step (4) is a step of separating and purifying the fulvic acid contained in the dry powder obtained in the step (3), and the fulvic acid can be produced.
フルボ酸を分離精製する方法は、目的とするフルボ酸が得られる限り任意であるが、好適には、以下の工程(4−1)〜工程(4−4)で規定されるIHSS法(国際腐植学会指定の操作方法及び確認方法)に準じる方法が好ましい。なお、当該分離精製方法の具体例は実施例にて説明する。
工程(4−1)得られた乾燥粉末を0.1M-NaOH水溶液に接触させ、1日放置後に沈殿物を生成させたのち、沈殿物と水溶液とを固液分離する工程
工程(4−2):工程(4−1)で得られた水溶液に濃塩酸を加えてpHを1にして沈殿物を生成させたのち、沈殿物と水溶液に固液分離する工程
工程(4−3):工程(4−2)で得られた水溶液をXRD樹脂を充填したカラムに通過させてフルボ酸を吸着させたのちに、カラムに酸性洗浄液を通過させて不純物を除去し、次いで0.1M-NaOH水溶液に通過させてフルボ酸を遊離させてフルボ酸水溶液を得る工程
工程(4−4):工程(4−3)で得られたフルボ酸水溶液を充填した減圧乾燥し、乾燥粉末を得る工程
The method for separating and purifying fulvic acid is arbitrary as long as the desired fulvic acid can be obtained, but preferably, the IHSS method (international) defined in the following steps (4-1) to (4-4). The method according to the operation method and confirmation method specified by the Humus Society) is preferable. Specific examples of the separation and purification method will be described in Examples.
Step (4-1) A step step (4-2) in which the obtained dry powder is brought into contact with a 0.1 M-NaOH aqueous solution, left for 1 day to form a precipitate, and then the precipitate and the aqueous solution are solid-liquid separated. ): A step of adding concentrated hydrochloric acid to the aqueous solution obtained in step (4-1) to adjust the pH to 1 to form a precipitate, and then solid-liquid separating the precipitate and the aqueous solution. Step (4-3): Step The aqueous solution obtained in (4-2) was passed through a column filled with XRD resin to adsorb fulboic acid, and then an acidic cleaning solution was passed through the column to remove impurities, and then a 0.1 M-NaOH aqueous solution was passed. Step (4-4): Step of obtaining an aqueous solution of fluboic acid by passing it through a fluboic acid solution (4-4): A step of drying under reduced pressure filled with the aqueous solution of fluvoic acid obtained in step (4-3) to obtain a dry powder.
得られるフルボ酸の分子量は、原料木材や使用する白色腐朽菌、及び処理条件によって様々であるが、分子量として、通常、2000〜20000、好適には3000〜18000である。 The molecular weight of the obtained fulvic acid varies depending on the raw wood, the white-rot fungus used, and the treatment conditions, but the molecular weight is usually 2000 to 20000, preferably 3000 to 18000.
上述した本発明の製造方法によって生産されるフルボ酸は、任意の用途に使用することができる。本発明のフルボ酸は、例えば、土壌改良、環境浄化、医薬用途等の様々な用途で使用することができ、その用途は限定されない。本発明のフルボ酸は、その使用目的に応じて他の任意の成分と共に使用することができる。 The fulvic acid produced by the production method of the present invention described above can be used for any purpose. The fulvic acid of the present invention can be used for various purposes such as soil improvement, environmental purification, and pharmaceutical use, and the use is not limited. The fulvic acid of the present invention can be used together with any other component depending on its intended use.
なお、上述の通り、本発明のフルボ酸の製造方法においてクヌギは好適な原料木材であり、原料木材としてのクヌギを白色腐朽菌(NITE P-02428)によって分解して得られる木材分解物、及び当該木材分解物を抽出・分離処理して得られるクヌギ由来のフルボ酸は様々な用途(例えば、土壌改良剤等)に有益に使用することができる。 As described above, kunugi is a suitable raw material wood in the method for producing fulvic acid of the present invention, and a wood decomposition product obtained by decomposing kunugi as a raw material wood with a white-rot fungus (NITE P-02428), and Fulvic acid derived from Kunugi obtained by extracting and separating the wood decomposition product can be beneficially used for various purposes (for example, a soil conditioner).
また、上述の通り、本発明のフルボ酸の製造方法においてシラカバは好適な原料木材であり、原料木材としてのシラカバを白色腐朽菌(NITE P-02428)によって分解して得られる木材分解物、及び当該木材分解物を抽出・分離処理して得られるシラカバ由来のフルボ酸は様々な用途(例えば、医薬、化粧品原料等)に有益に使用することができる。 Further, as described above, shirakaba is a suitable raw material wood in the method for producing fulvic acid of the present invention, and a wood decomposition product obtained by decomposing the shirakaba as a raw material wood with a white rot fungus (NITE P-02428), and Fulvic acid derived from white-spotted wood obtained by extracting and separating the wood decomposition product can be beneficially used for various purposes (for example, pharmaceuticals, cosmetic raw materials, etc.).
以上、本発明について述べたが、上記説明に明示的に開示されていない事項については、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用することができる。 Although the present invention has been described above, matters not explicitly disclosed in the above description do not deviate from the scope normally practiced by those skilled in the art, and those skilled in the art can easily assume them. Can be adopted.
以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
実施例1(クヌギ由来の木材分解物及びフルボ酸)
1−1.木材分解物の製造
以下の手順で木材分解物を製造した。使用した原料木材、白色腐朽菌は以下の通りである。
(1)原料木材
原料木材として、クヌギチップを使用した。クヌギチップの原料は、大分県の森林樹木伐採現場にて発生したものを使用しており、解体などで発生する建築廃材及び産業廃棄物由来の木材を含まない。また、伐採後一切の化学処理を施してはいない。
(2)白色腐朽菌
供試菌として、独立行政法人製品評価技術基盤機構 特許微生物寄託センターの受託番号NITE P-02428(識別のための表示BMC-110012)で特定される白色腐朽菌(以下、「白色腐朽菌(NITE P-02428)」と記載する。)を使用した。
Example 1 (Wood decomposition product derived from Quercus acutissima and fulvic acid)
1-1. Production of wood decomposition products Wood decomposition products were produced by the following procedure. The raw wood and white-rot fungi used are as follows.
(1) Raw wood As the raw wood, Kunugi chips were used. The raw material for Quercus acutissima chips is that generated at a forest tree logging site in Oita Prefecture, and does not contain wood from construction waste and industrial waste generated by demolition. In addition, no chemical treatment has been applied after logging.
(2) White-rot fungus As a test bacterium, white-rot fungus identified by NITE P-02428 (label for identification BMC-110012) of the Patented Microorganisms Depositary Center, National Institute of Technology and Evaluation, Incorporated Administrative Agency (hereinafter referred to as It is described as "white-rot fungus (NITE P-02428)").
<工程(1)>
クヌギ木材(幹の部分)を10mm程度のチップに粉砕し、得られたチップを更に解繊機(西邦機工株式会社、製品名:ラブマシーン)で処理し、粉末状(100μm程度)に解繊した。
得られた粉末状クヌギと脱脂米糠(添加栄養物)と水とを、5:0.8:4(重量比)で撹拌・混合した後に混合物(クヌギ木粉培地)を、菌床袋(容積3.6L)へ1.7kgずつ詰め、金枠に入れて形を整えた。詰め込み時の含水率は57.9重量%であった。
次いで、常法に従いオートクレーブ(121℃、60分)で殺菌処理、放冷後、常法に従い接種菌(白色腐朽菌(NITE P-02428))を接種した。なお、接種菌である白色腐朽菌(NITE P-02428)は、300mL三角フラスコにクヌギ木粉培地を適宜入れ前培養したものを使用した。菌床袋のクヌギ木粉培地への接種菌の接種は、15mmφの鉄棒で菌床袋の培地をプレスし、二箇所の穴を開け接種孔を形成して行い、接種量は、粉末状クヌギ1kgに対して、10gとした。
<Process (1)>
Kunugi wood (trunk part) is crushed into chips of about 10 mm, and the obtained chips are further processed with a defibrator (Seiho Kiko Co., Ltd., product name: Love Machine) and defibrated into powder (about 100 μm). bottom.
The obtained powdered oak, defatted rice bran (additional nutrient), and water are stirred and mixed at a ratio of 5: 0.8: 4 (weight ratio), and then the mixture (quercus acutissima wood powder medium) is placed in a fungus bed bag (volume). It was packed in 3.6 L) by 1.7 kg and placed in a metal frame to shape it. The moisture content at the time of packing was 57.9% by weight.
Then, it was sterilized in an autoclave (121 ° C., 60 minutes) according to a conventional method, allowed to cool, and then inoculated with an inoculum (white-rot fungus (NITE P-02428)) according to a conventional method. As the inoculum, white-rot fungus (NITE P-02428), a 300 mL Erlenmeyer flask was appropriately placed in a Kunugi wood powder medium and pre-cultured. Inoculation of the oak wood powder medium of the oak bed bag The inoculation of the inoculation of the oak wood powder medium is carried out by pressing the medium of the oak bed bag with a 15 mmφ iron rod and making two holes to form an inoculation hole, and the inoculation amount is powdered oak. It was 10 g with respect to 1 kg.
接種菌の接種したクヌギ木粉培地(菌床袋)を、25℃に保たれた培養室で所定の日数静置して、粉末クヌギの分解を行うことにより、実施例1の木材分解物を得た。
なお、日数が長いほど粉末クヌギは分解して液体化する傾向にあり、20日では固形物、30日では若干の液体を含む固形物、60日では固形物と液体の混合物、120日目では、ほぼ液体化していた。
The wood decomposition product of Example 1 was obtained by allowing the oak wood powder medium (bacterial bed bag) inoculated with the inoculated bacteria to stand for a predetermined number of days in a culture room kept at 25 ° C. to decompose the powdered oak. Obtained.
The longer the number of days, the more the powdered oak tends to decompose and liquefy. On the 20th day, a solid substance, on the 30th day, a solid substance containing a small amount of liquid, on the 60th day, a mixture of a solid substance and a liquid, and on the 120th day, , Was almost liquefied.
1−2.フルボ酸の製造
工程(1)で得られた木材分解物を使用して、以下の手順で実施例1のフルボ酸を製造した。
1-2. Production of Fulvic Acid Using the wood decomposition product obtained in the step (1), the fulvic acid of Example 1 was produced by the following procedure.
<工程(2)>
工程(1)で得られた木材分解物(30日分解)1kgと水2Lとを容器に入れミキサーで、3分程度撹拌して木材分解物に含まれる成分を水に抽出し、木材分解物を含有する液状組成物を得た。
<Process (2)>
1 kg of wood decomposition product (decomposed for 30 days) obtained in step (1) and 2 L of water are placed in a container and stirred for about 3 minutes with a mixer to extract the components contained in the wood decomposition product into water. A liquid composition containing the above was obtained.
<工程(3)>
工程(2)で得られた木材分解物を含有する液状組成物を、遠心分離機にて固液分離を行い、液体部分をデカンテーションして得た液体を減圧乾燥器にて減圧乾燥し、腐植酸物質を含有する乾燥粉末を得た。収率は約5%(原料1kgから約50g生成)であった。
<Process (3)>
The liquid composition containing the wood decomposition product obtained in the step (2) was solid-liquid separated by a centrifuge, and the liquid obtained by decanting the liquid portion was dried under reduced pressure in a vacuum dryer. A dry powder containing a rotic acid substance was obtained. The yield was about 5% (about 50 g produced from 1 kg of raw material).
<工程(4)>
工程(3)で得られた乾燥粉末を、以下の工程によって分離精製し、フルボ酸を得た。なお、この分離精製方法は、IHSS法(国際腐植学会指定の操作方法及び確認方法)に相当する。
まず、工程(3)で得られた乾燥粉末を、0.1M-NaOH水溶液に入れ、1日放置後に沈殿物を生成させのちに、沈殿物と水溶液を分離した。次いで、水溶液に濃塩酸を加えてpH1になるように調整した。再び沈殿物が生成するので、更に沈殿物と水溶液に分離した。
得られた水溶液はXRD樹脂を約150mL充填したカラムに通し、XRD樹脂にフルボ酸を吸着させた。フルボ酸を吸着させた後のカラムに1M塩酸300mL、続いて0.1M塩酸300mLを通過させて洗浄し、不純物を除去した。
次いで、カラムに0.1M-NaOH水溶液、約450mLを通過させて、XRD樹脂に吸着していたフルボ酸を遊離させて、フルボ酸を含む遊離液を回収した。なお、0.1M-NaOH水溶液の通液は、カラムからでる通過液の色が薄くなるまで行った。
<Process (4)>
The dry powder obtained in step (3) was separated and purified by the following steps to obtain fulvic acid. This separation and purification method corresponds to the IHSS method (operation method and confirmation method designated by the International Humus Society).
First, the dry powder obtained in step (3) was placed in a 0.1 M-NaOH aqueous solution, left for 1 day to form a precipitate, and then the precipitate and the aqueous solution were separated. Next, concentrated hydrochloric acid was added to the aqueous solution to adjust the pH to 1. Since a precipitate was formed again, it was further separated into a precipitate and an aqueous solution.
The obtained aqueous solution was passed through a column filled with about 150 mL of XRD resin, and fulvic acid was adsorbed on the XRD resin. After adsorbing fulvic acid, 300 mL of 1 M hydrochloric acid and then 300 mL of 0.1 M hydrochloric acid were passed through the column for washing to remove impurities.
Next, about 450 mL of a 0.1 M-NaOH aqueous solution was passed through the column to liberate the fulvic acid adsorbed on the XRD resin, and the free liquid containing the fulvic acid was recovered. The 0.1 M-NaOH aqueous solution was passed until the color of the passing liquid discharged from the column became lighter.
得られた遊離液は、IRC樹脂を約300mL充填したカラムに通し、NaOH水溶液を除去した。また、カラムを残存したフルボ酸を回収するために、カラムを蒸留水300mLで洗浄し、洗浄液と遊離したフルボ酸溶液と合わせた。
得られたフルボ酸溶液は減圧乾燥で水を留去し、目的とする乾燥粉末を得た。収率は約0.6%(1kgから約6g生成)であった。
The obtained free liquid was passed through a column filled with about 300 mL of IRC resin to remove an aqueous NaOH solution. Further, in order to recover the fulvic acid remaining on the column, the column was washed with 300 mL of distilled water, and the washing solution and the liberated fulvic acid solution were combined.
Water was distilled off from the obtained fulvic acid solution by drying under reduced pressure to obtain the desired dry powder. The yield was about 0.6% (produced from 1 kg to about 6 g).
1−3.乾燥粉末の分析
分離精製後の乾燥粉末を実施例1の試料として、FT−IR、UV、1H−NMR、元素分析(C・H・Nコーダ)により解析した。抽出させた有用腐植物質を同定させるため、市販品のフルボ酸(コヨウ株式会社製)と比較検討した。
使用した装置は以下の通りである。
IR:日本分光(株)、FT/IR-5000型
UV:日本分光(株)、Ubest V-560型
NMR:ブルカーバイオスピン(株)、S-NMR 600
元素分析:(株)パーキンエルマージャパン、CHNS/O アナライザー 2400 II
1-3. Analysis of dry powder The dry powder after separation and purification was used as a sample of Example 1 and analyzed by FT-IR, UV, 1 H-NMR, and elemental analysis (CHN coder). In order to identify the extracted useful humus, it was compared with the commercially available fulvic acid (manufactured by Koyo Co., Ltd.).
The equipment used is as follows.
IR: JASCO Corporation, FT / IR-5000 type UV: JASCO Corporation, Ubest V-560 type NMR: Bruker Biospin Co., Ltd., S-
Elemental analysis: Perkin Elmer Japan Co., Ltd., CHNS /
図1に実施例1と市販品のフルボ酸のFT−IR法における赤外線吸収スペクトル(以下、「IRスペクトル」と記載)を示す。3400cm-1に水酸基(OH)、2980cm-1にメチレン基(-CH2-)及び1700cm-1にカルボキシル基(COOH)の波長に特徴的なピークが見られた。
文献(環境中の腐植物質-その特徴と研究法-、ISBN-10: 4782705778)からも同様なピークが確認されており、フルボ酸特有の水酸基やカルボキシル基を多く有する構造であると考えられる。
FIG. 1 shows an infrared absorption spectrum (hereinafter referred to as “IR spectrum”) of Example 1 and a commercially available fulvic acid in the FT-IR method. Hydroxyl (OH) in 3400 cm -1, methylene group 2980cm -1 (-CH 2 -) characteristic peaks at wavelengths of and a carboxyl group in the 1700 cm -1 (COOH) was observed.
Similar peaks have been confirmed in the literature (humus in the environment-its characteristics and research methods-, ISBN-10: 4782705778), and it is considered that the structure has many hydroxyl groups and carboxyl groups peculiar to fulvic acid.
図2に実施例1と市販品のUVスペクトルを示す。どちらも同様な吸収曲線を示したが、実施例1の方が270nm付近の吸収が大きかった。この付近の吸収帯は芳香環に由来するものと考えられ、実施例1の試料は芳香環を市販のものより比較的多く含む構造であると考えられる。 FIG. 2 shows the UV spectra of Example 1 and a commercially available product. Both showed the same absorption curve, but in Example 1, the absorption near 270 nm was larger. The absorption band in the vicinity is considered to be derived from the aromatic ring, and the sample of Example 1 is considered to have a structure containing a relatively large amount of the aromatic ring as compared with the commercially available one.
図3に実施例1の試料の1H−NMRを測定した結果を示した。0.8ppmに弱いシグナルの末端メチル基、1.1〜1.3ppmにβ位のメチル基及びメチレンのシグナルにそれぞれ帰属され、3.5〜4.0ppmにメトキシル基、アルコール性水酸基を含む置換脂肪族水素のシグナルに帰属された。
図4にKononovaにより提唱されているE4/E6比の結果を示した。E4/E6比は465nmと665nmの吸光度の比率であり、フルボ酸の特性付けに用いられている。文献(環境中の腐植物質-その特徴と研究法-、ISBN-10: 4782705778)によるとフルボ酸のE4/E6比は6.0〜8.5の間で変動すると定義されている。実施例1の試料のE4/E6比は7.8となった。
また、元素分析を行ったところ、各試料のC,H,Nの含有量は市販品(C:29.16%、H:4.71%、N:4.99%)、実施例1(C:38.65%、H:4.63%、N:2.93%)となった。文献(環境中の腐植物質-その特徴と研究法-、ISBN-10: 4782705778)と比較したところ、窒素含量が多いことが確認された。また、平均分子量は約100000であった。
これらの結果から、実施例1の試料(分離精製後の乾燥粉末)がフルボ酸を有することが確認された。
FIG. 3 shows the results of 1 H-NMR measurement of the sample of Example 1. Substitution containing a terminal methyl group of a weak signal at 0.8 ppm, a methyl group at the β-position at 1.1 to 1.3 ppm and a methylene signal, respectively, and a methoxyl group and an alcoholic hydroxyl group at 3.5 to 4.0 ppm. It was assigned to the signal of aliphatic hydrogen.
FIG. 4 shows the results of the E4 / E6 ratio proposed by Kononova. The E4 / E6 ratio is the absorbance ratio of 465 nm and 665 nm and is used to characterize fulvic acid. The literature (environmental humus-its characteristics and research methods-, ISBN-10: 4782705778) defines that the E4 / E6 ratio of fulvic acid varies between 6.0 and 8.5. The E4 / E6 ratio of the sample of Example 1 was 7.8.
Further, as a result of elemental analysis, the C, H, N contents of each sample were commercially available products (C: 29.16%, H: 4.71%, N: 4.99%), Example 1 (C: 38.65%, H). : 4.63%, N: 2.93%). Comparing with the literature (environmental humus-its characteristics and research methods-, ISBN-10: 4782705778), it was confirmed that the nitrogen content was high. The average molecular weight was about 100,000.
From these results, it was confirmed that the sample of Example 1 (dry powder after separation and purification) had fulvic acid.
実施例2(シラカバ由来の木材分解物及びフルボ酸)
2−1.木材分解物の製造
以下の手順で木材分解物を製造した。使用した原料木材、白色腐朽菌は以下の通りである。
(1)原料木材
原料木材として、シラカバチップを使用した。
(2)白色腐朽菌
供試菌として、白色腐朽菌(NITE P-02428)を使用した。
Example 2 (wood decomposition product derived from birch and fulvic acid)
2-1. Production of wood decomposition products Wood decomposition products were produced by the following procedure. The raw wood and white-rot fungi used are as follows.
(1) Raw wood As the raw wood, birch chips were used.
(2) White-rot fungus A white-rot fungus (NITE P-02428) was used as a test fungus.
<工程(1)>
シラカバ木材(幹の部分)を10mm程度のチップに粉砕し、得られたチップを更に解繊機(西邦機工株式会社、製品名:ラブマシーン)で処理し、粉末状(100μm程度)に解繊した。
得られた粉末状シラカバと脱脂米糠(添加栄養物)と水とを、5:0.8:4(重量比)で撹拌・混合した後に混合物(シラカバ木粉培地)を、菌床袋(容積3.6L)へ1.7kgずつ詰め、金枠に入れて形を整えた。
次いで、常法に従いオートクレーブ(121℃、60分)で殺菌処理、放冷後、常法に従い接種菌(白色腐朽菌(NITE P-02428))を接種した。なお、接種菌である白色腐朽菌(NITE P-02428)は、300mL三角フラスコにシラカバ木粉培地を適宜入れ前培養したものを使用した。菌床袋のシラカバ木粉培地への接種菌の接種は、15mmφの鉄棒で菌床袋の培地をプレスし、二箇所の穴を開け接種孔を形成して行い、接種量は、粉末状シラカバ1kgに対して、10gとした。
<Process (1)>
Birch wood (trunk part) is crushed into chips of about 10 mm, and the obtained chips are further processed with a defibrator (Seiho Kiko Co., Ltd., product name: Love Machine) and defibrated into powder (about 100 μm). bottom.
The obtained powdered white birch, defatted rice bran (additional nutrient) and water are stirred and mixed at a ratio of 5: 0.8: 4 (weight ratio), and then the mixture (white birch wood powder medium) is placed in a fungus bed bag (volume). It was packed in 3.6 L) by 1.7 kg and placed in a metal frame to shape it.
Then, it was sterilized in an autoclave (121 ° C., 60 minutes) according to a conventional method, allowed to cool, and then inoculated with an inoculum (white-rot fungus (NITE P-02428)) according to a conventional method. As the inoculum, white-rot fungus (NITE P-02428), a 300 mL Erlenmeyer flask was appropriately placed in a white-spotted wood flour medium and pre-cultured. Inoculation of the birch wood powder medium of the fungus bed bag The inoculation of the fungus is performed by pressing the medium of the fungus bed bag with a 15 mmφ iron rod and making two holes to form an inoculation hole, and the inoculation amount is powdered birch. It was 10 g with respect to 1 kg.
接種菌の接種したシラカバ木粉培地(菌床袋)を、25℃に保たれた培養室で60日数静置して、粉末シラカバの分解を行うことにより、実施例2の木材分解物を得た。 The wood decomposition product of Example 2 was obtained by allowing the birch wood powder medium (bacterial bed bag) inoculated with the inoculated bacteria to stand for 60 days in a culture room kept at 25 ° C. to decompose the powdered birch. rice field.
2−2.フルボ酸の製造
工程(1)で得られた木材分解物を使用して、以下の手順でフルボ酸を製造した。
2-2. Fulvic acid production Using the wood decomposition product obtained in the step (1), fulvic acid was produced by the following procedure.
<工程(2)>
工程(1)で得られた木材分解物(60日分解)1kgと水2Lとを容器に入れミキサーで、3分程度撹拌して木材分解物に含まれる成分を水に抽出し、木材分解物を含有する液状組成物を得た。
<Process (2)>
1 kg of wood decomposition product (60-day decomposition) obtained in step (1) and 2 L of water are placed in a container and stirred for about 3 minutes with a mixer to extract the components contained in the wood decomposition product into water. A liquid composition containing the above was obtained.
<工程(3)>
工程(2)で得られた木材分解物を含有する液状組成物を、遠心分離機にて固液分離を行い、液体部分をデカンテーションして得た液体を減圧乾燥器にて減圧乾燥し、腐植酸物質を含有する乾燥粉末を得た。
<Process (3)>
The liquid composition containing the wood decomposition product obtained in the step (2) was solid-liquid separated by a centrifuge, and the liquid obtained by decanting the liquid portion was dried under reduced pressure in a vacuum dryer. A dry powder containing a rotic acid substance was obtained.
<工程(4)>
工程(3)で得られた乾燥粉末を、実施例1と同様の方法により、分離精製し、実施例2のフルボ酸を得た。
<Process (4)>
The dry powder obtained in step (3) was separated and purified by the same method as in Example 1 to obtain fulvic acid of Example 2.
1−3.乾燥粉末の分析
分離精製後の乾燥粉末を実施例2の試料として、上記実施例1と同様にFT−IR、1H−NMRにより解析した。解析に使用した装置、条件は実施例1と同様である。
1-3. Analysis of dry powder The dry powder after separation and purification was used as a sample of Example 2 and analyzed by FT-IR and 1 H-NMR in the same manner as in Example 1 above. The apparatus and conditions used for the analysis are the same as in Example 1.
図5に実施例2のIRスペクトルを示す。3400cm-1に水酸基(OH)、2980cm-1にメチレン基(-CH2-)及び1700cm-1にカルボキシル基(COOH)の波長に特徴的なピークが見られ、フルボ酸特有の水酸基やカルボキシル基を多く有する構造であると考えられる。 FIG. 5 shows the IR spectrum of Example 2. Hydroxyl (OH) to 3400cm -1, 2980cm -1 to a methylene group (-CH 2 -) and 1700 cm -1 characteristic peak in the wavelength of the carboxyl group (COOH) is seen, fulvic acid-specific hydroxyl group or a carboxyl group It is considered that the structure has a large amount of.
図6に実施例2の試料の1H−NMRを測定した結果を示した。0.8ppmに弱いシグナルの末端メチル基、1.1〜1.3ppmにβ位のメチル基及びメチレンのシグナルにそれぞれ帰属され、3.5〜4.0ppmにメトキシル基、アルコール性水酸基を含む置換脂肪族水素のシグナルに帰属された。 FIG. 6 shows the results of 1 H-NMR measurement of the sample of Example 2. Substitution containing a terminal methyl group of a weak signal at 0.8 ppm, a methyl group at the β-position at 1.1 to 1.3 ppm and a methylene signal, respectively, and a methoxyl group and an alcoholic hydroxyl group at 3.5 to 4.0 ppm. It was assigned to the signal of aliphatic hydrogen.
また、元素分析を行ったところ、C,H,Nの含有量は実施例2(C:15.47%、H:1.73%、N:0.00%)となった。また、分子量は約3000〜180000の範囲で分子量の分布がみられた。 Moreover, as a result of elemental analysis, the contents of C, H, and N were found in Example 2 (C: 15.47%, H: 1.73%, N: 0.00%). In addition, the molecular weight was distributed in the range of about 3000 to 180,000.
<参考例>白色腐朽菌のスクリーニング(クヌギ木粉の分解・液化試験)
以下の9種類の白色腐朽菌を供試菌としてクヌギ木粉の分解・液化試験を行い、腐朽力及び液化力の強い菌株の選抜を行った。
供試菌1:シイタケ(Lentinula edodes)
供試菌2:エノキタケ(Flammulina velutipes)
供試菌3:ヒラタケ(Pleurotus ostreatus)
供試菌4:カワラタケ(Trametes versicolor)
供試菌5:シワタケ(Phlebia tremellosa)
供試菌6:Phanerochaete chrysosporium
供試菌7:Phanerochaete sp.
供試菌8:Phlebia lindtneri
供試菌9:Phlebia aurea
<Reference example> Screening for white-rot fungi (decomposition / liquefaction test of oak wood powder)
The following nine types of white-rot fungi were used as test bacteria for decomposition and liquefaction tests of Quercus acutissima wood powder, and strains with strong decay and liquefaction power were selected.
Test Bacteria 1: Shiitake (Lentinula edodes)
Test Bacteria 2: Enokitake (Flammulina velutipes)
Test fungus 3: Pleurotus ostreatus
Test Bacteria 4: C. versicolor (Trametes versicolor)
Test Bacteria 5: Phlebia tremellosa
Test Bacteria 6: Phanerochaete chrysosporium
Test Bacteria 7: Phanerochaete sp.
Test Bacteria 8: Phlebia lindtneri
Test Bacteria 9: Phlebia aurea
なお、供試菌7は、大分県中津地区で入手したキノコ栽培廃菌床(野外に半年程度放置)のうち、腐朽が進んでいるものを数種選抜し、それぞれをPDA培地に接種したところ、糸状菌1種の生長を認めた。さらに、糸状菌の断片をPDA培地に接種し、純粋培養を試みた。得られた菌株を保存菌株とした。本菌株は、独立行政法人製品評価技術基盤機構 特許微生物寄託センターに受託番号NITE P-02428で寄託されている菌株(識別のための表示:BMC-110012)である。 As for the test bacteria 7, several types of mushroom cultivation waste beds (left outdoors for about half a year) obtained in the Nakatsu area of Oita prefecture were selected and each of them was inoculated into a PDA medium. , One type of filamentous fungus was observed to grow. Furthermore, a fragment of filamentous fungus was inoculated into PDA medium, and pure culture was attempted. The obtained strain was used as a preserved strain. This strain is a strain deposited under the accession number NITE P-02428 at the Patent Microorganisms Depositary Center of the National Institute of Technology and Evaluation (Indication for identification: BMC-110012).
クヌギ木粉の分解・液化試験は以下の通り行った。
クヌギ材を丸鋸で切断して発生するクヌギ木粉を木粉培地用木粉とし、クヌギ木粉:脱脂米糠=8:2(重量比)の割合で混合し、水分含量60重量%になるように水を添加して十分に混合することにより、評価用の木粉培地を得た。
試験管(18mmφ×180mm)にフィルター受けを挿入し、その上に穴を開けたバルサシート(厚さ1mm)を設置したものを9本用意し、それぞれの試験管内に木粉培地10gを入れ、オートクレーブで温度121℃、60分処理した後に、供試菌1〜9を接種した。なお、供試菌(種菌)は18mmφ×180mmPDAスラント保存分より、5mm角程度を切り取り接種した。
供試菌の接種後25℃で60日間培養し、培地の収縮の程度から腐朽能を、分解液の生成の程度から木質液化能を定性的に評価した。
The decomposition and liquefaction test of Quercus acutissima wood powder was carried out as follows.
Quercus acutissima wood flour generated by cutting oak wood with a circular saw is used as wood flour for wood flour medium, and mixed at a ratio of oak wood flour: defatted rice bran = 8: 2 (weight ratio) to achieve a water content of 60% by weight. By adding water and mixing thoroughly as described above, a wood flour medium for evaluation was obtained.
Insert the filter receiver into a test tube (18 mmφ x 180 mm), prepare nine balsa sheets (
After inoculation of the test bacterium, the cells were cultured at 25 ° C. for 60 days, and the decay ability was qualitatively evaluated from the degree of shrinkage of the medium, and the wood liquefaction ability was qualitatively evaluated from the degree of production of the decomposition solution.
供試菌の腐朽能及び木質液化能の表1に示す。
なお、表1において、「腐朽能」及び「木質液化能」の評価基準は以下の通りである。
<腐朽能>
―: 培地の収縮は認められない(目視:3%以下)
+ :培地の収縮が僅かに認められる(目視:10%以下)
++ :培地の収縮が認められる(目視:25%以下)
+++:培地の収縮が顕著に認められる(目視:50%以下)
<木質液化能>
― :目視で分解液の生成は認められない。
+ :目視で分解液の生成が培地中に認められるが、試験管の底には溜まっていない。
++ :目視で分解液の生成が認められ、試験管の底に、深さ1cm未満で液体が溜まっている。
+++:目視で分解液の生成が顕著に認められ、試験管の底に、深さ1cm以上で液体が溜まっている。
Table 1 shows the decay ability and wood liquefaction ability of the test bacteria.
In Table 1, the evaluation criteria for "decay ability" and "wood liquefaction ability" are as follows.
<Decay ability>
―: No shrinkage of the medium (visual: 3% or less)
+: Slight shrinkage of the medium is observed (visual: 10% or less)
++: Medium shrinkage is observed (visual: 25% or less)
+++: Significant shrinkage of the medium is observed (visual: 50% or less)
<Wood liquefaction ability>
―: No decomposition liquid is visually observed.
+: Degradation solution is visually observed in the medium, but it does not accumulate at the bottom of the test tube.
++: Decomposition liquid was visually observed, and the liquid was accumulated at the bottom of the test tube at a depth of less than 1 cm.
+++: The formation of decomposition liquid was noticeably observed visually, and the liquid was accumulated at a depth of 1 cm or more at the bottom of the test tube.
表1の通り、木質リグニンの分解能(培地の収縮)に優れ、かつ、液化能(分解液の生成)に生成が顕著に認められる菌株として、供試菌7(Phanerochaete sp.(受託番号:NITE P-02428))が選抜された。 As shown in Table 1, Test Bacteria 7 (Phanerochaete sp. (Consignment No .: NITE) is a strain that has excellent resolution (medium shrinkage) of wood lignin and is remarkably produced in liquefaction ability (generation of decomposition solution). P-02428))) was selected.
本発明によれば、様々な用途で使用できる有益なフルボ酸を効率的に生産することが可能となるので産業的に有望である。 According to the present invention, it is industrially promising because it enables efficient production of beneficial fulvic acid that can be used in various applications.
受託番号:NITE P−02428
寄託日:2017年2月20日
寄託機関名:独立行政法人製品評価技術基盤機構 特許微生物寄託センター
識別の表示:BMC−110012
Accession number: NITE P-02428
Deposit date: February 20, 2017 Deposit organization name: National Institute of Technology and Evaluation Patent Microorganisms Deposit Center Identification display: BMC-110012
Claims (6)
水系溶媒を接触させてフルボ酸を含有する液状組成物を得る工程と、
前記液状組成物を固液分離して得られる液体を、乾燥させてフルボ酸を含有する乾燥粉
末を得る工程と、
得られた乾燥粉末に含有されるフルボ酸を分離精製する工程と、
を有することを特徴とするフルボ酸の製造方法。 A step of obtaining a wood decomposition product containing fulvic acid by the production method according to any one of claims 1 to 5.
A step of contacting an aqueous solvent to obtain a liquid composition containing fulvic acid, and
A step of drying the liquid obtained by solid-liquid separation of the liquid composition to obtain a dry powder containing fulvic acid.
A step of separating and purifying fulvic acid contained in the obtained dry powder, and
A method for producing fulvic acid, which comprises.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017141361 | 2017-07-20 | ||
JP2017141361 | 2017-07-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019017388A JP2019017388A (en) | 2019-02-07 |
JP6963260B2 true JP6963260B2 (en) | 2021-11-05 |
Family
ID=65352858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018135497A Active JP6963260B2 (en) | 2017-07-20 | 2018-07-19 | Wood decomposition products containing fulvic acid and fulvic acid, and methods for producing them. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6963260B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019019108A (en) * | 2017-07-20 | 2019-02-07 | 学校法人 中村産業学園 | 5α-REDUCTASE INHIBITOR, AND COMPOSITION FOR PREVENTIVE TREATMENT OF ALOPECIA OR HAIR GROWTH PROMOTION, AND METHOD FOR INHIBITING 5α-REDUCTASE IN SCALP AND HAIR GROWTH PROMOTION METHOD |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4793781B2 (en) * | 2005-08-03 | 2011-10-12 | 国立大学法人京都大学 | White-rot fungi having lignocellulose-degrading action and use thereof |
JP2007224296A (en) * | 2006-01-27 | 2007-09-06 | Nagaoka Univ Of Technology | Method for obtaining polysaccharide from decayed wood |
-
2018
- 2018-07-19 JP JP2018135497A patent/JP6963260B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019019108A (en) * | 2017-07-20 | 2019-02-07 | 学校法人 中村産業学園 | 5α-REDUCTASE INHIBITOR, AND COMPOSITION FOR PREVENTIVE TREATMENT OF ALOPECIA OR HAIR GROWTH PROMOTION, AND METHOD FOR INHIBITING 5α-REDUCTASE IN SCALP AND HAIR GROWTH PROMOTION METHOD |
JP2022008886A (en) * | 2017-07-20 | 2022-01-14 | 学校法人 中村産業学園 | 5α-REDUCTASE INHIBITOR, AND COMPOSITION FOR PREVENTIVE TREATMENT OF ALOPECIA OR HAIR GROWTH PROMOTION, AND METHOD FOR INHIBITING 5α-REDUCTASE IN SCALP AND HAIR GROWTH PROMOTION METHOD |
JP7046304B2 (en) | 2017-07-20 | 2022-04-04 | 学校法人 中村産業学園 | A method for producing a 5α-reductase inhibitor, and a method for producing a composition for preventing and treating alopecia or promoting hair growth. |
Also Published As
Publication number | Publication date |
---|---|
JP2019017388A (en) | 2019-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pathak et al. | Fruit peel waste: characterization and its potential uses | |
Senesi et al. | Role of humification processes in recycling organic wastes of various nature and sources as soil amendments | |
Medina et al. | Crop residue stabilization and application to agricultural and degraded soils: A review | |
Romero et al. | Humic acid-like fractions in raw and vermicomposted winery and distillery wastes | |
Sabar et al. | Evaluation of humic acids produced from Pakistani subbituminous coal by chemical and fungal treatments | |
Dorado et al. | Infrared spectroscopy analysis of hemp (Cannabis sativa) after selective delignification by Bjerkandera sp. at different nitrogen levels | |
Gigliotti et al. | Composition changes of dissolved organic matter in a soil amended with municipal waste compost | |
Sampedro et al. | Organic matter evolution and partial detoxification in two-phase olive mill waste colonized by white-rot fungi | |
Medina et al. | Influence of inorganic additives on wheat straw composting: Characterization and structural composition of organic matter derived from the process | |
Pathania et al. | A study on cultivation and yield performance of oyster mushroom (Pleurotus ostreatus) on wheat straw mixed with horticultural waste (apple pomace) in different ratio and their nutritional evaluation | |
JP6963260B2 (en) | Wood decomposition products containing fulvic acid and fulvic acid, and methods for producing them. | |
Brezáni et al. | Cultivation of medicinal mushrooms on spruce sawdust fermented with a liquid digestate from biogas stations | |
Rajarathnam et al. | Biological utilization of edible fruiting fungi | |
Valmaseda et al. | Contribution by pigmented fungi to P-type humic acid formation in two forest soils | |
Requena et al. | Evolution of humic substances from unripe compost during incubation with lignolytic or cellulolytic microorganisms and effects on the lettuce growth promotion mediated by Azotobacter chroococcum | |
Huang et al. | Effect of inoculation during different phases of agricultural waste composting on spectroscopic characteristics of humic acid | |
JP6835316B2 (en) | New white-rot fungus, its production method, and treatment method for decomposition objects containing lignin | |
Bechtold et al. | Lignin alteration by Ganoderma australe and other white-rot fungi after solid-state fermentation of beech wood | |
JPH0283286A (en) | Production of compost from wood resource | |
Kakezawa et al. | Structural characteristics of humic acids extracted from woody composts by two-step composting process | |
JP5110930B2 (en) | Method for producing methane gas from biomass containing lignin | |
Omar et al. | Physicochemical characteristics of humic and fulvic acids extracted from different feedstocks | |
Košíková et al. | Biotransformation of lignin polymers derived from beech wood pulping by Sporobolomyces roseus isolated from leafy material | |
Popa et al. | Lignins and polyphenols in bioremediation | |
Yenie et al. | Synthesis of composite adsorbent based on Spent Mushroom Substrate (SMS) and Spent Bleaching Earth (SBE) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200717 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20200717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200720 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200831 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210514 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210525 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210827 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20210721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210907 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211006 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6963260 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |