JP6962135B2 - OAM multiplex communication system and OAM multiplex communication method - Google Patents

OAM multiplex communication system and OAM multiplex communication method Download PDF

Info

Publication number
JP6962135B2
JP6962135B2 JP2017211106A JP2017211106A JP6962135B2 JP 6962135 B2 JP6962135 B2 JP 6962135B2 JP 2017211106 A JP2017211106 A JP 2017211106A JP 2017211106 A JP2017211106 A JP 2017211106A JP 6962135 B2 JP6962135 B2 JP 6962135B2
Authority
JP
Japan
Prior art keywords
oam
interference
uca
modes
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017211106A
Other languages
Japanese (ja)
Other versions
JP2019083475A (en
Inventor
斗煥 李
裕文 笹木
浩之 福本
宏礼 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017211106A priority Critical patent/JP6962135B2/en
Publication of JP2019083475A publication Critical patent/JP2019083475A/en
Application granted granted Critical
Publication of JP6962135B2 publication Critical patent/JP6962135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Description

本発明は、電磁波の軌道角運動量(Orbital Angular Momentum:OAM)を用いて無線信号を空間多重伝送するOAM多重通信システムおよびOAM多重通信方法に関する。 The present invention relates to an OAM multiplex communication system and an OAM multiplex communication method for spatially multiplex transmission of radio signals using the orbital angular momentum (OAM) of electromagnetic waves.

近年、伝送容量向上のため、OAMを用いた無線信号の空間多重伝送技術が報告されている(非特許文献1)。OAMをもつ電磁波は、伝搬軸を中心に伝搬方向にそって等位相面が螺旋状に分布する。異なるOAMモードをもち、同一方向に伝搬する電磁波は、回転軸方向において空間位相分布が直交するため、異なる信号系列で変調された各OAMモー
ドの信号を受信局において分離することにより、信号を多重伝送することが可能である。
In recent years, in order to improve the transmission capacity, a spatial multiplex transmission technique for wireless signals using OAM has been reported (Non-Patent Document 1). Electromagnetic waves having OAM have equiphase planes spirally distributed along the propagation direction around the propagation axis. Since electromagnetic waves having different OAM modes and propagating in the same direction have orthogonal spatial phase distributions in the rotation axis direction, the signals are multiplexed by separating the signals of each OAM mode modulated by different signal sequences at the receiving station. It is possible to transmit.

このOAM多重技術を用いた無線通信システムでは、複数のアンテナ素子を等間隔に円形配置した等間隔円形アレーアンテナ(以下、UCA(Uniform Circular Array)と称する。)を用い、複数のOAMモードを生成・合成して送信することにより、異なる信号系列の空間多重伝送が行われる(非特許文献2)。 In a wireless communication system using this OAM multiplexing technology, a plurality of OAM modes are generated by using an evenly spaced circular array antenna (hereinafter referred to as UCA (Uniform Circular Array)) in which a plurality of antenna elements are arranged in a circle at equal intervals. -By synthesizing and transmitting, spatial multiplex transmission of different signal sequences is performed (Non-Patent Document 2).

図5は、OAMモードの信号を生成するためのUCAの位相設定例を示す。
図5において、送信側におけるOAMモード0,1,2,3,…の信号は、UCAの各アンテナ素子(●で示す)に設定する位相差により生成される。すなわち、OAMモードnの信号は、UCAの位相がn回転(n×360 度)になるように各アンテナ素子の位相を設定して生成する。例えば、UCAが8個のアンテナ素子で構成される場合で、OAMモード2の信号を生成する場合は、図5(3) に示すように、位相が2回転するように、各アンテナ素子に反時計回りに90度の位相差を設定する。なお、OAMモードnの信号に対して位相の回転方向を逆にした信号をOAMモード−nとする。例えば、正のOAMモードの信号の位相の回転方向を反時計回りとし、負のOAMモードの信号の位相の回転方向を時計回りとする。
FIG. 5 shows an example of UCA phase setting for generating an OAM mode signal.
In FIG. 5, the signals of OAM modes 0, 1, 2, 3, ... On the transmitting side are generated by the phase difference set in each antenna element (indicated by ●) of the UCA. That is, the signal of the OAM mode n is generated by setting the phase of each antenna element so that the phase of the UCA becomes n rotations (n × 360 degrees). For example, when the UCA is composed of eight antenna elements and the signal of OAM mode 2 is generated, as shown in FIG. 5 (3), the phase is counterclockwise so as to rotate twice. Set the phase difference by 90 degrees clockwise. The signal in which the rotation direction of the phase is reversed with respect to the signal in the OAM mode n is defined as the OAM mode −n. For example, the rotation direction of the phase of the positive OAM mode signal is counterclockwise, and the rotation direction of the phase of the negative OAM mode signal is clockwise.

異なる信号系列を異なるOAMモードの信号として生成し、生成した信号を同時に送信することで、空間多重による無線通信ができる。送信側では、各OAMモードで伝送する信号をあらかじめ生成・合成し、単一のUCAで各OAMモードの合成信号を送信してもよいし、複数のUCAを用いて、OAMモード毎に異なるUCAで各OAMモードの信号を送信してもよい。 By generating different signal sequences as signals in different OAM modes and simultaneously transmitting the generated signals, wireless communication by spatial multiplexing can be performed. On the transmitting side, signals to be transmitted in each OAM mode may be generated and synthesized in advance, and the combined signal of each OAM mode may be transmitted by a single UCA, or a plurality of UCAs may be used and different UCAs are used for each OAM mode. May transmit signals for each OAM mode.

図6は、OAM多重信号の位相分布と信号強度分布の例を示す。
図6(1),(2) において、送信側から伝搬方向に直交する端面(以下、伝搬直交平面と称する。)で見た、OAMモード1とOAMモード2の信号の位相分布を矢印で表す。矢印の始めは0度であり、位相が線形に変化して矢印の終わりは 360度である。すなわち、OAMモードnの信号は、伝搬直交平面において、位相がn回転(n×360 度)しながら伝搬する。
FIG. 6 shows an example of the phase distribution and the signal intensity distribution of the OAM multiplex signal.
In FIGS. 6 (1) and 6 (2), the phase distributions of the signals of OAM mode 1 and OAM mode 2 as seen from the end faces orthogonal to the propagation direction from the transmitting side (hereinafter referred to as the propagation orthogonal plane) are represented by arrows. .. The beginning of the arrow is 0 degrees, the phase changes linearly and the end of the arrow is 360 degrees. That is, the signal in OAM mode n propagates in the propagation orthogonal plane while the phase rotates n times (n × 360 degrees).

各OAMモードの信号は、OAMモード毎に信号強度分布と信号強度が最大になる位置が異なる。具体的には、OAMモードが高次になるほど、信号強度が最大になる位置が伝搬軸から遠くなる(非特許文献2)。ここで、OAMモードの値が大きい方を高次モードと称する。例えば、OAMモード3の信号は、OAMモード0、OAMモード1、OAMモード2の信号より、高次モードである。 The signal of each OAM mode has a different signal strength distribution and a position where the signal strength is maximized for each OAM mode. Specifically, the higher the OAM mode, the farther the position where the signal strength is maximized from the propagation axis (Non-Patent Document 2). Here, the one having a larger value in the OAM mode is referred to as a higher-order mode. For example, the signal in OAM mode 3 is a higher-order mode than the signals in OAM mode 0, OAM mode 1, and OAM mode 2.

図6(3) は、OAMモードごとに信号強度が最大になる位置を円環で示すが、OAMモードが高次になるほど信号強度が最大になる位置が中心軸から遠くなり、かつ伝搬距離に応じてOAMモード多重信号のビーム径が広がり、OAMモードごとに信号強度が最大になる位置を示す円環が大きくなる。 FIG. 6 (3) shows the position where the signal strength is maximized in each OAM mode with a ring. The position where the signal strength is maximized becomes farther from the central axis and the propagation distance becomes higher as the OAM mode becomes higher. Correspondingly, the beam diameter of the OAM mode multiplex signal is widened, and the ring indicating the position where the signal strength is maximized becomes large in each OAM mode.

図7は、OAM多重信号を分離するためのUCAの位相設定例を示す。
図7において、受信側では、UCAの各アンテナ素子の位相を、送信側のアンテナ素子の位相と逆方向になるように設定し、各OAMモードの信号を分離する。すなわち、各アンテナ素子の位相は、図5の場合と逆方向に回転するように設定し、例えばOAMモード2の信号を分離する場合は、位相が2回転するように、各アンテナ素子に時計回りに90度の位相差を設定する。
FIG. 7 shows an example of UCA phase setting for separating OAM multiplex signals.
In FIG. 7, on the receiving side, the phase of each antenna element of the UCA is set to be in the direction opposite to the phase of the antenna element on the transmitting side, and the signals of each OAM mode are separated. That is, the phase of each antenna element is set to rotate in the direction opposite to that in FIG. 5, and for example, when separating the OAM mode 2 signal, each antenna element is rotated clockwise so that the phase rotates twice. Set the phase difference to 90 degrees.

OAM通信は、OAMモードの次数を高くすることにより、理論的には多重数を無限に増やすことができる。しかし、OAMモードが高次になるほど受信電力が低下するため(非特許文献3)、現実的に使えるOAMモードの数には制限がある。例えば、OAMモード±2までは所望の受信電力を満たすが、OAMモード±3より高いOAMモードは所望の受信電力を満たさない場合には、使えるOAMモードが2,1,0,−1,−2の5つに制限されることになる。 In OAM communication, the number of multiplexes can theoretically be increased infinitely by increasing the order of the OAM mode. However, since the received power decreases as the OAM mode becomes higher (Non-Patent Document 3), the number of OAM modes that can be practically used is limited. For example, if the desired received power is satisfied up to OAM mode ± 2, but the desired received power is not satisfied in the OAM mode higher than OAM mode ± 3, the available OAM modes are 2,1,0, -1, −. It will be limited to 5 of 2.

一方、図8に示すように、同心円状に複数のUCAを配置したM(Multi)−UCAを用い、UCA毎に所要の受信電力を満たすOAMモードを使うことで、多重数を増やすことができる。例えば互いに半径が異なる4個のUCA1,UCA2,UCA3,UCA4を用い、各UCAがOAMモード2,1,0,−1,−2を用いてそれぞれ異なる信号列を5多重伝送すると、4個のUCAの合計で20多重伝送が可能となる。この場合、OAMモード間の独立な特性により、各UCAの異なるOAMモード間では干渉が生じないが、各UCAの同一のOAMモード間では受信側にて干渉が生じるため、等化処理等により同一OAMモード間の信号を分離する必要がある。 On the other hand, as shown in FIG. 8, the number of multiplex can be increased by using M (Multi) -UCA in which a plurality of UCAs are arranged concentrically and using the OAM mode that satisfies the required received power for each UCA. .. For example, if four UCA1, UCA2, UCA3, and UCA4 having different radii are used, and each UCA uses OAM mode 2,1,0, -1, -2 to transmit five different signal sequences, four UCAs are transmitted. A total of 20 multiplex transmissions of UCA are possible. In this case, due to the independent characteristics between the OAM modes, interference does not occur between different OAM modes of each UCA, but interference occurs between the same OAM modes of each UCA on the receiving side, so that they are the same due to equalization processing or the like. It is necessary to separate the signals between the OAM modes.

すなわち、M−UCAを構成するm個のUCAは、それぞれn個のOAMモードの信号を生成し、それらを同時に送信することにより、m×nの時系列データ(ストリーム)を空間多重して伝送することができる。上記の例では、送信側から4個のUCAと5個のOAMモードを用いて20ストリームの多重伝送を行った場合に、受信側では4個のUCAで受信するOAMモード2,1,0,−1,−2ごとに4個のストリームの分離処理を行うことで、20ストリームの信号を分離することができる。これにより、高次OAMモードを使わず、複数のUCAで低次OAMモードを複数送信し、同じOAMモード間のみで信号分離処理を行うことで、多重数を増やし、伝送容量を向上することができる。 That is, each of the m UCAs constituting the M-UCA generates n OAM mode signals, and by transmitting them at the same time, the m × n time series data (stream) is spatially multiplexed and transmitted. can do. In the above example, when 20 streams are multiplexed from the transmitting side using 4 UCAs and 5 OAM modes, the receiving side receives OAM modes 2, 1, 0, with 4 UCAs. By performing the separation processing of 4 streams for each -1 and -2, the signals of 20 streams can be separated. As a result, it is possible to increase the number of multiplex and improve the transmission capacity by transmitting multiple low-order OAM modes with multiple UCAs and performing signal separation processing only between the same OAM modes without using the high-order OAM mode. can.

以下、単一のUCAを用いた伝送方法を「OAM通信」と称し、M−UCAを用いた伝送方法を「OAM−MIMO通信」と称する。 Hereinafter, the transmission method using a single UCA will be referred to as "OAM communication", and the transmission method using M-UCA will be referred to as "OAM-MIMO communication".

J. Wang et al., “Terabit free-space data transmission employing orbital angular momentum multiplexing, ”Nature Photonics, Vol.6, pp.488-496, July 2012.J. Wang et al., “Terabit free-space data transmission reagents orbital angular momentum multiplexing,” Nature Photonics, Vol.6, pp.488-496, July 2012. Y. Yan et al.,“High-capacity millimeter-wavecommunications with orbital angular momentum multiplexing,”Nature Commun., vol.5, p.4876, Sep. 2014.Y. Yan et al., “High-capacity millimeter-wavecommunications with orbital angular momentum multiplexing,” Nature Commun., Vol.5, p.4876, Sep. 2014. A. Cagliero et al., “A New Approach to the Link Budget Concept for an OAM Communication Link,”IEEE Antennas and Wireless Propagation Letters, vol.15, pp.568-571. 2016A. Cagliero et al., “A New Approach to the Link Budget Concept for an OAM Communication Link,” IEEE Antennas and Wireless Propagation Letters, vol.15, pp.568-571. 2016

(OAM通信における課題)
OAM通信では、各OAMモードは独立のため、OAMモード間干渉除去は理論的には不要である。しかし、送受信UCAの軸ズレやRF回路の不完全性等により、OAMモード間で干渉が生じる場合には、このOAMモード間干渉を除去する必要が生じる。この干渉除去法として、各OAMモードの送信ストリームを従来のMIMO通信の各ストリームとしてみなし、従来のMIMO等化技術等で干渉除去を行う手法が考えられる。
(Issues in OAM communication)
In OAM communication, since each OAM mode is independent, interference elimination between OAM modes is theoretically unnecessary. However, when interference occurs between OAM modes due to axis misalignment of the transmission / reception UCA, imperfections of the RF circuit, etc., it becomes necessary to eliminate the interference between OAM modes. As this interference removing method, a method is conceivable in which the transmission stream of each OAM mode is regarded as each stream of the conventional MIMO communication, and the interference is removed by the conventional MIMO equalization technology or the like.

しかしながら、この干渉除去法では、多重数が増加すると演算量が多重数の3乗に比例し増加する課題がある。また、この干渉除去法の適用のためには、各OAMモードから他のすべてのOAMモードへの干渉の度合い、すなわちチャネル情報を取得する必要が生じる。そのため、多重数の増加に伴ってチャネル推定の負荷が多重数の2乗に比例して生じる課題がある。例えば、5個のOAMモードを用いて多重通信を行う場合、25個のチャネル情報の取得が必要となる。 However, this interference elimination method has a problem that the amount of calculation increases in proportion to the cube of the multiple number as the number of multiplex increases. Further, in order to apply this interference elimination method, it becomes necessary to acquire the degree of interference from each OAM mode to all other OAM modes, that is, channel information. Therefore, there is a problem that the load of channel estimation is proportional to the square of the number of multiples as the number of multiples increases. For example, when performing multiplex communication using five OAM modes, it is necessary to acquire 25 channel information.

この干渉除去に必要な演算量の増加に対して受信装置の演算能力が一定の場合、送受信可能多重数が制限されて、伝送容量が低下する課題がある。また、一般的に、チャネル情報の取得は、送信装置が既知信号を送り、受信装置がその既知信号を用いてチャネル推定を行う。そのため、既知情報の量が増えると、送受信するデータ量が減ることになって伝送容量が低下することになる。また、チャネル推定に必要な演算量も増加する課題がある。また、干渉の度合いを周期的に把握し干渉除去処理を適応的に行う必要がある。 When the computing power of the receiving device is constant with respect to the increase in the amount of computing required for removing the interference, there is a problem that the number of transmit and receive multiplex is limited and the transmission capacity is reduced. Further, in general, in the acquisition of channel information, the transmitting device sends a known signal, and the receiving device estimates the channel using the known signal. Therefore, as the amount of known information increases, the amount of data to be transmitted and received decreases, and the transmission capacity decreases. In addition, there is a problem that the amount of calculation required for channel estimation also increases. In addition, it is necessary to periodically grasp the degree of interference and perform the interference removal process adaptively.

(OAM−MIMO通信における課題)
送受信装置がそれぞれ、M−UCAを用いて多重伝送を行うOAM−MIMO通信では、理論的には、同一のOAMモード間の信号分離処理のみで、すべてのストリームの分離が可能である。ここで、同一のOAMモード間の信号分離処理は、同一のOAMモード間のチャネル情報を用いて、ZF(zero forcing)やMMSE(minimum mean square error) 手法など一般的に使われる等化手法と、MLD(Maximum likelihood decoding)、MDD(Minimum distance decoding)、VD(Viterbi decoder )等の無線通信システムにおいて、一般的に用いられる等化・分離手法が想定される。
(Issues in OAM-MIMO communication)
In OAM-MIMO communication in which each transmitter / receiver performs multiplex transmission using M-UCA, theoretically, all streams can be separated only by signal separation processing between the same OAM modes. Here, the signal separation processing between the same OAM modes is performed by using the channel information between the same OAM modes as a commonly used equalization method such as ZF (zero forcing) or MMSE (minimum mean square error) method. , MLD (Maximum likelihood decoding), MDD (Minimum distance decoding), VD (Viterbi decoder) and other wireless communication systems, an equalization / separation method generally used is assumed.

しかしながら、軸ズレやRF回路等によりOAMモード間干渉が生じると、同一OAMモード間の信号分離以外にも、OAM通信における課題と同様に、異なるOAMモード間の干渉除去処理を行う必要が生じる。この干渉除去法として、M−UCAの各OAMモードの送信ストリームを従来のMIMO通信の各ストリームとしてみなし、従来のMIMO等化技術等で干渉除去を行う手法が考えられる。しかしながら、この干渉除去法では、OAM通信における課題と同様に、多重数が増加すると演算量が多重数の3乗に比例し増加し、チャネル推定の負荷が多重数の2乗に比例して増加する課題がある。これらにより、伝送容量が低下する課題がある。また、干渉の度合いを周期的に把握し干渉除去処理を適応的に行う必要がある。 However, when interference between OAM modes occurs due to axis misalignment, an RF circuit, or the like, it becomes necessary to perform interference elimination processing between different OAM modes in addition to signal separation between the same OAM modes, as in the problem of OAM communication. As this interference removing method, a method is conceivable in which the transmission stream of each OAM mode of M-UCA is regarded as each stream of the conventional MIMO communication, and the interference is removed by the conventional MIMO equalization technique or the like. However, in this interference elimination method, as in the problem of OAM communication, when the number of multiples increases, the amount of calculation increases in proportion to the cube of the number of multiples, and the load of channel estimation increases in proportion to the square of the number of multiples. There is a problem to be done. As a result, there is a problem that the transmission capacity is reduced. In addition, it is necessary to periodically grasp the degree of interference and perform the interference removal process adaptively.

このように、OAM通信およびOAM−MIMO通信において、OAMモード間干渉が生じる場合、多重数の増加に伴いOAMモード間干渉除去に必要な演算量が増加する。また、OAMモード間干渉除去のため必要なチャネル推定負荷も増加する。 As described above, when interference between OAM modes occurs in OAM communication and OAM-MIMO communication, the amount of calculation required for removing interference between OAM modes increases as the number of multiplexes increases. It also increases the channel estimation load required to eliminate interference between OAM modes.

本発明は、OAM通信およびOAM−MIMO通信において、OAMモード間干渉が生じる場合に、多重数の増加に伴いOAMモード間干渉除去に必要な演算量を削減し、さらにOAMモード間干渉除去に必要なチャネル推定負荷も軽減することができるOAM多重通信システムおよびOAM多重通信方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention reduces the amount of calculation required for removing interference between OAM modes as the number of multiplexes increases when interference between OAM modes occurs in OAM communication and OAM-MIMO communication, and is further required for removing interference between OAM modes. It is an object of the present invention to provide an OAM multiplex communication system and an OAM multiplex communication method capable of reducing a various channel estimation load.

第1−1の発明は、送信装置のUCAで複数のOAMモードの信号を生成して送信し、受信装置のUCAで複数のOAMモードの信号を受信して分離し、OAMモード数の信号を空間多重伝送するOAM多重通信システムにおいて、受信装置は、OAMモード間のチャネル情報を用いて、所定の閾値1より大きい干渉を及ぼすOAMモード間を判定し、該所定の閾値1より大きい干渉を及ぼすOAMモード組数に応じて指定されたOAMモード間の干渉除去処理を行う干渉除去手段を備える。 Invention of the first-1, generates a plurality of OAM mode signals in UCA transmission device transmits, receives and separates the plurality of OAM mode signals in UCA receiver, the OAM mode number of signals In the OAM multiplex communication system for spatial multiplex transmission, the receiving device uses the channel information between the OAM modes to determine between the OAM modes that cause interference greater than a predetermined threshold value 1, and exerts interference greater than the predetermined threshold value 1. An interference removing means for performing interference removing processing between OAM modes specified according to the number of OAM mode sets is provided.

第1−2の発明は、送信装置のUCAで複数のOAMモードの信号を生成して送信し、受信装置のUCAで複数のOAMモードの信号を受信して分離し、OAMモード数の信号を空間多重伝送するOAM多重通信システムにおいて、受信装置は、OAMモード間のチャネル情報を用いて、所定の閾値1より大きい干渉を及ぼすOAMモード間を判定し、そのOAMモード間の干渉除去処理を行う干渉除去手段を備え、干渉除去手段は、各OAMモード間の干渉信号電力を計算し、その最大干渉信号電力が所定の閾値1以下の場合は、OAMモード間の干渉除去処理を行わずに、各OAMモードの受信信号の復調処理を行う処理手段1と、各OAMモード間の干渉信号電力を計算し、その干渉信号電力が閾値1より大きいOAMモード組数が所定の閾値2以下の場合は、干渉信号電力が閾値1以下のOAMモード間を除くOAMモード間のみの干渉除去処理を行い、各OAMモードの受信信号の復調処理を行う処理手段2と、各OAMモード間の干渉信号電力を計算し、その干渉信号電力が閾値1より大きいOAMモード組数が所定の閾値2より大きい場合は、各OAMモードのすべての受信信号とすべてのOAMモード間のチャネル情報を用いて干渉除去処理を行い、各OAMモードの受信信号の復調処理を行う処理手段3とを備える。 In the first and second inventions, a plurality of OAM mode signals are generated and transmitted by the UCA of the transmitting device, and a plurality of OAM mode signals are received and separated by the UCA of the receiving device, and the signals of the number of OAM modes are transmitted. In the OAM multiplex communication system for spatial multiplex transmission, the receiving device uses the channel information between the OAM modes to determine between the OAM modes that cause interference larger than a predetermined threshold value 1, and performs interference elimination processing between the OAM modes. The interference removing means is provided, and the interference removing means calculates the interference signal power between each OAM mode, and when the maximum interference signal power is equal to or less than a predetermined threshold value 1, the interference removing processing between the OAM modes is not performed. When the processing means 1 that demolishes the received signal of each OAM mode and the interference signal power between each OAM mode are calculated and the number of OAM mode sets whose interference signal power is larger than the threshold value 1 is equal to or less than a predetermined threshold value 2. , Interference signal power between the processing means 2 that performs interference removal processing only between OAM modes except between OAM modes whose interference signal power is a threshold value of 1 or less and demolishes the received signal of each OAM mode, and each OAM mode. When the number of OAM mode sets whose interference signal power is larger than the threshold value 1 is larger than the predetermined threshold value 2, the interference removal process is performed using all the received signals in each OAM mode and the channel information between all OAM modes. It is provided with a processing means 3 for performing the demodulation processing of the received signal in each OAM mode.

第1−3の発明は、送信装置のUCAで複数のOAMモードの信号を生成して送信し、受信装置のUCAで複数のOAMモードの信号を受信して分離し、OAMモード数の信号を空間多重伝送するOAM多重通信システムにおいて、受信装置は、OAMモード間のチャネル情報を用いて、所定の閾値1より大きい干渉を及ぼすOAMモード間を判定し、そのOAMモード間の干渉除去処理を行う干渉除去手段を備え、干渉除去手段は、所定の時間間隔ごとにすべてのOAMモード間のチャネル情報を取得し、その区間は、所定の閾値1より大きい干渉を及ぼすOAMモード間のみのチャネル情報を取得する構成である。 In the first to third inventions, the UCA of the transmitting device generates and transmits a plurality of OAM mode signals, and the UCA of the receiving device receives and separates the plurality of OAM mode signals, and outputs the signals of the number of OAM modes. In the OAM multiplex communication system for spatial multiplex transmission, the receiving device uses the channel information between the OAM modes to determine between the OAM modes that cause interference larger than a predetermined threshold value 1, and performs interference elimination processing between the OAM modes. The interference removing means includes the interference removing means, and the interference removing means acquires the channel information between all the OAM modes at a predetermined time interval, and the interval obtains the channel information only between the OAM modes which causes interference larger than a predetermined threshold 1. It is a configuration to acquire.

第2の発明は、同心円状に配置した複数のUCAからなるM−UCAを送信装置と受信装置に備え、送信装置の各UCAでそれぞれ複数のOAMモードの信号を生成して送信し、受信装置の各UCAでそれぞれ複数のOAMモードの信号を受信して分離し、UCA数×OAMモード数の信号を空間多重伝送するOAM多重通信システムにおいて、受信装置は、送信装置は各UCAの各OAMモード間のチャネル情報を用いて、各UCAで受信する同一OAMモード間の信号分離を行うとともに、所定の閾値3より大きい干渉を及ぼすOAMモード間を判定し、そのOAMモード間の干渉除去処理を行う干渉除去手段を備える。 In the second invention, an M-UCA composed of a plurality of UCAs arranged concentrically is provided in a transmitting device and a receiving device, and each UCA of the transmitting device generates and transmits a plurality of OAM mode signals, and the receiving device. In the OAM multiplex communication system in which each UCA receives and separates a plurality of OAM mode signals and spatially multiplex-transmits a signal of the number of UCA × the number of OAM modes, the receiving device and the transmitting device are each OAM mode of each UCA. Using the channel information between them, the signals are separated between the same OAM modes received by each UCA, the OAM modes that cause interference larger than a predetermined threshold value 3 are determined, and the interference elimination processing between the OAM modes is performed. Provided with interference removing means.

第2の発明のOAM多重通信システムにおいて、干渉除去手段は、複数のUCAの各OAMモード間の干渉信号電力を計算し、その最大干渉信号電力が所定の閾値3以下の場合は、OAMモード間の干渉除去処理を行わずに、各UCAにおける同一OAMモード間の等化処理による信号分離処理を行い、分離後の各OAMモードの受信信号の復調処理を行う処理手段1と、複数のUCAの各OAMモード間の干渉信号電力を計算し、その干渉信号電力が閾値3より大きいOAMモード組数が所定の閾値4以下の場合は、干渉信号電力が閾値3以下のOAMモード間を除くOAMモード間のみの干渉除去処理を行い、各UCAの各OAMモードの受信信号の復調処理を行う処理手段2と、複数のUCAの各OAMモード間の干渉信号電力を計算し、その干渉信号電力が閾値3より大きいOAMモード組数が所定の閾値4より大きい場合は、各UCAの各OAMモードのすべての受信信号と、すべてUCAのOAMモード間のチャネル情報を用いて干渉除去処理を行い、各UCAの各OAMモードの受信信号の復調処理を行う処理手段3とを備える。 In the OAM multiplex communication system of the second invention, the interference removing means calculates the interference signal power between each OAM mode of a plurality of UCAs, and when the maximum interference signal power is 3 or less a predetermined threshold value, between the OAM modes. A processing means 1 that performs signal separation processing by equalization processing between the same OAM modes in each UCA and demolishes the received signal of each OAM mode after separation, and a plurality of UCAs. The interference signal power between each OAM mode is calculated, and when the number of OAM mode sets whose interference signal power is larger than the threshold 3 is 4 or less, the OAM mode excluding the OAM modes whose interference signal power is 3 or less is the threshold. Interference signal power between the processing means 2 that performs interference removal processing only between UCAs and demolishes the received signal of each OAM mode of each UCA and each OAM mode of a plurality of UCAs is calculated, and the interference signal power is the threshold value. When the number of OAM mode sets larger than 3 is larger than the predetermined threshold value 4, interference elimination processing is performed using all received signals of each OAM mode of each UCA and channel information between all OAM modes of UCA, and each UCA is performed. The processing means 3 for demolishing the received signal of each OAM mode of the above is provided.

第2の発明のOAM多重通信システムにおいて、干渉除去手段は、所定の時間間隔ごとにすべてのOAMモード間のチャネル情報を取得し、その区間は、所定の閾値3より大きい干渉を及ぼすOAMモード間のみのチャネル情報を取得する構成である。 In the OAM multiplex communication system of the second invention, the interference removing means acquires channel information between all OAM modes at predetermined time intervals, and the interval is between OAM modes that causes interference larger than a predetermined threshold value 3. It is a configuration to acquire only channel information.

第3−1の発明は、送信装置のUCAで複数のOAMモードの信号を生成して送信し、受信装置のUCAで複数のOAMモードの信号を受信して分離し、OAMモード数の信号を空間多重伝送するOAM多重通信方法において、受信装置は、OAMモード間のチャネル情報を用いて、所定の閾値1より大きい干渉を及ぼすOAMモード間を判定し、該所定の閾値1より大きい干渉を及ぼすOAMモード組数に応じて指定されたOAMモード間の干渉除去処理を行う。
第3−2の発明は、送信装置のUCAで複数のOAMモードの信号を生成して送信し、受信装置のUCAで複数のOAMモードの信号を受信して分離し、OAMモード数の信号を空間多重伝送するOAM多重通信方法において、受信装置は、OAMモード間のチャネル情報を用いて、所定の閾値1より大きい干渉を及ぼすOAMモード間を判定し、そのOAMモード間の干渉除去処理を行った上で、各OAMモードの受信信号の復調処理を行い、干渉除去処理では、各OAMモード間の干渉信号電力を計算し、計算された最大干渉信号電力が所定の閾値1以下の場合は、OAMモード間の干渉除去処理を行わず、計算された干渉信号電力が閾値1より大きいOAMモード組数が所定の閾値2以下の場合は、干渉信号電力が閾値1以下のOAMモード間を除くOAMモード間のみの干渉除去処理を行い、計算された干渉信号電力が閾値1より大きいOAMモード組数が所定の閾値2より大きい場合は、各OAMモードのすべての受信信号とすべてのOAMモード間のチャネル情報を用いて干渉除去処理を行う。
第3−3の発明は、送信装置のUCAで複数のOAMモードの信号を生成して送信し、受信装置のUCAで複数のOAMモードの信号を受信して分離し、OAMモード数の信号を空間多重伝送するOAM多重通信方法において、受信装置は、OAMモード間のチャネル情報を用いて、所定の閾値1より大きい干渉を及ぼすOAMモード間を判定し、そのOAMモード間の干渉除去処理を行い、干渉除去処理では、所定の時間間隔ごとにすべてのOAMモード間のチャネル情報を取得し、その区間は、所定の閾値1より大きい干渉を及ぼすOAMモード間のみのチャネル情報を取得する。
Invention of the third -1 generates a plurality of OAM mode signals in UCA transmission device transmits, receives and separates the plurality of OAM mode signals in UCA receiver, the OAM mode number of signals In the OAM multiplex communication method of spatial multiplex transmission, the receiving device uses the channel information between the OAM modes to determine between the OAM modes that cause interference greater than a predetermined threshold value 1, and exerts interference greater than the predetermined threshold value 1. Interference removal processing between OAM modes specified according to the number of OAM mode sets is performed.
In the third invention, a plurality of OAM mode signals are generated and transmitted by the UCA of the transmitting device, and a plurality of OAM mode signals are received and separated by the UCA of the receiving device, and the signals of the number of OAM modes are transmitted. In the OAM multiplex communication method of spatial multiplex transmission, the receiving device uses the channel information between the OAM modes to determine between the OAM modes that cause interference larger than a predetermined threshold value 1, and performs interference elimination processing between the OAM modes. After that, the received signal of each OAM mode is demolished, and in the interference elimination process, the interference signal power between each OAM mode is calculated. If the calculated maximum interference signal power is 1 or less than a predetermined threshold value, When the number of OAM mode sets whose calculated interference signal power is larger than the threshold value 1 is equal to or less than the predetermined threshold value 2 without performing the interference removal processing between the OAM modes, the OAM excluding the OAM modes whose interference signal power is equal to or less than the threshold value 1 Interference removal processing is performed only between modes, and when the calculated interference signal power is larger than the threshold value 1 and the number of OAM mode sets is larger than the predetermined threshold value 2, all the received signals in each OAM mode and all OAM modes are used. Interference removal processing is performed using the channel information.
In the third invention, the UCA of the transmitting device generates and transmits a plurality of OAM mode signals, the UCA of the receiving device receives and separates the plurality of OAM mode signals, and the signals of the number of OAM modes are transmitted. In the OAM multiplex communication method of spatial multiplex transmission, the receiving device uses the channel information between the OAM modes to determine between the OAM modes that cause interference larger than a predetermined threshold value 1, and performs interference elimination processing between the OAM modes. In the interference removal process, channel information between all OAM modes is acquired at predetermined time intervals, and the section acquires channel information only between OAM modes that cause interference larger than a predetermined threshold value 1.

第4の発明は、同心円状に配置した複数のUCAからなるM−UCAを送信装置と受信装置に備え、送信装置の各UCAでそれぞれ複数のOAMモードの信号を生成して送信し、受信装置の各UCAでそれぞれ複数のOAMモードの信号を受信して分離し、UCA数×OAMモード数の信号を空間多重伝送するOAM多重通信方法において、受信装置は、送信装置は各UCAの各OAMモード間のチャネル情報を用いて、各UCAで受信する同一OAMモード間の信号分離を行うとともに、所定の閾値3より大きい干渉を及ぼすOAMモード間を判定し、そのOAMモード間の干渉除去処理を行う。 In the fourth invention, an M-UCA composed of a plurality of UCAs arranged concentrically is provided in a transmitting device and a receiving device, and each UCA of the transmitting device generates and transmits a plurality of OAM mode signals, and the receiving device. In the OAM multiplex communication method in which each UCA receives and separates a plurality of OAM mode signals and spatially multiplex-transmits a signal of the number of UCA × the number of OAM modes, the receiving device and the transmitting device are each OAM mode of each UCA. Using the channel information between them, the signals are separated between the same OAM modes received by each UCA, the OAM modes that cause interference larger than a predetermined threshold value 3 are determined, and the interference elimination processing between the OAM modes is performed. ..

本発明により、OAM多重通信システムにおいて、軸ズレやRF回路の不完全性が生じる場合、多重数が増加しても、干渉除去処理に要する演算量の軽減ができる。また、チャネル情報取得の負荷を軽減することができる。これらにより、低演算量で、多重数を増やすことができ、伝送容量を向上する効果が得られる。 According to the present invention, when the axis shift or the RF circuit is incomplete in the OAM multiplex communication system, the amount of calculation required for the interference elimination process can be reduced even if the number of multiplexes increases. In addition, the load of channel information acquisition can be reduced. As a result, the number of multiplex can be increased with a low amount of calculation, and the effect of improving the transmission capacity can be obtained.

本発明の第1の実施形態における送受信装置の概要を示す図である。It is a figure which shows the outline of the transmission / reception device in 1st Embodiment of this invention. 第1の実施形態における受信装置のデジタル信号処理部23の構成例を示す図である。It is a figure which shows the structural example of the digital signal processing unit 23 of the receiving apparatus in 1st Embodiment. 第1の実施形態における受信装置のデジタル信号処理部23の処理手順例を示すフローチャートである。It is a flowchart which shows the processing procedure example of the digital signal processing unit 23 of the receiving apparatus in 1st Embodiment. 本発明の第2の実施形態における送受信装置の概要を示す図である。It is a figure which shows the outline of the transmission / reception device in the 2nd Embodiment of this invention. OAMモードの信号を生成するためのUCAの位相設定例を示す図である。It is a figure which shows the phase setting example of UCA for generating the signal of OAM mode. OAM多重信号の位相分布と信号強度分布の例を示す図である。It is a figure which shows the example of the phase distribution and the signal intensity distribution of the OAM multiplex signal. OAM多重信号を分離するためのUCAの位相設定例を示す図である。It is a figure which shows the phase setting example of UCA for separating the OAM multiplex signal. OAM多重通信システムのM−UCAの構成例を示す図である。It is a figure which shows the configuration example of M-UCA of the OAM multiplex communication system.

以下に示す実施形態では、単一のUCAまたはM−UCAで構成される送信アンテナと受信アンテナの中心は、GPS情報やその他計測手法を用いてそれぞれの伝搬方向が一致し、送信アンテナと受信アンテナは伝搬直交平面に配置されるものとする。しかしながら、GPS情報の誤差やそのたアンテナ配置の誤差により、送信アンテナと受信アンテナの中心のズレ(軸ズレ)が起こり得る場合を想定する。 In the embodiment shown below, the center of the transmitting antenna and the receiving antenna composed of a single UCA or M-UCA have the same propagation direction using GPS information or other measurement methods, and the transmitting antenna and the receiving antenna have the same propagation direction. Is arranged in the propagation orthogonal plane. However, it is assumed that the center of the transmitting antenna and the receiving antenna may be displaced (axis deviation) due to an error of GPS information or an error of the antenna arrangement.

(第1の実施形態)
第1の実施形態は、OAM通信における課題を解決する実施形態である。
図1は、本発明の第1の実施形態における送受信装置の概要を説明する。図1(1),(2) は、OAMモードn〜OAMモード−nを伝送する場合における送信装置と受信装置を示す。
(First Embodiment)
The first embodiment is an embodiment that solves a problem in OAM communication.
FIG. 1 describes an outline of a transmission / reception device according to the first embodiment of the present invention. FIGS. 1 (1) and 1 (2) show a transmitting device and a receiving device in the case of transmitting OAM mode n to OAM mode −n.

図1(1) において、送信装置は、デジタル信号処理部11、RF処理部12、送信アンテナ部13を備える。デジタル信号処理部11は、データの変調や複数のOAMモードで送信するストリーム生成などの通信に必要なデジタル信号処理を行う。RF処理部12は、周波数変換、RFフィルタリングなどのアナログ処理を行う。送信アンテナ部13は、UCAにより複数のストリームを送信する。 In FIG. 1 (1), the transmitting device includes a digital signal processing unit 11, an RF processing unit 12, and a transmitting antenna unit 13. The digital signal processing unit 11 performs digital signal processing necessary for communication such as data modulation and stream generation to be transmitted in a plurality of OAM modes. The RF processing unit 12 performs analog processing such as frequency conversion and RF filtering. The transmitting antenna unit 13 transmits a plurality of streams by UCA.

図1(2) において、受信装置は、受信アンテナ部21、RF処理部22、デジタル信号処理部23を備える。受信アンテナ部21は、UCAにより複数のOAMモードの信号を受信する。RF処理部22は、受信信号の周波数変換、RFフィルタリングなどのアナログ処理を行う。 In FIG. 1 (2), the receiving device includes a receiving antenna unit 21, an RF processing unit 22, and a digital signal processing unit 23. The receiving antenna unit 21 receives a plurality of OAM mode signals by UCA. The RF processing unit 22 performs analog processing such as frequency conversion of the received signal and RF filtering.

ここで、送信アンテナ部13および受信アンテナ部21は、OAM通信の場合は、単一のUCAで構成される。デジタル信号処理部23は、SIC等によりOAMモード間の干渉除去処理を行う。チャネル推定を行う際には、送信装置のデジタル信号処理部11は、既知信号を生成し送信し、受信装置のデジタル信号処理部23は、この既知信号の情報を用いて,チャネル推定を行う。 Here, the transmitting antenna unit 13 and the receiving antenna unit 21 are composed of a single UCA in the case of OAM communication. The digital signal processing unit 23 performs interference removal processing between OAM modes by SIC or the like. When performing channel estimation, the digital signal processing unit 11 of the transmitting device generates and transmits a known signal, and the digital signal processing unit 23 of the receiving device uses the information of the known signal to perform channel estimation.

図2は、第1の実施形態における受信装置のデジタル信号処理部23の構成例を示す。 図2において、デジタル信号処理部23は、既知信号・データ信号分離部231と、チャネル推定部232と、干渉除去処理判定部233と、復調処理部234と、干渉除去処理部235から構成かれる。既知信号・データ信号分離部231は、RF処理部22から入力した信号を既知信号とデータ信号に分離し、データ信号を復調処理部234に出力し、既知信号をチャネル推定部232に出力する。チャネル推定部232は、既知信号を用いてOAMモード間のチャネル推定を行い、その結果を干渉除去処理判定部233と復調処理部234と干渉除去処理部235に出力する。 FIG. 2 shows a configuration example of the digital signal processing unit 23 of the receiving device according to the first embodiment. In FIG. 2, the digital signal processing unit 23 is composed of a known signal / data signal separation unit 231, a channel estimation unit 232, an interference removal processing determination unit 233, a demodulation processing unit 234, and an interference removal processing unit 235. The known signal / data signal separation unit 231 separates the signal input from the RF processing unit 22 into a known signal and a data signal, outputs the data signal to the demodulation processing unit 234, and outputs the known signal to the channel estimation unit 232. The channel estimation unit 232 performs channel estimation between OAM modes using known signals, and outputs the result to the interference removal processing determination unit 233, the demodulation processing unit 234, and the interference removal processing unit 235.

干渉除去処理判定部233は、チャネル推定の結果と干渉除去処理部235の出力結果を参照し、干渉除去処理の有無を判定し、その結果をチャネル推定部232と、干渉除去処理部235と、復調処理部234に出力する。復調処理部234は、干渉除去処理判定部233の結果を参照し、チャネル推定結果を用いてデータ信号の復調処理を行い、その結果を外部に出力する。同時に、入力データと復調結果を干渉除去処理部235に出力する。干渉除去処理部235は、干渉除去処理判定部233の判定結果を参照し、チャネル推定の結果と復調処理部234の出力信号を用いて干渉除去処理を行う。 The interference removal processing determination unit 233 refers to the result of the channel estimation and the output result of the interference removal processing unit 235, determines the presence or absence of the interference removal processing, and determines the presence or absence of the interference removal processing. Output to the demodulation processing unit 234. The demodulation processing unit 234 refers to the result of the interference removal processing determination unit 233, performs demodulation processing of the data signal using the channel estimation result, and outputs the result to the outside. At the same time, the input data and the demodulation result are output to the interference removal processing unit 235. The interference removal processing unit 235 refers to the determination result of the interference removal processing determination unit 233, and performs the interference removal processing using the channel estimation result and the output signal of the demodulation processing unit 234.

図3は、第1の実施形態における受信装置のデジタル信号処理部23の処理手順を示す。
図2および図3において、既知信号・データ信号分離部231は、受信装置のRF処理部22から出力されるOAMモードごとの信号を入力する(S11)。ここで、既知信号は、チャネル推定用既知信号や同期検出用の信号等のデータ信号以外のすべてのコントロール信号を表す。本発明の範囲外である同期検出等の処理は、この既知信号・データ信号分離部231において、あらかじめ決められている通信規格に沿って行われるものにする。本発明では、チャネル推定用の既知信号を対象とする。すなわち、既知信号・データ信号分離部231は、コントロール信号の内、チャネル推定用の既知信号をチャネル推定部232に出力し、コントロール信号以外のデータ信号を復調処理部234に出力する(S12)。OFDMのように、FFT処理が必要な場合は、既知信号・データ信号分離部231は、FFT処理を行ってから既知信号とデータ信号に分離する。
FIG. 3 shows a processing procedure of the digital signal processing unit 23 of the receiving device according to the first embodiment.
In FIGS. 2 and 3, the known signal / data signal separation unit 231 inputs a signal for each OAM mode output from the RF processing unit 22 of the receiving device (S11). Here, the known signal represents all control signals other than the data signal such as the known signal for channel estimation and the signal for synchronization detection. Processing such as synchronization detection, which is outside the scope of the present invention, is performed in the known signal / data signal separation unit 231 in accordance with a predetermined communication standard. In the present invention, a known signal for channel estimation is targeted. That is, the known signal / data signal separation unit 231 outputs a known signal for channel estimation among the control signals to the channel estimation unit 232, and outputs a data signal other than the control signal to the demodulation processing unit 234 (S12). When FFT processing is required as in OFDM, the known signal / data signal separation unit 231 performs FFT processing and then separates the known signal and the data signal.

次に、チャネル推定部232は、既知信号・データ信号分離部231が出力するチャネル推定用の既知信号を用いてチャネル推定を行う(S13)。チャネル推定処理は、既知信号を用いて、すべてのOAMモードからすべてのOAMモードに対するチャネルに関し、ZFやMMSE等の手法で行えばよい。チャネル推定部232は、このチャネル推定処理結果を干渉除去処理判定部233と復調処理部234に出力する。 Next, the channel estimation unit 232 performs channel estimation using the known signal for channel estimation output by the known signal / data signal separation unit 231 (S13). The channel estimation process may be performed by a method such as ZF or MMSE for channels from all OAM modes to all OAM modes using known signals. The channel estimation unit 232 outputs the channel estimation processing result to the interference removal processing determination unit 233 and the demodulation processing unit 234.

干渉除去処理判定部233は、各OAMモード間のチャネル推定結果を用いて、各OAMモード間の干渉信号電力を計算する(S14)。この干渉信号電力は、チャネル推定の結果の値の絶対値の2乗等の尺度で計算すればよい。各OAMモード間の干渉信号電力の最大値である最大干渉信号電力が、所定の閾値1より大きいか否かを判定する(S15)。最大干渉信号電力≦閾値1の場合は、パターン1−1の復調処理を行う(S16)。最大干渉信号電力>閾値1の場合は、各OAMモード間の干渉信号電力が閾値1より大きいOAMモード組の数が、所定の閾値2より大きいか否かを判定する(S17, S18)。OAMモード組数≦閾値2の場合は、パターン1−2の復調処理を行う(S19)。OAMモード組数>閾値2の場合は、パターン1−3の処理を行う(S23)。 The interference removal processing determination unit 233 calculates the interference signal power between the OAM modes using the channel estimation result between the OAM modes (S14). This interference signal power may be calculated on a scale such as the square of the absolute value of the value of the result of channel estimation. It is determined whether or not the maximum interference signal power, which is the maximum value of the interference signal power between the OAM modes, is larger than the predetermined threshold value 1 (S15). When the maximum interference signal power ≤ threshold value 1, the demodulation process of pattern 1-1 is performed (S16). When the maximum interference signal power> the threshold value 1, it is determined whether or not the number of OAM mode sets in which the interference signal power between the OAM modes is larger than the threshold value 1 is larger than the predetermined threshold value 2 (S17, S18). When the number of OAM mode sets ≤ threshold value 2, the demodulation process of pattern 1-2 is performed (S19). When the number of OAM mode sets> the threshold value 2, the processing of patterns 1-3 is performed (S23).

このパターン1−1,パターン1−2,パターン1−3の判定結果は、チャネル推定部232と復調処理部234と干渉除去処理部235に入力する。 The determination results of patterns 1-1, pattern 1-2, and pattern 1-3 are input to the channel estimation unit 232, the demodulation processing unit 234, and the interference removal processing unit 235.

すなわち、パターン1−1の復調処理(S16)では、受信側における各OAMモード間の最大干渉信号電力が所定の閾値1以下の場合に、OAMモード間の独立性が保たれていると判断し、OAMモード間の干渉除去処理を行わずに、各OAMモードの受信信号の復調処理を行う。 That is, in the demodulation process (S16) of the pattern 1-1, it is determined that the independence between the OAM modes is maintained when the maximum interference signal power between the OAM modes on the receiving side is equal to or less than a predetermined threshold value 1. , Demodulation processing of the received signal of each OAM mode is performed without performing interference removal processing between OAM modes.

パターン1−2の復調処理(S19)では、受信側における各OAMモード間の最大干渉信号電力が所定の閾値1より大きく、かつ干渉信号電力が閾値1より大きいOAMモード組数が所定の閾値2以下の場合に、まずOAMモード間の干渉除去処理を行わずに各OAMモードの受信信号の復調を行う。次に、復調した信号を用いて元の信号のレプリカを生成し(S20)、このレプリカとチャネル推定情報を用いて、各OAMモード間でSIC等の手法により干渉除去処理を行い(S21)、その後に各OAMモードの受信信号の復調処理を行う(S22)。このとき、演算量の削減のため、干渉信号電力が閾値1以下OAMモード間の干渉除去処理は行わない。これは、それらのOAMモード間の干渉は小さいため、干渉除去処理をしなくても、性能劣化は許容範囲に収まるためである。 In the demodulation process (S19) of pattern 1-2, the number of OAM mode sets in which the maximum interference signal power between the OAM modes on the receiving side is larger than the predetermined threshold value 1 and the interference signal power is larger than the threshold value 1 is the predetermined threshold value 2. In the following cases, first, the received signal of each OAM mode is demodulated without performing the interference removal processing between the OAM modes. Next, a replica of the original signal is generated using the demodulated signal (S20), and interference elimination processing is performed between each OAM mode by a method such as SIC using this replica and the channel estimation information (S21). After that, the demodulation process of the received signal of each OAM mode is performed (S22). At this time, in order to reduce the amount of calculation, the interference removal processing between the OAM modes in which the interference signal power is equal to or less than the threshold value 1 is not performed. This is because the interference between these OAM modes is small, and the performance deterioration is within the permissible range even if the interference removal processing is not performed.

パターン1−3の処理では、受信側における各OAMモード間の最大干渉信号電力が所定の閾値1より大きく、かつ干渉信号電力が閾値1より大きいOAMモード組数が所定の閾値2より大きい場合に、各OAMモードのすべての受信信号とすべてのOAMモード間のチャネル情報を用いて、ZF等の等化手法により干渉除去処理を行い(S23)、その後に各OAMモードの受信信号の復調処理を行う(S24)。 In the processing of pattern 1-3, when the maximum interference signal power between each OAM mode on the receiving side is larger than the predetermined threshold value 1 and the number of OAM mode sets whose interference signal power is larger than the threshold value 1 is larger than the predetermined threshold value 2. , Interference removal processing is performed by an equalization method such as ZF using all the received signals of each OAM mode and the channel information between all OAM modes (S23), and then the demodulation processing of the received signals of each OAM mode is performed. Do (S24).

ここで、チャネル推定部232は、パターン1−1とパターン1−2の場合、復調処理と干渉除去処理に必要なチャネルのみのチャネル推定処理を行うことで、演算量を削減する。すなわち、あらかじめ決められた周期ごとには、すべてのOAMモードのすべてのOAMモードに対するチャネル推定処理を行うが、その周期内では、復調処理と干渉除去処理に必要なチャネルのみのチャネル推定処理を行う。例えば、パターン1−1の場合、チャネル情報取得の負荷を削減するため、異なるOAMモード間のチャネル推定処理を省略してもよい。また、パターン1−2の場合も、SIC処理を行わないOAMモード間のチャネル推定処理を省略してもよい。このようにチャネル推定部232が必要なチャネルの推定処理のみを行う場合、干渉除去処理判定部233は、チャネル推定部232が行ったチャネル推定計算結果のみを用いて、パターン1−1〜1−3の判定を行う。 Here, in the case of the pattern 1-1 and the pattern 1-2, the channel estimation unit 232 reduces the amount of calculation by performing the channel estimation process of only the channels necessary for the demodulation process and the interference removal process. That is, the channel estimation processing for all OAM modes of all OAM modes is performed for each predetermined cycle, but within that cycle, the channel estimation processing for only the channels required for the demodulation processing and the interference removal processing is performed. .. For example, in the case of pattern 1-1, the channel estimation process between different OAM modes may be omitted in order to reduce the load of channel information acquisition. Further, also in the case of pattern 1-2, the channel estimation process between the OAM modes in which the SIC process is not performed may be omitted. When the channel estimation unit 232 only performs the necessary channel estimation processing in this way, the interference elimination processing determination unit 233 uses only the channel estimation calculation results performed by the channel estimation unit 232 to perform patterns 1-1 to 1-. Judgment of 3 is made.

(復調処理部234の動作)
次に、復調処理部234の動作について詳しく説明する。復調処理部234は、既知信号・データ信号分離部231が出力するデータ信号と、チャネル推定部232が出力するチャネル情報を用いて復調処理を行う。ここで、干渉除去処理判定部233から復調処理部234にパターン1−1の結果が入力すると、他のOAMモードからの干渉除去処理を行わずに、各OAMモードの受信信号の復調処理を行う。
(Operation of demodulation processing unit 234)
Next, the operation of the demodulation processing unit 234 will be described in detail. The demodulation processing unit 234 performs demodulation processing using the data signal output by the known signal / data signal separation unit 231 and the channel information output by the channel estimation unit 232. Here, when the result of the pattern 1-1 is input from the interference removal processing determination unit 233 to the demodulation processing unit 234, the reception signal of each OAM mode is demodulated without performing the interference removal processing from the other OAM modes. ..

また、干渉除去処理判定部233にパターン1−2の結果が入力すると、まず各OAMモードの受信信号の復調処理を行い、その結果を干渉除去処理部235に出力する。また、パターン1−2の場合は、既知信号・データ信号分離部231が復調処理部234に出力したデータ信号も合わせて干渉除去処理部235に出力する。ここで、干渉除去処理部235は、各OAMモード間でSIC等の手法により干渉除去処理を行い、その結果を再び復調処理部234に入力する。復調処理部234は、干渉除去処理部235から入力する信号を用いて、再び各OAMモードの復調処理を行う。この過程を繰り返すことで、干渉除去処理の性能を向上することができる。この繰り返し処理において、繰り返しの数は、あらかじめ決められた数分だけ行うこともできるし、干渉除去処理部235が繰り返し処理をする中で、n回目のレプリカとn+1回目のレプリカの差があらかじめ決められた閾値より小さくなると繰り返し処理を終了することもできる。 When the result of the pattern 1-2 is input to the interference removal processing determination unit 233, the reception signal of each OAM mode is demodulated first, and the result is output to the interference removal processing unit 235. Further, in the case of the pattern 1-2, the data signal output by the known signal / data signal separation unit 231 to the demodulation processing unit 234 is also output to the interference removal processing unit 235. Here, the interference removal processing unit 235 performs interference removal processing between each OAM mode by a method such as SIC, and inputs the result to the demodulation processing unit 234 again. The demodulation processing unit 234 performs demodulation processing of each OAM mode again using the signal input from the interference removal processing unit 235. By repeating this process, the performance of the interference removal process can be improved. In this iterative process, the number of iterations can be determined by a predetermined number, or the difference between the nth replica and the n + 1th replica is predetermined while the interference removal processing unit 235 performs the iterative process. The iterative process can be terminated when the value becomes smaller than the threshold value.

また、干渉除去処理判定部233にパターン1−3の結果が入力すると、各OAMモード間のチャネル情報を用いて、ZFやMMSE法により等化処理を行い、干渉除去処理を行ってから、各OAMモードの受信信号の復調処理を行う。 Further, when the result of the pattern 1-3 is input to the interference elimination processing determination unit 233, the channel information between each OAM mode is used to perform equalization processing by the ZF or MMSE method, and after performing the interference elimination processing, each Demodulates the received signal in OAM mode.

(干渉除去処理部235の動作)
次に、干渉除去処理部235の動作について詳しく説明する。干渉除去処理部235は、干渉除去処理判定部233からパターン1−2の結果が入力すると、復調処理部234からの入力信号と、チャネル推定部232からのチャネル推定結果を用いて、干渉除去処理を行う。ここで、干渉除去処理判定部233の判定結果がパターン1−2の場合、干渉除去処理を要するOAMモード組に関する情報を干渉除去処理部235に入力する。また、チャネル推定部232は、このパターン1−2の場合、干渉除去処理を要するOAMモード組のみのチャネル推定結果を干渉除去処理部235に入力してもよい。干渉除去処理部235は、まず復調処理部234が出力する復調後の信号とチャネル推定結果を用いて、元の信号のレプリカを生成する。ここで生成するレプリカは、干渉を及ぼすと判断されるOAMモード組のみを生成すればよい。例えば、OAMモード1からOAMモード2への干渉量が閾値1より高い場合、OAMモード1の復調信号と、OAMモード1からOAMモード2へのチャネル情報を用いて、OAMモード1からOAMモード2への干渉に相当するレプリカを生成する。
(Operation of interference removal processing unit 235)
Next, the operation of the interference removing processing unit 235 will be described in detail. When the result of pattern 1-2 is input from the interference removal processing determination unit 233, the interference removal processing unit 235 uses the input signal from the demodulation processing unit 234 and the channel estimation result from the channel estimation unit 232 to perform interference removal processing. I do. Here, when the determination result of the interference removal processing determination unit 233 is pattern 1-2, the information regarding the OAM mode set that requires the interference removal processing is input to the interference removal processing unit 235. Further, in the case of this pattern 1-2, the channel estimation unit 232 may input the channel estimation result of only the OAM mode set that requires the interference removal processing to the interference removal processing unit 235. The interference removal processing unit 235 first generates a replica of the original signal by using the demodulated signal output by the demodulation processing unit 234 and the channel estimation result. The replica generated here need only generate the OAM mode set that is determined to cause interference. For example, when the amount of interference from OAM mode 1 to OAM mode 2 is higher than the threshold value 1, OAM mode 1 to OAM mode 2 is used by using the demodulated signal of OAM mode 1 and the channel information from OAM mode 1 to OAM mode 2. Create a replica that corresponds to the interference with.

次に、データ信号のOAMモード2の信号からこのレプリカを引き算する。このように、干渉除去処理の対象となるOAMモードのレプリカを生成し、データ信号から引き算した結果を再び復調処理部234に出力する。復調処理部234は、干渉除去処理部235から入力する信号を用いて改めて復調処理を行い、その復調結果を再び干渉除去処理部235に入力する。このような過程を繰り返すことにより、干渉除去性能を改善する。この繰り返し処理は、前述のようにあらかじめ決めた数の繰り返し後に終了してもよいし、元のデータ信号からレプリカ信号の引き算後の信号の、各繰り返し過程の差を計算し、その差があらかじめ決めた閾値より小さくなると、繰り返し処理を終了してもよい。また、繰り返しSIC処理に一般的に使われる終了法により終了してもよい。 Next, this replica is subtracted from the OAM mode 2 signal of the data signal. In this way, the replica of the OAM mode to be the target of the interference removal processing is generated, and the result of subtraction from the data signal is output to the demodulation processing unit 234 again. The demodulation processing unit 234 performs demodulation processing again using the signal input from the interference removal processing unit 235, and inputs the demodulation result to the interference removal processing unit 235 again. By repeating such a process, the interference removal performance is improved. This iterative process may be terminated after a predetermined number of iterations as described above, or the difference in each iteration process of the signal after subtraction of the replica signal from the original data signal is calculated, and the difference is obtained in advance. When it becomes smaller than the determined threshold value, the iterative process may be terminated. Further, it may be terminated by a termination method generally used for repetitive SIC processing.

以下、第1の実施形態の処理について数式を用いて説明する。以下の例では、5個のOAMモード−2,−1,0,1,2を用いてOAM通信を行う場合を想定する。なお、送信信号をXi とし、受信信号をYj とする。ここで、iとjは、OAMモードの次数を表す。また、送信OAMモードiと受信OAMモードj間のチャネルをHj,i と表す。なお、送受信信号は、OFDM方式等のように周波数領域にてデータ変復調を行う通信方式を想定するが、SC(single carrier)方式等のように時間領域にてデータを変復調する通信方式への適用も同様に可能である。 Hereinafter, the processing of the first embodiment will be described using mathematical formulas. In the following example, it is assumed that OAM communication is performed using five OAM modes -2, -1, 0, 1, and 2. Let Xi be the transmission signal and Yj be the reception signal. Here, i and j represent the order of the OAM mode. Further, the channels between the transmission OAM mode i and the reception OAM mode j are represented by Hj and i. The transmitted / received signal is assumed to be a communication method that changes and demolishes data in the frequency domain, such as the OFDM method, but is applied to a communication method that changes and demolishes data in the time domain, such as the SC (single carrier) method. Is possible as well.

受信装置のRF処理部22の出力信号は、以下の式(1) のようになる。ここでは、OFDMの複数のキャリアの内、1個のサブキャリアについて記述するが、他のサブキャリアの同様の手法を適用すればよい。なお、送信側がチャネル推定用の信号とデータ信号を時系列に交互に分けて送信する場合は、チャネル推定用の信号間では、チャネルの変動はないと想定する。すなわち、チャネル推定用の信号を用いてチャネル推定を行ってからそのチャネル推定結果を用いて、データ信号の干渉分離・等化・復調処理を行う際には、チャネル情報は変わらないと想定する。また、チャネル推定用の信号とデータ信号の周波数領域に分けて伝送する場合、すなわち、複数のサブキャリアの内、一部のサブキャリアで既知信号を送信し、残りのサブキャリアでデータ信号を送信する場合は、既知信号を用いてチャネル推定を行い、その結果から内挿(interpolation )等の手法によりデータ信号のサブキャリアのチャネル推定を行うものとする。なお、時間領域と周波数領域を合わせて既知信号を挿入する方式も同様に既知信号を用いてチャネル推定を行い、周波数領域では、内挿等によりデータ信号のサブキャリアのチャネル推定を行い、時間領域では、次回の既知信号と間ではチャネルは変わらないと想定してもよい。 The output signal of the RF processing unit 22 of the receiving device is as shown in the following equation (1). Here, one subcarrier is described among the plurality of OFDM carriers, but the same method for other subcarriers may be applied. When the transmitting side alternately transmits the channel estimation signal and the data signal in chronological order, it is assumed that there is no channel variation between the channel estimation signals. That is, it is assumed that the channel information does not change when the channel estimation is performed using the channel estimation signal and then the interference separation / equalization / demodulation processing of the data signal is performed using the channel estimation result. Further, when the signal for channel estimation and the data signal are transmitted separately in the frequency region, that is, a known signal is transmitted by some subcarriers among a plurality of subcarriers, and a data signal is transmitted by the remaining subcarriers. In this case, the channel is estimated using the known signal, and the channel of the subcarrier of the data signal is estimated from the result by a method such as interpolation. Similarly, in the method of inserting a known signal by combining the time domain and the frequency domain, channel estimation is performed using the known signal, and in the frequency domain, the channel estimation of the subcarrier of the data signal is performed by interposition or the like, and the time domain. Then, it may be assumed that the channel does not change from the next known signal.

なお、既知信号とデータ信号の挿入の方法は、本発明の範囲外の各種類の無線通信方式を採用すると想定する。一般的に使われるの無線通信方式は、既知信号でチャネル推定を行い、内挿やチャネルが変動しない前提で、その推定したチャネル情報を用いてデータ信号の等化処理を行っても問題が生じないように設計されているため、前述のように想定してもよい。 It is assumed that the method of inserting the known signal and the data signal adopts each type of wireless communication method outside the scope of the present invention. In a commonly used wireless communication method, a problem arises even if channel estimation is performed using a known signal and data signal equalization processing is performed using the estimated channel information on the premise that interpolation and channels do not fluctuate. Since it is designed so that it does not exist, it may be assumed as described above.

Figure 0006962135
Figure 0006962135

ここで、Nk は、受信側のOAMモードkでの雑音を表す。既知信号・データ信号分離部231は、式(1) が表す受信信号の内、チャネル推定用の既知信号とデータ信号を分離し、チャネル推定部232に入力する。チャネル推定用の送信信号、すなわち、式(1) のXi が既知であるため、チャネル推定部232は受信信号と既知信号を用いて、ZF方法等にチャネル推定を行うことができる。この動作によりすべてのHj,i の推定ができる。このチャネル推定処理の結果は、干渉除去処理判定部233に入力される。 Here, Nk represents the noise in the OAM mode k on the receiving side. The known signal / data signal separation unit 231 separates the known signal for channel estimation and the data signal from the received signals represented by the equation (1), and inputs them to the channel estimation unit 232. Since the transmission signal for channel estimation, that is, Xi of the equation (1) is known, the channel estimation unit 232 can perform channel estimation by the ZF method or the like using the received signal and the known signal. By this operation, all Hj and i can be estimated. The result of this channel estimation process is input to the interference elimination process determination unit 233.

干渉除去処理判定部233は、すべてのHj,i の絶対値(もしくは絶対値の2乗)と、あらかじめ決められた閾値1との比較を行い、パターン1−1、パターン1−2、パターン1−3の判定を行う。 The interference removal processing determination unit 233 compares the absolute values (or the squares of the absolute values) of all Hj and i with the predetermined threshold value 1, and performs pattern 1-1, pattern 1-2, and pattern 1. Make a judgment of -3.

パターン1−1の場合は、他のOAMモードからの干渉を無視してもよいため、復調処理部234は、同一OAMモード間のチャネル情報のみを用いて、チャネル等化処理を行ってから、既知信号・データ信号分離部231から入力するデータ信号に対して復調処理を行う。例えば、ZFによる等化処理の場合、式(2) の復調処理を行う。次に、その結果であるを用いて復調処理を行う。式(2) のXi は、OAMモードiの送信信号の等化処理後の値を表し、式(3) のXi は、式(2) のXi の復調後の信号を表す。なお、Xの上につく「^」や「・」は文中では省略している(以下同様)。また、demod( )は、チャネル符号の復号処理等を含む復調処理を表す。 In the case of pattern 1-1, interference from other OAM modes may be ignored. Therefore, the demodulation processing unit 234 performs channel equalization processing using only the channel information between the same OAM modes, and then performs channel equalization processing. Demodulation processing is performed on the data signal input from the known signal / data signal separation unit 231. For example, in the case of equalization processing by ZF, the demodulation processing of Eq. (2) is performed. Next, the demodulation process is performed using the result. Xi in Eq. (2) represents the value after equalization processing of the transmission signal in OAM mode i, and Xi in Eq. (3) represents the signal after demodulation of Xi in Eq. (2). The "^" and "・" above X are omitted in the text (the same applies hereinafter). Further, demod () represents a demodulation process including a channel code decoding process and the like.

Figure 0006962135
Figure 0006962135

Figure 0006962135
Figure 0006962135

パターン1−2の場合は、まず式(2) のように他の干渉を無視してから各OAMモードの等化処理と復調処理を行い、それらの結果を用いて、レプリカを生成し、干渉除去処理の対象となるOAMモード組の干渉除去処理を行う。ここで、干渉除去処理の対象でないOAMモード間の干渉は雑音とみなす。 In the case of pattern 1-2, first, as shown in Eq. (2), other interference is ignored, then equalization processing and demodulation processing are performed for each OAM mode, and the results are used to generate a replica and interfere. The interference removal process of the OAM mode set that is the target of the removal process is performed. Here, interference between OAM modes that are not subject to interference removal processing is regarded as noise.

例えば、干渉除去処理の対象となるOAMモード組が、(-2,0)、(-2,2)、(-1,1)、(0,-2)、(0,2) 、(1,-1)、(2,-2)の場合を示す。ここで、(i,j) は、送信OAMモードiから受信OAMモードjへの干渉を表す。この場合、SIC処理の対象となる式を式(4) に示す。 For example, the OAM mode sets targeted for interference removal processing are (-2,0), (-2,2), (-1,1), (0, -2), (0,2), (1). The cases of, -1) and (2, -2) are shown. Here, (i, j) represents interference from the transmission OAM mode i to the reception OAM mode j. In this case, the equation to be subjected to the SIC processing is shown in Equation (4).

Figure 0006962135
Figure 0006962135

ここで、干渉除去処理の対象でないOAMモード間の干渉は雑音とみなしたため、式(1) の中の干渉除去処理の対象でないOAMモード間の干渉を表す項は、式(4)では雑音と
して表現されている。すなわち、(Nj)’は、雑音とみなされた干渉を含む受信OAMモ
ードjの雑音を表す。SIC処理後の信号は式(5) のように計算する。
Here, since the interference between the OAM modes that are not the target of the interference removal processing is regarded as noise, the term representing the interference between the OAM modes that are not the target of the interference removal processing in the equation (1) is regarded as noise in the equation (4). It is expressed. That is, (Nj)'represents the noise of the received OAM mode j including the interference regarded as noise. The signal after SIC processing is calculated as shown in Eq. (5).

Figure 0006962135
Figure 0006962135

ここで、mod(Xi )は、送信側のOAMモードiの信号のレプリカである。なお、mod(Xi )は、送信装置が行ったチャネル符号化処理を含む変調処理を表す。次に、干渉除去処理は、式(5) の計算結果(Y-2,Y-1,Y0 ,Y1 ,Y2 )を復調処理部234に入力する。信号復調部234は、式(6) のように等化処理を行う。次に、式(6) の結果を用いて、式(3) で表す復調処理を改めて行う。 Here, mod (Xi) is a replica of the signal of OAM mode i on the transmitting side. Note that mod (Xi) represents a modulation process including a channel coding process performed by the transmitting device. Next, in the interference removal processing, the calculation results (Y-2, Y-1, Y0, Y1, Y2) of the equation (5) are input to the demodulation processing unit 234. The signal demodulation unit 234 performs equalization processing as shown in Eq. (6). Next, using the result of Eq. (6), the demodulation process represented by Eq. (3) is performed again.

Figure 0006962135
Figure 0006962135

このパターン1−2では、このような復調処理とレプリカ生成による干渉処理を繰り返して行う。繰り返しの終了は、前記のように所定回数だけ行ってもよいし、前回の繰り返し処理から、次の繰り返し処理の結果の差分が一定値以内になるまで続けてもよい。たとえば、式(5) のYj 、もしくは式(2) のXi または式(3) のXi の差分から、繰り返し処理の終了を判断してもよい。また、このSIC処理に必要なチャネルのみの推定処理を行うことで、チャネル推定の演算量を軽減することができる。 In this pattern 1-2, such demodulation processing and interference processing by replica generation are repeated. The repetition may be completed a predetermined number of times as described above, or may be continued until the difference between the results of the next repetition processing and the result of the next repetition processing is within a certain value. For example, the end of the iterative process may be determined from the difference between Yj in Eq. (5), Xi in Eq. (2), or Xi in Eq. (3). Further, by performing the estimation processing of only the channels required for this SIC processing, the calculation amount of the channel estimation can be reduced.

パターン1−3の場合は、式(1) のすべての項を用いて、ZFやMMSE等によりすべてのOAMモードの信号に対し、同時に等化処理を行ってから、各OAMモードの復調処理を行う。 In the case of pattern 1-3, all the terms of the equation (1) are used to simultaneously perform equalization processing on all OAM mode signals by ZF, MMSE, etc., and then demodulation processing of each OAM mode is performed. conduct.

このように、軸ズレやRFの不完全性によりOAMモード間の干渉が生じた場合、本発明により各OAMモード間の干渉量を考慮して、その処理を要するOAMモード間のみで行うことにより、干渉除去に必要な演算量を削減することができる。また、チャネル推定の演算量の削減も可能となる。特に、GPSや工学位置調整器なのにより、荒い軸ズレはできたが、精密な軸合わせができなかった場合等、パターン1−2が主となる無線通信環境では、特に演算量の削減効果が大きくなる。また、チャネルの時変動により。パターン1−1,1−2,1−3が時変動する場合、本発明によりチャネル状況に合わせて、適切にOAMモード間干渉除去処理を行うことができるため、常に干渉除去処理をしない手法に比べて性能改善効果が得られ、また、常にすべてのOAMモードに対する干渉除去処理を行う手法に比べて、演算量削減ができる。 In this way, when interference between OAM modes occurs due to axis misalignment or RF imperfections, the amount of interference between each OAM mode is taken into consideration according to the present invention, and the processing is performed only between the OAM modes that require the processing. , The amount of calculation required for interference removal can be reduced. In addition, the amount of calculation for channel estimation can be reduced. In particular, in a wireless communication environment where pattern 1-2 is the main, such as when rough axis misalignment is possible due to GPS or engineering position adjuster, but precise axis alignment is not possible, the effect of reducing the amount of calculation is particularly effective. growing. Also, due to channel time fluctuations. When the patterns 1-1, 1-2, and 1-3 fluctuate with time, the interference removal processing between OAM modes can be appropriately performed according to the channel condition according to the present invention. Compared with this, the performance improvement effect can be obtained, and the amount of calculation can be reduced as compared with the method of always performing the interference removal processing for all OAM modes.

(閾値1と閾値2の設定例)
閾値1と閾値2は、OAM通信の要求性能、チャネルの特性等を考慮し、本発明と別途の手法で決めればよい。
(Example of setting threshold 1 and threshold 2)
The threshold value 1 and the threshold value 2 may be determined by a method different from that of the present invention in consideration of the required performance of OAM communication, the characteristics of the channel, and the like.

例えば、閾値1は、あらかじめ決められているSIR(signal to interference ratio; 干渉と信号の電力比率)から決めることができる。例えば、SINRが10dB以上必要となる設計されたシステムの場合は、閾値1は、信号電力より10dB低くなるように設定される。 For example, the threshold value 1 can be determined from a predetermined SIR (signal to interference ratio). For example, in the case of a designed system that requires SINR of 10 dB or more, the threshold value 1 is set to be 10 dB lower than the signal power.

閾値2は、すべてのOAMモードの等化処理を行う場合と、SIC処理を行う場合の演算量を比較し、SIC処理をする場合の演算量が大きくならないように設定することができる。例えば、5個のOAMモードを用いて通信をする場合、すべてのOAMモードを用いる等化処理の演算量は、OAMモード数5の3乗で 125となる。SIC処理の演算量はSIC処理の手法により異なるが、例えばSIC処理の対象のOAMモード数の 3.5乗の手法を使う場合の等化処理の演算量は、SIC処理の対象のOAMモード数4の 3.5乗で 128となり、5個すべてのOAMモードを用いる等化処理の演算量 125より大きくなるため、閾値2は「3」と設定される。 The threshold value 2 can be set so that the calculation amount in the case of performing the equalization processing of all OAM modes and the calculation amount in the case of performing the SIC processing are compared and the calculation amount in the case of performing the SIC processing does not become large. For example, when communicating using five OAM modes, the amount of calculation for the equalization process using all OAM modes is 125, which is the cube of the number of OAM modes 5. The amount of calculation for SIC processing differs depending on the method of SIC processing. For example, when the method of the 3.5th power of the number of OAM modes to be processed by SIC is used, the amount of calculation for equalization processing is the number of OAM modes 4 to be processed by SIC. The threshold value 2 is set to "3" because it becomes 128 when it is raised to the 3.5th power, which is larger than the calculation amount 125 of the equalization processing using all five OAM modes.

(第2の実施形態)
第2の実施形態は、OAM−MIMO通信における課題を解決する実施形態である。
図4は、本発明の第2の実施形態における送受信装置の概要を説明する。図4(1),(2) は、複数のUCAを用いて、かつ各UCAがOAMモードnからOAMモード−nを伝送する場合における送信装置と受信装置を示す。
(Second Embodiment)
The second embodiment is an embodiment that solves a problem in OAM-MIMO communication.
FIG. 4 describes an outline of the transmission / reception device according to the second embodiment of the present invention. 4 (1) and 4 (2) show a transmitting device and a receiving device when a plurality of UCAs are used and each UCA transmits the OAM mode-n from the OAM mode n.

図4(1) において、送信装置は、デジタル信号処理部31、RF処理部32、送信アンテナ部33を備える。デジタル信号処理部31は、データの変調や複数のUCA#1〜#mから送信する各OAMモードの信号生成などの通信に必要なデジタル信号処理を行う。RF処理部32は、周波数変換、RFフィルタリングなどのアナログ処理を行う。送信アンテナ部33は、複数のUCA#1〜#mから各OAMモードの信号を送信する。 In FIG. 4 (1), the transmitting device includes a digital signal processing unit 31, an RF processing unit 32, and a transmitting antenna unit 33. The digital signal processing unit 31 performs digital signal processing necessary for communication such as data modulation and signal generation in each OAM mode transmitted from a plurality of UCA # 1 to # m. The RF processing unit 32 performs analog processing such as frequency conversion and RF filtering. The transmitting antenna unit 33 transmits signals of each OAM mode from a plurality of UCA # 1 to # m.

図4(2) において、受信装置は、受信アンテナ部41、RF処理部42、デジタル信号処理部43を備える。受信アンテナ部41は、複数のUCA#1〜#mで各OAMモードの信号を受信する。RF処理部32は、周波数変換、RFフィルタリングなどのアナログ処理を行う。 In FIG. 4 (2), the receiving device includes a receiving antenna unit 41, an RF processing unit 42, and a digital signal processing unit 43. The receiving antenna unit 41 receives the signals of each OAM mode by a plurality of UCA # 1 to # m. The RF processing unit 32 performs analog processing such as frequency conversion and RF filtering.

第2の実施形態では、M−UCAを構成するUCAごとに、第1の実施形態と同様のRF処理部32,42、送信アンテナ部33および受信アンテナ部41を備え、デジタル信号処理部43にて本実施形態に必要な信号分離・等化・干渉除去・復調処理を行う構成でもよい。 In the second embodiment, each UCA constituting the M-UCA is provided with the same RF processing units 32 and 42, the transmitting antenna unit 33 and the receiving antenna unit 41 as in the first embodiment, and the digital signal processing unit 43 is provided with the digital signal processing unit 43. The signal separation, equalization, interference removal, and demodulation processing required for the present embodiment may be performed.

ここで、送信アンテナ部33および受信アンテナ部41は、OAM−MIMO通信の場合は、M−UCAで構成される。複数のUCA#1〜#mが送信する同一OAMモードの複数の信号を、デジタル信号処理部43がOAMモードごとにZFやMMSE手法などによる等化処理により分離する。また、第1の実施形態のパターン1−2と同様のパターン2−2の場合は、SIC等による干渉除去処理を行う。チャネル推定を行う際には、送信装置のデジタル信号処理部31が既知信号を生成し送信し、受信装置のデジタル信号処理部43がこの既知信号の情報を用いて,チャネル推定を行う。また、第1の実施形態のパターン1−3と同様のパターン2−3の場合は、すべてのUCAのすべてのOAMモードを用いて干渉除去処理を行う。 Here, the transmitting antenna unit 33 and the receiving antenna unit 41 are composed of M-UCA in the case of OAM-MIMO communication. The digital signal processing unit 43 separates a plurality of signals in the same OAM mode transmitted by the plurality of UCA # 1 to # m by equalization processing by a ZF or MMSE method for each OAM mode. Further, in the case of pattern 2-2 similar to pattern 1-2 of the first embodiment, interference removal processing by SIC or the like is performed. When performing channel estimation, the digital signal processing unit 31 of the transmitting device generates and transmits a known signal, and the digital signal processing unit 43 of the receiving device uses the information of the known signal to perform channel estimation. Further, in the case of the pattern 2-3 similar to the pattern 1-3 of the first embodiment, the interference removal process is performed using all the OAM modes of all the UCAs.

受信装置のデジタル信号処理部43の構成は、図2に示す第1の実施形態のデジタル信号処理部23と同様である。受信装置のデジタル信号処理部43の処理手順は、図3に示す第1の実施形態の処理手順と同様である。ただし、閾値1を閾値3、閾値2を閾値4と読み替える。 The configuration of the digital signal processing unit 43 of the receiving device is the same as that of the digital signal processing unit 23 of the first embodiment shown in FIG. The processing procedure of the digital signal processing unit 43 of the receiving device is the same as the processing procedure of the first embodiment shown in FIG. However, the threshold value 1 is read as the threshold value 3, and the threshold value 2 is read as the threshold value 4.

以下、図2および図3を参照して、第2の実施形態の動作例について説明する。受信装置のRF処理部42の出力信号は、デジタル信号処理部43の既知信号・データ信号分離部231に入力する。ここで、すべてのUCAのすべてのOAMモードの信号は、既知信号・データ信号分離部231に入力し、既知信号はすべてのUCAのすべてのOAMモード毎に、異なるチャネル推定用既知信号や同期検出用のコントロール信号等で構成される。 Hereinafter, an operation example of the second embodiment will be described with reference to FIGS. 2 and 3. The output signal of the RF processing unit 42 of the receiving device is input to the known signal / data signal separation unit 231 of the digital signal processing unit 43. Here, the signals of all OAM modes of all UCAs are input to the known signal / data signal separation unit 231, and the known signals are different known signals for channel estimation and synchronous detection for all OAM modes of all UCAs. It is composed of control signals for.

次に、チャネル推定部232は、既知信号・データ信号分離部231が出力するチャネル推定用既知信号を用いてチャネル推定を行う。チャネル推定処理は、既知信号を用いて、各UCAの各OAMモードに対するチャネルに関し、ZFやMMSE等の手法で行えばよい。チャネル推定部232は、このチャネル推定処理結果を干渉除去処理判定部233と復調処理部234と干渉除去処理部235に出力する。 Next, the channel estimation unit 232 performs channel estimation using the known signal for channel estimation output by the known signal / data signal separation unit 231. The channel estimation process may be performed by a method such as ZF or MMSE with respect to the channel for each OAM mode of each UCA using a known signal. The channel estimation unit 232 outputs the channel estimation processing result to the interference removal processing determination unit 233, the demodulation processing unit 234, and the interference removal processing unit 235.

干渉除去処理判定部233は、各UCAの各OAMモード間のチャネル推定結果を用いて、各UCAと各OAMモード間の干渉量を計算する。この干渉量は、第1の実施形態のようにチャネル推定計算後の値の絶対値、もしくはその2乗等で計算すればよい。 The interference removal processing determination unit 233 calculates the amount of interference between each UCA and each OAM mode by using the channel estimation result between each OAM mode of each UCA. This interference amount may be calculated by the absolute value of the value after the channel estimation calculation as in the first embodiment, or the square of the absolute value.

各UCAの各OAMモード間の最大干渉信号電力が所定の閾値3より大きいか否かを判定する。また、各OAMモード間の干渉信号電力が閾値3より大きいOAMモード組の数が所定の閾値4より大きいか否かを判定する。この結果により、第1の実施形態のパターン1−1,1−2,1−3と同様のパターン2−1,2−2,2−3を判定し、判定結果をチャネル推定部232と復調処理部234と干渉除去処理部235に出力する。 It is determined whether or not the maximum interference signal power between each OAM mode of each UCA is larger than a predetermined threshold value 3. Further, it is determined whether or not the number of OAM mode sets in which the interference signal power between the OAM modes is larger than the threshold value 3 is larger than the predetermined threshold value 4. Based on this result, patterns 2-1, 1-2, 2-3 similar to patterns 1-1, 1-2, 1-3 of the first embodiment are determined, and the determination result is demodulated with the channel estimation unit 232. Output to the processing unit 234 and the interference removal processing unit 235.

ここで、チャネル推定部232は、パターン2−1と2−2の場合、第1の実施形態のように、復調処理と干渉除去処理に必要なチャネルのみのチャネル推定処理を行うことで、演算量を削減する。また、このようにチャネル推定部232が必要なチャネルの推定処理のみを行う場合は、第1の実施形態のように、干渉除去処理判定部233は、チャネル推定部232が行ったチャネル推定計算結果のみを用いて、パターン2−1,2−2,2−3の判定を行う。 Here, in the case of patterns 2-1 and 2-2, the channel estimation unit 232 calculates by performing the channel estimation process of only the channels required for the demodulation process and the interference removal process as in the first embodiment. Reduce the amount. Further, when the channel estimation unit 232 only performs the necessary channel estimation processing in this way, the interference elimination processing determination unit 233 may perform the channel estimation calculation result performed by the channel estimation unit 232 as in the first embodiment. Patterns 2-1, 2, 2 and 2-3 are determined using only.

復調処理部234は、既知信号・データ信号分離部231が出力するデータ信号と、チャネル推定部232が出力するチャネル情報を用いて復調処理を行う。すなわち、復調処理部234は、干渉除去処理判定部233からパターン2−1の結果が入力すると、他のUCAの他のOAMモードからの干渉除去処理を行わずに、各UCAから同一OAMモードを用いて送信されたことなる信号間の等化処理を行う。この処理は、ZF等の手法により行えばよい。この処理はOAMモードごとに行う。次に、等化処理後の結果を用いてすべてのデータの復調処理を行う。 The demodulation processing unit 234 performs demodulation processing using the data signal output by the known signal / data signal separation unit 231 and the channel information output by the channel estimation unit 232. That is, when the result of the pattern 2-1 is input from the interference removal processing determination unit 233, the demodulation processing unit 234 performs the same OAM mode from each UCA without performing the interference removal processing from the other OAM modes of the other UCAs. Performs equalization processing between signals that have been transmitted using. This process may be performed by a method such as ZF. This process is performed for each OAM mode. Next, the demodulation process of all the data is performed using the result after the equalization process.

また、干渉除去処理判定部233からパターン2−2の結果が入力すると、まず、各UCAの同一OAMモード間の等化処理と復調処理を行い、その結果を干渉除去処理部235に出力する。また、パターン2−2の場合は、第1の実施形態のように、既知信号・データ信号分離部231が復調処理部234に出力したデータ信号(復調対象のデータ部分の信号)も合わせて干渉除去処理部235に出力する。ここで、干渉除去処理部235は、SIC処理等による干渉除去処理を行い、その結果を再び復調処理部234に入力する。復調処理部234は、干渉除去処理部235から入力する信号を用いて、再び各UCAの同一OAMモード間の等化処理と復調処理を行う。この過程を繰り返すことで、干渉除去処理の性能を向上することができる。該繰り返し処理の終了は、第1の実施形態と同様に行えばよい。 When the result of pattern 2-2 is input from the interference removal processing determination unit 233, first, equalization processing and demodulation processing are performed between the same OAM modes of each UCA, and the result is output to the interference removal processing unit 235. Further, in the case of the pattern 2-2, as in the first embodiment, the data signal (the signal of the data portion to be demodulated) output by the known signal / data signal separation unit 231 to the demodulation processing unit 234 also interferes. Output to the removal processing unit 235. Here, the interference removing processing unit 235 performs the interference removing processing by the SIC processing or the like, and inputs the result to the demodulation processing unit 234 again. The demodulation processing unit 234 again performs equalization processing and demodulation processing between the same OAM modes of each UCA using the signal input from the interference removal processing unit 235. By repeating this process, the performance of the interference removal process can be improved. The end of the iterative process may be performed in the same manner as in the first embodiment.

また、干渉除去処理判定部233からパターン2−3の結果が入力すると、各UCAの各OAMモードに対するチャネル情報を用いて、ZFやMMSE法により等化処理を行い、干渉除去処理を行ってから各OAMモードの復調処理を行う。 Further, when the result of the pattern 2-3 is input from the interference removal processing determination unit 233, the equalization processing is performed by the ZF or MMSE method using the channel information for each OAM mode of each UCA, and then the interference removal processing is performed. Demodulation processing of each OAM mode is performed.

干渉除去処理部235の処理は、第1の実施形態と同様である。本実施形態において、複数のUCAから複数のOAMモードを用いて複数の信号を送受信することは、単一のUCAを用いる第1の実施形態と異なるが、第1の実施形態の復調信号とチャネル情報を用いてレプリカを生成し、受信信号からレプリカを引き算してから、改めて、等化処理と復調処理を行う過程を繰り返すことは同様である。 The processing of the interference removing processing unit 235 is the same as that of the first embodiment. In the present embodiment, transmitting and receiving a plurality of signals from a plurality of UCAs using a plurality of OAM modes is different from the first embodiment using a single UCA, but the demodulated signals and channels of the first embodiment. It is the same as repeating the process of generating a replica using the information, subtracting the replica from the received signal, and then performing the equalization process and the demodulation process again.

以下、第2の実施形態の例を数式を用いて説明する。以下の例では、4個のUCAが、それぞれ5個のOAMモード2,1,0,−1,−2を用いてOAM通信を行う場合を想定する。なお、送信側のUCAをTx UCA と称し、受信側のUCAをRx UCA と称する。また、簡単のため図8に示すように、直径が小さいUCAから大きいUCA順にUCA1,2,3,4の番号を付ける。すなわち、Tx UCA3は、送信側の3番目のUCAを表す。なお、k番目のUCAkの送信信号をXi k とし、l番目のUCAlの受信信号をYj l とする。ここで、iとjは、OAMモードの次数を表す。例えば、X-12 とY13は、それぞれ、Tx UCA2のOAMモード2の送信信号と、Rx UCA3のOAMモード1の受信信号を表す。 Hereinafter, an example of the second embodiment will be described using mathematical formulas. In the following example, it is assumed that four UCAs perform OAM communication using each of the five OAM modes 2, 1, 0, -1, and -2. The UCA on the transmitting side is referred to as Tx UCA, and the UCA on the receiving side is referred to as Rx UCA. Further, for simplicity, as shown in FIG. 8, UCAs 1, 2, 3 and 4 are numbered in order from the UCA having the smallest diameter to the UCA having the largest diameter. That is, Tx UCA3 represents the third UCA on the transmitting side. The transmission signal of the k-th UC Ak is Xi k, and the reception signal of the l-th UC Al is Yj l . Here, i and j represent the order of the OAM mode. For example, X-1 2 and Y1 3 represent a transmission signal of OAM mode 2 of Tx UCA 2 and a reception signal of OAM mode 1 of Rx UCA 3, respectively.

また、送信UCAk の送信OAMモードiと受信UCAl のOAMモードj間のチャネルをHi,j l,k と表す。なお、送受信信号は、第1の実施形態のように、OFDM方式等のように周波数領域にてデータ変復調を行う通信方式を想定するが、SC(single carrier)方式等のように時間領域にてデータを変復調する通信方式への適用も同様に可能である。 Further, the channels between the transmission OAM mode i of the transmission UCAk and the OAM mode j of the reception UCAl are represented as Hi, j l, k. The transmitted / received signal is assumed to be a communication method that performs data modulation / demodulation in the frequency domain, such as the OFDM method, as in the first embodiment, but in the time domain, such as the SC (single carrier) method. It can also be applied to a communication method that changes and demolishes data.

本実施形態では、各UCAの各OAMモードが異なる信号を送信する通信システムを想定するが、受信電力向上等に向け、UCAの一部のみを用いて通信を行うことや、ダイバーシティ(diversity) 等の目的に向け各UCAの同一OAMモードで同一の信号を送信することも可能である。また、送信側の各UCAの同一OAMモードに送信事前処理(プリコーディング)処理を行い、その結果を各UCAの同一OAMモードが送信することもできる。すなわち、本実施形態では、送信UCAの同一OAMモードは異なる信号を送信し、受信側のUCAのそのOAMモードの信号の等化処理による信号分離を想定するが、送信側がチャネル情報を用いて、事前に等化処理等の事前処理を行う送信することもできる。この場合、受信側の等化処理の必要性がなくなるため、送受信側の信号処理負荷の分担ができる長所がある。 In the present embodiment, a communication system in which each OAM mode of each UCA transmits a different signal is assumed, but in order to improve the received power, communication is performed using only a part of the UCA, diversity, etc. It is also possible to transmit the same signal in the same OAM mode of each UCA for the purpose of. Further, it is also possible to perform transmission preprocessing (precoding) processing in the same OAM mode of each UCA on the transmitting side, and transmit the result by the same OAM mode of each UCA. That is, in the present embodiment, the same OAM mode of the transmitting UCA transmits different signals, and signal separation by equalizing the signal of the OAM mode of the receiving UCA is assumed, but the transmitting side uses the channel information. It is also possible to transmit in advance processing such as equalization processing. In this case, since the need for equalization processing on the receiving side is eliminated, there is an advantage that the signal processing load on the transmitting and receiving side can be shared.

受信装置のRF処理部42の出力信号の式は、以下の式(7) ようになる。本実施形態でも、第1の実施形態のように、チャネル推定用の既知信号とデータ信号を交互に入力する手法や、OFDMの複数のキャリアの一部にチャネル推定用の既知信号を挿入し、内挿(interpolation )等の手法によりチャネル推定を行う手法等が適用できる。 The formula of the output signal of the RF processing unit 42 of the receiving device is as follows (7). Also in the present embodiment, as in the first embodiment, a method of alternately inputting a known signal for channel estimation and a data signal, or inserting a known signal for channel estimation into a part of a plurality of carriers of OFDM can be performed. A method of channel estimation by a method such as interpolation can be applied.

Figure 0006962135
Figure 0006962135

ここで、Nj l は、受信側のl番目のUCAlのOAMモードjの雑音成分を表す。ここで、チャネル推定部は、既知信号を用いてチャネル推定を行う。すなわち、各UCAの各OAMモード間のチャネル推定を行い、Hi,j l,k 部分を計算する。チャネル推定処理の結果は干渉除去処理判定部に入力される。 Here, Nj l represents the noise component of the OAM mode j of the l-th UCAl on the receiving side. Here, the channel estimation unit performs channel estimation using known signals. That is, channel estimation is performed between each OAM mode of each UCA, and Hi, j l, and k parts are calculated. The result of the channel estimation process is input to the interference elimination process determination unit.

干渉除去処理判定部は、すべてのHi,j l,k の絶対値(もしくは絶対値の2乗)と、所定の閾値3との比較を行い、パターン2−1,2−2,2−3の判定を行う。 The interference removal processing determination unit compares the absolute values (or the squares of the absolute values) of all Hi, j l, and k with the predetermined threshold value 3, and patterns 2-1, 2, 2 and 2-3. Is judged.

パターン2−1の場合は、各UCAの異なるOAMモードからの干渉を無視してもよい。すなわち、式(7) を式(8) のように、OAMモードごとに分離して考えてもよい。 In the case of pattern 2-1 the interference from different OAM modes of each UCA may be ignored. That is, Eq. (7) may be considered separately for each OAM mode as in Eq. (8).

Figure 0006962135
Figure 0006962135

ここで、(Njl)'は、パターン2−1におけるl番目の受信UCAlのOAMモードj
の雑音を表す。このパターンでは、異なるOAMモード間の干渉は無視するため、無視される他のOAMモードからの干渉も雑音成分に含めて表す。次に、受信側の各UCAの同一OAMモード間の信号の等化処理を行う。すなわち、式(9) のようにOAMモードごとの等化処理を行う。
Here, (Nj l )'is the OAM mode j of the first received UCAl in the pattern 2-1.
Represents the noise of. In this pattern, interference between different OAM modes is ignored, so interference from other OAM modes that are ignored is also included in the noise component. Next, the signal equalization processing between the same OAM modes of each UCA on the receiving side is performed. That is, equalization processing is performed for each OAM mode as shown in Eq. (9).

Figure 0006962135
Figure 0006962135

ここで、Eq( )は等化処理を表す。なお、式(9) のXikは、k番目の送信UCAkのO
AMモードiの送信信号の等化処理後の値を表す。なお、Xの上につく「^」や「・」は文中では省略している(以下同様)。この等化処理は、チャネル推定結果と受信UCAの信号を用いて、ZFやMMSE等の手法により行えばよい。
Here, Eq () represents an equalization process. Note that Xi k in Eq. (9) is O of the kth transmission UCA k.
It represents the value after the equalization processing of the transmission signal of AM mode i. The "^" and "・" above X are omitted in the text (the same applies hereinafter). This equalization processing may be performed by a method such as ZF or MMSE using the channel estimation result and the signal of the received UCA.

次に、等化処理後の結果を用いて復調処理を行う。式(10)のXikは、k番目の送信UC
AkのOAMモードiの送信信号の等化処理後の信号の復調信号を表す。なお、demod( )は、チャネル符号の復号処理等を含む復調処理を表す。
Next, the demodulation process is performed using the result after the equalization process. Xi k in equation (10) is the kth transmission UC.
It represents the demodulated signal of the signal after the equalization processing of the transmission signal of the OAM mode i of Ak. Note that demod () represents a demodulation process including a channel code decoding process and the like.

Figure 0006962135
Figure 0006962135

パターン2−2の場合は、まず、式(8) のように各UCAの異なるOAMモードからの干渉を無視してから、式(9) と式(10)のように、各UCAの同一OAMモード間の等化処理と復調処理を行い、それらの結果を用いてレプリカを生成し、干渉除去処理の対象となるOAMモード組の干渉除去処理を行う。ここで、干渉除去処理の対象でないOAMモード間の干渉は雑音とみなす。式(7) の受信信号を、各送信UCAの異なるOAMモードからの干渉成分と同一OAMモードからの信号に分けると式(11)となる。 In the case of pattern 2-2, first, interference from different OAM modes of each UCA is ignored as in Eq. (8), and then the same OAM of each UCA as in Eqs. (9) and (10). Equalization processing and demodulation processing between modes are performed, replicas are generated using the results, and interference removal processing of the OAM mode set that is the target of interference removal processing is performed. Here, interference between OAM modes that are not subject to interference removal processing is regarded as noise. When the received signal of the equation (7) is divided into the interference component from the different OAM mode of each transmission UCA and the signal from the same OAM mode, the equation (11) is obtained.

Figure 0006962135
Figure 0006962135

式(11)には、各UCAの異なるOAMモードからの信号がすべて表されているが、干渉除去処理判定部により、干渉除去処理対象となる信号のみを残し、式(12)のように、他の干渉除去処理の対象でないOAMモード間の干渉は雑音とみなす。 Equation (11) represents all the signals from different OAM modes of each UCA, but the interference elimination processing determination unit leaves only the signals to be the interference elimination processing, and as in equation (12), Interference between OAM modes that are not subject to other interference removal processing is considered noise.

Figure 0006962135
Figure 0006962135

ここで、第2項のIは、干渉除去処理判定部により干渉除去対象となるOAMモードの
総数を表し、(Nj l)* は、それに含まれてない干渉成分を雑音としてみなした場合の雑
音を表す。本パターンのSIC処理後の信号は式(13)のように計算する。
Here, I in the second term represents the total number of OAM modes targeted for interference removal by the interference removal processing determination unit, and (Nj l ) * is noise when interference components not included in the interference component are regarded as noise. Represents. The signal after SIC processing of this pattern is calculated as in Eq. (13).

Figure 0006962135
Figure 0006962135

ここで、Yjlは、受信装置のl番目のUCAlのOAMモードjのSIC処理後の結果を表す。なお、mod(Xik)は、送信側のk番目のUCAkのOAMモードiの送信信号の
レプリカを表す。mod( ) は、送信装置が行ったチャネル符号化処理を含む変調処理を表す。すなわち、式(13)は、式(10)の復調後の信号と、チャネル推定結果と、SIC処理対象をOAMモード組を表すIを用いて、信号のレプリカを生成し、受信信号がらそのレプリカを引き算する処理を表す。
Here, Yj l represents the result of the l-th UCAl of the receiving device after the SIC processing in the OAM mode j. Note that mod (Xi k ) represents a replica of the transmission signal of the OAM mode i of the kth UC Ak on the transmitting side. mod () represents the modulation process including the channel coding process performed by the transmitter. That is, the equation (13) generates a replica of the signal by using the signal after the demodulation of the equation (10), the channel estimation result, and I representing the OAM mode set as the SIC processing target, and the replica of the received signal. Represents the process of subtracting.

次に、干渉除去処理は、式(13)の計算結果(Y-21 ,Y-11 ,Y01 ,Y11 ,Y21)を
復調処理部に入力する。ここで、lは受信UCAlの数を意味するため、この例では、20個の計算結果が入力される。
Next, in the interference removal processing, the calculation results of Eq. (13) (Y-2 1 , Y-1 1 , Y0 1 , Y1 1 , Y2 1 ) are input to the demodulation processing unit. Here, l means the number of received UCAl, so in this example, 20 calculation results are input.

信号復調部は、式(14)のように等化処理を行う。

Figure 0006962135
The signal demodulation unit performs equalization processing as shown in Eq. (14).
Figure 0006962135

ここで、式(9) では、Yj l を用いて等化処理を行っていたが、式(14)では、SIC処理後の結果であるを用いて等化処理を行う。 Here, in Eq. (9), the equalization process was performed using Yj l , but in Eq. (14), the equalization process is performed using the result after the SIC process.

次に、式(14)の結果を用いて、式(10)で表す復調処理を改めて行う。このパターン2−2では、このような復調処理とレプリカ生成による干渉処理を繰り返して行う。繰り返しの終了は、実施形態1と同様にすればよい。 Next, using the result of Eq. (14), the demodulation process represented by Eq. (10) is performed again. In this pattern 2-2, such demodulation processing and interference processing by replica generation are repeated. The end of the repetition may be the same as in the first embodiment.

パターン2−3では、式(7) のすべての項を用いて、ZFやMMSE等によりすべてのOAMモードの信号に対し、同時に等化処理を行ってから、各OAMモードの復調処理を行う。 In pattern 2-3, all the terms of the equation (7) are used to simultaneously perform equalization processing on all OAM mode signals by ZF, MMSE, or the like, and then demodulation processing of each OAM mode is performed.

このような第2の実施形態は、第1の実施形態と同様の効果がある。すなわち、本発明により、軸ズレやRFの不完全性によりOAMモード間の干渉が生じた場合、OAMモード間の干渉量を考慮して、その処理を要するOAMモード間のみで行うことにより、干渉除去に必要な演算量を削減することができる。また、チャネル推定の演算量の削減も可能となる。特に、GPSや工学位置調整器なのにより、荒い軸ズレはできたが、精密な軸合わせができなかった場合等、パターン2−2が主となる無線通信環境では、特に演算量の削減効果が大きくなる。また、チャネルの時変動により。パターン2−1,2−2,2−3が時変動する場合、本発明によりチャネル状況に合わせて、適切にOAMモード間干渉除去処理を行うことができるため、常に干渉除去処理をしない手法に比べて、性能改善効果が得られ、また、常にすべてのOAMモードに対する干渉除去処理を行う手法に比べて、演算量削減ができる。 Such a second embodiment has the same effect as the first embodiment. That is, according to the present invention, when interference between OAM modes occurs due to axis misalignment or RF imperfections, the interference between OAM modes is taken into consideration, and interference is performed only between OAM modes that require the processing. The amount of calculation required for removal can be reduced. In addition, the amount of calculation for channel estimation can be reduced. In particular, in a wireless communication environment where pattern 2-2 is the main, such as when rough axis misalignment is possible due to GPS or engineering position adjuster, but precise axis alignment is not possible, the effect of reducing the amount of calculation is particularly effective. growing. Also, due to channel time fluctuations. When the patterns 2-1, 2, 2 and 2-3 fluctuate with time, the interference removal processing between OAM modes can be appropriately performed according to the channel condition according to the present invention. In comparison, the performance improvement effect can be obtained, and the amount of calculation can be reduced as compared with the method in which the interference removal processing for all OAM modes is always performed.

(第3の実施形態)
第3の実施形態は、第1の実施形態および第2の実施形態において、OAMビームの特性を用いて、干渉除去処理の負荷をさらに軽減する実施形態である。
(Third Embodiment)
The third embodiment is an embodiment in which the load of the interference removing process is further reduced by using the characteristics of the OAM beam in the first embodiment and the second embodiment.

干渉除去処理判定部は、符号だけ異なるOAMモードの干渉のパターンは、類似である特徴を用いて、正の符号のOAMモード同士のみで、干渉除去処理の必要性を判断することで、全体の処理量を減らすことができる。例えば、OAMモード1からOAMモード2 への干渉の度合いと、OAMモード1からOAMモード2への干渉の度合いは類似であるため、一方のパターンのみの干渉の度合いだけで閾値と比較することで、全体の信号処理負荷をさらに削減する。また、本発明をデジタルチップ等を用いて実装する際にも正の符号のOAMモード間だけの干渉度合いを判定する回路のみを実装することで、全体の回路規模の削減が可能となる。 The interference elimination processing determination unit determines the necessity of interference elimination processing as a whole by using the characteristics that the interference patterns of the OAM modes differing only in the sign are similar to each other and only the OAM modes having a positive sign. The amount of processing can be reduced. For example, since the degree of interference from OAM mode 1 to OAM mode 2 and the degree of interference from OAM mode 1 to OAM mode 2 are similar, it is possible to compare the degree of interference with only one pattern with the threshold value. , Further reduce the overall signal processing load. Further, even when the present invention is mounted using a digital chip or the like, the overall circuit scale can be reduced by mounting only a circuit that determines the degree of interference only between OAM modes having a positive sign.

11,31 デジタル信号処理部
12,32 RF処理部
13,33 送信アンテナ部
21,41 受信アンテナ部
22,42 RF処理部
23,43 デジタル信号処理部
231 既知信号・データ信号分離部
232 チャネル推定部
233 干渉除去処理判定部
234 復調処理部
235 干渉除去処理部
11,31 Digital signal processing unit 12,32 RF processing unit 13,33 Transmitting antenna unit 21,41 Receiving antenna unit 22,42 RF processing unit 23,43 Digital signal processing unit 231 Known signal / data signal separation unit 232 Channel estimation unit 233 Interference removal processing judgment unit 234 Demodulation processing unit 235 Interference removal processing unit

Claims (10)

複数のアンテナ素子を円形に等間隔に配置した等間隔円形アレーアンテナ(以下、UCA)を送信装置と受信装置に備え、送信装置のUCAで複数のOAMモードの信号を生成して送信し、受信装置のUCAで複数のOAMモードの信号を受信して分離し、OAMモード数の信号を空間多重伝送するOAM多重通信システムにおいて、
前記受信装置は、OAMモード間のチャネル情報を用いて、所定の閾値1より大きい干渉を及ぼすOAMモード間を判定し、該所定の閾値1より大きい干渉を及ぼすOAMモード組数に応じて指定されたOAMモード間の干渉除去処理を行う干渉除去手段を備えた
ことを特徴とするOAM多重通信システム。
Equally spaced circular array antennas (hereinafter referred to as UCA) in which a plurality of antenna elements are arranged in a circle at equal intervals are provided in the transmitting device and the receiving device, and the UCA of the transmitting device generates and transmits a plurality of OAM mode signals and receives them. In an OAM multiplex communication system in which a plurality of OAM mode signals are received and separated by the UCA of the device and spatial multiplex transmission of signals of the number of OAM modes is performed.
The receiving device uses channel information between OAM modes to determine between OAM modes that cause interference greater than a predetermined threshold value 1, and is designated according to the number of OAM mode groups that cause interference greater than the predetermined threshold value 1. OAM multiplex communication system characterized by comprising interference cancellation means for performing interference cancellation process between OAM mode.
複数のアンテナ素子を円形に等間隔に配置した等間隔円形アレーアンテナ(以下、UCA)を送信装置と受信装置に備え、送信装置のUCAで複数のOAMモードの信号を生成して送信し、受信装置のUCAで複数のOAMモードの信号を受信して分離し、OAMモード数の信号を空間多重伝送するOAM多重通信システムにおいて、
前記受信装置は、OAMモード間のチャネル情報を用いて、所定の閾値1より大きい干渉を及ぼすOAMモード間を判定し、そのOAMモード間の干渉除去処理を行う干渉除去手段を備え、
前記干渉除去手段は、
前記各OAMモード間の干渉信号電力を計算し、その最大干渉信号電力が前記所定の閾値1以下の場合は、OAMモード間の干渉除去処理を行わずに、各OAMモードの受信信号の復調処理を行う処理手段1と、
前記各OAMモード間の干渉信号電力を計算し、その干渉信号電力が前記閾値1より大きいOAMモード組数が所定の閾値2以下の場合は、干渉信号電力が閾値1以下のOAMモード間を除くOAMモード間のみの干渉除去処理を行い、各OAMモードの受信信号の復調処理を行う処理手段2と、
前記各OAMモード間の干渉信号電力を計算し、その干渉信号電力が前記閾値1より大きいOAMモード組数が前記所定の閾値2より大きい場合は、各OAMモードのすべての受信信号とすべてのOAMモード間のチャネル情報を用いて干渉除去処理を行い、各OAMモードの受信信号の復調処理を行う処理手段3と
を備えた構成であることを特徴とするOAM多重通信システム。
Equally spaced circular array antennas (hereinafter referred to as UCA) in which a plurality of antenna elements are arranged in a circle at equal intervals are provided in the transmitting device and the receiving device, and the UCA of the transmitting device generates and transmits a plurality of OAM mode signals and receives them. In an OAM multiplex communication system in which a plurality of OAM mode signals are received and separated by the UCA of the device and spatial multiplex transmission of signals of the number of OAM modes is performed.
The receiving device includes interference removing means for determining between OAM modes that cause interference larger than a predetermined threshold value 1 using channel information between OAM modes and performing interference removing processing between the OAM modes.
The interference removing means is
The interference signal power between the OAM modes is calculated, and when the maximum interference signal power is equal to or less than the predetermined threshold value 1, the reception signal demodulation process of each OAM mode is performed without performing the interference removal process between the OAM modes. Processing means 1 to perform
The interference signal power between the OAM modes is calculated, and when the number of OAM mode sets whose interference signal power is larger than the threshold value 1 is a predetermined threshold value 2 or less, the interference signal power between the OAM modes whose interference signal power is the threshold value 1 or less is excluded. Processing means 2 that performs interference removal processing only between OAM modes and demodulates the received signal of each OAM mode, and
The interference signal power between the OAM modes is calculated, and when the interference signal power is larger than the threshold value 1 and the number of OAM mode groups is larger than the predetermined threshold value 2, all the received signals in each OAM mode and all the OAMs are used. An OAM multiplex communication system including a processing means 3 that performs interference removal processing using channel information between modes and demodulates reception signals of each OAM mode.
複数のアンテナ素子を円形に等間隔に配置した等間隔円形アレーアンテナ(以下、UCA)を送信装置と受信装置に備え、送信装置のUCAで複数のOAMモードの信号を生成して送信し、受信装置のUCAで複数のOAMモードの信号を受信して分離し、OAMモード数の信号を空間多重伝送するOAM多重通信システムにおいて、
前記受信装置は、OAMモード間のチャネル情報を用いて、所定の閾値1より大きい干渉を及ぼすOAMモード間を判定し、そのOAMモード間の干渉除去処理を行う干渉除去手段を備え、
前記干渉除去手段は、所定の時間間隔ごとにすべてのOAMモード間のチャネル情報を取得し、その区間は、前記所定の閾値1より大きい干渉を及ぼすOAMモード間のみのチャネル情報を取得する構成である
ことを特徴とするOAM多重通信システム。
Equally spaced circular array antennas (hereinafter referred to as UCA) in which a plurality of antenna elements are arranged in a circle at equal intervals are provided in the transmitting device and the receiving device, and the UCA of the transmitting device generates and transmits a plurality of OAM mode signals and receives them. In an OAM multiplex communication system in which a plurality of OAM mode signals are received and separated by the UCA of the device and spatial multiplex transmission of signals of the number of OAM modes is performed.
The receiving device includes interference removing means for determining between OAM modes that cause interference larger than a predetermined threshold value 1 using channel information between OAM modes and performing interference removing processing between the OAM modes.
The interference removing means acquires channel information between all OAM modes at predetermined time intervals, and the section acquires channel information only between OAM modes that cause interference larger than the predetermined threshold value 1. An OAM multiplex communication system characterized by being present.
複数のアンテナ素子を円形に等間隔に配置した等間隔円形アレーアンテナ(以下、UCA)を、同心円状に配置した複数のUCAからなるM−UCAを送信装置と受信装置に備え、送信装置の各UCAでそれぞれ複数のOAMモードの信号を生成して送信し、受信装置の各UCAでそれぞれ複数のOAMモードの信号を受信して分離し、UCA数×OAMモード数の信号を空間多重伝送するOAM多重通信システムにおいて、
前記受信装置は、前記送信装置は各UCAの各OAMモード間のチャネル情報を用いて、各UCAで受信する同一OAMモード間の信号分離を行うとともに、所定の閾値3より大きい干渉を及ぼすOAMモード間を判定し、そのOAMモード間の干渉除去処理を行う干渉除去手段を備えた
ことを特徴とするOAM多重通信システム。
Each of the transmitting devices is provided with M-UCA consisting of a plurality of UCAs arranged concentrically with an evenly spaced circular array antenna (hereinafter referred to as UCA) in which a plurality of antenna elements are arranged at equal intervals in a circle. Each UCA generates and transmits a plurality of OAM mode signals, each UCA of the receiving device receives and separates a plurality of OAM mode signals, and spatially multiplex-transmits a signal of the number of UCA × the number of OAM modes. In multiplex communication system
In the receiving device, the transmitting device uses the channel information between the OAM modes of each UCA to perform signal separation between the same OAM modes received by each UCA, and the OAM mode that causes interference larger than a predetermined threshold value 3. An OAM multiplex communication system including an interference removing means for determining an interval and performing an interference removing process between the OAM modes.
請求項4に記載のOAM多重通信システムにおいて、
前記干渉除去手段は、
前記複数のUCAの各OAMモード間の干渉信号電力を計算し、その最大干渉信号電力が前記所定の閾値3以下の場合は、OAMモード間の干渉除去処理を行わずに、各UCAにおける同一OAMモード間の等化処理による信号分離処理を行い、分離後の各OAMモードの受信信号の復調処理を行う処理手段1と、
前記複数のUCAの各OAMモード間の干渉信号電力を計算し、その干渉信号電力が前記閾値3より大きいOAMモード組数が所定の閾値4以下の場合は、干渉信号電力が閾値3以下のOAMモード間を除くOAMモード間のみの干渉除去処理を行い、各UCAの各OAMモードの受信信号の復調処理を行う処理手段2と、
前記複数のUCAの各OAMモード間の干渉信号電力を計算し、その干渉信号電力が前記閾値3より大きいOAMモード組数が所定の閾値4より大きい場合は、各UCAの各OAMモードのすべての受信信号と、すべてUCAのOAMモード間のチャネル情報を用いて干渉除去処理を行い、各UCAの各OAMモードの受信信号の復調処理を行う処理手段3と
を備えた構成であることを特徴とするOAM多重通信システム。
In the OAM multiplex communication system according to claim 4,
The interference removing means is
The interference signal power between the OAM modes of the plurality of UCAs is calculated, and when the maximum interference signal power is 3 or less of the predetermined threshold value, the same OAM in each UCA is performed without performing the interference elimination processing between the OAM modes. Processing means 1 that performs signal separation processing by equalization processing between modes and demodulates the received signal of each OAM mode after separation.
The interference signal power between each OAM mode of the plurality of UCAs is calculated, and when the number of OAM mode sets whose interference signal power is larger than the threshold value 3 is a predetermined threshold value 4 or less, the interference signal power is an OAM having a threshold value 3 or less. Processing means 2 that performs interference removal processing only between OAM modes excluding between modes, and demodulates the received signal of each OAM mode of each UCA.
The interference signal power between each OAM mode of the plurality of UCAs is calculated, and when the number of OAM mode sets whose interference signal power is larger than the threshold value 3 is larger than the predetermined threshold value 4, all of the OAM modes of each UCA. The configuration is characterized by including a processing means 3 that performs interference elimination processing using the received signal and channel information between all UCA OAM modes, and demodulates the received signal of each OAM mode of each UCA. OAM multiplex communication system.
請求項4または請求項5に記載のOAM多重通信システムにおいて、
前記干渉除去手段は、所定の時間間隔ごとにすべてのOAMモード間のチャネル情報を取得し、その区間は、前記所定の閾値3より大きい干渉を及ぼすOAMモード間のみのチャネル情報を取得する構成である
ことを特徴とするOAM多重通信システム。
In the OAM multiplex communication system according to claim 4 or 5.
The interference removing means acquires channel information between all OAM modes at predetermined time intervals, and the section acquires channel information only between OAM modes that cause interference larger than the predetermined threshold value 3. An OAM multiplex communication system characterized by being present.
複数のアンテナ素子を円形に等間隔に配置した等間隔円形アレーアンテナ(以下、UCA)を送信装置と受信装置に備え、送信装置のUCAで複数のOAMモードの信号を生成して送信し、受信装置のUCAで複数のOAMモードの信号を受信して分離し、OAMモード数の信号を空間多重伝送するOAM多重通信方法において、
前記受信装置は、OAMモード間のチャネル情報を用いて、所定の閾値1より大きい干渉を及ぼすOAMモード間を判定し、該所定の閾値1より大きい干渉を及ぼすOAMモード組数に応じて指定されたOAMモード間の干渉除去処理を行う
ことを特徴とするOAM多重通信方法。
Equally spaced circular array antennas (hereinafter referred to as UCA) in which a plurality of antenna elements are arranged in a circle at equal intervals are provided in the transmitting device and the receiving device, and the UCA of the transmitting device generates, transmits, and receives a plurality of OAM mode signals. In the OAM multiplex communication method in which a plurality of OAM mode signals are received and separated by the UCA of the device, and signals of the number of OAM modes are spatially multiplex-transmitted.
The receiving device uses channel information between OAM modes to determine between OAM modes that cause interference greater than a predetermined threshold value 1, and is designated according to the number of OAM mode groups that cause interference greater than the predetermined threshold value 1. An OAM multiplex communication method characterized by performing interference elimination processing between OAM modes.
複数のアンテナ素子を円形に等間隔に配置した等間隔円形アレーアンテナ(以下、UCA)を送信装置と受信装置に備え、送信装置のUCAで複数のOAMモードの信号を生成して送信し、受信装置のUCAで複数のOAMモードの信号を受信して分離し、OAMモード数の信号を空間多重伝送するOAM多重通信方法において、Equally spaced circular array antennas (hereinafter referred to as UCA) in which a plurality of antenna elements are arranged in a circle at equal intervals are provided in the transmitting device and the receiving device, and the UCA of the transmitting device generates, transmits, and receives a plurality of OAM mode signals. In the OAM multiplex communication method in which a plurality of OAM mode signals are received and separated by the UCA of the device, and signals of the number of OAM modes are spatially multiplex-transmitted.
前記受信装置は、OAMモード間のチャネル情報を用いて、所定の閾値1より大きい干渉を及ぼすOAMモード間を判定し、そのOAMモード間の干渉除去処理を行った上で、各OAMモードの受信信号の復調処理を行い、The receiving device uses the channel information between the OAM modes to determine between the OAM modes that cause interference larger than a predetermined threshold value 1, performs interference elimination processing between the OAM modes, and then receives each OAM mode. Performs signal demodulation processing and
前記干渉除去処理では、In the interference removal process,
前記各OAMモード間の干渉信号電力を計算し、The interference signal power between each OAM mode is calculated and
計算された最大干渉信号電力が前記所定の閾値1以下の場合は、OAMモード間の干渉除去処理を行わず、When the calculated maximum interference signal power is equal to or less than the predetermined threshold value 1, the interference elimination process between the OAM modes is not performed.
計算された干渉信号電力が前記閾値1より大きいOAMモード組数が所定の閾値2以下の場合は、干渉信号電力が閾値1以下のOAMモード間を除くOAMモード間のみの干渉除去処理を行い、When the calculated interference signal power is greater than the threshold value 1 and the number of OAM mode sets is a predetermined threshold value 2 or less, interference removal processing is performed only between the OAM modes excluding the OAM modes whose interference signal power is the threshold value 1 or less.
計算された干渉信号電力が前記閾値1より大きいOAMモード組数が前記所定の閾値2より大きい場合は、各OAMモードのすべての受信信号とすべてのOAMモード間のチャネル情報を用いて干渉除去処理を行うWhen the calculated interference signal power is larger than the threshold value 1 and the number of OAM mode sets is larger than the predetermined threshold value 2, the interference removal process is performed using all the received signals of each OAM mode and the channel information between all the OAM modes. I do
ことを特徴とするOAM多重通信方法。An OAM multiplex communication method characterized by this.
複数のアンテナ素子を円形に等間隔に配置した等間隔円形アレーアンテナ(以下、UCA)を送信装置と受信装置に備え、送信装置のUCAで複数のOAMモードの信号を生成して送信し、受信装置のUCAで複数のOAMモードの信号を受信して分離し、OAMモード数の信号を空間多重伝送するOAM多重通信方法において、Equally spaced circular array antennas (hereinafter referred to as UCA) in which a plurality of antenna elements are arranged in a circle at equal intervals are provided in the transmitting device and the receiving device, and the UCA of the transmitting device generates and transmits a plurality of OAM mode signals and receives them. In the OAM multiplex communication method in which a plurality of OAM mode signals are received and separated by the UCA of the apparatus, and signals of the number of OAM modes are spatially multiplex-transmitted.
前記受信装置は、OAMモード間のチャネル情報を用いて、所定の閾値1より大きい干渉を及ぼすOAMモード間を判定し、そのOAMモード間の干渉除去処理を行い、The receiving device uses the channel information between the OAM modes to determine between the OAM modes that cause interference larger than a predetermined threshold value 1, and performs interference removal processing between the OAM modes.
前記干渉除去処理では、所定の時間間隔ごとにすべてのOAMモード間のチャネル情報を取得し、その区間は、前記所定の閾値1より大きい干渉を及ぼすOAMモード間のみのチャネル情報を取得するIn the interference removal process, channel information between all OAM modes is acquired at predetermined time intervals, and the section acquires channel information only between OAM modes that cause interference greater than the predetermined threshold value 1.
ことを特徴とするOAM多重通信方法。An OAM multiplex communication method characterized by this.
複数のアンテナ素子を円形に等間隔に配置した等間隔円形アレーアンテナ(以下、UCA)を、同心円状に配置した複数のUCAからなるM−UCAを送信装置と受信装置に備え、送信装置の各UCAでそれぞれ複数のOAMモードの信号を生成して送信し、受信装置の各UCAでそれぞれ複数のOAMモードの信号を受信して分離し、UCA数×OAMモード数の信号を空間多重伝送するOAM多重通信方法において、
前記受信装置は、前記送信装置は各UCAの各OAMモード間のチャネル情報を用いて、各UCAで受信する同一OAMモード間の信号分離を行うとともに、所定の閾値3より
大きい干渉を及ぼすOAMモード間を判定し、そのOAMモード間の干渉除去処理を行う
ことを特徴とするOAM多重通信方法。
Each of the transmitting devices is provided with M-UCA consisting of a plurality of UCAs arranged concentrically with an evenly spaced circular array antenna (hereinafter referred to as UCA) in which a plurality of antenna elements are arranged at equal intervals in a circle. Each UCA generates and transmits a plurality of OAM mode signals, each UCA of the receiving device receives and separates a plurality of OAM mode signals, and spatially multiplex-transmits a signal of the number of UCA × the number of OAM modes. In the multiplex communication method
In the receiving device, the transmitting device uses the channel information between the OAM modes of each UCA to perform signal separation between the same OAM modes received by each UCA, and the OAM mode that causes interference larger than a predetermined threshold value 3. An OAM multiplex communication method characterized in that an interval is determined and interference elimination processing between the OAM modes is performed.
JP2017211106A 2017-10-31 2017-10-31 OAM multiplex communication system and OAM multiplex communication method Active JP6962135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017211106A JP6962135B2 (en) 2017-10-31 2017-10-31 OAM multiplex communication system and OAM multiplex communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017211106A JP6962135B2 (en) 2017-10-31 2017-10-31 OAM multiplex communication system and OAM multiplex communication method

Publications (2)

Publication Number Publication Date
JP2019083475A JP2019083475A (en) 2019-05-30
JP6962135B2 true JP6962135B2 (en) 2021-11-05

Family

ID=66671200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017211106A Active JP6962135B2 (en) 2017-10-31 2017-10-31 OAM multiplex communication system and OAM multiplex communication method

Country Status (1)

Country Link
JP (1) JP6962135B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3985887B1 (en) * 2019-06-28 2023-06-07 LG Electronics Inc. Method for transmitting and receiving signal in optical wireless communication system, and transmitting terminal and receiving terminal therefor
JP6877639B1 (en) * 2019-10-03 2021-05-26 三菱電機株式会社 Communication equipment, interference signal generation circuit, control circuit, interference elimination method and program storage medium
CN112803975B (en) 2019-11-14 2022-02-25 华为技术有限公司 Method, equipment and system for determining precoding matrix
CN116405071A (en) * 2020-06-03 2023-07-07 华为技术有限公司 Communication method and related device
WO2022000400A1 (en) * 2020-07-02 2022-01-06 Qualcomm Incorporated Mode determination for orbital angular momentum communication system
JP2022065548A (en) * 2020-10-15 2022-04-27 トヨタ自動車株式会社 Reception-side apparatus and radio communication method
CN114867109A (en) * 2021-01-20 2022-08-05 索尼公司 Electronic device and method for wireless communication, computer-readable storage medium
WO2022266871A1 (en) * 2021-06-23 2022-12-29 Qualcomm Incorporated Multiplexing reference signal transmission in orbital angular momentum (oam) communication systems
CN114244446B (en) * 2021-11-09 2023-09-19 北京邮电大学 System, method and equipment for realizing signal coverage based on Orbital Angular Momentum (OAM)

Also Published As

Publication number Publication date
JP2019083475A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP6962135B2 (en) OAM multiplex communication system and OAM multiplex communication method
JP7028314B2 (en) OAM multiplex communication system and inter-mode interference elimination method
US8218671B2 (en) Receiving apparatus, receiving method and communication system
CN111133697A (en) OAM multiplex communication system and inter-mode interference removing method
US11411325B2 (en) OAM multiplexing communication system and OAM multiplexing communication method
JP7056665B2 (en) OAM multiplex communication system, OAM multiplex transmitter, OAM multiplex receiver and OAM multiplex communication method
CN111903081B (en) OAM multiplex communication system and inter-mode interference compensation method
WO2021181002A1 (en) Radio receiver
US11646772B2 (en) Wireless communication system, wireless communication method, transmitting station device and receiving station device
CN110365421B (en) Multi-input multi-output underwater acoustic communication method for single carrier interference suppression
WO2010146774A1 (en) Wireless communication apparatus, wireless communication system and communication method
US9787356B2 (en) System and method for large dimension equalization using small dimension equalizers
WO2018084035A1 (en) Transmitting device, transmitting method, receiving device and receiving method
US10630367B2 (en) Transmission apparatus, transmission method, reception apparatus, and reception method
CN107248876B (en) Generalized spatial modulation symbol detection method based on sparse Bayesian learning
WO2016143863A1 (en) Communication device, demodulation method, and program
JP4527102B2 (en) Wireless communication system and transmitter
Gupta et al. Deep Learning-Based Receiver Design for IoT Multi-User Uplink 5G-NR System
US11870517B2 (en) Wireless communication system, wireless communication method, transmitting station device and receiving station device
Zhang et al. Symbol estimation for MIMO underwater acoustic communication based on multiplicative noise model
US20230421210A1 (en) Wireless communication system, wireless communication method, and receiving device
WO2024013688A1 (en) Methods of receiving and transmitting binary data sequences in otfs-based multi-user scma communication systems with coordinated multipoint, and receiver and transmitter implementing the method
Pedrosa et al. A State-space Approach for Efficient Channel Tracking in Hybrid Analog/Digital MIMO Architectures
JP5976850B2 (en) Receiving method, receiving apparatus, and wireless communication method
JP5004974B2 (en) Transmission method, reception method, transmission method, transmission device, and reception device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R150 Certificate of patent or registration of utility model

Ref document number: 6962135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150