JP6962102B2 - Manufacturing method of anode for electrolytic refining - Google Patents

Manufacturing method of anode for electrolytic refining Download PDF

Info

Publication number
JP6962102B2
JP6962102B2 JP2017184686A JP2017184686A JP6962102B2 JP 6962102 B2 JP6962102 B2 JP 6962102B2 JP 2017184686 A JP2017184686 A JP 2017184686A JP 2017184686 A JP2017184686 A JP 2017184686A JP 6962102 B2 JP6962102 B2 JP 6962102B2
Authority
JP
Japan
Prior art keywords
anode
stress
ears
selvage
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017184686A
Other languages
Japanese (ja)
Other versions
JP2019059979A (en
Inventor
晃也 鈴江
勝弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017184686A priority Critical patent/JP6962102B2/en
Publication of JP2019059979A publication Critical patent/JP2019059979A/en
Application granted granted Critical
Publication of JP6962102B2 publication Critical patent/JP6962102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は、軽量化された耳部を有する電解精製用アノードの製造方法に関する。 The present invention relates to a method for producing an anode for electrolytic refining having a lightweight ear portion.

非鉄金属として代表的な銅の電解精製では、精製炉において粗銅を酸化、還元することで得た純度約99.5%の精製粗銅を板状に鋳造し、これにより得た略矩形の銅板を陽極(以下「アノード」と称する)に用いている。このアノードに対向させる陰極(以下「カソード」と称する)には、パーマネントカソード法(PC法)の場合はステンレス製の薄板を、コンベンショナル法(種板法)の場合は高純度の銅からなる矩形薄板状の種板を用いている。 In the electrolytic refining of copper, which is a typical non-ferrous metal, purified blister copper having a purity of about 99.5% obtained by oxidizing and reducing blister copper in a purification furnace is cast into a plate shape, and a substantially rectangular copper plate obtained by this is cast. It is used for an anode (hereinafter referred to as "anode"). For the cathode facing the anode (hereinafter referred to as "cathode"), a thin stainless steel plate is used in the case of the permanent cathode method (PC method), and a rectangle made of high-purity copper is used in the case of the conventional method (seed plate method). A thin plate-shaped seed plate is used.

これらアノードとカソードは、電解槽内に貯められている電解液内に交互に並んだ状態で浸漬される。そしてアノードとカソードの間に所定の電圧を印加することで上記ステンレス製の薄板又は銅製の種板からなるカソードの表面に銅を電着させる。電着完了後は、PC法の場合は電着した電気銅をステンレス製の薄板から剥ぎ取ることにより製品とし、銅製の種板の場合は電着したままの状態で製品として出荷される。一方、減肉したアノードはスクラップとして製錬工程に繰り返される。 These anodes and cathodes are immersed in the electrolytic solution stored in the electrolytic cell in a state of being alternately arranged. Then, by applying a predetermined voltage between the anode and the cathode, copper is electrodeposited on the surface of the cathode made of the thin stainless steel plate or the seed plate made of copper. After the electrodeposition is completed, in the case of the PC method, the electrodeposited electrolytic copper is peeled off from a thin stainless steel plate to obtain a product, and in the case of a copper seed plate, the product is shipped in the state of being electrodeposited. On the other hand, the thinned anode is repeated as scrap in the smelting process.

上記のように、アノードは銅電解精錬時に電解液内に浸漬されるため、特許文献1に示すように、当該電解液に浸漬される矩形板状部の上部左右の両隅部には、自身を支えるためにそれぞれ左右に突出する両耳部が形成されている。この両耳部は、アノードの運搬時や電解時に支持部としての役割を担う他、電解槽の側壁上端部に設けられたいわゆるブスバーとの電気的接点としての役割も担っている。このように両耳部は電解液に浸漬されないため電解されず、よってアノードの電解精製後は減肉した矩形板状部と共にそのままスクラップとして製錬工程に繰り返される。このスクラップとして製錬工程へ戻される量の電解槽に載置装入される量に対する割合はスクラップ率と称されている。銅電解精製では、このスクラップ率を減少させることが求められており、これにより電気銅を低コストに生産することが可能となる。 As described above, since the anode is immersed in the electrolytic solution during copper electrolytic refining, as shown in Patent Document 1, the anodes themselves are placed in the upper left and right corners of the rectangular plate-shaped portion immersed in the electrolytic solution. Both ears are formed to project to the left and right to support the. These binaural portions play a role as a support portion during transportation of the anode and during electrolysis, and also serve as an electrical contact point with a so-called bus bar provided at the upper end of the side wall of the electrolytic cell. In this way, since both ears are not immersed in the electrolytic solution, they are not electrolyzed. Therefore, after electrolytic purification of the anode, the smelting process is repeated as scrap together with the thinned rectangular plate-shaped portion. The ratio of the amount of scrap returned to the smelting process to the amount placed in the electrolytic cell is called the scrap ratio. In copper electrorefining, it is required to reduce this scrap rate, which makes it possible to produce electrolytic copper at low cost.

特公平03−003750号公報Special Fair 03-003750 Gazette

スクラップ率を減少させることは両耳部の軽量化によって実現できるが、前述したようにアノードは両耳部によって支えられているので、両耳部を軽量化しすぎると、強度が低下して運搬時や電解時に該耳部が大きく変形し電解槽の底部に落下するおそれがあった。そのため、従来は当該落下のリスクをおそれて徐々に軽量化するか現形状のアノードをそのまま採用するしかなく、複数個所の減肉や増肉を組み合わせるような軽量化が難しいことから、上記のスクラップ率を減少させるのは容易ではなかった。本発明はかかる状況に鑑みてなされたものであり、効率よく軽量化された耳部を有するアノードを作製する方法を提供することを目的としている。 The scrap rate can be reduced by reducing the weight of both ears, but as mentioned above, the anode is supported by both ears, so if both ears are made too light, the strength will decrease and during transportation. There was a risk that the ears would be greatly deformed during electrolysis and fall to the bottom of the electrolytic cell. Therefore, in the past, there was no choice but to gradually reduce the weight or use the anode of the current shape as it is for fear of the risk of falling, and it is difficult to reduce the weight by combining thinning and thickening at multiple locations. It was not easy to reduce the rate. The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for efficiently producing an anode having a weight-reduced ear portion.

上記目的を達成するため、本発明の電解精製用アノードの製造方法は、矩形板状部とその上部左右の両隅部からそれぞれ左右に突出する両耳部とからなる電解精製用アノードの製造方法であって、該アノードの自重が前記両耳部にかかった時に該両耳部の複数の特定部位に生ずる応力を応力解析ソフトウェアを用いて求める応力算出工程と、得られた複数の特定部位の応力の値の中の最大値に基づいて該両耳部の形状を調整する耳部形状調整工程とを有し、前記両耳部の形状の調整が、前記最大値が所定の上限値を超えている場合は該最大値を示す部位に肉盛加工を施し、前記最大値が所定の下限値よりも小さい場合は少なくとも前記応力の値の最少値を示す部位に切削加工を施すことを特徴としている。 In order to achieve the above object, the method for producing an electrolytic purification anode of the present invention is a method for producing an electrolytic purification anode including a rectangular plate-shaped portion and both ears protruding from both left and right corners of the upper portion thereof. Therefore, a stress calculation step of obtaining the stress generated in a plurality of specific parts of the binaural portions when the weight of the anode is applied to the binaural portions by using stress analysis software, and a stress calculation step of obtaining the obtained plurality of specific parts. based on the maximum value among the values of the stress possess the ear shape adjustment step of adjusting the shape of the both ears, the adjustment of the shape of the two ear portions, wherein the maximum value exceeds the predetermined upper limit value If this is the case, overlay processing is performed on the portion showing the maximum value, and if the maximum value is smaller than a predetermined lower limit value, cutting processing is performed on at least the portion showing the minimum value of the stress value. There is.

本発明によれば、アノードの耳部を効率よく軽量化することが可能になる。 According to the present invention, it is possible to efficiently reduce the weight of the selvage portion of the anode.

本発明のアノードの製造方法で作製されるアノードの一具体例の正面図である。It is a front view of a specific example of an anode produced by the method for manufacturing an anode of the present invention. 本発明のアノードの製造方法の実施形態において行われる応力解析の対象となるアノードの片方の耳部の正面図である。It is a front view of one ear part of the anode which is the object of the stress analysis performed in embodiment of the manufacturing method of the anode of this invention. 本発明の実施例で作製した試料1のアノードの片方の耳部の正面図である。It is a front view of one selvage part of the anode of the sample 1 produced in the Example of this invention. 本発明の実施例で作製した試料2のアノードの片方の耳部の正面図である。It is a front view of one selvage part of the anode of the sample 2 produced in the Example of this invention. 本発明の実施例で作製したアノードから切り出した片方の耳部に対して引張試験を実施している様子を示す写真である。It is a photograph which shows the state that the tensile test is performed on one ear part cut out from the anode produced in the Example of this invention.

以下、本発明に係るアノードの製造方法の実施形態について説明する。この本発明の実施形態のアノードの製造方法は、応力解析ソフトウェアを使用して行った応力解析の結果に基づいて、軽量化された両耳部を有するアノードを作製するものである。具体的に説明すると、先ず有限要素法による応力解析を行うことが可能な汎用のシミュレーションソフトウェアを用意し、このソフトウェアに応力解析対象として、図1に示すような矩形板状部1と、その上部左右の両隅部から左右にそれぞれ突出する両耳部2とからなるアノードの寸法データを、比重などのアノードの材質の物性データと共に入力する。 Hereinafter, embodiments of the anode manufacturing method according to the present invention will be described. The method for manufacturing an anode according to the embodiment of the present invention is to manufacture an anode having both ears that are lightweight based on the result of stress analysis performed using stress analysis software. Specifically, first, general-purpose simulation software capable of performing stress analysis by the finite element method is prepared, and the rectangular plate-shaped portion 1 as shown in FIG. 1 and its upper portion are used as stress analysis targets in this software. The dimensional data of the anode including the binaural portions 2 protruding from the left and right corners to the left and right are input together with the physical property data of the material of the anode such as the specific gravity.

この応力解析対象のアノードは、電解精製工場で使用されているアノードでもよいし、設計段階のアノードでもよい。次に電解槽内において、このアノードがその両耳部の下側の先端部に設けられた水平方向に平坦な部分で支持されることを想定して応力解析シミュレーションを開始し、アノードの両耳部にアノードの自重が負荷として均等にかかった時に各耳部に発生する応力を算出する。 The anode to be stress-analyzed may be the anode used in the electrolytic refining factory or the anode in the design stage. Next, in the electrolytic cell, stress analysis simulation was started assuming that this anode is supported by a horizontally flat portion provided at the lower tip of both ears, and both ears of the anode are started. Calculate the stress generated in each ear when the weight of the anode is evenly applied to the part as a load.

この応力の算出は、一方の耳部2において予め特定しておいた複数の部位で行う。この複数の部位は、耳部2のうちの湾曲部の中から選択するのが好ましい。本実施形態では、図2に示すように、過去の実績からひび、割れなどの破損が生じやすい3ヶ所の部位A1〜A3を特定している。具体的には、特定部位A1の位置は耳部2の下側湾曲部2aのほぼ中間地点であり、特定部位A2及びA3の位置は耳部2の上側湾曲部2bの両端部である。 This stress is calculated at a plurality of portions specified in advance in one selvage 2. The plurality of portions are preferably selected from the curved portions of the selvage portion 2. In the present embodiment, as shown in FIG. 2, three parts A1 to A3 that are likely to be damaged such as cracks and cracks are specified from the past results. Specifically, the position of the specific portion A1 is approximately an intermediate point of the lower curved portion 2a of the ear portion 2, and the positions of the specific portions A2 and A3 are both ends of the upper curved portion 2b of the ear portion 2.

上記のシミュレーションの結果、これら特定部位A1〜A3のそれぞれについて応力が求まるので、これらのうち最も応力の値が大きい部位を選択する。そして、この選択した部位の応力の値が所定の上限値を超えている場合は、この部位には局所的な負荷がかかりすぎていると判断できる。そこで、この選択した部位を含む近傍領域に肉盛りを行った形状とすることにより、アノードの強度を底上げできる。この場合の近傍領域とは、下側湾曲部2aに位置する部位A1の場合は下側湾曲部2aのほぼ全体をカバーする領域とするのが好ましい。一方、上側湾曲部2bの先端側の部位A2の場合は、当該部位A2から耳部2の先端部までの直線領域とし、上側湾曲部2bを挟んで基端側の部位A3の場合は、上側湾曲部2bの全領域と、部位A3から矩形板状部1との境界部2cまでの直線領域とするのが好ましい。 As a result of the above simulation, the stress can be obtained for each of these specific parts A1 to A3, so the part having the largest stress value is selected. Then, when the stress value of the selected portion exceeds a predetermined upper limit value, it can be determined that the local load is excessively applied to this portion. Therefore, the strength of the anode can be increased by forming the shape in which the vicinity region including the selected portion is built up. In this case, the vicinity region is preferably a region that covers almost the entire lower curved portion 2a in the case of the portion A1 located in the lower curved portion 2a. On the other hand, in the case of the portion A2 on the tip side of the upper curved portion 2b, a straight line region is formed from the portion A2 to the tip portion of the ear portion 2, and in the case of the portion A3 on the proximal end side with the upper curved portion 2b sandwiched, the upper side is formed. It is preferable that the entire region of the curved portion 2b is a straight region from the portion A3 to the boundary portion 2c between the rectangular plate-shaped portion 1.

この肉盛りの要否の判定基準となる上記の所定の上限値は、後述する引張試験による評価結果などから適宜定めることができ、例えば30MN/mを基準として使用することができる。また、肉盛りを行う場合は、アノードを正面から見た時の耳部2の幅が0〜30%程度広くなるように肉盛りするのが好ましい。この場合、耳部2の厚み方向に均一な程度に肉盛りしてもよいし、アノード作製時に金型の底側とは反対側となる面に向って徐々に多く肉盛りしてもよいし、その逆でもよい。なお、図2の平面図では、アノードの作製時に金型の底側となる面が紙面手前側に描かれており、金型からアノードを容易に取り出せるように、金型の底側に行くに従って耳部2の幅が徐々に狭くなっていることが分かる。 The above-mentioned predetermined upper limit value, which is a criterion for determining the necessity of overlaying, can be appropriately determined from the evaluation result by a tensile test described later, and can be used, for example, 30 MN / m 2 as a reference. Further, when overlaying, it is preferable to overlay so that the width of the ear portion 2 when the anode is viewed from the front is widened by about 0 to 30%. In this case, the selvage portion 2 may be built up to a uniform degree in the thickness direction, or may be built up gradually toward the surface opposite to the bottom side of the mold when the anode is manufactured. , And vice versa. In the plan view of FIG. 2, the surface that becomes the bottom side of the mold when the anode is manufactured is drawn on the front side of the paper surface, and the anode is drawn toward the bottom side of the mold so that the anode can be easily taken out from the mold. It can be seen that the width of the ear portion 2 is gradually narrowed.

一方、上記シミュレーションの結果、上記特定部位A1〜A3の応力のうち最も大きい値が所定の下限値よりも低い場合は、アノードの耳部に過大な設計余裕が有ると判断できる。そこで、少なくとも最も小さい応力の値を示す特定部位を含む近傍領域に切削を行うことにより、アノードの実質的な強度を損なうことなく軽量化できる。この場合の近傍領域も、前述した肉盛りを行う場合の近傍領域と同様の領域にするのが好ましい。また、切削を行う場合は、アノードを正面から見た時の耳部2の幅が0〜30%程度狭くなるように切削するのが好ましい。この場合、耳部2の厚み方向に均一な程度切削してもよいし、アノード作製時に金型の底側となる面に向って徐々に多く切削してもよいし、その逆でもよい。なお、この切削の要否の判断基準となる上記の所定の下限値は、前述した上限値の場合と同様に引張試験による評価結果などから適宜定めることができ、例えば20MN/mを基準として使用することができる。 On the other hand, as a result of the above simulation, when the largest value among the stresses of the specific portions A1 to A3 is lower than the predetermined lower limit value, it can be determined that there is an excessive design margin in the selvage portion of the anode. Therefore, by cutting at least in the vicinity region including the specific portion showing the smallest stress value, the weight can be reduced without impairing the substantial strength of the anode. In this case, it is preferable that the neighborhood region is the same as the neighborhood region in the case of overlaying described above. Further, when cutting, it is preferable to cut so that the width of the selvage portion 2 when the anode is viewed from the front is narrowed by about 0 to 30%. In this case, the selvage portion 2 may be cut to a uniform degree in the thickness direction, or may be cut gradually toward the bottom surface of the mold when the anode is manufactured, or vice versa. The above-mentioned predetermined lower limit value, which is a criterion for determining the necessity of cutting, can be appropriately determined from the evaluation result of the tensile test, etc., as in the case of the above-mentioned upper limit value. For example, 20 MN / m 2 is used as a reference. Can be used.

このように肉盛り又は切削を両耳部に施した形状のアノードに対して、再度上記と同様にシミュレーションを行い、アノードの両耳部にアノードの自重が負荷として均等にかかった時に各耳部に発生する応力を算出する。そして、得られた特定部位の応力のうちの最大値が前述した上限値と下限値との範囲内にあるか否かを評価する。この評価の結果、該最大値が該上限値と下限値との範囲内にある場合はより適切な耳部形状が得られたと判断することができる。 For the anode having the shape of both ears that have been built up or cut in this way, the simulation is performed again in the same manner as above, and when the weight of the anode is evenly applied to both ears of the anode as a load, each ear Calculate the stress generated in. Then, it is evaluated whether or not the maximum value of the obtained stress at the specific portion is within the range of the above-mentioned upper limit value and lower limit value. As a result of this evaluation, when the maximum value is within the range of the upper limit value and the lower limit value, it can be determined that a more appropriate selvage shape is obtained.

一方、該最大値が該上限値と下限値との範囲内から依然として外れている場合は、肉盛り又は切削が不十分と考えられるので、更なる肉盛り又は切削による耳部の形状の調整と、この調整後の耳部形状を有するアノードに対する応力解析シミュレーションと、得られた応力の最大値の評価とからなる前述した一連の操作を、該最大値が該上限値と下限値との範囲内に入るまで繰り返せばよい。なお、応力解析シミュレーションで算出した特定部位の応力の全てが上記の上限値と下限値との範囲内に入るまで上記の一連の操作を繰り返してもよい。これにより、耳部の形状をバランスよく最適化することができる。 On the other hand, if the maximum value is still out of the range between the upper limit value and the lower limit value, it is considered that the overlay or cutting is insufficient. , The above-mentioned series of operations consisting of the stress analysis simulation for the selvage having the adjusted selvage shape and the evaluation of the maximum value of the obtained stress, the maximum value is within the range of the upper limit value and the lower limit value. Repeat until you enter. The above series of operations may be repeated until all the stresses of the specific portion calculated by the stress analysis simulation fall within the range of the above upper limit value and the above lower limit value. As a result, the shape of the ear can be optimized in a well-balanced manner.

上記にて形状が決定された耳部形状を有するアノードが形成されるようにアノードの金型を作製する前に、引張試験により実際の強度を確認するのが好ましい。具体的には、上記にて決定した耳部形状となるように実際にアノードの耳部に肉盛り加工又は切削加工を行った後、図5に示すように引張試験機を用いて弾性変形限界時の応力の値(耐力)を測定する。そして、得られた弾性変形限界時の耐力が、当該アノードをその両耳部で支持する時の負荷に所定の設計余裕(運搬・載置する際の加速度を考慮した大きさとする)を加えたものを超えていれば、強度上の問題がなく且つ経済的な設計がなされていると判断できる。なお、上記の引張試験は、アノードから切り出した片方の耳部に対して行うのが好ましく、これにより耳部にかかるアノード荷重やその向きを特に考慮せずに済み、また、取り扱いも容易になる。 It is preferable to confirm the actual strength by a tensile test before manufacturing the anode mold so that the anode having the selvage shape whose shape is determined above is formed. Specifically, after actually overlaying or cutting the selvage of the anode so as to have the selvage shape determined above, the elastic deformation limit is used using a tensile tester as shown in FIG. Measure the stress value (proof stress) at the time. Then, the obtained proof stress at the elastic deformation limit adds a predetermined design margin (the size is set in consideration of the acceleration during transportation and mounting) to the load when the anode is supported by both ears. If it exceeds the above, it can be judged that there is no problem in strength and the design is economical. The above tensile test is preferably performed on one selvage portion cut out from the anode, whereby it is not necessary to particularly consider the anode load applied to the selvage portion and its direction, and the handling becomes easy. ..

ソリッドワークス・ジャパン株式会社製の応力解析用シミュレーションソフトウェアであるSOLIDWORKS(登録商標)を使用してアノードの両耳部にアノードの自重がかかった時の応力の値を算出した。なお、シミュレーションソフトウェアに入力するアノードの寸法には、銅電解精製で実際に使われているものを使用した。また、応力値の算出は、図2に示す特定部位A1〜A3において行った。 The stress value when the weight of the anode was applied to both ears of the anode was calculated using SOLIDWORKS (registered trademark), which is a simulation software for stress analysis manufactured by Solidworks Japan Co., Ltd. The dimensions of the anode input to the simulation software used were those actually used in copper electrorefining. Further, the stress value was calculated at the specific sites A1 to A3 shown in FIG.

その結果、特定部位A1での応力は17.8MN/m、特定部位A2での応力は14.2MN/m、特定部位A3での応力は11.3MN/mとなった。この場合、特定部位A1〜A3のうち特定部位A1の応力が最も大きく、且つその値は基準となる下限値20MN/mより小さかった。そこで、図3(a)の切削前の一点鎖線から切削後の実線で示すように、応力が最も小さかった特定部位A3を含む近傍領域、すなわち上側湾曲部2bと、部位A3から矩形板状部1との境界部2cまでの直線領域において、図3(a)の紙面手前側の金型の底部側に向って徐々に大きく切削し、これに合わせて特定部位A2から耳部2の先端部までの直線部を少しだけ切削した。 As a result, the stress at the specific site A1 was 17.8 MN / m 2 , the stress at the specific site A2 was 14.2 MN / m 2 , and the stress at the specific site A3 was 11.3 MN / m 2 . In this case, the stress of the specific site A1 was the largest among the specific sites A1 to A3, and the value was smaller than the reference lower limit value of 20 MN / m 2. Therefore, as shown by the alternate long and short dash line before cutting in FIG. 3A and the solid line after cutting, the vicinity region including the specific portion A3 having the smallest stress, that is, the upper curved portion 2b and the rectangular plate-shaped portion from the portion A3. In the straight line region up to the boundary portion 2c with 1, a large amount of cutting is gradually made toward the bottom side of the mold on the front side of the paper surface in FIG. The straight part up to was cut a little.

これにより、図3(b)に示すような、特定部位A3を含む近傍領域において厚み方向の傾斜がより緩やかな耳部12を有する試料1のアノードを作製した。この切削された耳部を有する試料1のアノードの寸法を再度シミュレーションソフトウェアに入力し、上記と同様にシミュレーションを行った。その結果、特定部位A1での応力は20.3MN/m、特定部位A2での応力は14.5MN/m、特定部位A3での応力は13.5MN/mとなった。この結果から、特定部位A3及びその近傍領域において厚み方向の傾斜がより緩やかになるように切削加工することで、特定部位A3のみならずその対向部分となる特定部位A1において上限値30MN/mを超えることなく応力の値が増加しており、切削加工前に比べてより経済的な設計(すなわちスクラップ率が小さい)がなされていることが分かる。 As a result, as shown in FIG. 3 (b), an anode of sample 1 having an ear portion 12 having a gentler inclination in the thickness direction in the vicinity region including the specific portion A3 was prepared. The dimensions of the anode of Sample 1 having the cut ears were input to the simulation software again, and the simulation was performed in the same manner as above. As a result, the stress at the specific site A1 was 20.3 MN / m 2 , the stress at the specific site A2 was 14.5 MN / m 2 , and the stress at the specific site A3 was 13.5 MN / m 2 . From this result, by cutting so that the inclination in the thickness direction becomes gentler in the specific portion A3 and the region in the vicinity thereof, the upper limit value of 30 MN / m 2 is obtained not only in the specific portion A3 but also in the specific portion A1 which is the opposite portion. It can be seen that the stress value increases without exceeding the above, and the design is more economical (that is, the scrap ratio is smaller) than before the cutting process.

更に、特定部位A3及びその近傍領域に対して、図4(a)の切削前の一点鎖線から切削後の実線で示すように、金型の底部側とは反対側の面に向って徐々に大きく切削し、これに合わせて特定部位A2から耳部2の先端部までの直線部を少しだけ切削した。これにより、図4(b)に示すような、特定部位A3を含む近傍領域において厚み方向の傾斜がより急な耳部22を有する試料2のアノードを作製した。この試料2のアノードについて、上記の試料1と同様に再度シミュレーションしたところ、特定部位A1での応力は23.4MN/m、特定部位A2での応力は23.1MN/m、特定部位A3での応力は17.3MN/mとなった。この結果から、特定部位A3及びその近傍領域において厚み方向の傾斜がより急になるように切削加工することで、上限値30MN/mを超えることなく特定部位A1〜A3の応力の値が全て増加しており、上記の試料1の場合に比べてより経済的な設計(すなわちスクラップ率が小さい)がなされていることが分かる。 Further, with respect to the specific portion A3 and the region in the vicinity thereof, as shown by the alternate long and short dash line before cutting in FIG. 4A and the solid line after cutting, gradually toward the surface opposite to the bottom side of the mold. A large cut was made, and a straight portion from the specific portion A2 to the tip of the ear portion 2 was slightly cut accordingly. As a result, as shown in FIG. 4B, the anode of the sample 2 having the selvage portion 22 having a steeper inclination in the thickness direction in the vicinity region including the specific portion A3 was prepared. When the anode of this sample 2 was simulated again in the same manner as in the above sample 1, the stress at the specific site A1 was 23.4 MN / m 2 , the stress at the specific site A2 was 23.1 MN / m 2 , and the stress at the specific site A3 was 23.1 MN / m 2. The stress at was 17.3 MN / m 2 . From this result, by cutting so that the inclination in the thickness direction becomes steeper in the specific portion A3 and the region in the vicinity thereof, all the stress values of the specific portions A1 to A3 do not exceed the upper limit value of 30 MN / m 2. It is increasing, and it can be seen that the design is more economical (that is, the scrap rate is smaller) than in the case of the above sample 1.

次に、これら試料1、試料2、及び切削加工前のアノードからそれぞれ片方の耳部を切り出して、図5に示すような引張試験機を用いて、アノードを電解槽に装入して耳部で支持した時にかかる荷重の向きに力をかけて弾性変形限界時の応力値を測定した。その測定結果をシミュレーション結果の特定部位A1〜A3のうち最大であったA1の応力値と共に下記表1に示す。 Next, one ear portion is cut out from each of the sample 1, sample 2, and the anode before cutting, and the anode is charged into the electrolytic cell using a tensile tester as shown in FIG. The stress value at the limit of elastic deformation was measured by applying a force in the direction of the load applied when the bearing was supported by. The measurement results are shown in Table 1 below together with the maximum stress value of A1 among the specific parts A1 to A3 of the simulation results.

Figure 0006962102
Figure 0006962102

上記表1から、シミュレーションによる応力解析結果と引張試験による耐力の傾向が良く一致していることが分かる。具体的には、最大応力値が増加する割合と耐力が減少する割合が良く一致しており、上記のシミュレーションソフトウェアを用いた応力解析によって得られる最大応力値に基づいて実際のアノードの耳部の強度を予想することが可能であることが分かる。 From Table 1 above, it can be seen that the stress analysis results by simulation and the tendency of proof stress by the tensile test are in good agreement. Specifically, the rate at which the maximum stress value increases and the rate at which the proof stress decreases are in good agreement, and the actual anode ear is based on the maximum stress value obtained by stress analysis using the above simulation software. It turns out that it is possible to predict the strength.

1 矩形板状部
2 耳部
2a 下側湾曲部
2b 上側湾曲部
2c 境界部
A1〜A3 特定部位
1 Rectangular plate-shaped part 2 Ear part 2a Lower curved part 2b Upper curved part 2c Boundary part A1 to A3 Specific part

Claims (2)

矩形板状部とその上部左右の両隅部からそれぞれ左右に突出する両耳部とからなる電解精製用アノードの製造方法であって、該アノードの自重が前記両耳部にかかった時に該両耳部の複数の特定部位に生ずる応力を応力解析ソフトウェアを用いて求める応力算出工程と、得られた複数の特定部位の応力の値の中の最大値に基づいて該両耳部の形状を調整する耳部形状調整工程とを有し、前記両耳部の形状の調整が、前記最大値が所定の上限値を超えている場合は該最大値を示す部位に肉盛加工を施し、前記最大値が所定の下限値よりも小さい場合は少なくとも前記応力の値の最少値を示す部位に切削加工を施すことを特徴とする電解精製用アノードの製造方法。 It is a method of manufacturing an electrolytic purification anode including a rectangular plate-shaped portion and both ears protruding to the left and right from both left and right corners of the upper portion thereof, and when the weight of the anode is applied to both ears, both of them. The shape of both ears is adjusted based on the stress calculation process for determining the stress generated in multiple specific parts of the ears using stress analysis software and the maximum value among the obtained stress values of multiple specific parts. possess a ear shape adjustment step of the adjustment of the shape of both ears is, when the maximum value exceeds the predetermined upper limit value subjected to cladding process at a site indicating the maximum value, the maximum A method for producing an anode for electrolytic purification, which comprises cutting at least a portion showing the minimum value of the stress value when the value is smaller than a predetermined lower limit value. 前記耳部形状調整工程で両耳部の形状が調整されたアノードに対して引張試験機を用いて該耳部に前記アノードの自重がかかる時の方向に様々な力をかけて該耳部の変形量を測定する変形量測定工程と、
前記変形量測定工程により得たデータに基づいて該耳部の弾性変形限界における耐力を求め、前記耐力が該アノードを該両耳部で支持する時の負荷を超えているか否かを評価する評価工程とを更に有することを特徴とする、請求項に記載の電解精製用アノードの製造方法。
A tensile tester is used on the selvage whose shape of both ears has been adjusted in the selvage shape adjustment step, and various forces are applied to the selvage in the direction when the weight of the selvage is applied to the selvage. Deformation amount measurement process to measure the deformation amount and
Based on the data obtained in the deformation amount measuring step, the proof stress at the elastic deformation limit of the ear portion is obtained, and evaluation is performed to evaluate whether or not the proof stress exceeds the load when the anode is supported by both ears. and further comprising the step, electrolytic method for producing purified for the anode according to claim 1.
JP2017184686A 2017-09-26 2017-09-26 Manufacturing method of anode for electrolytic refining Active JP6962102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017184686A JP6962102B2 (en) 2017-09-26 2017-09-26 Manufacturing method of anode for electrolytic refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017184686A JP6962102B2 (en) 2017-09-26 2017-09-26 Manufacturing method of anode for electrolytic refining

Publications (2)

Publication Number Publication Date
JP2019059979A JP2019059979A (en) 2019-04-18
JP6962102B2 true JP6962102B2 (en) 2021-11-05

Family

ID=66176341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017184686A Active JP6962102B2 (en) 2017-09-26 2017-09-26 Manufacturing method of anode for electrolytic refining

Country Status (1)

Country Link
JP (1) JP6962102B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5161403A (en) * 1974-11-27 1976-05-28 Onahama Seiren Kk ANOODO
CA1234780A (en) * 1984-08-30 1988-04-05 Vladimir K. Blechta Anode with reverse angle lug registered with anode body
FI97901C (en) * 1994-12-30 1997-03-10 Wenmec Systems Oy Anode ear straightening and machining method
JP2001295089A (en) * 2000-04-11 2001-10-26 Sumitomo Metal Mining Co Ltd Stripping sheet for electrolyzing metal
CL2011002307A1 (en) * 2011-09-16 2014-08-22 Vargas Aldo Ivan Labra System composed of an anode hanger means and an anode, which makes it possible to reuse said anode hanger means minimizing scrap production, because said hanger means is formed by a reusable central bar to be located at the top edge of the anode.

Also Published As

Publication number Publication date
JP2019059979A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP2014065956A (en) Aluminum alloy foil for lithium battery outer packaging and its manufacturing method
US6833218B2 (en) Direct cast lead alloy strip for expanded metal battery plate grids
JP2012084500A (en) Lead storage battery and lead storage battery current collector manufacturing method
CN104218246A (en) Storage battery grid, method of manufacturing storage battery grid, and storage battery using storage battery grid
JP6962102B2 (en) Manufacturing method of anode for electrolytic refining
EP1399604B1 (en) Method for the improvement of current efficiency in electrolysis
EP4371811A3 (en) A method for estimating an operating parameter of a battery cell in a vehicle
EP3744445A3 (en) Method for the manufacture of a complex component and separating tool
AU2010267900B2 (en) Method and apparatus for preparing a mother plate of a permanent cathode for an electrolytic process
KR102185586B1 (en) Cu-Ni-Si-based copper alloy bath
CN110382743A (en) High-purity electrolytic copper
JP2011032564A (en) Mother sheet for starting sheet in copper electrolysis, and method for production of starting sheet in copper electrorefining
JP6740771B2 (en) Anode vertical adjustment tool for copper electrorefining
JP2013234384A (en) Electrowinning method of nonferrous metal and method of manufacturing anode used for the same
JP6464701B2 (en) Permanent cathode strain correction device
JP6540536B2 (en) Method of manufacturing cathode for electrolytic smelting
KR101776471B1 (en) Rolled copper foil for secondary battery, and lithium ion secondary battery and lithium ion capacitor using the same
CN110470538B (en) Method for detecting timeliness of storage battery grid
JP2783027B2 (en) Quality control method in electrolytic refining of metals
JP6996277B2 (en) Electrorefining method for non-ferrous metals
JP7458832B2 (en) Collection method of non-ferrous metals
JP5037352B2 (en) Iron-nickel alloy strips for integrated circuit leadframe grid manufacturing
CN110057650A (en) The evaluation method of steel band crystal grain
CN117333480B (en) Visual detection method, system, device and medium for flaw edge on surface of casting material
JP7247691B2 (en) Permanent Cathode Distortion Evaluation Method and Distortion Evaluation Apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210927

R150 Certificate of patent or registration of utility model

Ref document number: 6962102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150