JP6961275B1 - Chromium recovery method - Google Patents

Chromium recovery method Download PDF

Info

Publication number
JP6961275B1
JP6961275B1 JP2021002227A JP2021002227A JP6961275B1 JP 6961275 B1 JP6961275 B1 JP 6961275B1 JP 2021002227 A JP2021002227 A JP 2021002227A JP 2021002227 A JP2021002227 A JP 2021002227A JP 6961275 B1 JP6961275 B1 JP 6961275B1
Authority
JP
Japan
Prior art keywords
chromium
slag
voltage
crushed
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021002227A
Other languages
Japanese (ja)
Other versions
JP2022107343A (en
Inventor
裕也 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
fukuokakougyoudaigaku
Original Assignee
fukuokakougyoudaigaku
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by fukuokakougyoudaigaku filed Critical fukuokakougyoudaigaku
Priority to JP2021002227A priority Critical patent/JP6961275B1/en
Application granted granted Critical
Publication of JP6961275B1 publication Critical patent/JP6961275B1/en
Publication of JP2022107343A publication Critical patent/JP2022107343A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Disintegrating Or Milling (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】ステンレス鋼の製鋼工程で発生したスラグから、効率的にクロムを回収することができるクロム回収方法を提供することを目的とする。【解決手段】酸化クロム成分が1.0重量%以上で酸化鉄成分が2.0重量%以上であるステンレススラグを電圧印加用の液体に浸漬し、所定電圧のパルス電圧を印加することで電気パルス粉砕により粉砕する。粉砕により得られた単体粒子を磁力選別により磁着物と非磁着物に分類し、さらに磁着物のうちクロム濃縮相からな単体粒子を回収することで、ステンレススラグから効率的にクロムの回収を行うことができる。【選択図】図2PROBLEM TO BE SOLVED: To provide a chromium recovery method capable of efficiently recovering chromium from slag generated in a steelmaking process of stainless steel. SOLUTION: Stainless slag having a chromium oxide component of 1.0% by weight or more and an iron oxide component of 2.0% by weight or more is immersed in a liquid for applying a voltage, and electricity is applied by applying a pulse voltage of a predetermined voltage. Grind by pulse grind. Elementary particles obtained by crushing are classified into magnetic and non-magnetic particles by magnetic force sorting, and the elemental particles from the chromium-enriched phase of the magnetic particles are recovered to efficiently recover chromium from stainless steel slag. be able to. [Selection diagram] Fig. 2

Description

本発明は、クロム回収方法に関する。詳しくは、ステンレス鋼の製鋼工程で発生したステンレススラグから、効率的にクロムを回収することができるクロム回収方法に係るものである。 The present invention relates to a method for recovering chromium. More specifically, the present invention relates to a chromium recovery method capable of efficiently recovering chromium from stainless slag generated in the steelmaking process of stainless steel.

鉄浴型転炉におけるクロム含有溶鉄の処理においては、有害成分であるクロムを含有したスラグ(以下、「クロム含有スラグ」という。)が大量に発生する。特にステンレス鋼の製造工程で発生するスラグ(以下、「ステンレススラグ」という。)は、ステンレス粒子(Fe−Cr合金)、及びクロム濃縮相が含まれた酸化物の混合物であるが、その用途が乏しく、現状は大量のステンレススラグが廃棄物として埋め立て処分されている。 In the treatment of chromium-containing molten iron in an iron bath type converter, a large amount of chromium-containing slag (hereinafter, referred to as “chromium-containing slag”) containing chromium, which is a harmful component, is generated. In particular, slag generated in the manufacturing process of stainless steel (hereinafter referred to as "stainless slag") is a mixture of stainless particles (Fe-Cr alloy) and an oxide containing a chromium-enriched phase, but its use is Currently, a large amount of stainless steel slag is landfilled as waste.

そこで、ステンレススラグに含まれるステンレス粒子とクロム濃縮相を単体粒子として単離することができれば、ステンレスの再利用を促進して歩留まりを向上することができるとともに、クロムの用途拡大につながることが期待される。 Therefore, if the stainless particles contained in the stainless slag and the chromium-concentrated phase can be isolated as simple substance particles, it is expected that the reuse of stainless steel can be promoted and the yield can be improved, and that the use of chromium can be expanded. Will be done.

従来、このようなクロム含有スラグからクロムを回収する方法として、クロム含有スラグを還元してクロムを回収することが行われている。例えば、特許文献1には、転炉等において発生したクロム含有スラグを、合金鉄やスクラップ等の冷鉄源とともに電気炉に混入して加熱し、溶融金属中の炭素やケイ素によりクロム含有スラグ中の酸化クロムを還元することで、クロムを回収する方法が開示されている。 Conventionally, as a method for recovering chromium from such chromium-containing slag, reduction of chromium-containing slag to recover chromium has been performed. For example, in Patent Document 1, chromium-containing slag generated in a converter or the like is mixed with a cold iron source such as ferroalloy or scrap into an electric furnace and heated, and the chromium-containing slag is contained by carbon or silicon in the molten metal. A method for recovering chromium by reducing chromium oxide in iron is disclosed.

また、特許文献2には、粉砕したスラグの比重差を利用した分別方法が開示されている。具体的には、ステンレス鋼等を製造する過程で発生する酸化クロムを1.0質量%以上、かつMgOを酸化クロム濃度の0.2倍以上を含有するクロム含有スラグを、衝撃式粉砕機を用いて粉砕して単体粒子化する。このとき、粉砕物のうち、比重の重い部分は酸化クロムが極めて高い濃度で凝縮され、比重の軽い部分は酸化クロム濃度が0.1重量%以下となっているため、高比重側スラグを回収することで、酸化クロムを効率的に回収することが可能となっている。 Further, Patent Document 2 discloses a sorting method using the difference in specific gravity of crushed slag. Specifically, an impact crusher is used to generate chromium-containing slag containing 1.0% by mass or more of chromium oxide generated in the process of manufacturing stainless steel or the like and 0.2 times or more of the chromium oxide concentration of MgO. Use to grind into single particles. At this time, in the crushed product, chromium oxide is condensed at an extremely high concentration in the portion having a heavy specific density, and the chromium oxide concentration is 0.1% by weight or less in the portion having a light specific gravity, so that the slag on the high specific density side is recovered. By doing so, it is possible to efficiently recover chromium oxide.

特表2003−502504号公報Special Table 2003-502504 特開2007−284727号公報Japanese Unexamined Patent Publication No. 2007-284727

しかしながら、前記特許文献1に記載された方法では、還元剤となる炭素やケイ素の量と還元されるスラグ量のバランスが重要となる。例えば還元剤量が過剰な場合には、後工程である脱炭工程で酸素効率が低下したり、或いは歩留まりが低くなったりするという問題が生じる。一方、還元されるスラグ量が過剰の場合には、十分に酸化クロムの還元や回収ができず、さらにはスラグの流動性が悪化して炉から排滓できないという問題が生じ、何れの場合も安定した操業ができない虞がある。 However, in the method described in Patent Document 1, the balance between the amount of carbon or silicon as a reducing agent and the amount of slag to be reduced is important. For example, when the amount of the reducing agent is excessive, there arises a problem that the oxygen efficiency is lowered or the yield is lowered in the decarburization step which is a subsequent step. On the other hand, if the amount of slag to be reduced is excessive, the chromium oxide cannot be sufficiently reduced or recovered, and the fluidity of the slag deteriorates, causing a problem that the slag cannot be discharged from the furnace. There is a risk that stable operation will not be possible.

また、前記特許文献2に記載された方法では、比重差を用いた選別を行うために、被粉砕物を200μm未満のオーダーの粒径となるまで被粉砕物を粉砕のうえ単体粒子化している。この点、一般的な衝撃式粉砕機を用いて単体粒子の粒径が200μm未満のオーダーとなるまで粉砕をするには、粉砕機に過度な負担がかかるとともに、粉砕のために非常に大きなエネルギーが必要となる。従って、繰り返し使用による装置のメンテナンスコスト、或いは装置の駆動コストが高くなるため、回収効率が悪化することが懸念される。 Further, in the method described in Patent Document 2, in order to perform sorting using the difference in specific gravity, the material to be crushed is crushed into single particles until the particle size is on the order of less than 200 μm. .. In this regard, using a general impact crusher to crush the single particles until the particle size is on the order of less than 200 μm puts an excessive burden on the crusher and requires a very large amount of energy for crushing. Is required. Therefore, there is a concern that the recovery efficiency may deteriorate because the maintenance cost of the device or the drive cost of the device increases due to repeated use.

本発明は、以上の点に鑑みて創案されたものであり、ステンレス鋼の製鋼工程で発生したスラグから、効率的にクロムを回収することができるクロム回収方法に係るものである。 The present invention has been devised in view of the above points, and relates to a chromium recovery method capable of efficiently recovering chromium from slag generated in the steelmaking process of stainless steel.

前記の目的を達成するために、本発明のクロム回収方法は、酸化クロム成分が1.0重量%以上で酸化鉄成分が2.0重量%以上であるステンレススラグを電圧印加用の液体に浸漬して一対の電極間に設置する工程と、前記電極間に所定電圧のパルス電圧を印加して前記ステンレススラグを粉砕する工程と、前記ステンレススラグを粉砕して得られる粉砕物から、所定濃度以上のクロムを含有する粉砕物を選別する工程とを備える。 In order to achieve the above object, in the chromium recovery method of the present invention, stainless slag having a chromium oxide component of 1.0% by weight or more and an iron oxide component of 2.0% by weight or more is immersed in a liquid for applying a voltage. The stainless slag is crushed by applying a pulse voltage of a predetermined voltage between the electrodes, and the crushed product obtained by crushing the stainless slag has a predetermined concentration or more. It is provided with a step of selecting a pulverized product containing slag.

ここで、所定の物性からなるステンレススラグを電圧印加用の液体に浸漬して一対の電極間に設置する工程を備えることにより、後記する通り電極間に所定電圧のパルス電圧を印加することで液体中、及び被粉砕物(ステンレススラグ)内に放電を起こすことができる。このとき、液体中で起こる放電により液体が気化膨張し衝撃波が生成され、被粉砕物内には被粉砕物を構成する異なる相の境界面に優先的に電流が流れる。これら液体中の衝撃波と被粉砕物内を流れる電流により、被粉砕物を粉砕して単体粒子に単離することができる。 Here, by providing a step of immersing a stainless slag having predetermined physical properties in a liquid for applying a voltage and installing it between a pair of electrodes, a liquid is obtained by applying a pulse voltage of a predetermined voltage between the electrodes as described later. An electric discharge can be generated inside and in the object to be crushed (stainless slag). At this time, the liquid is vaporized and expanded by the electric discharge generated in the liquid to generate a shock wave, and a current preferentially flows in the object to be crushed at the interface between different phases constituting the object to be crushed. The shock wave in the liquid and the electric current flowing in the object to be crushed can crush the object to be crushed and isolate it into simple substance particles.

また、被粉砕物であるステンレススラグの物性として、酸化クロム成分が1.0重量%以上で酸化鉄成分が2.0重量%以上を含有することにより、効率的にクロム回収を行うことができる。一般的にステンレスは、クロムを10%以上含み、鉄とクロムが原子レベルで混合した鉄合金であるが、ステンレススラグが所定以上の鉄成分を含有することで、ステンレススラグを粉砕して単体粒子化した場合に、クロム濃縮相を含む磁着物と、それ以外の非磁着物とに容易に分別することができる。 Further, as the physical properties of the stainless slag to be crushed, the chromium oxide component is 1.0% by weight or more and the iron oxide component is 2.0% by weight or more, so that the chromium can be efficiently recovered. .. Generally, stainless steel is an iron alloy containing 10% or more of chromium and a mixture of iron and chromium at the atomic level. However, when the stainless slag contains an iron component of a predetermined value or more, the stainless slag is crushed into single particles. When it is formed, it can be easily separated into a magnetically-coated material containing a chromium-concentrated phase and a non-magnetically-coated material other than that.

また、電極間に所定電圧のパルス電圧を印加してステンレススラグを粉砕する工程を備えることにより、前記の通りパルス電圧を印加することで液体中、及び被粉砕物内に放電を起こすことができる。これら液体中の放電により生成される衝撃波と被粉砕物内を流れる電流により、被粉砕物を粉砕して単体粒子に単離することができる。 Further, by providing a step of applying a pulse voltage of a predetermined voltage between the electrodes to crush the stainless slag, it is possible to cause an electric discharge in the liquid and in the object to be crushed by applying the pulse voltage as described above. .. The shock wave generated by the electric discharge in the liquid and the current flowing in the object to be crushed can crush the object to be crushed and isolate it into a single particle.

また、ステンレススラグを粉砕して得られる粉砕物から、所定濃度以上のクロムを含有する粉砕物を選別する工程を備えることにより、粉砕により単体粒子化したスラグのうち、クロム濃縮相とそれ以外の単体粒子を分別することで、ステンレススラグに含まれるクロムを効率的に回収することができる。 Further, by providing a step of selecting a crushed product containing chromium having a predetermined concentration or more from the crushed product obtained by crushing the stainless slag, among the slags that have been made into single particles by crushing, the chromium concentrated phase and other slags are provided. By separating the single particles, the chromium contained in the stainless slag can be efficiently recovered.

また、粉砕物を選別する工程は、粉砕物を磁力選別して、磁着物と非磁着物に分別する工程と、磁着物から所定濃度以上のクロムを含有する粉砕物を選別する工程とを有する場合には、前記した通り、クロムは鉄と結合して存在するため、粉砕物のうち磁着物である単体粒子を選択的に回収することができる。また、このとき単体粒子の粒度が比較的大きい場合でも、磁着物と非磁着物に容易に分別することができるため、ステンレススラグに含まれるクロムを効率的に回収することができる。 Further, the step of selecting the crushed material includes a step of magnetically sorting the crushed material and separating it into a magnetically-coated material and a non-magnetically-coated material, and a step of selecting a crushed material containing chromium having a predetermined concentration or more from the magnetically-coated material. In this case, as described above, since chromium exists in combination with iron, it is possible to selectively recover the single particles which are magnetic objects among the pulverized products. Further, at this time, even when the particle size of the single particles is relatively large, it can be easily separated into magnetic and non-magnetic particles, so that chromium contained in the stainless slag can be efficiently recovered.

また、電極間の距離が略10mm〜40mmの範囲におけるパルス電圧は、電圧が略100kV〜200kVであり、かつ印加回数が50回〜1000回である場合には、粒径が比較的大きな状態で被粉砕物を単体粒子化することができる。 Further, the pulse voltage in the range of the distance between the electrodes of about 10 mm to 40 mm is in a state where the particle size is relatively large when the voltage is about 100 kV to 200 kV and the number of times of application is 50 to 1000 times. The object to be crushed can be made into a single particle.

なお、電極間の距離は被粉砕物の大きさに応じて適宜変更されるべきものであるが、一般的に電極間の距離が短くなるほど低い電圧でも放電するため、強度の高いステンレススラグを小さなエネルギーで粉砕することが可能である。 The distance between the electrodes should be changed as appropriate according to the size of the object to be crushed. However, in general, the shorter the distance between the electrodes, the smaller the voltage, so the stainless slag with high strength is small. It can be crushed with energy.

但し、発明者が検討した結果では、例えば重量が50g程度のステンレススラグを想定したときに、電極間の距離が10mmの場合に印加する電圧が100kV未満となると、放電が起こらずステンレススラグを粉砕して単体粒子化することができない虞がある。従って、電極間の距離が略10mm〜40mmの範囲においては、少なくとも100kV〜200kV程度の電圧からなるパルス電圧を印加する必要がある。 However, according to the results examined by the inventor, for example, assuming a stainless slag with a weight of about 50 g, if the voltage applied when the distance between the electrodes is 10 mm is less than 100 kV, no discharge occurs and the stainless slag is crushed. Therefore, there is a risk that it cannot be made into a single particle. Therefore, in the range where the distance between the electrodes is approximately 10 mm to 40 mm, it is necessary to apply a pulse voltage having a voltage of at least about 100 kV to 200 kV.

なお、印加するパルス電圧の電圧が100kV〜200kVにおいて、印加回数が50回未満の場合には、粉砕が不十分となり被粉砕物の粒度分布にばらつきが生じて単体粒子化することができないため、クロム回収率が悪化する可能性がある。 When the applied pulse voltage is 100 kV to 200 kV and the number of times of application is less than 50, the pulverization becomes insufficient and the particle size distribution of the object to be pulverized becomes uneven, so that it cannot be made into a single particle. Chromium recovery may worsen.

一方、印加するパルス電圧が100kV〜200kVの場合において、印加回数が1000回を超える場合には、粉砕物の粒度分布のばらつきは抑制されるが、粒径が小さくなり過ぎて粉砕物が凝集してしまい分離効率が悪化する。また、磁力選別を行う場合には、磁着物と非磁着物の選別に時間を要して選別作業が非効率なものとなる。 On the other hand, when the applied pulse voltage is 100 kV to 200 kV and the number of applications exceeds 1000, the variation in the particle size distribution of the pulverized product is suppressed, but the particle size becomes too small and the pulverized product aggregates. The separation efficiency deteriorates. Further, in the case of magnetic force sorting, it takes time to sort magnetic and non-magnetic objects, which makes the sorting work inefficient.

また、粉砕物の平均粒径が1mm〜5mmである場合には、ステンレススラグを構成する単体粒子を比較的大きな粒径単位でもって単離することができる。これにより、粉砕物からクロム濃縮相を含む単体粒子を短時間で選別することができるため、ステンレススラグに含まれるクロムを効率的に回収することができる。 Further, when the average particle size of the pulverized product is 1 mm to 5 mm, the single particles constituting the stainless slag can be isolated with a relatively large particle size unit. As a result, the simple substance particles containing the chromium-concentrated phase can be selected from the pulverized product in a short time, so that the chromium contained in the stainless slag can be efficiently recovered.

また、電圧印加用の液体の導電率が略400mS/m以下であり、より好ましくは200mS/m以下である場合には、被粉砕物への通電量を確保して、被粉砕物の接合界面に流れる電流が所定に大きくなるため、被粉砕物の粉砕を促進することができる。 Further, when the conductivity of the liquid for applying a voltage is approximately 400 mS / m or less, more preferably 200 mS / m or less, the amount of electric current applied to the object to be crushed is secured, and the bonding interface of the object to be crushed is secured. Since the current flowing through the machine becomes predeterminedly large, it is possible to accelerate the crushing of the object to be crushed.

なお、電圧印加用の液体の導電率が略400mS/mを超えると、被粉砕物への通電量が減少し、被粉砕物の接合界面に流れる電流が小さくなり、被粉砕物の粉砕が促進されない虞があるため、液体の導電率は略400mS/m以下、より好ましくは200mS/m以下であるとよい。 When the conductivity of the liquid for applying voltage exceeds approximately 400 mS / m, the amount of electricity applied to the object to be crushed decreases, the current flowing at the junction interface of the object to be crushed decreases, and crushing of the object to be crushed is promoted. The conductivity of the liquid is preferably about 400 mS / m or less, more preferably 200 mS / m or less.

本発明に係るクロム回収方法は、ステンレス鋼の製鋼工程で発生したスラグから、効率的にクロムを回収することができるものとなっている。 The chromium recovery method according to the present invention can efficiently recover chromium from slag generated in the steelmaking process of stainless steel.

本発明の実施形態に係るクロム回収方法で使用する電気パルス粉砕装置の模式図である。It is a schematic diagram of the electric pulse crushing apparatus used in the chromium recovery method which concerns on embodiment of this invention. 本発明の実施形態に係るクロム回収方法の工程図である。It is a process drawing of the chromium recovery method which concerns on embodiment of this invention. 電気パルス粉砕装置を用いて粉砕した単体粒子の外観写真である。It is an appearance photograph of a single particle crushed by using an electric pulse crusher.

以下、本発明の実施形態に係るクロム回収方法について、図面を参照しながら説明し、本発明の理解に供する。 Hereinafter, the chromium recovery method according to the embodiment of the present invention will be described with reference to the drawings, and the present invention will be understood.

まず、図1を参照して、本発明の実施形態に係るクロム回収方法で使用する電気パルス粉砕装置1の概要について説明する。本発明の実施形態において使用する電気パルス粉砕装置1は、主に処理槽10、電圧パルス印加装置20、電極30から構成されている。 First, with reference to FIG. 1, an outline of the electric pulse crushing apparatus 1 used in the chromium recovery method according to the embodiment of the present invention will be described. The electric pulse crushing device 1 used in the embodiment of the present invention is mainly composed of a processing tank 10, a voltage pulse applying device 20, and an electrode 30.

処理槽10は、内部に絶縁性流体である液体が充填され、液体内は被粉砕物(本発明の実施形態ではクロムを含有するステンレススラグ)が浸漬される。液体は、例えば所定の導電率である水道水やイオン交換水などが用いられる。 The treatment tank 10 is filled with a liquid which is an insulating fluid, and an object to be crushed (in the embodiment of the present invention, a stainless slag containing chromium) is immersed in the liquid. As the liquid, for example, tap water or ion-exchanged water having a predetermined conductivity is used.

ここで、液体として、導電率の高い電解液などを用いると、被粉砕物への通電量が減少することから、被粉砕物の接合界面に流れる電流が小さくなり、被粉砕物の分解効果が得られにくくなる。そこで、本発明の実施形態においては、400mS/m以下、より好ましくは200mS/m以下の導電率である液体を使用した。 Here, if an electrolytic solution having a high conductivity or the like is used as the liquid, the amount of electricity applied to the object to be crushed decreases, so that the current flowing at the bonding interface of the object to be crushed becomes small, and the decomposition effect of the object to be crushed becomes large. It becomes difficult to obtain. Therefore, in the embodiment of the present invention, a liquid having a conductivity of 400 mS / m or less, more preferably 200 mS / m or less was used.

なお、必ずしも、液体の導電率は前記した範囲内に設定する必要はなく、被粉砕物の大きさや物性等に応じて適宜変更することができるものとする。 The conductivity of the liquid does not necessarily have to be set within the above range, and can be appropriately changed according to the size and physical properties of the object to be crushed.

電圧パルス印加装置20は、処理槽10に設置された一対の電極30(負極30a、正極30b)間に配線40を介して高電圧パルスを印加する装置であり、電源からの電圧を調整して高電圧まで昇圧する高電圧発生部(図示しない)と、高電圧発生部によって得られた高電圧をパルス状に出力するパルス発生部(図示しない)を有している。電極30に高電圧パルスが印加されると、液体中、及び被粉砕物内に放電を発生することが可能となっている。 The voltage pulse application device 20 is a device that applies a high voltage pulse between a pair of electrodes 30 (negative electrode 30a, positive electrode 30b) installed in the processing tank 10 via a wiring 40, and adjusts the voltage from the power supply. It has a high voltage generation unit (not shown) that boosts the voltage to a high voltage, and a pulse generation unit (not shown) that outputs the high voltage obtained by the high voltage generation unit in a pulsed manner. When a high voltage pulse is applied to the electrode 30, it is possible to generate an electric discharge in the liquid and in the object to be crushed.

本発明の実施形態においては、電圧パルス印加装置20により印加される電圧の範囲は略130kV〜180kVであって、被粉砕物に流れる電流は非常に大きな電流となるが、一度の印加電圧による放電時間が0.1μs〜5μsと瞬間的である。そのため、一般的な衝撃式粉砕機に比べると消費電力は少なくてよく、装置全体の駆動コストを大幅に低減することができる。 In the embodiment of the present invention, the range of the voltage applied by the voltage pulse application device 20 is approximately 130 kV to 180 kV, and the current flowing through the object to be crushed is a very large current, but the discharge is performed by one applied voltage. The time is instantaneous, 0.1 μs to 5 μs. Therefore, the power consumption may be lower than that of a general impact crusher, and the driving cost of the entire device can be significantly reduced.

電極30は、一対の負極30aと正極30bから構成され、電圧パルス印加装置20と電気的に接続されている。負極30aと、正極30bとは、液体を介在して互いに上下方向に所定の極間距離(本発明の実施形態では10mm〜40mm)を確保するようにして対向配置されている。 The electrode 30 is composed of a pair of negative electrodes 30a and a positive electrode 30b, and is electrically connected to the voltage pulse applying device 20. The negative electrode 30a and the positive electrode 30b are arranged so as to secure a predetermined distance between the electrodes (10 mm to 40 mm in the embodiment of the present invention) in the vertical direction with a liquid interposed therebetween.

ここで、必ずしも、電極30の極間距離は10mm〜40mmの範囲内で設定する必要はない。一般的に電極30の極間距離が長く、かつ印加電圧が低いほど、電極30間に形成される電場が弱くなり放電が起こりにくくなる。一方で、極間距離が短いほど低い電圧で放電することが可能となる。そのため、被粉砕物の大きさに応じて極間距離、及びそれに対応する印加電圧を適宜変更することができる。 Here, the distance between the electrodes of the electrodes 30 does not necessarily have to be set within the range of 10 mm to 40 mm. Generally, the longer the distance between the electrodes of the electrodes 30 and the lower the applied voltage, the weaker the electric field formed between the electrodes 30 and the less likely it is that discharge will occur. On the other hand, the shorter the distance between the poles, the lower the voltage that can be discharged. Therefore, the distance between the poles and the corresponding applied voltage can be appropriately changed according to the size of the object to be crushed.

以上の構成において、電圧パルス印加装置20を作動させると、負極30aと正極30b間に高電圧パルスが印加されて液体中、及び被粉砕物内に放電を発生することが可能となっている。 In the above configuration, when the voltage pulse applying device 20 is operated, a high voltage pulse is applied between the negative electrode 30a and the positive electrode 30b, and it is possible to generate an electric discharge in the liquid and in the object to be crushed.

図2は本発明の実施形態に係るクロム回収方法の工程図を示す。クロム回収方法は、ステンレススラグ(主な構成物として、ステンレス、クロム濃縮相、低クロムスラグ相 等)を電気パルス粉砕装置1で粉砕して単体粒子化し(工程1)、工程1により得られた粉砕物を磁力選別(工程2)することで磁着物と非磁着物に分類し、さらに磁着物は製鉄原料としてのステンレス、クロム含有量の多いクロム濃縮相、及び低クロムスラグ製品に分類される。 FIG. 2 shows a process diagram of the chromium recovery method according to the embodiment of the present invention. The chromium recovery method was obtained by crushing stainless slag (main components, stainless steel, chromium concentrated phase, low chromium slag phase, etc.) with an electric pulse crusher 1 to form single particles (step 1), and then step 1. The crushed material is classified into magnetic and non-magnetic material by magnetically sorting (step 2), and the magnetic material is further classified into stainless steel as a raw material for steelmaking, a chromium concentrated phase with a high chromium content, and a low chromium slag product. ..

ここで、必ずしも、工程1により得られた粉砕物の選別方法として磁力選別を採用する必要はない。発明者が検討した範囲では、工程1の電気パルス粉砕装置1により粉砕された粉砕物のうち、クロム濃縮相を含む単体粒子は他の単体粒子に比べて比重が大きいことが確認できた。そのため、比重差による選別方法を採用することで、クロム濃縮相を含む単体粒子を選別することも可能である。 Here, it is not always necessary to adopt magnetic force sorting as a method for sorting the pulverized product obtained in step 1. Within the range examined by the inventor, it was confirmed that among the pulverized products crushed by the electric pulse pulverizer 1 in step 1, the single particles containing the chromium-concentrated phase had a larger specific gravity than the other single particles. Therefore, it is also possible to sort single particles containing a chromium-enriched phase by adopting a sorting method based on the difference in specific densities.

次に、前記した電気パルス粉砕装置1を用いたクロム回収方法の実施例について説明する。 Next, an example of the chromium recovery method using the electric pulse pulverizer 1 described above will be described.

<ステンレススラグ>
実施例で用いた被粉砕物は、酸化クロム成分が1.64重量%、酸化鉄成分が3.81重量%の組成からなる重量が50gのステンレススラグである。
<Stainless steel slag>
The object to be crushed used in the examples is a stainless slag having a composition of 1.64% by weight of chromium oxide and 3.81% by weight of iron oxide and having a weight of 50 g.

<電気パルス粉砕装置>
電気パルス粉砕装置1の構成は前記の通りであるが、本実施例においては、極間距離を40mm、印加電圧を180kV、電圧パルス照射回数を250回の条件にそれぞれ設定した。
<Electric pulse crusher>
The configuration of the electric pulse crusher 1 is as described above, but in this embodiment, the distance between the poles is set to 40 mm, the applied voltage is set to 180 kV, and the number of voltage pulse irradiations is set to 250 times.

<処理槽>
処理槽10内には液体として略3.0Lの水道水で満たし、液体の導電率は167.3mS/m以下である。
<Processing tank>
The treatment tank 10 is filled with approximately 3.0 L of tap water as a liquid, and the conductivity of the liquid is 167.3 mS / m or less.

以上の条件下で、まず被粉砕物であるステンレススラグを、液体で満たされた処理槽10内に浸漬させて負極30aと正極30b間に設置した。続いて、電圧パルス印加装置20を作動させて電圧を印加し、負極30aと正極30b間に放電プラズマを発生させてステンレススラグを粉砕した。 Under the above conditions, first, the stainless slag to be crushed was immersed in a treatment tank 10 filled with a liquid and installed between the negative electrode 30a and the positive electrode 30b. Subsequently, the voltage pulse application device 20 was operated to apply a voltage, and a discharge plasma was generated between the negative electrode 30a and the positive electrode 30b to crush the stainless slag.

粉砕により得られた単体粒子が処理槽10内に浮遊した状態の懸濁液を、そのまま所定の大きさの目開きの篩によって分級し、1mm以上の粒群を目視で色彩選別した。 The suspension in which the single particles obtained by pulverization were suspended in the treatment tank 10 was classified as it was by a sieve having an opening of a predetermined size, and a group of particles having a size of 1 mm or more was visually color-selected.

図3は、実施例に供したステンレススラグを粉砕して得られた粉砕物(単体粒子)の外観である。単体粒子は平均粒径が1mm〜5mmの粒径であり、黒、白、灰色、緑、黄色など、様々な色の単体粒子が数多く生成されていることが確認できた。 FIG. 3 is an appearance of a pulverized product (elemental particles) obtained by pulverizing the stainless slag used in the examples. It was confirmed that the single particles had an average particle size of 1 mm to 5 mm, and many single particles of various colors such as black, white, gray, green, and yellow were produced.

これら単体粒子は、さらに磁力選別装置により磁着物と非磁着物に分類した。なお、本実施例で使用した磁力選別装置としては棒磁石を使用したが、ドラム型磁選機、吊下式鉄片分離機、非鉄金属選別機、対極型磁選機、マグネットプーリ等から適宜選択することができるものとする。 These simple substance particles were further classified into magnetic and non-magnetic particles by a magnetic force sorter. Although a bar magnet was used as the magnetic force sorting device used in this embodiment, it should be appropriately selected from a drum type magnetic separator, a suspended iron piece separator, a non-ferrous metal sorter, a counter electrode type magnetic separator, a magnet pulley and the like. Can be done.

磁力選別装置により磁着物と非磁着物に選別するとともに、液化処理をしたうえで各単体粒子の組成と飽和磁化を分析した結果を表1に示す(ステンレス以外はその外観色を表示する)。なお、単体粒子の組成の分析はICP発光分光分析法により行った。 Table 1 shows the results of analyzing the composition and saturation magnetization of each single particle after sorting into magnetic and non-magnetic particles by a magnetic force sorting device and liquefying the particles (excluding stainless steel, the appearance color is displayed). The composition of the simple substance particles was analyzed by ICP emission spectroscopic analysis.

<表1>

Figure 0006961275
<Table 1>
Figure 0006961275

表1より、クロムを10%以上含む鉄合金であるステンレス単体粒子(A)を除くと、磁着物の黒色単体粒子(B)はクロム濃度が5.7mass%と高く、他の単体粒子(C)〜(H)のクロム濃度(0.2mass%〜1.4mass%)と明らかな濃度差を確認することができる。 From Table 1, when the stainless steel simple substance particles (A), which is an iron alloy containing 10% or more of chromium, are excluded, the black simple substance particles (B) of the magnetic deposit have a high chromium concentration of 5.7 mass%, and the other simple substance particles (C). ) To (H), a clear difference in concentration can be confirmed from the chromium concentration (0.2 mass% to 1.4 mass%).

なお、発明者が検討した結果では、黒色単体粒子(B)は、ステンレス単体粒子(A)を除く他の単体粒子(C)〜(H)に比べて比重が大きいことが確認できた。そのため、前記した磁力選別装置に代えて比重選別装置を利用することで黒色単体粒子(B)のみを選別することも可能である。 As a result of the examination by the inventor, it was confirmed that the black simple substance particles (B) have a larger specific gravity than the other simple substance particles (C) to (H) excluding the stainless steel simple substance particles (A). Therefore, it is also possible to sort only the black simple substance particles (B) by using the specific gravity sorting device instead of the magnetic force sorting device described above.

以上のように選別された単体粒子について、ステンレス単体粒子(A)については製鉄材料として再利用される。一方、黒色単体粒子(B)は回収されてクロム原料、或いは廃棄物として処理される。また、その他の単体粒子(C)〜(H)については必要に応じて再利用、或いは廃棄物として処理される。 Regarding the simple substance particles selected as described above, the stainless steel simple substance particles (A) are reused as a steelmaking material. On the other hand, the black simple substance particles (B) are recovered and treated as a chromium raw material or waste. In addition, the other simple substance particles (C) to (H) are reused or treated as waste as necessary.

以上、本発明に係るクロム回収方法は、ステンレス鋼の製鋼工程で発生したステンレススラグから、効率的にクロムを回収することができるものとなっている。 As described above, the chromium recovery method according to the present invention can efficiently recover chromium from stainless slag generated in the steelmaking process of stainless steel.

1 電気パルス粉砕装置
10 処理槽
20 電圧パルス印加装置
30 電極
30a 負極
30b 正極
40 配線
1 Electric pulse crusher 10 Processing tank 20 Voltage pulse application device 30 Electrode 30a Negative electrode 30b Positive electrode 40 Wiring

Claims (3)

酸化クロム成分が1.0重量%以上で酸化鉄成分が2.0重量%以上であるステンレススラグを電圧印加用の液体に浸漬して一対の電極間に設置する工程と、
前記電極間に所定電圧のパルス電圧を印加して前記ステンレススラグ内に放電を発生させ、該ステンレススラグを構成する異なる相の境界面に沿って電流が流れることにより、前記ステンレススラグを平均粒径が1mm〜5mmの単体粒子に粉砕する工程と、
前記単体粒子を磁力選別して、磁着物と非磁着物に分別する工程と、
前記磁着物から所定濃度以上のクロムを含有する単体粒子を選別する工程と、を備える
クロム回収方法。
A step of immersing stainless slag having a chromium oxide component of 1.0% by weight or more and an iron oxide component of 2.0% by weight or more in a liquid for applying a voltage and installing it between a pair of electrodes.
A pulse voltage of a predetermined voltage is applied between the electrodes to generate an electric discharge in the stainless slag, and a current flows along the interface between different phases constituting the stainless slag, whereby the stainless slag has an average particle size. The process of crushing into single particles of 1 mm to 5 mm and
A step of magnetically sorting the single particles and separating them into magnetic and non-magnetic particles.
A chromium recovery method comprising a step of selecting single particles containing chromium having a predetermined concentration or more from the magnetic substance.
前記電極間の距離が10mm〜40mmの範囲であり、
前記パルス電圧は、電圧が100kV〜200kV、印加回数が50回〜1000回である
請求項1に記載のクロム回収方法。
The distance between the electrodes is in the range of 10 mm to 40 mm.
The chromium recovery method according to claim 1, wherein the pulse voltage is 100 kV to 200 kV and the number of times of application is 50 to 1000 times.
前記電圧印加用の液体の導電率が200mS/s以下である
請求項1または請求項2に記載のクロム回収方法。
The chromium recovery method according to claim 1 or 2, wherein the conductivity of the liquid for applying a voltage is 200 mS / s or less.
JP2021002227A 2021-01-08 2021-01-08 Chromium recovery method Active JP6961275B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021002227A JP6961275B1 (en) 2021-01-08 2021-01-08 Chromium recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021002227A JP6961275B1 (en) 2021-01-08 2021-01-08 Chromium recovery method

Publications (2)

Publication Number Publication Date
JP6961275B1 true JP6961275B1 (en) 2021-11-05
JP2022107343A JP2022107343A (en) 2022-07-21

Family

ID=78409731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021002227A Active JP6961275B1 (en) 2021-01-08 2021-01-08 Chromium recovery method

Country Status (1)

Country Link
JP (1) JP6961275B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017846B2 (en) * 2005-11-16 2012-09-05 Jfeスチール株式会社 Reuse of chromium-containing steel refining slag
JP4932309B2 (en) * 2006-04-13 2012-05-16 新日本製鐵株式会社 Chromium recovery method from chromium-containing slag
JP2017136516A (en) * 2016-02-01 2017-08-10 三菱電機株式会社 Decomposition processing apparatus and decomposition processing method
AU2016422180B2 (en) * 2016-08-31 2022-12-01 Selfrag Ag Method for operating a high-voltage pulse system
AU2017204211A1 (en) * 2017-06-21 2019-01-17 The University Of Queensland An integrated separator system & process for preconcentration and pretreatment of a material

Also Published As

Publication number Publication date
JP2022107343A (en) 2022-07-21

Similar Documents

Publication Publication Date Title
Hu et al. High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries
JP5573546B2 (en) Ferromagnetic separator
JP6469362B2 (en) Method for recovering valuable materials from lithium ion secondary batteries
Widijatmoko et al. Recovering lithium cobalt oxide, aluminium, and copper from spent lithium-ion battery via attrition scrubbing
Behera et al. Ultrasound and Microwave assisted leaching of neodymium from waste magnet using organic solvent
Parker et al. The effects of electrical comminution on the mineral liberation and surface chemistry of a porphyry copper ore
Naduty et al. Research results proving the dependence of the copper concentrate amount recovered from basalt raw material on the electric separator field intensity
JP2015170480A (en) Valuable material recovery method from lithium ion secondary battery
Yan et al. Preferential sequence crushing of copper ore based upon high-voltage pulse technology
CA2025015C (en) Direct smelting process
KR101638447B1 (en) Method for producting iron concentrate as sources of direct reduced iron
JP6961275B1 (en) Chromium recovery method
JP7268382B2 (en) How to dispose of used lithium-ion batteries
US20240043964A1 (en) Device and method for preparing low-impurity regenerated brass alloy through step-by-step insertion of electrode
Kim et al. Upgrading of manganese from waste silicomanganese slag by a mechanical separation process
WO2020203910A1 (en) Method for processing electronic/electrical device component scraps
JPH06320137A (en) Treatment of burned ash of shredder dust
Hu et al. Recovery of Aluminum Residue from Incineration of Cans in Municipal Solid Waste.
JP2001058138A (en) Treatment method for recycling waste of office automation equipment
JP6401080B2 (en) Beneficiation method
Lyon et al. Recycling battery casing materials
JP2010253432A (en) Method of recovering manganese oxide from dry cell
CN110106430A (en) The method for preparing alnico using waste nickel hydrogen battery recycling
JP2014181370A (en) Method of recovering rare earth element and method of recycling steel ingredient
US10704121B1 (en) Systems and methods for lowering the reduction of iron ore energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210115

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210115

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20210115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211006

R150 Certificate of patent or registration of utility model

Ref document number: 6961275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250