JP6960867B2 - Laminated modeling equipment - Google Patents

Laminated modeling equipment Download PDF

Info

Publication number
JP6960867B2
JP6960867B2 JP2018013245A JP2018013245A JP6960867B2 JP 6960867 B2 JP6960867 B2 JP 6960867B2 JP 2018013245 A JP2018013245 A JP 2018013245A JP 2018013245 A JP2018013245 A JP 2018013245A JP 6960867 B2 JP6960867 B2 JP 6960867B2
Authority
JP
Japan
Prior art keywords
electron beam
gas
powder bed
powder
powder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018013245A
Other languages
Japanese (ja)
Other versions
JP2019131846A (en
Inventor
恭諒 丸小
武士 物種
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018013245A priority Critical patent/JP6960867B2/en
Publication of JP2019131846A publication Critical patent/JP2019131846A/en
Application granted granted Critical
Publication of JP6960867B2 publication Critical patent/JP6960867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Description

この発明は、例えば金属粒体からなる粉末材料により形成される粉末床を真空室内で積層しながら各層の粉末床を選択的に固化させる工程を繰り返すことにより三次元形状の造形物を製造する積層造形装置に関するものである。 In the present invention, for example, a three-dimensional shaped product is produced by repeating a step of selectively solidifying a powder bed of each layer while laminating a powder bed formed of a powder material made of metal particles in a vacuum chamber. It is related to a modeling device.

電子ビームの照射により溶融凝固可能な金属粒体などからなる粉末材料により形成される粉末床を真空室内で積層しながら、各層の粉末床を選択的に固化させることにより三次元形状の造形物を製造する積層造形装置が知られている。このように電子ビームを用いる積層造形装置では、電子ビームの照射により粉末材料が負に帯電するため、個々の粉末材料同士がクーロン力により互いに反発し合い粉末材料が飛散する虞がある。そこで、装置の真空室内に補助ガスを導入し、電子ビームの照射点近傍で補助ガスを正に帯電させることで粉末材料を電気的に中性化させるものがある(例えば、特許文献1参照)。また、粉末材料の粉表面の伝導度を増加させる反応性ガスを供給しながら、作業領域上に配置された材料に電子ビームを照射するものがある(例えば、特許文献2参照)。 A three-dimensional shaped object is created by selectively solidifying the powder bed of each layer while laminating the powder bed formed of a powder material made of metal particles that can be melted and solidified by irradiation with an electron beam in a vacuum chamber. Laminated molding equipment to be manufactured is known. In the laminated modeling apparatus using the electron beam as described above, since the powder material is negatively charged by the irradiation of the electron beam, the individual powder materials may repel each other due to the Coulomb force and the powder material may scatter. Therefore, there is a method in which an auxiliary gas is introduced into the vacuum chamber of the apparatus and the auxiliary gas is positively charged in the vicinity of the irradiation point of the electron beam to electrically neutralize the powder material (see, for example, Patent Document 1). .. Further, there is a method of irradiating a material arranged on a work area with an electron beam while supplying a reactive gas that increases the conductivity of the powder surface of the powder material (see, for example, Patent Document 2).

特表2010−526694号公報Special Table 2010-526964A 特表2011−506761号公報Japanese Patent Application Laid-Open No. 2011-506761

しかしながら、真空室内に導入されるガスは容易に拡散するため、特許文献1及び特許文献2に記載のものでは、粉末材料の飛散を防止するためのガスを真空室内全体に導入することになり、特に大型の造形物を造形する場合のように、真空室が大型化すると必要なガス量も増大して生産コストが増大してしまうという問題点がある。 However, since the gas introduced into the vacuum chamber easily diffuses, in the ones described in Patent Document 1 and Patent Document 2, the gas for preventing the scattering of the powder material is introduced into the entire vacuum chamber. In particular, there is a problem that when the vacuum chamber becomes large, the amount of gas required increases and the production cost increases, as in the case of modeling a large-sized object.

この発明は、上記のような問題点を解決するためになされたもので、電子ビームの照射によって帯電した粉末材料同士が互いに反発して飛散することを防止しつつ、飛散防止のために真空室内に導入されるガスの量を低減することができる積層造形装置を得るものである。 The present invention has been made to solve the above-mentioned problems, and while preventing the powder materials charged by the irradiation of the electron beam from repelling each other and scattering, the vacuum chamber is used to prevent the scattering. It is intended to obtain a laminated molding apparatus capable of reducing the amount of gas introduced into the.

この発明の積層造形装置は、粉末材料により形成される粉末床を真空チャンバ内で積層しながら各層の粉末床を選択的に固化させる工程を繰り返すことにより三次元形状の造形物を製造する積層造形装置であって、粉末材料を固化させる電子ビームを粉末床に照射する電子ビーム照射手段と、電子ビームの走査範囲に設けられ、高さを調整可能な載置台と、載置台に載置され、粉末床を形成する粉末床形成部と、電子ビームの照射によって陽イオン化するガスを電子ビームの通過領域に導入するガス導入部とを備え、ガス導入部は、クヌーセン数が0.3よりも大きい分子流の状態で、ガスを通過領域に導入するものである。
The laminated molding apparatus of the present invention manufactures a three-dimensional shaped object by repeating a step of selectively solidifying the powder bed of each layer while laminating a powder bed formed of a powder material in a vacuum chamber. An apparatus, which is an electron beam irradiating means for irradiating a powder bed with an electron beam for solidifying a powder material, a mounting table provided in the scanning range of the electron beam and having an adjustable height, and a mounting table mounted on the mounting table. a powder bed forming unit for forming a powder bed, the gas to be positive ionized by irradiation of the electron beam and a gas introducing portion for introducing the passing area of the electron beam, the gas introduction portion than Knudsen number is 0.3 The gas is introduced into the passage region in the state of a large molecular flow .

この発明の積層造形装置によれば、電子ビームの照射によって陽イオン化するガスの分子流を電子ビームの通過領域に噴出するガス導入部を備えたため、電子ビームの照射によって帯電した粉末材料同士が互いに反発して飛散することを防止しつつ、飛散防止のために真空室内に導入されるガスの量を低減することができる。 According to the laminated molding apparatus of the present invention, since the gas introduction portion for ejecting the molecular flow of the gas cationized by the irradiation of the electron beam into the passing region of the electron beam is provided, the powder materials charged by the irradiation of the electron beam are mutually charged. It is possible to reduce the amount of gas introduced into the vacuum chamber in order to prevent scattering while preventing repulsion and scattering.

この発明の実施の形態1における積層造形装置を示す概略図である。It is the schematic which shows the laminated modeling apparatus in Embodiment 1 of this invention. この発明の実施の形態1に係るガス導入部を示す側面図である。It is a side view which shows the gas introduction part which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るガス導入部を示す平面図である。It is a top view which shows the gas introduction part which concerns on Embodiment 1 of this invention. この発明の実施の形態2における積層造形装置を示す概略図である。It is the schematic which shows the laminated modeling apparatus in Embodiment 2 of this invention. この発明の実施の形態2に係るガス導入部を示す側面図である。It is a side view which shows the gas introduction part which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係るガス導入部を示す平面図である。It is a top view which shows the gas introduction part which concerns on Embodiment 2 of this invention.

実施の形態1.
以下に、この発明の実施の形態1を図1から図2Bに基づいて説明する。図1は、実施の形態1における積層造形装置を示す概略図である。積層造形装置100において、真空チャンバ1の上方に設置された電子銃室3、すなわち収納室には、電子銃2、すなわち電子ビーム照射手段が収納されている。電子銃2は真空チャンバ1の床部1aに対向しており、所定の走査範囲に対して電子ビームEBを照射するものである。電子銃室3の床部3aには電子銃室3と真空チャンバ1とを連通する開口部3bが設けられており、電子銃2から照射される電子ビームEBは開口部3bを介して真空チャンバ1内に照射される。開口部3bは図示しないシャッターによって開閉可能となっており、電子ビームEBが照射される時以外開口部3bを閉じることで真空チャンバ1と電子銃室3を遮断し、真空チャンバ1内の真空度を維持することが可能となっている。
Embodiment 1.
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 2B. FIG. 1 is a schematic view showing a laminated modeling apparatus according to the first embodiment. In the laminated modeling apparatus 100, the electron gun 2, that is, the electron beam irradiating means is housed in the electron gun chamber 3, that is, the storage chamber, which is installed above the vacuum chamber 1. The electron gun 2 faces the floor portion 1a of the vacuum chamber 1 and irradiates the electron beam EB to a predetermined scanning range. The floor portion 3a of the electron gun chamber 3 is provided with an opening 3b for communicating the electron gun chamber 3 and the vacuum chamber 1, and the electron beam EB emitted from the electron gun 2 passes through the opening 3b in the vacuum chamber. It is irradiated in 1. The opening 3b can be opened and closed by a shutter (not shown), and the vacuum chamber 1 and the electron gun chamber 3 are shut off by closing the opening 3b except when the electron beam EB is irradiated, and the degree of vacuum in the vacuum chamber 1 is reduced. It is possible to maintain.

電子ビームEBは、電磁力によって偏向させることで照射箇所を操作可能である。また、電子ビームEBは電子銃2から床部1aまでの間で所定の広がり角度をもって広がる。実施の形態1では、電子ビームEBの照射先が走査範囲内を移動する際に電子ビームの経路が動く領域を電子ビームEBの通過領域とし、真空チャンバ1内の通過領域を通過領域S1、電子銃室3内の通過領域を通過領域S2としている。開口部3bの面積は、床部3aの高さにおける通過領域S2の水平断面積以上であり、電子ビームEBが通過領域S2内のどの経路を通っても、電子ビームEBが開口部3bを介して真空チャンバ1内に進入するようになっている。また、電子ビームEBの広がりは下方ほど大きいので、通過領域S1の水平断面積は、通過領域S2の水平断面積よりも大きい。 The electron beam EB can operate the irradiation point by deflecting it by an electromagnetic force. Further, the electron beam EB spreads from the electron gun 2 to the floor portion 1a at a predetermined spreading angle. In the first embodiment, the region where the path of the electron beam moves when the irradiation destination of the electron beam EB moves within the scanning range is defined as the passing region of the electron beam EB, and the passing region in the vacuum chamber 1 is the passing region S1 and the electrons. The passing area in the gun chamber 3 is defined as the passing area S2. The area of the opening 3b is equal to or larger than the horizontal cross-sectional area of the passing region S2 at the height of the floor 3a, and the electron beam EB passes through the opening 3b regardless of the path in the passing region S2. It is designed to enter the vacuum chamber 1. Further, since the spread of the electron beam EB is larger toward the lower side, the horizontal cross-sectional area of the passing region S1 is larger than the horizontal cross-sectional area of the passing region S2.

床部1aには、三次元積層造形物8の原料である粉末材料7が敷き詰められる造形領域部1bが電子ビームEBの走査範囲に形成されている。造形領域部1bの底面は、昇降機構6により高さを調整可能な作業土台5、すなわち載置台により形成されており、作業土台5を昇降させることにより造形領域部1bの深さが調整される。 On the floor portion 1a, a molding region portion 1b on which the powder material 7 which is a raw material of the three-dimensional laminated model 8 is spread is formed in the scanning range of the electron beam EB. The bottom surface of the modeling area 1b is formed by a work base 5 whose height can be adjusted by the elevating mechanism 6, that is, a mounting table, and the depth of the modeling area 1b is adjusted by raising and lowering the work base 5. ..

床部1a上には、粉末ボックス91に収納された粉末材料7を作業土台5の上に敷き詰める粉末床形成機構92が設置されている。粉末床形成機構92は、造形領域部1bの上部を移動、往復しながら所定量の粉末材料7を造形領域部1b内に供給し、作業土台5の上に粉末材料7を敷き詰める。粉末ボックス91は、例えば直方体の箱体であり、粉末床形成機構92が下方に来ると粉末材料7を落下させ、粉末床形成機構92に粉末材料7を供給する。粉末材料7は、固化して三次元造形物を構成する粉末状の材料であり、電子銃2からの電子ビームEBが照射されることで溶融凝固又は焼結して固化する。粉末材料7は、例えばコバルトクロムモリブデン合金やチタン合金などの金属粒体の粉末材料であるが、これに限られるものではなく電子ビームEBの照射により溶融凝固又は焼結可能なものであればよい。 On the floor portion 1a, a powder floor forming mechanism 92 for laying the powder material 7 stored in the powder box 91 on the work base 5 is installed. The powder bed forming mechanism 92 moves and reciprocates the upper part of the modeling region portion 1b to supply a predetermined amount of the powder material 7 into the modeling region portion 1b, and spreads the powder material 7 on the work base 5. The powder box 91 is, for example, a rectangular parallelepiped box, and when the powder bed forming mechanism 92 comes downward, the powder material 7 is dropped and the powder material 7 is supplied to the powder bed forming mechanism 92. The powder material 7 is a powdery material that solidifies to form a three-dimensional model, and is melt-solidified or sintered and solidified by being irradiated with an electron beam EB from the electron gun 2. The powder material 7 is, for example, a powder material of metal particles such as a cobalt-chromium molybdenum alloy or a titanium alloy, but is not limited to this, and may be melt-solidified or sintered by irradiation with an electron beam EB. ..

また、床部1aにはガス導入部10が設置されている。ガス導入部10は、造形領域部1bの近傍に配置され、噴出管104を介して電子ビームEBの通過領域S1に分子流状態の飛散防止ガスGを局所的に導入する。また、ガス導入部10は、真空チャンバ1の側壁に設けられたガス供給部13に配管103を介して接続されている。ガス供給部13は、真空チャンバ1の外部に設けられた容器12に配管102を介して接続されており、容器12に保持されている飛散防止ガスGをガス導入部10に供給する。容器12は、配管101を介して真空ポンプ11と接続されており、真空ポンプ11により減圧された飛散防止ガスGを保持している。 Further, a gas introduction portion 10 is installed on the floor portion 1a. The gas introduction unit 10 is arranged in the vicinity of the modeling region portion 1b, and locally introduces the scattering prevention gas G in the molecular flow state into the passage region S1 of the electron beam EB via the ejection pipe 104. Further, the gas introduction unit 10 is connected to the gas supply unit 13 provided on the side wall of the vacuum chamber 1 via a pipe 103. The gas supply unit 13 is connected to a container 12 provided outside the vacuum chamber 1 via a pipe 102, and supplies the anti-scattering gas G held in the container 12 to the gas introduction unit 10. The container 12 is connected to the vacuum pump 11 via a pipe 101, and holds the anti-scattering gas G decompressed by the vacuum pump 11.

ガス導入部10及びプレート4についてより詳細に説明する。図2A及び図2Bは、ガス導入部10を示す側面図及び平面図である。なお、実際はプレート4の周囲にも粉末材料7が敷き詰められるが、図2A及び図2Bではプレート4の周囲に敷き詰められる粉末材料を省略している。プレート4は、例えば断面正方形状の金属製のプレートであり、電子ビームEBが照射される範囲に溝部4aが設けられている。作業土台5の上に粉末材料7が敷き詰められる際には溝部4a内にも粉末材料7が敷き詰められ、1層目の粉末床71が形成される。 The gas introduction section 10 and the plate 4 will be described in more detail. 2A and 2B are a side view and a plan view showing the gas introduction unit 10. Actually, the powder material 7 is spread around the plate 4, but in FIGS. 2A and 2B, the powder material spread around the plate 4 is omitted. The plate 4 is, for example, a metal plate having a square cross section, and a groove portion 4a is provided in a range where the electron beam EB is irradiated. When the powder material 7 is spread on the work base 5, the powder material 7 is also spread in the groove 4a to form the first layer powder floor 71.

ガス導入部10は、電子ビームEBの通過領域S1側の側面に複数の噴出管104が設けられている。それぞれの噴出管104は、例えば断面円形状の細管であり、床部1aから高さV1でガス導入部10に設けられ、ガス導入部10から電子ビームEBの通過領域S1に向かって延びている。噴出管104の通過領域S1側の端と溝部4aとの間は所定の距離H1離れている。複数の噴出管104は、プレート4の幅方向に沿って配列されており、その本数はプレート4の幅に合わせて設定され、噴出管104から噴出する飛散防止ガスGがプレート4の上部全体をカバーするようになっている。このため、電子ビームEBが通過領域S1内のどのような経路を通過しても、電子ビームEBが飛散防止ガスGを照射することとなり、電子ビームEBの照射によって飛散防止ガスGが陽イオン化される。なお、飛散防止ガスGとしては電子ビームEBの照射によって陽イオン化されるものであれば特に限られるものではないが、粉末材料の酸化を防ぐ観点から、アルゴンやヘリウムなどの不活性ガスを用いることが望ましい。 The gas introduction unit 10 is provided with a plurality of ejection pipes 104 on the side surface of the electron beam EB on the passing region S1 side. Each ejection pipe 104 is, for example, a thin tube having a circular cross section, is provided in the gas introduction portion 10 at a height V1 from the floor portion 1a, and extends from the gas introduction portion 10 toward the passage region S1 of the electron beam EB. .. The end of the ejection pipe 104 on the passing region S1 side and the groove portion 4a are separated by a predetermined distance H1. The plurality of ejection pipes 104 are arranged along the width direction of the plate 4, and the number thereof is set according to the width of the plate 4, and the anti-scattering gas G ejected from the ejection pipe 104 covers the entire upper portion of the plate 4. It is designed to cover. Therefore, no matter what path the electron beam EB passes through in the passage region S1, the electron beam EB irradiates the shatterproof gas G, and the shatterproof gas G is cationized by the irradiation of the electron beam EB. NS. The shatterproof gas G is not particularly limited as long as it is cationized by irradiation with the electron beam EB, but from the viewpoint of preventing oxidation of the powder material, an inert gas such as argon or helium is used. Is desirable.

飛散防止ガスGは、分子流として噴出管104から導入される。より具体的には、飛散防止ガスGの流れが粘性流であるか分子流であるかを示す指数であるクヌーセン数Kが、0.3より大きくなるように設定される。実施の形態1では、系の代表長を噴出管104の内径Dとしているので、クヌーセン数Kは、飛散防止ガスGの平均自由工程λ及び噴出管104の内径Dを用いてK=λ/Dで表される。クヌーセン数Kの設定は、平均自由工程λ及び噴出管104の内径Dを調整することで行う。平均自由工程λは飛散防止ガスGの圧力を調整することで調整可能である。クヌーセン数Kの調整のために内径Dを小さくする場合、内径Dの変化量に応じて噴出管104の本数を増やし、噴出管104全体の幅をプレート4の幅に合わせる。 The anti-scattering gas G is introduced from the ejection pipe 104 as a molecular flow. More specifically, the Knudsen number K, which is an index indicating whether the flow of the shatterproof gas G is a viscous flow or a molecular flow, is set to be larger than 0.3. In the first embodiment, since the representative length of the system is the inner diameter D of the ejection pipe 104, the Knudsen number K is K = λ / D using the mean free path λ of the shatterproof gas G and the inner diameter D of the ejection pipe 104. It is represented by. The Knudsen number K is set by adjusting the mean free path λ and the inner diameter D of the ejection pipe 104. The mean free path λ can be adjusted by adjusting the pressure of the shatterproof gas G. When the inner diameter D is reduced to adjust the Knudsen number K, the number of ejection pipes 104 is increased according to the amount of change in the inner diameter D, and the width of the entire ejection pipe 104 is adjusted to the width of the plate 4.

分子流として導入される飛散防止ガスGは、粘性流の場合のような拡散が起こることが抑制されており、図2Bに示すように噴出管104から直線的に流れるため、飛散防止ガスGは電子ビームEBの通過領域S1に局所的に導入される。 Since the anti-scattering gas G introduced as a molecular flow is suppressed from diffusing as in the case of a viscous flow and flows linearly from the ejection pipe 104 as shown in FIG. 2B, the anti-scattering gas G is It is locally introduced into the passing region S1 of the electron beam EB.

次に、動作について説明する。真空チャンバ1内を真空引きして真空チャンバ1内の真空度を安定させた後、プレート4の上面から床部1aの上面までの高さが粉末床71の1層分になるように作業土台5の高さを調整し、作業土台5に対して予熱用の電子ビームを照射することで作業土台5を加熱する。予熱用の電子ビームは、ビーム出力やビームフォーカス、ビーム走査速度などのビームパラメータを調整し、粉末材料を溶融凝固させる電子ビームEBよりも出力を抑制したものである。作業土台5の加熱後、作業土台5の上に粉末材料7を敷き詰める。この際、プレート4の溝部4aにも粉末材料7が敷き詰められ、1層目の粉末床71が形成される。1層目の粉末床71は、加熱された作業土台5からの熱伝導により予熱される。これにより1層目の粉末床71を形成する粉末材料が昇温するので、電子ビームEBの照射によって粉末材料が負に帯電し、粉末材料同士がクーロン力により反発して飛散することが抑制される。上記のような昇温によって粉末材料の飛散を抑制することができるのは、昇温に伴う電気抵抗の低下により電荷が導通し、粉末材料の帯電が抑制されるためである。 Next, the operation will be described. After evacuating the inside of the vacuum chamber 1 to stabilize the degree of vacuum in the vacuum chamber 1, the work base is set so that the height from the upper surface of the plate 4 to the upper surface of the floor portion 1a is one layer of the powder floor 71. The height of the work base 5 is adjusted, and the work base 5 is heated by irradiating the work base 5 with an electron beam for preheating. The electron beam for preheating has a lower output than the electron beam EB that melts and solidifies the powder material by adjusting beam parameters such as beam output, beam focus, and beam scanning speed. After heating the work base 5, the powder material 7 is spread on the work base 5. At this time, the powder material 7 is also spread over the groove 4a of the plate 4 to form the first layer powder bed 71. The powder bed 71 of the first layer is preheated by heat conduction from the heated work base 5. As a result, the temperature of the powder material forming the first layer powder bed 71 rises, so that the powder material is negatively charged by the irradiation of the electron beam EB, and the powder materials are prevented from repelling and scattering due to the Coulomb force. NS. The reason why the scattering of the powder material can be suppressed by the above-mentioned temperature rise is that the electric charge is conducted due to the decrease in the electric resistance due to the temperature rise, and the charge of the powder material is suppressed.

粉末床71の予熱後、容器12に保持されている飛散防止ガスGをガス導入部10へ送り、噴出管104を通して飛散防止ガスGを電子ビームEBの通過領域S1に局所的に導入する。 After preheating the powder bed 71, the anti-scattering gas G held in the container 12 is sent to the gas introduction section 10, and the anti-scattering gas G is locally introduced into the passing region S1 of the electron beam EB through the ejection pipe 104.

次に、予め設定した照射パターンに従って電子ビームEBを1層目の粉末床71に照射し、1層目の粉末床71の粉末材料を選択的に固化させる。この際、粉末床71の近傍では通過領域S1に導入された飛散防止ガスGが電子ビームEBに照射され、飛散防止ガスGと電子ビームEBの相互作用により陽イオンが生じる。この陽イオンは、電子ビームEBの照射により負に帯電した1層目の粉末床71の粉末材料7を電気的に中和する。1層目の粉末床71について粉末材料の固化が完了したら電子ビームEBの照射をやめ、作業土台5の高さを2層目の粉末床(図示なし)の厚さ分だけ下げて、1層目の場合と同様にして1層目の粉末床71の上に2層目の粉末床を形成する。2層目の粉末床は、電子ビームEBにより固化された1層目の粉末床71の余熱によって昇温するため、2層目の粉末床を形成する粉末材料が電子ビームEBの照射により負に帯電してクーロン力により反発し、粉末材料7が飛散することが抑制される。 Next, the electron beam EB is irradiated to the powder bed 71 of the first layer according to a preset irradiation pattern, and the powder material of the powder bed 71 of the first layer is selectively solidified. At this time, in the vicinity of the powder bed 71, the anti-scattering gas G introduced into the passing region S1 is irradiated to the electron beam EB, and cations are generated by the interaction between the anti-scattering gas G and the electron beam EB. The cations electrically neutralize the powder material 7 of the first layer powder bed 71, which is negatively charged by irradiation with the electron beam EB. When the solidification of the powder material is completed for the first layer powder bed 71, the irradiation of the electron beam EB is stopped, the height of the work base 5 is lowered by the thickness of the second layer powder bed (not shown), and the first layer A second layer of powder bed is formed on the first layer of powder bed 71 in the same manner as in the case of the eyes. Since the temperature of the second layer powder bed rises due to the residual heat of the first layer powder bed 71 solidified by the electron beam EB, the powder material forming the second layer powder bed becomes negative due to the irradiation of the electron beam EB. It is charged and repelled by the Coulomb force, and the scattering of the powder material 7 is suppressed.

2層目の粉末床の形成後、1層目の場合と同様に飛散防止ガスGを電子ビームEBの通過領域S1に局所的に導入し、電子ビームEBを照射して2層目の粉末床71の粉末材料を選択的に固化させる。なお、2層目の粉末床に対して電子ビームEBを照射する前に、予熱用の電子ビームを照射して2層目の粉末床を再予熱してもよい。3層目以降も同様にし、粉末床を積層しながら各層の粉末床を選択的に固化させる工程を繰り返すことにより、作業土台5の上に三次元積層造形物8を製造する。 After the formation of the second layer powder bed, the anti-scattering gas G is locally introduced into the passing region S1 of the electron beam EB as in the case of the first layer, and the electron beam EB is irradiated to irradiate the second layer powder bed. The powder material of 71 is selectively solidified. Before irradiating the second layer powder bed with the electron beam EB, the second layer powder bed may be repreheated by irradiating the electron beam for preheating. The same applies to the third and subsequent layers, and the process of selectively solidifying the powder beds of each layer while laminating the powder beds is repeated to manufacture the three-dimensional laminated model 8 on the work base 5.

実施の形態1による効果について説明する。実施の形態1の効果を確認するため、飛散防止ガスGを局所的に導入する場合と導入しない場合とで、負に帯電した粉末材料がクーロン力により反発して飛散するときの電子ビームEBの電流値を「許容電流値」としてそれぞれ計測し、比較した。許容電流値の計測では、まず真空チャンバ1内の真空度を安定させ、金属粒体からなる粉末材料7を溝部4aに厚さ100μmで一様に敷き詰めた後、敷き詰められた粉末材料7に対して電子ビームEBを照射する。また、粉末材料の予熱は行わず、常温のままの粉末材料7に対して電子ビームEBを照射している。この条件の下、電子ビームEBの電流値を徐々に増加させていき、粉末材料の飛散が確認されたときの電子ビームEBの電流値を計測する。粉末材料7の飛散の有無の確認は、電子ビームEBの照射後の約2秒間、真空チャンバ1の覗き窓(図示なし)より真空チャンバ1内を目視確認することで行う。許容電流値の比較においては、飛散防止ガスGを局所的に導入する場合と導入しない場合で計測をそれぞれ複数回行い、平均値を算出して比較する。上記のようにして許容電流値を計測した結果、飛散防止ガスGを導入しない場合の許容電流値の平均値は約0.6mA、飛散防止ガスGを局所的に導入した場合の許容電流値の平均値は約1.1mAであり、局所的な飛散防止ガスGの導入により許容電流値が上昇する効果があることが確認できた。このような効果があるのは、飛散防止ガスGの導入が局所的なものであっても、通過領域S1に導入された飛散防止ガスGと電子ビームEBの相互作用によって生じた陽イオンにより、帯電した粉末材料7を電気的に中和されたためと考えられる。 The effect of the first embodiment will be described. In order to confirm the effect of the first embodiment, the electron beam EB when the negatively charged powder material repels and scatters due to the Coulomb force in the case where the anti-scattering gas G is locally introduced and the case where the anti-scattering gas G is not introduced. The current values were measured as "allowable current values" and compared. In the measurement of the permissible current value, first, the degree of vacuum in the vacuum chamber 1 is stabilized, the powder material 7 made of metal particles is uniformly spread in the groove 4a with a thickness of 100 μm, and then the powder material 7 spread is covered. And irradiate the electron beam EB. Further, the powder material is not preheated, and the powder material 7 at room temperature is irradiated with the electron beam EB. Under this condition, the current value of the electron beam EB is gradually increased, and the current value of the electron beam EB is measured when the scattering of the powder material is confirmed. The presence or absence of scattering of the powder material 7 is confirmed by visually checking the inside of the vacuum chamber 1 from the viewing window (not shown) of the vacuum chamber 1 for about 2 seconds after the irradiation of the electron beam EB. In the comparison of the permissible current values, the measurement is performed a plurality of times each when the shatterproof gas G is locally introduced and when it is not introduced, and the average value is calculated and compared. As a result of measuring the permissible current value as described above, the average value of the permissible current value when the shatterproof gas G is not introduced is about 0.6 mA, which is the permissible current value when the shatterproof gas G is locally introduced. The average value was about 1.1 mA, and it was confirmed that the introduction of the local anti-scattering gas G had the effect of increasing the permissible current value. Even if the introduction of the anti-scattering gas G is local, such an effect is obtained by the cations generated by the interaction between the anti-scattering gas G introduced into the passing region S1 and the electron beam EB. It is considered that the charged powder material 7 was electrically neutralized.

実施の形態1によれば、電子ビームの照射によって帯電した粉末材料同士が互いに反発して飛散することを防止しつつ、真空室内に導入される飛散防止ガスの量を低減することができる。より具体的には、電子ビームの照射によって陽イオン化する飛散防止ガスの分子流を電子ビームの通過領域に導入するガス導入部を備えたため、電子ビームの通過領域に飛散防止ガスを局所的に導入することが可能となっている。このため、真空チャンバ全体に飛散防止ガスを導入する必要がなく、真空室内に導入される飛散防止ガスの量が低減されている。導入される飛散防止ガスの量の低減は、飛散防止ガスに係るコストを低減するとともに、真空チャンバ内のガス分子の増加を抑制し、真空度の低下を抑制することができる。これにより、飛散防止ガスのガス分子と電子ビームの衝突による電子ビームのエネルギーの低下も抑制されるため、電子ビームへのエネルギー投入量の増加を抑制することができる。 According to the first embodiment, it is possible to reduce the amount of the anti-scattering gas introduced into the vacuum chamber while preventing the powder materials charged by the irradiation of the electron beam from repelling each other and scattering. More specifically, since it is provided with a gas introduction unit that introduces a molecular flow of the anti-scattering gas that is cationized by irradiation of the electron beam into the passing region of the electron beam, the anti-scattering gas is locally introduced into the passing region of the electron beam. It is possible to do. Therefore, it is not necessary to introduce the anti-scattering gas into the entire vacuum chamber, and the amount of the anti-scattering gas introduced into the vacuum chamber is reduced. Reducing the amount of the shatterproof gas introduced can reduce the cost of the shatterproof gas, suppress the increase of gas molecules in the vacuum chamber, and suppress the decrease in the degree of vacuum. As a result, the decrease in the energy of the electron beam due to the collision between the gas molecule of the anti-scattering gas and the electron beam is also suppressed, so that the increase in the amount of energy input to the electron beam can be suppressed.

また、ガス導入部を真空チャンバの床部に設置したので、飛散防止ガスが粉末床の近傍に導入され、より効果的に粉末材料の飛散を防止することができる。 Further, since the gas introduction portion is installed on the floor portion of the vacuum chamber, the anti-scattering gas is introduced in the vicinity of the powder bed, and the scattering of the powder material can be prevented more effectively.

実施の形態2.
以下に、この発明の実施の形態2を図3から図4Bに基づいて説明する。なお、図1から図2Bと同一又は相当部分については同一の符号を付し、その説明を省略する。実施の形態2は、ガス導入部を電子銃室に設置した点が実施の形態2と異なる。図3は、実施の形態2における積層造形装置を示す概略図である。積層造形装置200において、電子銃室3の床部3aにはガス導入部20が設置されている。ガス導入部20は、開口部3bの近傍に配置され、噴出管204を介して電子ビームEBの通過領域S2に分子流状態の飛散防止ガスGを局所的に導入する。また、ガス導入部20は、電子銃室3の側壁に設けられたガス供給部23に配管203を介して接続されている。ガス供給部23は容器12に配管202を介して接続されており、容器12に保持されている飛散防止ガスGをガス導入部20に供給する。
Embodiment 2.
Hereinafter, Embodiment 2 of the present invention will be described with reference to FIGS. 3 to 4B. The same or corresponding parts as those in FIGS. 1 to 2B are designated by the same reference numerals, and the description thereof will be omitted. The second embodiment is different from the second embodiment in that the gas introduction unit is installed in the electron gun chamber. FIG. 3 is a schematic view showing the laminated modeling apparatus according to the second embodiment. In the laminated modeling apparatus 200, a gas introduction portion 20 is installed on the floor portion 3a of the electron gun chamber 3. The gas introduction unit 20 is arranged in the vicinity of the opening 3b, and locally introduces the scattering prevention gas G in the molecular flow state into the passage region S2 of the electron beam EB via the ejection pipe 204. Further, the gas introduction unit 20 is connected to the gas supply unit 23 provided on the side wall of the electron gun chamber 3 via a pipe 203. The gas supply unit 23 is connected to the container 12 via a pipe 202, and supplies the anti-scattering gas G held in the container 12 to the gas introduction unit 20.

ガス導入部20についてより詳細に説明する。図4A及び図4Bは、ガス導入部20を示す側面図及び平面図である。ガス導入部20は、開口部3b側の側面に複数の噴出管204が設けられている。噴出管204は、例えば断面円形状の複数の細管かであり、床部3aから高さV2でガス導入部20に設けられ、ガス導入部20側から開口部3bに向かって延びている。噴出管204の開口部3b側の端と開口部3bとの間は所定の距離H2離れている。複数の噴出管204は、開口部3bの幅方向に沿って配列されており、その本数は開口部3bの幅に合わせて設定され、噴出管204から噴出する飛散防止ガスGが開口部3bの上部全体をカバーするようになっている。このため、電子ビームEBが通過領域S2内のどのような経路を通過しても、電子ビームEBが飛散防止ガスGを照射することとなり、電子ビームEBの照射により飛散防止ガスGが陽イオン化される。
飛散防止ガスGが分子流として噴出管204から導入され、通過領域S2に局所的に導入される点は実施の形態1と同様である。また、クヌーセン数Kの調整のために噴出管204の内径Dを小さくする場合、内径Dの変化量に応じて噴出管204の本数を増やし、噴出管204全体の幅を開口部3bの幅に合わせる。
The gas introduction unit 20 will be described in more detail. 4A and 4B are a side view and a plan view showing the gas introduction unit 20. The gas introduction portion 20 is provided with a plurality of ejection pipes 204 on the side surface on the opening 3b side. The ejection pipe 204 is, for example, a plurality of thin pipes having a circular cross section, is provided in the gas introduction portion 20 at a height V2 from the floor portion 3a, and extends from the gas introduction portion 20 side toward the opening 3b. The end of the ejection pipe 204 on the opening 3b side and the opening 3b are separated by a predetermined distance H2. The plurality of ejection pipes 204 are arranged along the width direction of the opening 3b, the number of which is set according to the width of the opening 3b, and the anti-scattering gas G ejected from the ejection pipe 204 is the opening 3b. It is designed to cover the entire upper part. Therefore, no matter what path the electron beam EB passes through in the passage region S2, the electron beam EB irradiates the shatterproof gas G, and the shatterproof gas G is cationized by the irradiation of the electron beam EB. NS.
The point that the anti-scattering gas G is introduced as a molecular flow from the ejection pipe 204 and locally introduced into the passage region S2 is the same as that of the first embodiment. Further, when the inner diameter D of the ejection pipe 204 is reduced to adjust the Knudsen number K, the number of the ejection pipes 204 is increased according to the amount of change in the inner diameter D, and the width of the entire ejection pipe 204 is set to the width of the opening 3b. match.

その他の構成については実施の形態1と同様であるので、その説明を省略する。 Since other configurations are the same as those in the first embodiment, the description thereof will be omitted.

次に、動作について説明する。実施の形態1と同様に、真空チャンバ1内の真空度を安定させ、作業土台5の高さを調整した後に作業土台5を予熱用の電子ビームで加熱する。作業土台5の加熱後、作業土台5の上、及びプレート4の溝部4aに粉末材料7を敷き詰め、溝部4a内に1層目の粉末床71を形成する。1層目の粉末床71は、作業土台5からの熱伝導により予熱される。粉末床71の予熱後、容器12に保持されている飛散防止ガスGをガス導入部20へ送り、噴出管204を通して飛散防止ガスGを電子ビームEBの通過領域S2に局所的に導入する。 Next, the operation will be described. Similar to the first embodiment, the degree of vacuum in the vacuum chamber 1 is stabilized, the height of the work base 5 is adjusted, and then the work base 5 is heated by the electron beam for preheating. After heating the work base 5, the powder material 7 is spread on the work base 5 and in the groove 4a of the plate 4 to form the first layer powder bed 71 in the groove 4a. The powder bed 71 of the first layer is preheated by heat conduction from the work base 5. After preheating the powder bed 71, the anti-scattering gas G held in the container 12 is sent to the gas introduction section 20, and the anti-scattering gas G is locally introduced into the passing region S2 of the electron beam EB through the ejection pipe 204.

飛散防止ガスGを通過領域S2に導入した後、予め設定した照射パターンに従って電子ビームEBを1層目の粉末床71に照射する。この際、電子銃室3内の開口部3bの近傍にて飛散防止ガスGと電子ビームEBが相互作用して陽イオンが生じる。この陽イオンは、開口部3bを通って真空チャンバ1内に入り、1層目の粉末床71の近傍に達して、電子ビームEBの照射により負に帯電した1層目の粉末床71の粉末材料7を電気的に中和する。1層目の粉末床71について粉末材料の固化が完了したら電子ビームEBの照射をやめ、作業土台5の高さを2層目の粉末床(図示なし)の厚さ分だけ下げる。その後、1層目の場合と同様にして1層目の粉末床71の上に2層目の粉末床を形成する。以降については実施の形態1と同様であるので、その説明を省略する。 After the shatterproof gas G is introduced into the passage region S2, the electron beam EB is irradiated to the powder bed 71 of the first layer according to a preset irradiation pattern. At this time, the shatterproof gas G and the electron beam EB interact with each other in the vicinity of the opening 3b in the electron gun chamber 3 to generate cations. This cation enters the vacuum chamber 1 through the opening 3b, reaches the vicinity of the powder bed 71 of the first layer, and is negatively charged by the irradiation of the electron beam EB. Material 7 is electrically neutralized. When the solidification of the powder material of the first layer powder bed 71 is completed, the irradiation of the electron beam EB is stopped, and the height of the work base 5 is lowered by the thickness of the second layer powder bed (not shown). After that, the second layer powder bed is formed on the first layer powder bed 71 in the same manner as in the case of the first layer. The following is the same as that of the first embodiment, and thus the description thereof will be omitted.

実施の形態2によれば、実施の形態1と同様に飛散防止ガスの分子流を電子ビームの通過領域に導入するガス導入部を備えたため、電子ビームの照射によって帯電した粉末材料同士が互いに反発して飛散することを防止しつつ、真空室内に導入される飛散防止ガスの量を低減することができる。 According to the second embodiment, since the gas introduction section for introducing the molecular flow of the anti-scattering gas into the passing region of the electron beam is provided as in the first embodiment, the powder materials charged by the irradiation of the electron beam repel each other. It is possible to reduce the amount of the anti-scattering gas introduced into the vacuum chamber while preventing the scattering.

また、導入する飛散防止ガスの量をさらに低減することができる。より具体的には、飛散防止ガスを電子ビームの通過領域に導入するガス導入部を電子銃室内に設置したため、ガス導入部に設けられた噴出管がカバーすべき幅が、実施の形態1よりも小さくなっている。これは、上述したように電子ビームは所定の広がり角度を持ち、下方ほど広がりが大きくなるためで、電子銃室内の通過領域の水平断面積は真空チャンバ内の通過領域の水平断面積よりも小さいためである。そして、噴出管がカバーすべき幅は電子ビームの通過領域の幅であるため、実施の形態2において噴出管がカバーすべき幅は、実施の形態1において噴出管がカバーする必要があった幅よりも小さく、噴出管の本数を削減できるとともに、導入する飛散防止ガスの量をさらに低減することが可能となっている。 In addition, the amount of shatterproof gas to be introduced can be further reduced. More specifically, since the gas introduction section for introducing the anti-scattering gas into the passing region of the electron beam is installed in the electron gun chamber, the width to be covered by the ejection pipe provided in the gas introduction section is larger than that of the first embodiment. Is also getting smaller. This is because, as described above, the electron beam has a predetermined spreading angle, and the spreading becomes larger toward the lower side. Therefore, the horizontal cross-sectional area of the passing region in the electron gun chamber is smaller than the horizontal cross-sectional area of the passing region in the vacuum chamber. Because. Since the width to be covered by the ejection pipe is the width of the passage region of the electron beam, the width to be covered by the ejection pipe in the second embodiment is the width that the ejection pipe needs to cover in the first embodiment. It is possible to reduce the number of ejection pipes and to further reduce the amount of anti-scattering gas to be introduced.

また、この発明は、この発明の趣旨を逸脱しない範囲において、各実施の形態や構成を適宜組み合わせたり、構成を一部変形、省略したりすることが可能である。 Further, in the present invention, the embodiments and configurations can be appropriately combined, and the configurations can be partially modified or omitted without departing from the spirit of the present invention.

1 真空チャンバ、1a 床部、1b 造形領域部、2 電子銃、3 電子銃室、4 プレート、4a 溝部、5 作業土台、7 粉末材料、71 粉末床、8 三次元積層造形物、10、20 ガス導入部、104、204 噴出管、100、200 積層造形装置、EB 電子ビーム、G 飛散防止ガス、S1、S2 通過領域、 1 Vacuum chamber, 1a floor, 1b modeling area, 2 electron gun, 3 electron gun chamber, 4 plate, 4a groove, 5 work base, 7 powder material, 71 powder floor, 8 three-dimensional laminated model, 10, 20 Gas introduction part, 104, 204 ejection pipe, 100, 200 laminated molding equipment, EB electron beam, G shatterproof gas, S1, S2 passage area,

Claims (3)

粉末材料により形成される粉末床を真空チャンバ内で積層しながら各層の粉末床を選択的に固化させる工程を繰り返すことにより三次元形状の造形物を製造する積層造形装置であって、
前記粉末材料を固化させる電子ビームを前記粉末床に照射する電子ビーム照射手段と、
前記電子ビームの走査範囲に設けられ、高さを調整可能な載置台と、
前記載置台に載置され、前記粉末床を形成する粉末床形成部と、
前記電子ビームの照射によって陽イオン化するガスを前記電子ビームの通過領域に導入するガス導入部とを備え
前記ガス導入部は、クヌーセン数が0.3よりも大きい分子流の状態で、前記ガスを前記通過領域に導入することを特徴とする積層造形装置。
It is a laminated molding device that manufactures a three-dimensional shaped object by repeating the process of selectively solidifying the powder bed of each layer while laminating the powder bed formed of the powder material in a vacuum chamber.
An electron beam irradiation means for irradiating the powder bed with an electron beam for solidifying the powder material,
A mounting table provided in the scanning range of the electron beam and whose height can be adjusted,
A powder bed forming portion that is placed on the above-mentioned stand and forms the powder bed, and a powder bed forming portion.
And a gas inlet for introducing a gas to a cation by irradiation of the electron beam passing region of the electron beam,
The gas introduction unit is a laminated molding apparatus characterized in that the gas is introduced into the passage region in a state of a molecular flow having a Knudsen number of more than 0.3.
前記ガス導入部は、前記粉末材料が敷き詰められる造形領域部を有する床部に設置されている請求項1に記載の積層造形装置。 The laminated molding apparatus according to claim 1, wherein the gas introduction portion is installed on a floor portion having a modeling region portion on which the powder material is spread. 前記ガス導入部は、前記電子ビーム照射手段を収納する収納室に設置されている請求項1に記載の積層造形装置。 The laminated modeling device according to claim 1, wherein the gas introduction unit is installed in a storage chamber for accommodating the electron beam irradiation means.
JP2018013245A 2018-01-30 2018-01-30 Laminated modeling equipment Active JP6960867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018013245A JP6960867B2 (en) 2018-01-30 2018-01-30 Laminated modeling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018013245A JP6960867B2 (en) 2018-01-30 2018-01-30 Laminated modeling equipment

Publications (2)

Publication Number Publication Date
JP2019131846A JP2019131846A (en) 2019-08-08
JP6960867B2 true JP6960867B2 (en) 2021-11-05

Family

ID=67544802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018013245A Active JP6960867B2 (en) 2018-01-30 2018-01-30 Laminated modeling equipment

Country Status (1)

Country Link
JP (1) JP6960867B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466846B2 (en) 2019-07-17 2024-04-15 三菱瓦斯化学株式会社 Polyester resin, and molded body, stretched film, and bottle containing said polyester resin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275583A (en) * 1997-03-28 1998-10-13 Jeol Ltd Device for analyzing sample containing insulating material
JP2002134057A (en) * 2000-10-24 2002-05-10 Hitachi Ltd Scanning electron microscope
US9162393B2 (en) * 2007-05-15 2015-10-20 Arcam Ab Method and device for producing three-dimensional objects

Also Published As

Publication number Publication date
JP2019131846A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
US10821718B2 (en) Selective powder processing during powder bed additive manufacturing
US12076789B2 (en) Additive manufacturing using a dynamically grown build envelope
US11103928B2 (en) Additive manufacturing using a mobile build volume
US11370031B2 (en) Large scale additive machine
US10799953B2 (en) Additive manufacturing using a mobile scan area
KR101307509B1 (en) Powder application system
JP2023115028A (en) Additive manufacturing device and additive manufacturing method
JP6639735B2 (en) 3D modeling equipment
US20120234671A1 (en) Method and device for producing three-dimensional objects
JP6273578B2 (en) Three-dimensional additive manufacturing apparatus and three-dimensional additive manufacturing method
US20100320649A1 (en) Method and device for the production of a three-dimensional object made of a material which can be compacted
US10821519B2 (en) Laser shock peening within an additive manufacturing process
CN107848208A (en) Additive Manufacturing Using Electrostatic Compaction
US20190152143A1 (en) Powder reduction apparatus
US10981232B2 (en) Additive manufacturing using a selective recoater
JP6866931B2 (en) 3D modeling device and 3D modeling method
JP2010255057A (en) Apparatus for forming shaped article with electron beam
JP6960867B2 (en) Laminated modeling equipment
JP7550624B2 (en) Three-dimensional modeling apparatus and method for manufacturing a model
JP2021188078A (en) Three-dimensional molding apparatus, and method of producing three-dimensional molding article
KR102056825B1 (en) Preheating and sintering processes of the metallic powder using a plasma electron beam
RU2717761C1 (en) Apparatus for selective laser sintering and method of producing large-size articles on said apparatus
JP2021183713A (en) Three-dimensional forming apparatus and method for manufacturing three-dimensionally formed article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200930

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211012

R151 Written notification of patent or utility model registration

Ref document number: 6960867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250