JP6958943B2 - Welding method - Google Patents

Welding method Download PDF

Info

Publication number
JP6958943B2
JP6958943B2 JP2020039471A JP2020039471A JP6958943B2 JP 6958943 B2 JP6958943 B2 JP 6958943B2 JP 2020039471 A JP2020039471 A JP 2020039471A JP 2020039471 A JP2020039471 A JP 2020039471A JP 6958943 B2 JP6958943 B2 JP 6958943B2
Authority
JP
Japan
Prior art keywords
welding
target portion
pressure
welded
front side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020039471A
Other languages
Japanese (ja)
Other versions
JP2021137862A (en
Inventor
敬大 畠山
Original Assignee
赤星工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赤星工業株式会社 filed Critical 赤星工業株式会社
Priority to JP2020039471A priority Critical patent/JP6958943B2/en
Publication of JP2021137862A publication Critical patent/JP2021137862A/en
Application granted granted Critical
Publication of JP6958943B2 publication Critical patent/JP6958943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、溶接方法に関するものである。 The present invention relates to a welding method.

溶接する場合、被溶接物の溶接対象部について、溶接完了後に凹みや酸化といった溶接欠陥が発生するのを抑制する必要がある。 In the case of welding, it is necessary to suppress the occurrence of welding defects such as dents and oxidation in the welded portion of the object to be welded after the welding is completed.

酸化を防止する方法としては、アルゴンガスなどの不活性ガスをシールドガスとして用いる方法が広く知られている。たとえば、特許文献1には、チャンバ式トーチを金属管の突合せ継手外周部に装着した状態で、金属管内を真空ポンプで減圧しながら溶接する技術が提案されている。この技術では、チャンバ式トーチと突合せ継手外周部とで囲まれた密閉空間内に供給されたシールドガスが、突合せ継手部の隙間から金属管内部へと吸い込まれる。そして、金属管内に吸い込まれたシールドガスがバックシールドガスとして作用し、裏波ビードの酸化を防いで、良好な溶接を可能にする。 As a method for preventing oxidation, a method of using an inert gas such as argon gas as a shield gas is widely known. For example, Patent Document 1 proposes a technique of welding the inside of a metal pipe while reducing the pressure with a vacuum pump while the chamber type torch is attached to the outer peripheral portion of a butt joint of the metal pipe. In this technique, the shield gas supplied in the closed space surrounded by the chamber type torch and the outer peripheral portion of the butt joint is sucked into the inside of the metal pipe through the gap of the butt joint portion. Then, the shield gas sucked into the metal pipe acts as a back shield gas, prevents oxidation of the back wave bead, and enables good welding.

また、凹みを防止する方法としては、たとえば、特許文献2記載の技術などが挙げられる。特許文献2記載の技術では、アルミニウム材からなる被溶接材を突き合わせて形成した開先の裏面側に、被溶接材を突き合わせたルート面に沿って形成されたスリット状のガス排出口を備えた裏当て部材を配置した状態で溶接を行う。このため、溶接時に、ガス排出口からシールドガスや空気等のガスが排出されるので、開先の裏面側のガス溜りが低減して、裏ビードにおけるルートコンキャビティ(ルート凹み)が抑制できる。 Further, as a method for preventing the dent, for example, the technique described in Patent Document 2 and the like can be mentioned. In the technique described in Patent Document 2, a slit-shaped gas outlet formed along the root surface where the welded materials are abutted is provided on the back surface side of the groove formed by abutting the welded materials made of aluminum material. Welding is performed with the backing member placed. Therefore, since gas such as shield gas and air is discharged from the gas discharge port at the time of welding, the gas pool on the back surface side of the groove is reduced, and the root concavity (root dent) in the back bead can be suppressed.

特開平2−70380号公報Japanese Unexamined Patent Publication No. 2-70380 特開2016−16447号公報Japanese Unexamined Patent Publication No. 2016-16447

しかし、特許文献1記載の技術では、通常の溶接トーチの代わりに、専用のチャンバ式トーチを用いる必要がある。さらに、特許文献2記載の技術では、開先の裏面側のガス溜りを低減すべく、被溶接材の寸法形状に正確に対応した裏当て部材を準備した上で、開先の裏面側と裏当て部材のガス排出口との位置合わせを正確に行う必要がある。一方、被溶接材を構成する材料がアルミニウムなどの酸化し難い材料であれば、溶接時の酸化は問題とならない。しかしながら、この場合においても、被溶接物の溶接対象部の裏側の凹みが発生し得る可能性は残り続ける。 However, in the technique described in Patent Document 1, it is necessary to use a dedicated chamber type torch instead of the usual welding torch. Further, in the technique described in Patent Document 2, in order to reduce gas accumulation on the back surface side of the groove, a backing member that accurately corresponds to the dimensional shape of the material to be welded is prepared, and then the back surface side and the back surface of the groove are prepared. It is necessary to accurately align the contact member with the gas outlet. On the other hand, if the material constituting the material to be welded is a material that is difficult to oxidize, such as aluminum, oxidation during welding does not matter. However, even in this case, the possibility that a dent on the back side of the welded portion of the workpiece to be welded may occur remains.

したがって、特許文献1〜2等に例示される従来の溶接方法では、溶接作業完了後の溶接対象部の裏側の凹み等の溶接欠陥の発生を抑制できるものの簡便性や汎用性に欠ける傾向にある。 Therefore, the conventional welding methods exemplified in Patent Documents 1 and 2 and the like can suppress the occurrence of welding defects such as dents on the back side of the welding target portion after the completion of the welding work, but tend to lack convenience and versatility. ..

本発明は、上記事情に鑑みてなされたものであり、溶接作業完了後の溶接対象部の裏側の凹み等の溶接欠陥の発生を抑制できると共に、簡便性・汎用性にもより優れた溶接方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and is a welding method that can suppress the occurrence of welding defects such as dents on the back side of the welding target portion after the completion of welding work, and is more convenient and versatile. The challenge is to provide.

上記課題は以下の本発明により達成される。すなわち、本発明の溶接方法は、被溶接物の溶接対象部の表側から、溶接対象部に対して熱エネルギーおよび光エネルギーから選択されるいずれか一方のエネルギーを付与することで溶接を行う際に、溶接対象部の表側近傍の雰囲気ガスの圧力を大気圧とし、溶接対象部の裏側近傍の雰囲気ガスの圧力を大気圧未満とした状態で溶接を行う溶接工程を含むことを特徴とする。 The above object is achieved by the following invention. That is, in the welding method of the present invention, when welding is performed by applying one of heat energy and light energy selected from thermal energy and light energy to the welding target portion from the front side of the welding target portion of the object to be welded. It is characterized by including a welding step in which welding is performed in a state where the pressure of the atmospheric gas near the front side of the welding target portion is set to atmospheric pressure and the pressure of the atmospheric gas near the back side of the welding target portion is set to less than atmospheric pressure.

本発明の溶接方法の一実施形態は、溶接対象部の裏側近傍の雰囲気ガスが、不活性ガスであることが好ましい。 In one embodiment of the welding method of the present invention, the atmospheric gas near the back side of the welding target portion is preferably an inert gas.

本発明の溶接方法の他の実施形態は、被溶接物を構成する材料が、ステンレス、チタン、ニッケルおよびジルコニウムから選択されるいずれかの易酸化性材料であることが好ましい。 In another embodiment of the welding method of the present invention, it is preferable that the material constituting the object to be welded is any easily oxidizing material selected from stainless steel, titanium, nickel and zirconium.

本発明の溶接方法の他の実施形態は、溶接対象部の裏側近傍の雰囲気ガスが、空気であることが好ましい。 In another embodiment of the welding method of the present invention, it is preferable that the atmospheric gas near the back side of the welding target portion is air.

本発明の溶接方法の他の実施形態は、被溶接物を構成する材料が、アルミニウム、鉄および軟鋼から選択されるいずれかの難酸化性材料であることが好ましい。 In another embodiment of the welding method of the present invention, it is preferable that the material constituting the object to be welded is any non-oxidizing material selected from aluminum, iron and mild steel.

本発明の溶接方法の他の実施形態は、溶接工程において、重力方向と、前記エネルギーを付与する方向との成す角度を変化させつつ溶接を行うことが好ましい。 In another embodiment of the welding method of the present invention, it is preferable to perform welding while changing the angle formed by the direction of gravity and the direction of applying the energy in the welding step.

本発明の溶接方法の他の実施形態は、溶接対象部が、第一の被溶接物の開先側端部と、第二の被溶接物の開先側端部とを突合わせて形成された開先およびその近傍部分を含むことが好ましい。 In another embodiment of the welding method of the present invention, the welding target portion is formed by abutting the groove-side end of the first work piece and the groove-side end of the second work piece. It is preferable to include a weld groove and a portion in the vicinity thereof.

本発明の溶接方法の他の実施形態は、第一の被溶接物の開先側端部と、第二の被溶接物の開先側端部とを突合わせて形成された開先の形状がI形であることが好ましい。 In another embodiment of the welding method of the present invention, the shape of the groove formed by abutting the groove-side end of the first work piece and the groove-side end of the second work piece. Is preferably I-shaped.

本発明の溶接方法の他の実施形態は、溶接対象部が、第一の板状被溶接物の一方の面に対して、第二の板状被溶接物の端部を突き当てて形成された隅部およびその近傍部分を含むことが好ましい。 In another embodiment of the welding method of the present invention, the welding target portion is formed by abutting the end portion of the second plate-shaped workpiece against one surface of the first plate-shaped workpiece. It is preferable to include a welded corner and a portion in the vicinity thereof.

本発明によれば、溶接作業完了後の溶接対象部の裏側の凹み等の溶接欠陥を抑制できると共に簡便性・汎用性にもより優れた溶接方法を提供することができる。 According to the present invention, it is possible to provide a welding method that can suppress welding defects such as dents on the back side of the welding target portion after the completion of welding work and is more convenient and versatile.

本実施形態の溶接方法の一例を示す模式図である。ここで、図1(A)は、溶接対象部WZに対して熱エネルギー(アークA)を付与する前の状態を示す図であり、図1(B)は、溶接対象部WZに対して熱エネルギー(アークA)を付与している最中の状態を示すと共に、図1(A)中に示す溶接対象部WZ近傍を拡大した状態を示す拡大図でもある。It is a schematic diagram which shows an example of the welding method of this embodiment. Here, FIG. 1A is a diagram showing a state before applying thermal energy (arc A) to the welding target portion WZ, and FIG. 1B is a diagram showing heat with respect to the welding target portion WZ. It is also an enlarged view showing a state in which energy (arc A) is being applied and an enlarged state in the vicinity of the welding target portion WZ shown in FIG. 1 (A). 図1に例示する本実施形態の溶接方法により溶接が完了した後の一例を示す模式断面図であるFIG. 5 is a schematic cross-sectional view showing an example after welding is completed by the welding method of the present embodiment illustrated in FIG. 1. 従来の溶接方法により溶接が完了した後の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example after welding is completed by the conventional welding method. 本実施形態の溶接方法の他の例を示す模式図である。It is a schematic diagram which shows another example of the welding method of this embodiment. 従来の溶接方法により溶接が完了した後の他の例を示す模式断面図である。It is a schematic cross-sectional view which shows another example after welding is completed by the conventional welding method.

本実施形態の溶接方法は、被溶接物の溶接対象部の表側から、溶接対象部に対して熱エネルギーおよび光エネルギーから選択されるいずれか一方のエネルギーを付与することで溶接を行う際に、溶接対象部の表側近傍の雰囲気ガスの圧力を大気圧とし、溶接対象部の裏側近傍の雰囲気ガスの圧力を大気圧未満とした状態で溶接を行う溶接工程(以下、本溶接工程と称す場合がある)を含むことを特徴とする。 In the welding method of the present embodiment, when welding is performed by applying either heat energy or light energy selected from thermal energy and light energy to the welding target portion from the front side of the welding target portion of the object to be welded. Welding process in which the pressure of the atmospheric gas near the front side of the welding target is set to atmospheric pressure and the pressure of the atmospheric gas near the back side of the welding target is less than atmospheric pressure (hereinafter, may be referred to as the main welding process). Is).

本実施形態の溶接方法では、本溶接工程の溶接作業時において、「溶接対象部の表側近傍の雰囲気ガスの圧力>溶接対象部の裏側近傍の雰囲気ガスの圧力」、という関係が常に維持される。このため溶接対象部の裏側が凹むのを抑制できる。これは、溶接対象部の表側と裏側との間で、表側から裏側の方向へと向かうように圧力差に起因する力が作用するため、溶接対象部の裏側が凹み難くなるためである。 In the welding method of the present embodiment, the relationship of "pressure of atmospheric gas near the front side of the welding target portion> pressure of atmospheric gas near the back side of the welding target portion" is always maintained during the welding work in the main welding process. .. Therefore, it is possible to prevent the back side of the welding target portion from being dented. This is because a force due to the pressure difference acts between the front side and the back side of the welding target portion in the direction from the front side to the back side, so that the back side of the welding target portion is less likely to be dented.

さらに、溶接対象部の裏側近傍の雰囲気ガスの圧力を大気圧未満に維持するためには、真空ポンプに加えて、必要に応じて溶接対象部の裏側近傍に密閉空間を形成する簡易な構造の溶接用治具を用いるだけでよい。これに加えて、溶接対象部の表側近傍の雰囲気ガスの圧力を大気圧とした状態で溶接が実施される。このため、特許文献1に例示されるように、チャンバ内の圧力が大気圧を超えてしまうシールドガスで満たされるようなチャンバ式トーチなど、汎用性に欠ける複雑な溶接装置を用いる必要が無く、大気圧下にて利用可能な溶接方式であれば、アーク溶接(ティグ溶接、プラズマ溶接、被覆アーク溶接、マグ溶接、ミグ溶接、セルフシールドアーク溶接など)、ガス溶接、レーザー溶接など、熱エネルギー(アーク、火炎など)および光エネルギー(レーザー光など)から選択されるいずれか一方のエネルギーを溶接対象部の表側から溶接対象部に対して付与する公知の溶接方式のいずれもが利用できる。これに加えて、溶接作業時に、特許文献2に例示されるように被溶接材の寸法形状に正確に対応した裏当て部材などの汎用性に大きく欠ける治具を用いる必要も無い。 Further, in order to maintain the pressure of the atmospheric gas near the back side of the welding target portion below the atmospheric pressure, in addition to the vacuum pump, a simple structure is formed in which a closed space is formed near the back side of the welding target portion as needed. All you have to do is use a welding jig. In addition to this, welding is performed with the pressure of the atmospheric gas near the front side of the welding target portion set to atmospheric pressure. Therefore, as illustrated in Patent Document 1, it is not necessary to use a complicated welding device lacking versatility, such as a chamber type torch in which the pressure in the chamber is filled with a shield gas exceeding the atmospheric pressure. If the welding method can be used under atmospheric pressure, thermal energy (such as Tig welding, plasma welding, coated arc welding, mug welding, MIG welding, self-shielded arc welding, etc.), gas welding, laser welding, etc. Any of the known welding methods in which one of energy selected from arc, flame, etc.) and light energy (laser light, etc.) is applied to the welding target portion from the front side of the welding target portion can be used. In addition to this, it is not necessary to use a jig that is largely lacking in versatility, such as a backing member that accurately corresponds to the dimensional shape of the material to be welded, as exemplified in Patent Document 2.

以上に説明したように、本実施形態の溶接方法では、溶接作業完了後の溶接対象部の裏側の凹み等の溶接欠陥を抑制できる上に、簡便性・汎用性の点でも優れる。 As described above, the welding method of the present embodiment is excellent in terms of simplicity and versatility as well as being able to suppress welding defects such as dents on the back side of the welding target portion after the welding work is completed.

なお、本溶接工程において、溶接対象部の表側近傍の雰囲気ガスの圧力を大気圧とし、且つ、溶接対象部の裏側近傍の雰囲気ガスの圧力を大気圧未満とする状態を維持し続ける期間(圧力制御期間)は、適宜選択することができる。しかし、凹み等の溶接欠陥の発生をより確実に抑制する観点から、圧力制御期間の開始点としては、通常、(1)溶接対象部に対して溶接に必要なエネルギーが付与される前の時点であることが好ましく、また、圧力制御期間の終了点としては、(2)溶接対象部に対して溶接に必要なエネルギーを付与し終え、一旦、高温になることで変形・軟化し易い状態となった溶接対象部が冷却されて再び完全に固化した状態となった時点であることが好ましい。特に、圧力制御期間の終了点を、上記(2)に示す時点とすることで、凹み等の溶接欠陥の発生をより確実に抑制できる。 In this welding step, a period (pressure) in which the pressure of the atmospheric gas near the front side of the welding target portion is set to atmospheric pressure and the pressure of the atmospheric gas near the back side of the welding target portion is kept below atmospheric pressure (pressure). The control period) can be appropriately selected. However, from the viewpoint of more reliably suppressing the occurrence of welding defects such as dents, the starting point of the pressure control period is usually (1) a time point before the energy required for welding is applied to the welding target portion. The end point of the pressure control period is (2) a state in which the energy required for welding is applied to the welding target portion, and once the temperature rises, it is easily deformed and softened. It is preferable that the welded portion is cooled and completely solidified again. In particular, by setting the end point of the pressure control period to the time point shown in (2) above, the occurrence of welding defects such as dents can be suppressed more reliably.

溶接対象部の表側近傍および裏側近傍の雰囲気ガスは、被溶接物を構成する材料に応じて適宜選択することができる。たとえば、被溶接物を構成する材料が、アルミニウム、鉄、軟鋼などの酸化し難い材料(難酸化性材料)である場合、雰囲気ガスとしては空気を選択することが好ましい。 The atmospheric gas in the vicinity of the front side and the vicinity of the back side of the weld target portion can be appropriately selected according to the material constituting the object to be welded. For example, when the material constituting the work piece is a material that is difficult to oxidize (non-oxidizing material) such as aluminum, iron, and mild steel, it is preferable to select air as the atmospheric gas.

一方、被溶接物を構成する材料が、ステンレス、チタン、ニッケル、ジルコニウムなどの酸化し易い材料(易酸化性材料)である場合、雰囲気ガスとしては、Arガス、Heガスなどの不活性ガスを選択することが好ましい。なお、被溶接物を構成する材料が鉄合金やアルミニウム合金など、合金元素を多量に含む合金材料から構成される場合、合金材料に含まれる合金元素の種類や含有量などにより、難酸化性材料となる場合もあれば易酸化性材料となる場合もある。 On the other hand, when the material constituting the work piece is a material that is easily oxidized (easy-oxidizing material) such as stainless steel, titanium, nickel, and zirconium, an inert gas such as Ar gas or He gas is used as the atmospheric gas. It is preferable to select. When the material to be welded is composed of an alloy material containing a large amount of alloying elements such as iron alloy and aluminum alloy, it is a refractory material depending on the type and content of the alloying element contained in the alloying material. In some cases, it may be an easily oxidizable material.

本溶接工程の溶接作業中のバックサイド圧力は、大気圧未満の範囲において適宜選択することができるが、溶接対象部の裏側の溶接品質も要求される裏波溶接や隅肉溶接などにおいて、様々に異なる条件下で溶接を行う際にも、溶接対象部の裏側の凹みを安定的に抑制する観点からは、ゲージ圧で−0.1kPa〜−2.0kPa(絶対圧換算で概ね760mmHg弱〜745mmHg)の範囲内が好ましく、−0.1kPa〜−1.4kPaの範囲内がより好ましく、−0.2kPa〜−0.8kPaの範囲内がより好ましい。バックサイド圧力を上記範囲内とすることで、溶接対象部の裏側の凹みをより確実に抑制でき、さらに、裏波溶接時には適度な高さを有する凸状の裏波ビードを形成することも容易になる。また、溶接作業中のバックサイド圧力は経時的に略一定の圧力に維持されることが好ましく、たとえば、溶接作業中の平均圧力を基準として±0.3kPa(±2.25mmHg)の範囲内に維持されることが好ましく、±0.15kPaの範囲内に維持されることがより好ましい。 The backside pressure during the welding work in this welding process can be appropriately selected within the range of less than atmospheric pressure, but it varies in back wave welding and fillet welding where the welding quality on the back side of the welding target portion is also required. From the viewpoint of stably suppressing the dent on the back side of the welding target part even when welding is performed under different conditions, the gauge pressure is -0.1 kPa to -2.0 kPa (approximately 760 mmHg in terms of absolute pressure). It is preferably in the range of 745 mmHg), more preferably in the range of −0.1 kPa to −1.4 kPa, and more preferably in the range of −0.2 kPa to −0.8 kPa. By setting the backside pressure within the above range, it is possible to more reliably suppress the dent on the back side of the welding target portion, and it is also easy to form a convex back wave bead having an appropriate height during back wave welding. become. Further, the backside pressure during the welding work is preferably maintained at a substantially constant pressure over time, for example, within the range of ± 0.3 kPa (± 2.25 mmHg) based on the average pressure during the welding work. It is preferably maintained, and more preferably maintained within the range of ± 0.15 kPa.

なお、本実施形態の溶接方法では、本溶接工程のみを実施することで被溶接物の溶接を行うことが望ましいが、必要に応じて、本溶接工程と、本溶接工程とは異なる溶接条件にて溶接を行うその他の溶接工程とを組み合わせて実施することで被溶接物の溶接を行ってもよい。本溶接工程と、その他の溶接工程とを組み合わせた溶接方法としては、たとえば、被溶接物の溶接対象部の表側から、溶接対象部に対して熱エネルギーおよび光エネルギーから選択されるいずれか一方のエネルギーを付与することで溶接を行う際に、溶接対象部の表側近傍の雰囲気ガスの圧力を大気圧とし、溶接対象部の裏側近傍の雰囲気ガスの圧力を大気圧を超えるものとする第一の溶接工程(前溶接工程)と、溶接対象部の表側近傍の雰囲気ガスの圧力を大気圧とし、溶接対象部の裏側近傍の雰囲気ガスの圧力を大気圧未満とする第二の溶接工程(本溶接工程)とをこの順に実施する場合が挙げられる。ここで、前溶接工程および本溶接工程において、溶接対象部の表側近傍および裏側近傍の雰囲気ガスは、全て不活性ガスである。 In the welding method of the present embodiment, it is desirable to weld the object to be welded by performing only the main welding step, but if necessary, the main welding step and the welding conditions different from the main welding step may be used. Welding of the object to be welded may be performed by performing the welding in combination with other welding steps. As a welding method in which the main welding process and other welding processes are combined, for example, one of the thermal energy and the light energy selected from the front side of the welding target portion of the object to be welded and the welding target portion with respect to the welding target portion. When welding is performed by applying energy, the pressure of the atmospheric gas near the front side of the welding target portion is set to atmospheric pressure, and the pressure of the atmospheric gas near the back side of the welding target portion is set to exceed the atmospheric pressure. The welding process (pre-welding process) and the second welding process (main welding) in which the pressure of the atmospheric gas near the front side of the welding target portion is set to atmospheric pressure and the pressure of the atmospheric gas near the back side of the welding target portion is set to less than atmospheric pressure. Step) and may be carried out in this order. Here, in the pre-welding step and the main welding step, the atmospheric gases in the vicinity of the front side and the vicinity of the back side of the welding target portion are all inert gases.

前溶接工程と、本溶接工程とをこの順に実施する溶接方法は、特に、下記条件(A)および(B)を満たす場合に好適である。
(A)被溶接物を構成する材料が易酸化性材料から構成される。
(B)溶接作業開始前の溶接対象部が、溶接対象部の表側と裏側とを連通する隙間を有する。なお、このような隙間は、たとえば、第一の被溶接物の開先側端部と、第二の被溶接物の開先側端部とを突合わせて形成された開先などに形成される。
A welding method in which the pre-welding step and the main welding step are carried out in this order is particularly suitable when the following conditions (A) and (B) are satisfied.
(A) The material constituting the work piece is made of an easily oxidizable material.
(B) The welding target portion before the start of the welding work has a gap in which the front side and the back side of the welding target portion communicate with each other. It should be noted that such a gap is formed in, for example, a groove formed by abutting the groove-side end of the first work piece and the groove-side end of the second work piece. NS.

条件(A)および(B)を満たす溶接対象部に対して前溶接工程と、本溶接工程とをこの順に実施する場合、前溶接工程は、溶接対象部の表側と裏側とを連通する隙間を封止する目的で実施される。これにより、本溶接工程において、溶接対象部の裏側の圧力が負圧となった際に、隙間を介して空気が溶接対象部の裏側へと漏れ出すことで、溶接完了後の溶接対象部の裏側に酸化が生じるのをより確実に防止できる。 When the pre-welding step and the main welding step are performed in this order on the welding target portion satisfying the conditions (A) and (B), the pre-welding step provides a gap communicating between the front side and the back side of the welding target portion. It is carried out for the purpose of sealing. As a result, in the main welding process, when the pressure on the back side of the welding target portion becomes negative, air leaks to the back side of the welding target portion through the gap, so that the welding target portion after the welding is completed. It is possible to more reliably prevent oxidation from occurring on the back side.

なお、前溶接工程は、溶接対象部の表側と裏側とを連通する隙間を封止できるのであれば、上述した溶接条件に限定されるものではなく、その他の溶接条件にて適宜実施することもできる。たとえば、特許文献1に記載の溶接方法を前溶接工程として実施することもできると考えられる。しかしながら、本溶接工程を含む溶接プロセス全体を簡便かつ汎用性の優れたものとする観点からは、上述した溶接条件にて前溶接工程を実施することが特に好適である。 The pre-welding step is not limited to the above-mentioned welding conditions as long as it can seal the gap communicating between the front side and the back side of the welding target portion, and may be appropriately performed under other welding conditions. can. For example, it is considered that the welding method described in Patent Document 1 can be carried out as a pre-welding step. However, from the viewpoint of making the entire welding process including the main welding process simple and excellent in versatility, it is particularly preferable to carry out the pre-welding process under the above-mentioned welding conditions.

次に、本実施形態の溶接方法の具体例を図面により説明する。図1は、本実施形態の溶接方法の一例を示す模式図であり、具体的には、2つの被溶接物の開先側端部どうしを突き合わせて形成された開先を溶接することで、突合せ継手を形成する場合について説明する模式図である。ここで、図1(A)は、溶接対象部WZに対して熱エネルギー(アークA)を付与する前の状態を示す図であり、図1(B)は、溶接対象部WZに対して熱エネルギー(アークA)を付与している最中の状態を示すと共に、図1(A)中に示す溶接対象部WZ近傍を拡大した状態を示す拡大図でもある。なお、図1および図2以降に示す各図において、両矢印で示すX方向は水平方向を意味し、X方向と直交するY方向は垂直方向を意味する。また、特に別途の説明の無い限り、Y2方向は、重力方向と一致する方向を意味するものとし、この場合において、Y1方向を「上」、「上方」等と称し、Y2方向を「下」、「下方」等と称することがある。また、図1および図2以降に示す各図において、溶接トーチ20以外の部材については断面図を示している。 Next, a specific example of the welding method of the present embodiment will be described with reference to the drawings. FIG. 1 is a schematic view showing an example of the welding method of the present embodiment. Specifically, the groove formed by abutting the groove side ends of two objects to be welded is welded. It is a schematic diagram explaining the case of forming a butt joint. Here, FIG. 1A is a diagram showing a state before applying thermal energy (arc A) to the welding target portion WZ, and FIG. 1B is a diagram showing heat with respect to the welding target portion WZ. It is also an enlarged view showing a state in which energy (arc A) is being applied and an enlarged state in the vicinity of the welding target portion WZ shown in FIG. 1 (A). In each of the figures shown in FIGS. 1 and 2 and thereafter, the X direction indicated by the double-headed arrow means the horizontal direction, and the Y direction orthogonal to the X direction means the vertical direction. Unless otherwise specified, the Y2 direction means a direction that coincides with the direction of gravity. In this case, the Y1 direction is referred to as "up", "upward", etc., and the Y2 direction is "down". , "Downward" and the like. Further, in each of the drawings shown in FIGS. 1 and 2 and subsequent sections, cross-sectional views are shown for the members other than the welding torch 20.

図1に示すように、まず、溶接に際しては、被溶接物10として2枚の板状の被溶接物(第一の被溶接物10Aおよび第二の被溶接物10B)を用い、第一の被溶接物10Aの上面12Aおよび下面14Aと第二の被溶接物10Bの上面12Bおよび下面14Bとが各々面一を成すと共に、これら4つの表面12A、12B、14A、14BをX方向と平行を成すように配置した状態で、第一の被溶接物10Aの開先側端部16Eと、第二の被溶接物10Bの開先側端部16Eとを突き合わせることでV形の開先Gを形成する。ここで、開先Gおよびその近傍が、溶接対象部WZとなる部分である。次に、開先Gの上方側にアーク溶接に用いる溶接トーチ20を配置する。また、開先Gの底部側あるいは下方側(溶接対象部WZの裏側)、および、被溶接物10A、10Bの下面(表面)14A、14Bのうち開先Gの下方側の周辺部からなる領域(保護領域14P1(下面14Aの一領域とこれに隣接する下面14Bの一領域とを含む部分)を、外気と遮断すべく、開口部32を有する箱状の密閉部材30により覆う。 As shown in FIG. 1, first, in welding, two plate-shaped objects to be welded (first object to be welded 10A and second object to be welded 10B) are used as the object to be welded 10, and the first The upper surface 12A and lower surface 14A of the work piece 10A and the upper surface 12B and lower surface 14B of the second work piece 10B are flush with each other, and these four surfaces 12A, 12B, 14A and 14B are parallel to the X direction. The V-shaped groove G is formed by abutting the groove side end portion 16E of the first work piece 10A and the groove side end portion 16E of the second work piece 10B in a state of being arranged so as to form. To form. Here, the groove G and its vicinity are the portions to be the welding target portion WZ. Next, the welding torch 20 used for arc welding is arranged on the upper side of the groove G. Further, a region consisting of a bottom side or a lower side of the groove G (the back side of the welding target portion WZ) and a peripheral portion of the lower surfaces (surfaces) 14A and 14B of the objects to be welded 10A and 10B on the lower side of the groove G. (The protective region 14P1 (a portion including one region of the lower surface 14A and one region of the lower surface 14B adjacent thereto) is covered with a box-shaped sealing member 30 having an opening 32 in order to block the outside air.

この箱状の密閉部材30は、6面のうちの1面全面が開口部32となっており、下面14A、14Bのうち開口部32で囲われた領域が保護領域14P1を形成する。このため、密閉部材30と、その開口部32を封鎖するように位置する保護領域14P1とで囲まれた密閉空間Sが形成され、結果的に保護領域14P1は、外気と遮断された密閉空間Sに囲われた状態となる。この際、密閉部材30と被溶接物10A、10Bの下面(表面)14A、14Bとの間に隙間が生じないように、密閉部材30を被溶接物10A、10Bの下面(表面)14A、14Bに対して隙間なく密着させる。なお、必要に応じて、隙間をより確実に塞げるように耐熱性テープなどを用いてシーリング処理してもよい。そして、本溶接工程の実施に際しては、被溶接物10の材質等に応じて密閉空間S内を、(i)圧力が大気圧未満の不活性ガス、あるいは、(ii)圧力が大気圧未満の酸素を含むガス(通常は空気)で満たした状態とする。なお、(i)または(ii)に示す状態を実現するために、真空ポンプを利用して密閉空間S内を適宜真空排気したり、アルゴンガスボンベなどの不活性ガス供給源から密閉空間S内へと適宜不活性ガスを供給する。この際、真空排気や不活性ガスの供給は、非連続的に実施してもよく、連続的に実施してもよい。また、本溶接工程の開始前の段階において密閉空間S内が予め大気圧あるいはこれを超える圧力の不活性ガスで満たされている場合は、(i)に示す状態を実現するために真空排気を行うだけでもよい。 In the box-shaped sealing member 30, the entire surface of one of the six surfaces has an opening 32, and the region of the lower surfaces 14A and 14B surrounded by the opening 32 forms the protective region 14P1. Therefore, a closed space S surrounded by the closed member 30 and the protected area 14P1 located so as to block the opening 32 thereof is formed, and as a result, the protected area 14P1 is blocked from the outside air. It will be surrounded by. At this time, the sealing member 30 is placed on the lower surfaces (surfaces) 14A and 14B of the objects to be welded 10A and 10B so that there is no gap between the sealing member 30 and the lower surfaces (surfaces) 14A and 14B of the objects to be welded 10A and 10B. Adhere to the surface without any gaps. If necessary, a heat-resistant tape or the like may be used for sealing treatment so as to more reliably close the gap. When carrying out this welding step, depending on the material of the object to be welded 10, the closed space S is either (i) an inert gas having a pressure of less than atmospheric pressure, or (ii) having a pressure of less than atmospheric pressure. It shall be filled with a gas containing oxygen (usually air). In addition, in order to realize the state shown in (i) or (ii), a vacuum pump is used to appropriately evacuate the inside of the closed space S, or an inert gas supply source such as an argon gas cylinder is sent into the closed space S. And supply an inert gas as appropriate. At this time, the vacuum exhaust and the supply of the inert gas may be carried out discontinuously or continuously. If the enclosed space S is previously filled with an inert gas having an atmospheric pressure or a pressure higher than that before the start of the main welding process, vacuum exhaust is performed in order to realize the state shown in (i). You can just do it.

なお、密閉部材30には、ガス排気管34、ガス供給管36および圧力計(図中、不図示)が接続されている。ここで、ガス排気管34の密閉部材30と接続された側の一端と反対側の他端は、ロータリーポンプなどの真空ポンプ(図中、不図示)に接続されている。また、ガス排気管34の途中には流量調整バルブが適宜設けられると共に、ガス供給管36の途中には流量調整バルブや流量計が適宜設けられる。さらに、ガス供給管36の密閉部材30と接続された側の一端と反対側の他端は、Arガスボンベなどの不活性ガス供給源(図中、不図示)に接続されるか、あるいは、外気(大気圧の空気)に開放されている。一方、溶接トーチ20と、被溶接物10とは溶接用電源(図中、不図示)に接続されており、また、溶接トーチ20の先端部には棒状電極22が設けられている。なお、溶接時に用いる溶接棒は、棒状電極22を兼ねたものであってもよいし、棒状電極22とは別に準備したものを用いてもよい。 A gas exhaust pipe 34, a gas supply pipe 36, and a pressure gauge (not shown in the figure) are connected to the sealing member 30. Here, one end on the side connected to the sealing member 30 of the gas exhaust pipe 34 and the other end on the opposite side are connected to a vacuum pump (not shown in the drawing) such as a rotary pump. Further, a flow rate adjusting valve is appropriately provided in the middle of the gas exhaust pipe 34, and a flow rate adjusting valve and a flow meter are appropriately provided in the middle of the gas supply pipe 36. Further, the other end of the gas supply pipe 36 on the side connected to the sealing member 30 and the other end on the opposite side are connected to an inert gas supply source (not shown in the figure) such as an Ar gas cylinder, or the outside air. It is open to (atmospheric pressure air). On the other hand, the welding torch 20 and the object to be welded 10 are connected to a welding power source (not shown in the drawing), and a rod-shaped electrode 22 is provided at the tip of the welding torch 20. The welding rod used at the time of welding may also serve as the rod-shaped electrode 22, or may be prepared separately from the rod-shaped electrode 22.

次に、被溶接物10を構成する材料として、アルミニウムなどの難酸化性材料を用いた場合の溶接手順の一例を説明する。 Next, an example of the welding procedure when a refractory material such as aluminum is used as the material constituting the object to be welded 10 will be described.

まず、真空ポンプを作動させることで密閉空間S内の空気を密閉部材30外へと排気して、密閉空間S内の圧力(バックサイド圧力)を、大気圧未満の範囲内において適宜、所望の圧力となるように調整する。圧力の調整は、たとえば、他端が外気に開放された状態のガス供給管36の途中に設けられた流量調整バルブなどを利用して適宜行う。そして、この状態で、溶接を実施する。この際、溶接トーチ20の棒状電極22の先端と、被溶接物10の開先Gとの間にアークAが発生するため、被溶接物10の溶接対象部WZの表側から、溶接対象部WZに対して熱エネルギー(アークA)が付与される。 First, by operating a vacuum pump, the air in the closed space S is exhausted to the outside of the closed member 30, and the pressure (backside pressure) in the closed space S is appropriately desired within a range of less than atmospheric pressure. Adjust to pressure. The pressure is appropriately adjusted by using, for example, a flow rate adjusting valve provided in the middle of the gas supply pipe 36 in a state where the other end is open to the outside air. Then, welding is performed in this state. At this time, since an arc A is generated between the tip of the rod-shaped electrode 22 of the welding torch 20 and the groove G of the object to be welded 10, the welding object WZ is viewed from the front side of the welding object WZ of the object 10 to be welded. Thermal energy (arc A) is applied to the surface.

よって、溶接作業中においては常に、溶接対象部WZの表側近傍の雰囲気ガスは外気(大気圧の空気)であるのに対して、溶接対象部WZの裏側近傍(すなわち保護領域14P1)を囲う密閉空間Sの雰囲気ガスは、大気圧未満の空気となる。それゆえ、溶接対象部WZの表側と裏側との間で生じた圧力差により、溶接作業中は常に、溶接対象部WZの表側から裏側へと向かう方向の力が作用する。それゆえ、溶接完了後には、図2に例示したような溶接時の溶接対象部WZに対応する溶接結合部Cの裏側に凹み40が無く、十分な盛り上がりを有する裏波ビードBが形成される。すなわち、溶接完了後の溶接結合部C(溶接時の溶接対象部WZ)の裏側が図3に例示したように凹み40が形成されるなどして、盛り上がりの不十分な裏波ビードが形成されるのをより確実に抑制できる。 Therefore, during the welding operation, the atmospheric gas near the front side of the welding target portion WZ is always the outside air (air at atmospheric pressure), whereas the sealing around the back side of the welding target portion WZ (that is, the protected area 14P1) is sealed. The atmospheric gas in the space S is air having a pressure lower than the atmospheric pressure. Therefore, due to the pressure difference generated between the front side and the back side of the welding target portion WZ, a force in the direction from the front side to the back side of the welding target portion WZ always acts during the welding operation. Therefore, after the welding is completed, the back wave bead B having a sufficient bulge is formed without the dent 40 on the back side of the welding joint portion C corresponding to the welding target portion WZ at the time of welding as illustrated in FIG. .. That is, the back side of the welded joint C (weld target portion WZ at the time of welding) after the completion of welding is formed with a dent 40 as illustrated in FIG. 3, and a back wave bead with insufficient swelling is formed. Welding can be suppressed more reliably.

このような効果は、(1)開先Gの幅が狭い場合(特に第一の被溶接物10Aの開先側端部16Eと、第二の被溶接物10Bの開先側端部16Eとを突合わせて形成された開先Gの形状がI形である場合)、および、(2)図1に示す例とは異なり、溶接に必要なエネルギーを付与する方向Eと、重力方向(Y2方向)とが一致せず、両者の成す角度(溶接時の作業角度)を大きくした場合(特に、重力方向を0度とし、その反対側の方向を180度とした場合において、溶接に必要なエネルギーを付与する方向E(溶接方向E)が180度前後の場合においても安定して発揮される。 Such effects are obtained when (1) the width of the groove G is narrow (particularly, the groove side end portion 16E of the first work piece 10A and the groove side end portion 16E of the second work piece 10B). The shape of the groove G formed by abutting the two is I-shaped), and (2) unlike the example shown in FIG. 1, the direction E for applying the energy required for welding and the direction of gravity (Y2). It is necessary for welding when the angle (direction) does not match and the angle formed by both (working angle at the time of welding) is increased (especially when the direction of gravity is 0 degrees and the direction on the opposite side is 180 degrees). Even when the direction E for applying energy (welding direction E) is around 180 degrees, it is stably exhibited.

上記(1)に示すケースでは、開先Gの幅が狭いため、通常であれば、溶接対象部WZ内に存在する溶融あるいは半溶融状態の金属Mの溶接対象部WZの表側から裏側への流動が阻害され易くなる。このため、溶接作業の完了後において、溶接対象部WZの裏側が凹み易くなる。しかしながら、本実施形態の溶接方法では、溶接対象部WZの表側と裏側との圧力差により溶接対象部WZ内に存在する溶融あるいは半溶融状態の金属Mの溶接対象部WZの表側から裏側への流動が促進されるため、凹みの発生を抑制し易い。 In the case shown in (1) above, since the width of the groove G is narrow, normally, the molten or semi-molten metal M existing in the welding target portion WZ is moved from the front side to the back side of the welding target portion WZ. Flow is easily blocked. Therefore, after the welding work is completed, the back side of the welding target portion WZ is likely to be dented. However, in the welding method of the present embodiment, due to the pressure difference between the front side and the back side of the welding target portion WZ, the molten or semi-molten metal M existing in the welding target portion WZ is moved from the front side to the back side of the welding target portion WZ. Since the flow is promoted, it is easy to suppress the occurrence of dents.

また、上記(2)に示すケースに関しては、たとえば、最も極端な例として、図1に示す例において、Y1方向が重力方向と一致する方向である、言い換えれば溶接時の作業角度が180度であると仮定する。この場合、通常であれば、溶接対象部WZ内に存在する溶融あるいは半溶融状態の金属Mは、重力の作用によって、常にY1方向(重力方向)側へと向かって流動しようとする力が作用することになる。しかしながら、本実施形態の溶接方法では、溶接対象部WZの表側と裏側との圧力差により溶接対象部WZ内に存在する溶融あるいは半溶融状態の金属の溶接対象部WZの表側から裏側へと(すなわち、Y1方向(重力方向)とは真逆のY2方向へと)と流動しようとする力が作用するため、凹みの発生を抑制し易い。 Regarding the case shown in (2) above, for example, in the example shown in FIG. 1, the Y1 direction coincides with the gravity direction, in other words, the working angle at the time of welding is 180 degrees. Suppose there is. In this case, normally, the molten or semi-molten metal M existing in the welding target portion WZ is subjected to a force that always tends to flow toward the Y1 direction (gravitational direction) due to the action of gravity. Will be done. However, in the welding method of the present embodiment, due to the pressure difference between the front side and the back side of the welding target portion WZ, the molten or semi-molten metal existing in the welding target portion WZ is moved from the front side to the back side of the welding target portion WZ ( That is, since a force that tends to flow acts in the Y2 direction, which is the opposite of the Y1 direction (gravity direction), it is easy to suppress the occurrence of dents.

したがって、被溶接物に対して溶接する際に、重力方向と溶接に必要なエネルギーを付与する方向E(溶接方向E)との成す角度(溶接時の作業角度)が様々に異なる場合においても、本実施形態の溶接方法を用いれば如何様な作業角度においても凹みの発生を容易に抑制できる。言い換えれば、凹みの発生を抑制するために、溶接時に、作業角度を略一定角度に固定した状態で、被溶接物を回転等させる必要が無い。それゆえ、本実施形態の溶接方法は、作業角度を変化させつつ溶接する場合(たとえば、2本のパイプの端部同士を突き合わせて形成された開先を周方向に沿って全周を360度溶接する場合など)などにおいても好適に利用することができる。この場合、作業角度の最大変動幅は、被溶接物の形状・構造等に応じて0度を超え360度以下の範囲で任意に選択できるが、上述した効果がより効果的に発揮される観点からは90度以上360度以下が好ましく、180度以上360度以下がより好ましい。なお、作業角度の変化は、上述したパイプ溶接のように連続的なものであってもよく、非連続的なものであってもよい。 Therefore, even when the angle formed by the gravity direction and the direction E (welding direction E) to which the energy required for welding is applied when welding to the object to be welded is different (working angle at the time of welding), the angle is different. By using the welding method of the present embodiment, the occurrence of dents can be easily suppressed at any working angle. In other words, in order to suppress the occurrence of dents, it is not necessary to rotate the object to be welded while the working angle is fixed at a substantially constant angle during welding. Therefore, in the welding method of the present embodiment, when welding is performed while changing the working angle (for example, the groove formed by abutting the ends of two pipes is 360 degrees around the entire circumference along the circumferential direction. It can also be suitably used in cases such as welding). In this case, the maximum fluctuation range of the working angle can be arbitrarily selected in the range of more than 0 degrees and 360 degrees or less depending on the shape and structure of the work piece, but the above-mentioned effect is more effectively exhibited. From 90 degrees or more and 360 degrees or less is preferable, and 180 degrees or more and 360 degrees or less is more preferable. The change in the working angle may be continuous as in the pipe welding described above, or may be discontinuous.

なお、本願明細書において、溶接に必要な「エネルギーを付与する方向E」とは、溶接対象部WZに対して付与されるエネルギーの中心軸と平行を成し、かつ、溶接対象部WZの表側へと向かう方向を意味する。たとえば、図1に示す溶接トーチ20を用いてアーク溶接を実施する場合であれば、溶接トーチ20の棒状電極22の中心軸と平行を成し、かつ、棒状電極22の先端側から溶接対象部WZの表側へと向かう方向(図1(B)に示す方向E)を意味する。また、ガス溶接用の溶接トーチを用いてガス溶接を実施する場合であれば、溶接トーチの火口から円錐状に広がるように噴出される噴出ガス(火炎)の中心方向を意味する。さらに、レーザー溶接を実施する場合であれば、溶接対象部WZの表側に対してレーザー光が入射する方向を意味する。 In the specification of the present application, the "direction E for applying energy" required for welding is parallel to the central axis of the energy applied to the welding target portion WZ and is on the front side of the welding target portion WZ. It means the direction toward. For example, in the case of performing arc welding using the welding torch 20 shown in FIG. 1, the welding target portion is parallel to the central axis of the rod-shaped electrode 22 of the welding torch 20 and is formed from the tip side of the rod-shaped electrode 22. It means the direction toward the front side of the WZ (direction E shown in FIG. 1B). Further, when gas welding is performed using a welding torch for gas welding, it means the central direction of the ejected gas (flame) ejected so as to spread in a conical shape from the crater of the welding torch. Further, when laser welding is performed, it means the direction in which the laser beam is incident on the front side of the welding target portion WZ.

次に、被溶接物10を構成する材料として、ステンレスなどの易酸化性材料を用いた場合の溶接手順の一例を説明する。 Next, an example of the welding procedure when an easily oxidizing material such as stainless steel is used as the material constituting the object to be welded 10 will be described.

この場合、シールドガスとして、Arガス、Heガスなどの不活性ガスを用いる。これにより溶接時に、溶接対象部WZの表側近傍および裏側近傍の雰囲気ガスを不活性ガスとすることで、溶接対象部WZの表側および裏側の酸化も防止することができる。なお、被溶接物10を構成する材料として、アルミニウムなどの難酸化性材料を用いる場合は、不活性ガスを用いる必要がない。 In this case, an inert gas such as Ar gas or He gas is used as the shield gas. As a result, during welding, the atmospheric gas in the vicinity of the front side and the vicinity of the back side of the welding target portion WZ is used as an inert gas, so that oxidation of the front side and the back side of the welding target portion WZ can also be prevented. When a refractory material such as aluminum is used as the material constituting the object to be welded 10, it is not necessary to use an inert gas.

そして、図1(A)に示すように溶接作業開始前の溶接対象部WZが、開先G(すなわち、溶接対象部WZの表側と裏側とを連通する隙間)を含む場合、まず、ナメ付溶接などにより前溶接工程を実施することで、開先Gに形成されている隙間を封止する。そして、次に、本溶接工程を実施する。本溶接工程に先立ち、前溶接工程を実施することで、溶接完了後の溶接対象部の裏面側の酸化をより確実に抑制できる。 Then, as shown in FIG. 1A, when the welding target portion WZ before the start of the welding work includes the groove G (that is, the gap communicating the front side and the back side of the welding target portion WZ), first, a name is attached. By performing the pre-welding process by welding or the like, the gap formed in the groove G is sealed. Then, the main welding process is carried out next. By carrying out the pre-welding process prior to the main welding process, it is possible to more reliably suppress the oxidation of the back surface side of the welding target portion after the welding is completed.

ここで、溶接対象部WZの表側近傍への不活性ガスの供給は、Arガスボンベなどの不活性ガス供給源(図中、不図示)に接続された溶接トーチ20を介して行うことができる。なお、溶接対象部WZの表側近傍の空間は外気に開放されているため、溶接対象部WZの表側近傍へ不活性ガスを供給しても、溶接対象部WZの表側近傍の雰囲気ガス(不活性ガス)の圧力は大気圧のままである。また、溶接対象部WZの裏側近傍への不活性ガスの供給は、他端がArガスボンベなどの不活性ガス供給源(図中、不図示)に接続されたガス供給管36を介して行う。この際、本溶接工程では、密閉空間S内の圧力が常に大気圧未満の不活性ガスで満たされるように、適宜のタイミングで、密閉空間S内のガスの真空排気、あるいは、密閉空間S内のガスの真空排気と密閉空間S内への不活性ガスの供給とを行えばよい。なお、密閉部材30を用いて前溶接工程と本溶接工程とを順次実施する場合、後述するように密閉部材30を用いた前溶接工程が完了した後の状態では、通常、密閉空間S内は、大気圧と同等あるいはそれ以上の圧力の不活性ガスで満たされている。このため、外気に対する密閉空間Sの気密性が十分に確保されている場合は、本溶接工程の開始前に密閉空間S内の不活性ガスを、その圧力が大気圧未満となるまで真空排気するだけでもよい。 Here, the inert gas can be supplied to the vicinity of the front side of the welding target portion WZ via a welding torch 20 connected to an inert gas supply source (not shown in the figure) such as an Ar gas cylinder. Since the space near the front side of the welding target portion WZ is open to the outside air, even if the inert gas is supplied to the vicinity of the front side of the welding target portion WZ, the atmospheric gas near the front side of the welding target portion WZ (inert). The pressure of the gas) remains atmospheric. Further, the inert gas is supplied to the vicinity of the back side of the welding target portion WZ via a gas supply pipe 36 whose other end is connected to an inert gas supply source (not shown in the figure) such as an Ar gas cylinder. At this time, in the main welding step, the gas in the closed space S is evacuated or the inside of the closed space S is evacuated at an appropriate timing so that the pressure in the closed space S is always filled with the inert gas having a pressure lower than the atmospheric pressure. The vacuum exhaust of the gas and the supply of the inert gas into the closed space S may be performed. When the pre-welding step and the main welding step are sequentially carried out using the sealing member 30, in the state after the pre-welding step using the sealing member 30 is completed as described later, the inside of the closed space S is usually inside. , Filled with an inert gas at a pressure equal to or greater than atmospheric pressure. Therefore, when the airtightness of the closed space S with respect to the outside air is sufficiently secured, the inert gas in the closed space S is evacuated until the pressure becomes lower than the atmospheric pressure before the start of the main welding process. It may be just.

一方、前溶接工程では、溶接対象部WZの少なくとも裏側近傍の雰囲気ガスを、大気圧を超える不活性ガスに置換してから溶接を行う。溶接対象部WZの少なくとも裏側近傍の雰囲気ガスを、大気圧を超える不活性ガスに置換する方法としては特に制限されず、たとえば、a)図1に示す密閉部材30を用いた際にガス排気管34の出口側を封止した状態でガス供給管36を介して密閉空間S内へ不活性ガスを供給してもよいし、b)1対の被溶接物10A、10Bが、円筒状部材である場合は、市販の汎用性のある溶接用治具(たとえば、パージダム、パージリングなど)を用いたり、あるいは、この円筒状部材の両端部を封止した状態で円筒状部材内部に不活性ガスを供給してもよい。 On the other hand, in the pre-welding step, the atmospheric gas at least near the back side of the welding target portion WZ is replaced with an inert gas exceeding the atmospheric pressure, and then welding is performed. The method of replacing the atmospheric gas at least near the back side of the weld target portion WZ with an inert gas exceeding atmospheric pressure is not particularly limited. For example, a) a gas exhaust pipe when the sealing member 30 shown in FIG. 1 is used. Inert gas may be supplied into the closed space S through the gas supply pipe 36 with the outlet side of 34 sealed, or b) a pair of objects to be welded 10A and 10B are made of cylindrical members. In some cases, a commercially available general-purpose welding jig (for example, purge dam, purge ring, etc.) may be used, or an inert gas may be used inside the cylindrical member with both ends sealed. May be supplied.

なお、図1に示す例では、被溶接物10A、10Bとして板状の部材を用いたが、被溶接物10A、10Bの形状はこれに限定されるものではなく、たとえば、円管状の部材であってもよい。また、溶接対象部WZの裏側近傍の雰囲気ガスの圧力を大気圧未満とし、さらに、必要に応じて当該雰囲気ガスを不活性ガスとするために用いる溶接用治具については、図1に示す箱状の密閉部材30に限定されず、被溶接物10A、10Bや溶接対象部WZの形状・構造等に応じて、様々な形状・構造の溶接用治具を適宜用いることができる。また、被溶接物10A、10Bに対する密閉部材30の密着性が低く密閉空間Sと外気との間でガスのリークが生じやすい場合は、たとえば、密閉空間Sからなる内室と、この内室の外側を囲むように設けられると共に本溶接工程の溶接時には不活性ガスで満たされる外室とからなる2重構造の密閉部材などを用いてもよい。 In the example shown in FIG. 1, plate-shaped members were used as the objects to be welded 10A and 10B, but the shapes of the objects to be welded 10A and 10B are not limited to this, and for example, a circular tubular member is used. There may be. Further, the welding jig used to set the pressure of the atmospheric gas near the back side of the welding target portion WZ to less than atmospheric pressure and to make the atmospheric gas an inert gas as needed is shown in the box shown in FIG. The welding jigs having various shapes and structures can be appropriately used depending on the shape and structure of the objects to be welded 10A and 10B and the welding target portion WZ, and the like. When the adhesion of the sealing member 30 to the objects to be welded 10A and 10B is low and gas leaks easily between the sealed space S and the outside air, for example, the inner chamber composed of the closed space S and the inner chamber thereof. A double-structured sealing member or the like, which is provided so as to surround the outside and is composed of an outer chamber filled with an inert gas at the time of welding in the main welding step, may be used.

さらに、本実施形態の溶接方法は、図1に例示したような突合せ継手の開先溶接(但し、裏波溶接を行う場合)以外の様々な溶接継手の溶接にも利用できる。たとえば、(1)突合せ継手、T継手、十字継手および角継手の開先溶接(但し、裏波溶接を行う場合)や、(2)T字接手、当て金継手および重ね継手の隅肉溶接などでも利用できる。また、(3)せん溶接およびスロット溶接において特に溶接される板が薄い場合(特に、板厚1mm以下の場合)に本実施形態の溶接方法を利用することも好適である。薄い板材を用いて従来の溶接方法によりせん溶接あるいはスロット溶接を行う場合、溶接時に発生する熱の影響が裏面側まで及び、裏面側の酸化や凹みが発生し易いためである。図4は、本実施形態の溶接方法の他の例を示す模式図であり、具体的には、T字を成すように配置された2つの被溶接物を隅肉溶接することで、T字継手を形成する場合について説明する模式図である。 Further, the welding method of the present embodiment can be used for welding various welded joints other than groove welding of butt joints (provided that back wave welding is performed) as illustrated in FIG. For example, (1) groove welding of butt joints, T joints, cross joints and square joints (however, when back wave welding is performed), (2) fillet welding of T-shaped joints, padding joints and lap joints, etc. But it can be used. Further, it is also preferable to use the welding method of the present embodiment when the plate to be welded is particularly thin (particularly when the plate thickness is 1 mm or less) in (3) welding and slot welding. This is because when a thin plate material is used for wire welding or slot welding by a conventional welding method, the influence of heat generated during welding extends to the back surface side, and oxidation and dents on the back surface side are likely to occur. FIG. 4 is a schematic view showing another example of the welding method of the present embodiment. Specifically, FIG. 4 is a T-shape by fillet welding two objects to be welded so as to form a T-shape. It is a schematic diagram explaining the case of forming a joint.

図4に示す例では、被溶接物10として、2枚の第一の板状被溶接物10Cおよび第二の板状被溶接物10Dを用い、第一の板状被溶接物10Cの一方の面(上面12C)に対して、第二の板状被溶接物10Dの端部18Eを突き当てて形成された隅部CNおよびその近傍部分を溶接対象部WZとして、本実施形態の溶接方法によりT字継手の隅肉溶接を行う。この場合、溶接トーチ20は、隅部CNに対向する位置に配置される。なお、図4に示す例では、2つの隅部CNのうち、一方側の隅部CNに対向する位置に溶接トーチ20が配置された状態のみが示されているが、通常は他方側の隅部CNについても同様の溶接が行われる。また、密閉部材30は、第一の板状被溶接物10Cの他方の面(下面14C)のうち、水平方向Xにおいて第二の板状被溶接物10Dの端部18Eが配置された部分と対応する領域とその近傍とからなる領域(保護領域14P2)を、外気と遮断すべく、密閉部材30により覆う。そして、この状態で、図1に例示した場合と同様にして本実施形態の溶接方法により溶接を行う。これにより溶接完了後において、溶接対象部WZの裏側となる保護領域14P2の凹みを抑制できる上に、第一の板状被溶接物10Cが易酸化性材料から構成されている場合であっても保護領域14P2の酸化も抑制される。なお、図4に示す例では、溶接作業開始前の溶接対象部WZには、溶接対象部WZの表側と裏側とを連通する隙間が存在しない。このため、第一の板状被溶接物10Cが易酸化性材料から構成されている場合であっても、溶接時には本溶接工程のみを実施すればよい。 In the example shown in FIG. 4, two first plate-shaped workpieces 10C and a second plate-shaped workpiece 10D are used as the workpiece 10, and one of the first plate-shaped workpieces 10C is used. According to the welding method of the present embodiment, the corner portion CN formed by abutting the end portion 18E of the second plate-shaped workpiece 10D against the surface (upper surface 12C) and the portion in the vicinity thereof are used as the welding target portion WZ. Fillet welding of T-shaped joints is performed. In this case, the welding torch 20 is arranged at a position facing the corner CN. In the example shown in FIG. 4, only the state in which the welding torch 20 is arranged at the position facing the corner CN on one side of the two corner CNs is shown, but usually the corner on the other side is shown. The same welding is performed on the part CN. Further, the sealing member 30 is a portion of the other surface (lower surface 14C) of the first plate-shaped workpiece 10C on which the end portion 18E of the second plate-shaped workpiece 10D is arranged in the horizontal direction X. The region (protection region 14P2) including the corresponding region and its vicinity is covered with the sealing member 30 in order to block it from the outside air. Then, in this state, welding is performed by the welding method of the present embodiment in the same manner as in the case illustrated in FIG. As a result, after the welding is completed, the dent of the protective region 14P2 on the back side of the welding target portion WZ can be suppressed, and even when the first plate-shaped workpiece 10C is made of an easily oxidizable material. Oxidation of the protected region 14P2 is also suppressed. In the example shown in FIG. 4, the welding target portion WZ before the start of the welding work does not have a gap communicating the front side and the back side of the welding target portion WZ. Therefore, even when the first plate-shaped object to be welded 10C is made of an easily oxidizable material, only the main welding step needs to be performed at the time of welding.

なお、従来の溶接方法のように、溶接対象部WZの裏側近傍の雰囲気ガスの圧力を大気圧のままとして溶接を実施した場合では、図5に例示するように、下面14Cのうち溶接作業完了後の溶接対象部WZ(溶接結合部C)の裏側に対応する領域14D(図4で言う保護領域14P2に略対応する領域)が凹み42が形成され易い。これは、溶接時に、第一の板状被溶接物10Cのうち第二の板状被溶接物10Dの端部18Eが突き当てられた部分Jの近傍が、まず、アークAの熱によって高温に加熱されることで変形・軟化し易くなり、続いて、アークAの熱に直接曝されなくなった後に冷却される過程で体積収縮が生じて領域14Dの凹み42(いわゆるヒケ)の形成を招くためと考えられる。しかしながら、本実施形態の溶接方法では、第一の板状被溶接物10Cのうち第二の板状被溶接物10Dの端部18Eが突き当てられた部分Jの近傍がアークAの熱に直接曝されなくなった後に、流動性を喪失して再び完全に固化するまでの間においても、溶接対象部WZの表側近傍の雰囲気ガスの圧力を大気圧とし、溶接対象部WZの裏側近傍の雰囲気ガスの圧力を大気圧未満とした状態が維持される。すなわち、溶接対象部WZの表側と裏側との間で生じた圧力差により、溶接作業中は常に、溶接対象部WZの表側から裏側へと向かう方向の力が作用する。それゆえ、溶接完了後の溶接対象部WZ(溶接結合部C)の裏側に凹み42が発生するのを抑制できる。 When welding is performed with the pressure of the atmospheric gas near the back side of the welding target portion WZ as the atmospheric pressure as in the conventional welding method, the welding work is completed on the lower surface 14C as illustrated in FIG. A recess 42 is likely to be formed in the region 14D (the region substantially corresponding to the protection region 14P2 referred to in FIG. 4) corresponding to the back side of the later welding target portion WZ (welding joint portion C). This is because, at the time of welding, the vicinity of the portion J to which the end portion 18E of the second plate-shaped workpiece 10D of the first plate-shaped workpiece 10C is abutted is first heated to a high temperature by the heat of the arc A. By being heated, it becomes easy to be deformed and softened, and subsequently, volume shrinkage occurs in the process of cooling after being no longer directly exposed to the heat of arc A, which causes the formation of a dent 42 (so-called sink mark) in the region 14D. it is conceivable that. However, in the welding method of the present embodiment, the vicinity of the portion J to which the end portion 18E of the second plate-shaped welded object 10D of the first plate-shaped workpiece 10C is abutted is directly exposed to the heat of the arc A. The pressure of the atmospheric gas near the front side of the weld target WZ is set to atmospheric pressure, and the atmospheric gas near the back side of the weld target WZ is set to atmospheric pressure even before the fluidity is lost and the weld is completely solidified after the exposure is stopped. The pressure is maintained below atmospheric pressure. That is, due to the pressure difference generated between the front side and the back side of the welding target portion WZ, a force in the direction from the front side to the back side of the welding target portion WZ always acts during the welding operation. Therefore, it is possible to suppress the occurrence of a dent 42 on the back side of the welding target portion WZ (welding joint portion C) after the welding is completed.

以下に本発明を実施例を挙げて説明するが、本発明は以下の実施例にのみ限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
図1に示す実施形態において、以下に示す条件にて溶接テストを実施した。
<溶接条件>
(1)被溶接物10A、10B:ステンレス板(板厚:3mm)
(2)溶接方式:ティグ溶接
(3)溶接トーチ20:市販の溶接トーチ(特許文献1に示すチャンバ式トーチと異なり、溶接トーチ本体が外気に開放された状態の一般的な溶接トーチ)
(4)溶接プロセス:前溶接工程を実施することで開先Gの隙間を封止した後に本溶接工程を実施した。
(5)前溶接工程および本溶接工程の溶接時における表面12A、12B側の圧力・雰囲気:
大気圧下において、溶接トーチ20および開先Gの近傍にアルゴンガスを供給し続けることで、溶接トーチ20および開先Gの近傍をアルゴンガス雰囲気とした。
(6)前溶接工程の溶接時における裏面14A、14Bの圧力・雰囲気(但し、密閉部材30で覆われた保護領域14P1、14P2部分)側の圧力・雰囲気
ガス排気管34の出口側を封止した状態の密閉部材30を用い、ガス供給管36を介して密閉空間S内へと略一定の流量でアルゴンガスを供給し続けた。これにより、密閉空間S内をアルゴンガス雰囲気とすると共に、圧力(バックサイド圧力)を、ゲージ圧にて+0.1kPa±0.1kPaに維持し続けた。
(7)本溶接工程の溶接時における裏面14A、14B(但し、密閉部材30で覆われた保護領域14P1、14P2部分)側の圧力・雰囲気:
前溶接工程において密閉空間S内に満たされたアルゴンガスをガス排気管34を介して外部へ排気することにより、密閉空間S内のアルゴンガスの圧力(バックサイド圧力)を、本溶接工程の実施中においてゲージ圧にて−0.4kPa±0.1kPaとなるように維持した。
(Example 1)
In the embodiment shown in FIG. 1, the welding test was carried out under the conditions shown below.
<Welding conditions>
(1) Welded objects 10A, 10B: Stainless steel plate (plate thickness: 3 mm)
(2) Welding method: TIG welding (3) Welding torch 20: Commercially available welding torch (unlike the chamber type torch shown in Patent Document 1, a general welding torch in which the welding torch body is open to the outside air)
(4) Welding process: The main welding process was carried out after sealing the gap of the groove G by carrying out the pre-welding step.
(5) Pressure / atmosphere on the surfaces 12A and 12B during the pre-welding process and the main welding process:
By continuing to supply argon gas to the vicinity of the welding torch 20 and the groove G under atmospheric pressure, the vicinity of the welding torch 20 and the groove G was made into an argon gas atmosphere.
(6) Pressure / atmosphere on the back surfaces 14A and 14B during welding in the pre-welding process (however, the protected areas 14P1 and 14P2 covered with the sealing member 30) side pressure / atmosphere The outlet side of the gas exhaust pipe 34 is sealed. Using the sealing member 30 in this state, argon gas was continuously supplied into the sealed space S through the gas supply pipe 36 at a substantially constant flow rate. As a result, the inside of the closed space S was made to have an argon gas atmosphere, and the pressure (backside pressure) was maintained at + 0.1 kPa ± 0.1 kPa at the gauge pressure.
(7) Pressure / atmosphere on the back surfaces 14A and 14B (however, the protected areas 14P1 and 14P2 covered with the sealing member 30) during welding in this welding process:
By exhausting the argon gas filled in the closed space S to the outside through the gas exhaust pipe 34 in the pre-welding step, the pressure of the argon gas (backside pressure) in the closed space S is reduced by carrying out the main welding step. The gauge pressure was maintained at −0.4 kPa ± 0.1 kPa.

溶接し終えた後に、表面12A、12B側および裏面側14A、14Bの外観を目視観察した。その結果、両面共に、酸化は生じておらず、また、裏面側14A、14Bに形成には、凹み40は観察されず、適度な高さを持つ凸状の裏波ビードBが形成されていた。すなわち、実施例1では酸化、凹みに関して何らの欠陥の無い溶接が行われたことが確認された。 After the welding was completed, the appearances of the front surfaces 12A and 12B and the back surfaces 14A and 14B were visually observed. As a result, oxidation did not occur on both sides, and no dent 40 was observed in the formation on the back surface sides 14A and 14B, and a convex back wave bead B having an appropriate height was formed. .. That is, in Example 1, it was confirmed that welding was performed without any defects regarding oxidation and dents.

(実施例2)
本溶接工程の溶接時のバックサイド圧力を、−0.6kPa±0.1kPaとなるように維持し続けた以外は実施例1と同様にして溶接テストを実施した。溶接し終えた後に、表面12A、12B側および裏面側14A、14Bの外観を目視観察した。その結果、両面共に、酸化は生じておらず、また、裏面側14A、14Bに形成には、凹み40は観察されなかった。なお、裏面側14A、14Bに形成された裏波ビードBの高さは、実施例1と比べてさらに大きなものとなっていた。よって、実施例2においても酸化、凹みに関して何らの欠陥の無い溶接が行われた。
(Example 2)
The welding test was carried out in the same manner as in Example 1 except that the backside pressure during welding in this welding step was continuously maintained at −0.6 kPa ± 0.1 kPa. After the welding was completed, the appearances of the front surfaces 12A and 12B and the back surfaces 14A and 14B were visually observed. As a result, no oxidation occurred on both sides, and no dent 40 was observed in the formation on the back side 14A and 14B. The height of the back wave beads B formed on the back surface sides 14A and 14B was even larger than that of the first embodiment. Therefore, in Example 2, welding was performed without any defects regarding oxidation and dents.

(比較例1)
本溶接工程の溶接時の裏面側14A、14Bの圧力・雰囲気を、大気圧・空気雰囲気とした以外は、実施例1と同様にして溶接テストを実施した。溶接し終えた後に、表面12A、12B側および裏面側14A、14Bの外観を目視観察した。その結果、裏面側14A、14Bには、凹み40や、顕著な酸化が確認された。すなわち、比較例1では酸化および凹みに関して明かな溶接欠陥が発生したことが確認された。
(Comparative Example 1)
A welding test was carried out in the same manner as in Example 1 except that the pressures and atmospheres of the back surfaces 14A and 14B during welding in this welding step were atmospheric pressure and air atmosphere. After the welding was completed, the appearances of the front surfaces 12A and 12B and the back surfaces 14A and 14B were visually observed. As a result, dents 40 and remarkable oxidation were confirmed on the back surface sides 14A and 14B. That is, in Comparative Example 1, it was confirmed that clear welding defects were generated with respect to oxidation and dents.

(実施例3)
図1に示す実施形態において、以下に示す条件にて溶接テストを実施した。
<溶接条件>
(1)被溶接物10A、10B:アルミニウム合金板(板厚:4mm、合金番号:A5083)
(2)溶接方式:ティグ溶接
(3)溶接トーチ20:市販の溶接トーチ(特許文献1に示すチャンバ式トーチと異なり、溶接トーチ本体が外気に開放された状態の一般的な溶接トーチ)
(4)溶接プロセス:本溶接工程のみを実施した。
(5)溶接時の表面12A、12B側の圧力・雰囲気:
大気圧かつ空気雰囲気下とした。
(6)溶接時の裏面14A、14B(但し、密閉部材30で覆われた保護領域14P1、14P2部分)側の圧力・雰囲気:
密閉空間S内の空気をガス排気管34を介して外部へ排気することより、溶接中の密閉空間S内の空気の圧力(バックサイド圧力)を、ゲージ圧にて−0.3kPa±0.1kPaに維持した。
(Example 3)
In the embodiment shown in FIG. 1, the welding test was carried out under the conditions shown below.
<Welding conditions>
(1) Work piece 10A, 10B: Aluminum alloy plate (plate thickness: 4 mm, alloy number: A5083)
(2) Welding method: TIG welding (3) Welding torch 20: Commercially available welding torch (unlike the chamber type torch shown in Patent Document 1, a general welding torch in which the welding torch body is open to the outside air)
(4) Welding process: Only this welding process was carried out.
(5) Pressure / atmosphere on the surfaces 12A and 12B during welding:
Atmospheric pressure and air atmosphere.
(6) Pressure / atmosphere on the back surfaces 14A and 14B (however, the protected areas 14P1 and 14P2 covered with the sealing member 30) during welding:
By exhausting the air in the closed space S to the outside through the gas exhaust pipe 34, the pressure (backside pressure) of the air in the closed space S during welding is reduced to −0.3 kPa ± 0 at a gauge pressure. It was maintained at 1 kPa.

溶接し終えた後に、表面12A、12B側および裏面側14A、14Bの外観を目視観察した。その結果、裏面側14A、14Bに形成には、凹み40は観察されず、適度な高さを持つ凸状の裏波ビードBが形成されていた。すなわち、実施例2では凹みに関して何らの欠陥の無い溶接が行われたことが確認された。なお、実施例3で用いた被溶接物10A、10Bは酸化し難いアルミニウム合金材(A5083)から構成されるため、空気雰囲気中で溶接しても実用上問題となり得る程度の酸化が生じることは無かった。 After the welding was completed, the appearances of the front surfaces 12A and 12B and the back surfaces 14A and 14B were visually observed. As a result, no dent 40 was observed in the formation on the back surface sides 14A and 14B, and a convex back wave bead B having an appropriate height was formed. That is, in Example 2, it was confirmed that welding was performed without any defects with respect to the dents. Since the objects to be welded 10A and 10B used in Example 3 are made of an aluminum alloy material (A5083) that is difficult to oxidize, oxidation that may cause a practical problem even when welded in an air atmosphere may occur. There wasn't.

(実施例4)
図1に示す実施形態において、以下に示す条件にて溶接テストを実施した。
<溶接条件>
(1)被溶接物10A、10B:ステンレスパイプ(外径:114.3mm、肉厚:3mm、長さ:100mm)
(2)溶接方式:ティグ溶接
(3)溶接トーチ20:市販の溶接トーチ(特許文献1に示すチャンバ式トーチと異なり、溶接トーチ本体が外気に開放された状態の一般的な溶接トーチ)
(4)溶接プロセス:前溶接工程を実施することで開先Gの隙間を封止した後に本溶接工程を実施した。なお、前溶接工程および本溶接工程においては、ステンレスパイプを、その軸方向が水平方向と一致するように配置した状態で、ステンレスパイプの周方向に沿ってロボット(マニピュレーター)により溶接トーチ20を一定速度で移動させながらステンレスパイプの全周を溶接した。各工程における溶接トーチ20の移動速度は以下のとうりである。
前溶接工程:30cm/min
本溶接工程:14cm/min
(5)前溶接工程および本溶接工程の溶接時における表面12A、12B側の圧力・雰囲気:
大気圧下において、溶接トーチ20および開先Gの近傍にアルゴンガスを供給し続けることで、溶接トーチ20および開先Gの近傍をアルゴンガス雰囲気とした。
(6)前溶接工程の溶接時における裏面14A、14Bの圧力・雰囲気(但し、密閉部材30で覆われた保護領域14P1、14P2部分)側の圧力・雰囲気
ガス排気管34の出口側を封止した状態の密閉部材30を用い、ガス供給管36を介して密閉空間S内へと略一定の流量でアルゴンガスを供給し続けた。これにより、密閉空間S内をアルゴンガス雰囲気とすると共に、圧力(バックサイド圧力)を、ゲージ圧にて+0.05kPa±0.05kPaに維持し続けた。
(7)本溶接工程の溶接時における裏面14A、14B(但し、密閉部材30で覆われた保護領域14P1、14P2部分)側の圧力・雰囲気:
前溶接工程において密閉空間S内に満たされたアルゴンガスをガス排気管34を介して外部へ排気することにより、密閉空間S内のアルゴンガスの圧力(バックサイド圧力)を、本溶接工程の実施中においてゲージ圧にて−0.4kPa±0.1kPaとなるように維持した。
(Example 4)
In the embodiment shown in FIG. 1, the welding test was carried out under the conditions shown below.
<Welding conditions>
(1) Welded objects 10A, 10B: Stainless steel pipe (outer diameter: 114.3 mm, wall thickness: 3 mm, length: 100 mm)
(2) Welding method: TIG welding (3) Welding torch 20: Commercially available welding torch (unlike the chamber type torch shown in Patent Document 1, a general welding torch in which the welding torch body is open to the outside air)
(4) Welding process: The main welding process was carried out after sealing the gap of the groove G by carrying out the pre-welding step. In the pre-welding process and the main welding process, the welding torch 20 is fixed by a robot (manipulator) along the circumferential direction of the stainless steel pipe in a state where the stainless steel pipe is arranged so that its axial direction coincides with the horizontal direction. The entire circumference of the stainless steel pipe was welded while moving at a high speed. The moving speed of the welding torch 20 in each process is as follows.
Pre-welding process: 30 cm / min
Main welding process: 14 cm / min
(5) Pressure / atmosphere on the surfaces 12A and 12B during the pre-welding process and the main welding process:
By continuing to supply argon gas to the vicinity of the welding torch 20 and the groove G under atmospheric pressure, the vicinity of the welding torch 20 and the groove G was made into an argon gas atmosphere.
(6) Pressure / atmosphere on the back surfaces 14A and 14B during welding in the pre-welding process (however, the protected areas 14P1 and 14P2 covered with the sealing member 30) side pressure / atmosphere The outlet side of the gas exhaust pipe 34 is sealed. Using the sealing member 30 in this state, argon gas was continuously supplied into the sealed space S through the gas supply pipe 36 at a substantially constant flow rate. As a result, the inside of the closed space S was made to have an argon gas atmosphere, and the pressure (backside pressure) was continuously maintained at +0.05 kPa ± 0.05 kPa at the gauge pressure.
(7) Pressure / atmosphere on the back surfaces 14A and 14B (however, the protected areas 14P1 and 14P2 covered with the sealing member 30) during welding in this welding process:
By exhausting the argon gas filled in the closed space S to the outside through the gas exhaust pipe 34 in the pre-welding step, the pressure of the argon gas (backside pressure) in the closed space S is reduced by carrying out the main welding step. The gauge pressure was maintained at −0.4 kPa ± 0.1 kPa.

溶接し終えた後に、表面12A、12B側および裏面側14A、14Bの外観を周方向にそって全周を目視観察した。その結果、両面共に、酸化は生じておらず、また、裏面側14A、14Bに形成には、凹み40は観察されず、適度な高さを持つ凸状の裏波ビードBが形成されていた。すなわち、実施例4では酸化、凹みに関して何らの欠陥の無い溶接が行われたことが確認された。 After the welding was completed, the appearances of the front surfaces 12A and 12B and the back surfaces 14A and 14B were visually observed along the circumferential direction. As a result, oxidation did not occur on both sides, and no dent 40 was observed in the formation on the back surface sides 14A and 14B, and a convex back wave bead B having an appropriate height was formed. .. That is, in Example 4, it was confirmed that welding was performed without any defects regarding oxidation and dents.

10 :被溶接物
10A :第一の被溶接物
10B :第二の被溶接物
10C :第一の板状被溶接物
10D :第二の板状被溶接物
12A、12B、12C :上面(表面)
14A、14B、14C :下面(裏面)
14P1、14P2 :保護領域
14D :領域
16E :開先側端部
18E :端部
20 :溶接トーチ
22 :棒状電極
30 :密閉部材
32 :開口部
34 :ガス排気管
36 :ガス供給管
40 :凹み
42 :凹み(ヒケ)
A :アーク
B :裏波ビード
C :溶接結合部
CN :隅部
E :溶接方向(溶接に必要なエネルギーを付与する方向)
G :開先
J :第一の板状被溶接物10Cのうち第二の板状被溶接物10Dの端部1
8Eが突き当てられた部分
M :溶融あるいは半溶融状態の金属
S :密閉空間
WZ :溶接対象部
10: Object to be welded 10A: First object to be welded 10B: Second object to be welded 10C: First plate-shaped object to be welded 10D: Second plate-shaped object to be welded 12A, 12B, 12C: Top surface (surface) )
14A, 14B, 14C: Bottom surface (back surface)
14P1, 14P2: Protected area 14D: Area 16E: Groove side end 18E: End 20: Welding torch 22: Rod-shaped electrode 30: Sealing member 32: Opening 34: Gas exhaust pipe 36: Gas supply pipe 40: Recess 42 : Dent (sink)
A: Arc B: Back wave bead C: Welded joint CN: Corner E: Welding direction (direction to apply energy required for welding)
G: Groove J: End 1 of the second plate-shaped welded object 10D of the first plate-shaped workpiece 10C
Part where 8E is abutted M: Metal in a molten or semi-molten state S: Sealed space WZ: Welded part

Claims (12)

被溶接物の溶接対象部の表側から、前記溶接対象部に対して熱エネルギーおよび光エネルギーから選択されるいずれか一方のエネルギーを付与することで溶接を行う際に、
前記溶接対象部の表側近傍の雰囲気ガスの圧力を大気圧とし、前記溶接対象部の裏側近傍の雰囲気ガスの圧力を大気圧未満とした状態で溶接を行う溶接工程を含むことを特徴とする溶接方法。
When welding is performed by applying either heat energy or light energy selected from thermal energy and light energy to the welding target portion from the front side of the welding target portion of the object to be welded.
Welding includes a welding step in which the pressure of the atmospheric gas near the front side of the welding target portion is set to atmospheric pressure and the pressure of the atmospheric gas near the back side of the welding target portion is set to less than atmospheric pressure. Method.
被溶接物の溶接対象部の表側から、前記溶接対象部に対して熱エネルギーおよび光エネルギーから選択されるいずれか一方のエネルギーを付与することで溶接を行う際に、
前記溶接対象部の表側近傍の雰囲気ガスの圧力を大気圧とし、前記溶接対象部の裏側近傍の雰囲気ガスの圧力を大気圧未満とした状態で溶接を行う溶接工程を含むことを特徴とする溶接方法(但し、前記溶接対象部の表側に、前記溶接対象部の裏側と連通する気密な空間を形成する場合を除く)
When welding is performed by applying either heat energy or light energy selected from thermal energy and light energy to the welding target portion from the front side of the welding target portion of the object to be welded.
Welding includes a welding step in which the pressure of the atmospheric gas near the front side of the welding target portion is set to atmospheric pressure and the pressure of the atmospheric gas near the back side of the welding target portion is set to less than atmospheric pressure. Method (excluding the case where an airtight space communicating with the back side of the welding target portion is formed on the front side of the welding target portion) .
被溶接物の溶接対象部の表側から、前記溶接対象部に対して熱エネルギーおよび光エネルギーから選択されるいずれか一方のエネルギーを付与することで溶接を行う際に、
前記溶接対象部の表側近傍の雰囲気ガスの圧力を大気圧とし、前記溶接対象部の裏側近傍の雰囲気ガスの圧力をゲージ圧で−0.1kPa〜−2.0kPaの範囲内とした状態で溶接を行う溶接工程を含むことを特徴とする溶接方法。
When welding is performed by applying either heat energy or light energy selected from thermal energy and light energy to the welding target portion from the front side of the welding target portion of the object to be welded.
Welding is performed in a state where the pressure of the atmospheric gas near the front side of the welding target portion is atmospheric pressure and the pressure of the atmospheric gas near the back side of the welding target portion is within the range of -0.1 kPa to -2.0 kPa at the gauge pressure. A welding method comprising a welding step of performing the above.
被溶接物の溶接対象部の表側から、前記溶接対象部に対して熱エネルギーおよび光エネルギーから選択されるいずれか一方のエネルギーを付与することで溶接を行う際に、
前記溶接対象部の表側近傍の雰囲気ガスの圧力を大気圧とし、前記溶接対象部の裏側近傍の雰囲気ガスの圧力を大気圧未満とした状態で溶接を行う溶接工程を含み、
前記溶接工程において、前記溶接対象部の裏側近傍の雰囲気ガスの圧力は、溶接作業中の平均圧力を基準として±0.3kPaの範囲内に維持されることを特徴とする溶接方法。
When welding is performed by applying either heat energy or light energy selected from thermal energy and light energy to the welding target portion from the front side of the welding target portion of the object to be welded.
Wherein the pressure of the atmospheric gas on the front side near the welded portion and the atmospheric pressure, see containing a welding step of performing welding pressure of the atmospheric gas on the back near the welded portion in a state that is less than atmospheric pressure,
A welding method characterized in that, in the welding step, the pressure of the atmospheric gas near the back side of the welding target portion is maintained within a range of ± 0.3 kPa with reference to the average pressure during the welding operation .
前記溶接対象部の裏側近傍の雰囲気ガスが、不活性ガスであることを特徴とする請求項1〜4のいずれか1つに記載の溶接方法。 The welding method according to any one of claims 1 to 4, wherein the atmospheric gas near the back side of the welding target portion is an inert gas. 前記被溶接物を構成する材料が、ステンレス、チタン、ニッケルおよびジルコニウムから選択されるいずれかの易酸化性材料であることを特徴とする請求項に記載の溶接方法。 The welding method according to claim 5 , wherein the material constituting the object to be welded is any easily oxidizing material selected from stainless steel, titanium, nickel and zirconium. 前記溶接対象部の裏側近傍の雰囲気ガスが、空気であることを特徴とする請求項1〜4のいずれか1つに記載の溶接方法。 The welding method according to any one of claims 1 to 4, wherein the atmospheric gas near the back side of the welding target portion is air. 前記被溶接物を構成する材料が、アルミニウム、鉄および軟鋼から選択されるいずれかの難酸化性材料であることを特徴とする請求項に記載の溶接方法。 The welding method according to claim 7 , wherein the material constituting the object to be welded is any one of refractory materials selected from aluminum, iron and mild steel. 前記溶接工程において、重力方向と、前記エネルギーを付与する方向との成す角度を変化させつつ溶接を行うことを特徴とする請求項1〜のいずれか1つに記載の溶接方法。 The welding method according to any one of claims 1 to 8 , wherein in the welding step, welding is performed while changing the angle formed by the direction of gravity and the direction of applying energy. 前記溶接対象部が、第一の被溶接物の開先側端部と、第二の被溶接物の開先側端部とを突合わせて形成された開先およびその近傍部分を含むことを特徴とする請求項1〜のいずれか1つに記載の溶接方法。 The weld target portion includes a groove formed by abutting the groove side end portion of the first work piece and the groove side end portion of the second work piece, and a portion in the vicinity thereof. The welding method according to any one of claims 1 to 9, wherein the welding method is characterized. 前記第一の被溶接物の開先側端部と、前記第二の被溶接物の開先側端部とを突合わせて形成された開先の形状がI形であることを特徴とする請求項10に記載の溶接方法。 It is characterized in that the shape of the groove formed by abutting the groove-side end of the first work piece and the groove-side end of the second work piece is I-shaped. The welding method according to claim 10. 前記溶接対象部が、第一の板状被溶接物の一方の面に対して、第二の板状被溶接物の端部を突き当てて形成された隅部およびその近傍部分を含むことを特徴とする請求項1〜のいずれか1つに記載の溶接方法。
The weld target portion includes a corner portion formed by abutting an end portion of the second plate-shaped workpiece against one surface of the first plate-shaped workpiece and a portion in the vicinity thereof. The welding method according to any one of claims 1 to 9, wherein the welding method is characterized.
JP2020039471A 2020-03-09 2020-03-09 Welding method Active JP6958943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020039471A JP6958943B2 (en) 2020-03-09 2020-03-09 Welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020039471A JP6958943B2 (en) 2020-03-09 2020-03-09 Welding method

Publications (2)

Publication Number Publication Date
JP2021137862A JP2021137862A (en) 2021-09-16
JP6958943B2 true JP6958943B2 (en) 2021-11-02

Family

ID=77667536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020039471A Active JP6958943B2 (en) 2020-03-09 2020-03-09 Welding method

Country Status (1)

Country Link
JP (1) JP6958943B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081743B1 (en) * 2021-10-29 2022-06-07 株式会社三井E&Sマシナリー Temporary welding seal jig, main welding seal jig, and welding seal jig set

Also Published As

Publication number Publication date
JP2021137862A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
KR100504296B1 (en) Method of welding
JP2004306084A (en) Composite welding method of laser welding and arc welding
WO2009119561A1 (en) Plasma welding process and outer gas for use in the plasma welding process
JP5236566B2 (en) Circumferential welding method for fixed steel pipes
JP2009512556A (en) Laser beam welding method using metal vapor capillary formation control
JP6958943B2 (en) Welding method
CN110238525A (en) A kind of method for welding dissimilar metal of mild steel and cast iron
EP0689896A1 (en) Plasma welding process
JP5582602B2 (en) TIG welding method
US5750955A (en) High efficiency, variable position plasma welding process
IT9021151A1 (en) METHOD FOR APPLYING EROSION-RESISTANT SURFACE LAYERS ON STEAM TURBINE COMPONENTS
JP4782979B2 (en) Welding method
KR100895348B1 (en) Method of gas tungsten arc welding using by active flux
CN108453349B (en) Stainless steel pipeline welding method
JP3634819B2 (en) Laser welding method
EP0824987A1 (en) Plasma welding process
Jernstroem Hybrid welding of hollow section beams for a telescopic lifter
KR102283378B1 (en) Apparatus for friction stir welding
CN115156672B (en) Flexible adjustable argon arc welding gas protection cover for robot
JPH0866774A (en) Plasma key hole welding method
KR20170074276A (en) Manufacturing method for stainless welded steel pipe
US20220241895A1 (en) Shielding gas for laser welding of aluminum and aluminum alloys and method and apparatus for use thereof
JPS6221479A (en) Laser beam welding method
JP2002103035A (en) Seam welding method of uo steel pipe
JPS6125464B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

R150 Certificate of patent or registration of utility model

Ref document number: 6958943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250