JP6957410B2 - Gas sensor element and gas sensor manufacturing method - Google Patents

Gas sensor element and gas sensor manufacturing method Download PDF

Info

Publication number
JP6957410B2
JP6957410B2 JP2018098536A JP2018098536A JP6957410B2 JP 6957410 B2 JP6957410 B2 JP 6957410B2 JP 2018098536 A JP2018098536 A JP 2018098536A JP 2018098536 A JP2018098536 A JP 2018098536A JP 6957410 B2 JP6957410 B2 JP 6957410B2
Authority
JP
Japan
Prior art keywords
gas sensor
sensor element
manufacturing
rubber
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018098536A
Other languages
Japanese (ja)
Other versions
JP2019203767A (en
Inventor
英司 小寺
将生 中川
由理 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2018098536A priority Critical patent/JP6957410B2/en
Publication of JP2019203767A publication Critical patent/JP2019203767A/en
Application granted granted Critical
Publication of JP6957410B2 publication Critical patent/JP6957410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Description

本発明は、ガスセンサ素子の検出部の周囲に多孔質保護層を形成するガスセンサ素子及びガスセンサの製造方法に関する。 The present invention relates to a gas sensor element that forms a porous protective layer around a detection portion of the gas sensor element, and a method for manufacturing the gas sensor.

自動車エンジン等の内燃機関の燃費向上や燃焼制御を行うガスセンサとして、被測定ガス(吸気ガスや排気ガス)中の酸素濃度を検出する酸素センサや空燃比センサが知られている。
このようなガスセンサとして、図3に示すように、軸線方向に延び、自身の先端側に被測定ガス中の特定ガス成分を検出するための検出部10を有する板状のガスセンサ素子100を有するものが一般的に用いられている。又、検出部10に排気ガス中の水滴が接触して熱衝撃が加わることを抑制するため、検出部10の周囲に多孔質保護層20が形成されている。
さらに、検出部10の先端側の多孔質保護層20の熱容量を下げ、被測定ガスの温度変化に対する応答性を向上させるため、先端側の多孔質保護層20の角部20Rを面取りして他の部位と均一な厚みにすることが要求されている。
Oxygen sensors and air-fuel ratio sensors that detect the oxygen concentration in the gas to be measured (intake gas and exhaust gas) are known as gas sensors that improve the fuel efficiency of internal combustion engines such as automobile engines and control combustion.
As shown in FIG. 3, such a gas sensor has a plate-shaped gas sensor element 100 extending in the axial direction and having a detection unit 10 for detecting a specific gas component in the gas to be measured on its tip side. Is commonly used. Further, in order to prevent water droplets in the exhaust gas from coming into contact with the detection unit 10 and applying a thermal shock, a porous protective layer 20 is formed around the detection unit 10.
Further, in order to reduce the heat capacity of the porous protective layer 20 on the tip side of the detection unit 10 and improve the responsiveness to the temperature change of the gas to be measured, the corner portion 20R of the porous protective layer 20 on the tip side is chamfered. It is required to have a uniform thickness with the part of.

この多孔質保護層は、従来、多孔質保護層の材料を含むスラリーをスプレーするスプレー法、このスラリーに検出部を浸漬するディップ法等が用いられてきたが、多孔質保護層の膜厚にムラがある。
そこで、成形型内に検出部を収容してスラリーを注入することにより、膜厚を制御する技術が開発されている(特許文献1)。
一方、ゴム型の内部に原料粉末を投入し、マンドレルにて静水圧プレス成形する技術が知られている(特許文献2)。
Conventionally, a spray method for spraying a slurry containing the material of the porous protective layer, a dip method for immersing the detection unit in the slurry, or the like has been used for the porous protective layer. There is unevenness.
Therefore, a technique for controlling the film thickness by accommodating a detection unit in a molding die and injecting a slurry has been developed (Patent Document 1).
On the other hand, there is known a technique of putting raw material powder into a rubber mold and press-molding it with a mandrel under hydrostatic pressure (Patent Document 2).

特開2013−217733号公報(図2)Japanese Unexamined Patent Publication No. 2013-217733 (Fig. 2) 特開平6−142900号公報Japanese Unexamined Patent Publication No. 6-142900

ところで、特許文献1の方法の場合、成形型内にスラリーを注入するために、スラリー中の液体成分(乾燥/焼成での揮発成分)の割合を多くする必要がある。このため、スラリーが乾燥したときに収縮によるひび割れができやすく、多孔質保護層の強度が弱くなるという問題がある。
そこで、本発明者らは、特許文献2の技術を適用し、断面図8に示すように、ゴム型500の内部に予めガスセンサ素子100を設置し、ガスセンサ素子100の周囲のゴム型500内のキャビティに多孔質保護層の粉末原料20xを投入し、プレス圧P500を加えてプレス成形することを試みた。
そして、図9に示すように、上記した角部20Rを形成すべく、ゴム型500の上からガスセンサ素子100の先端側を押圧する押しゴム510に凹み510rを付け、角部20Rとなるテーパ510tを形成したが、テーパ510t付近でキャビティ内の粉末原料20xが十分に固化しないことが判明した。これは、押しゴム510の硬度がゴム型500の硬度よりも高いので、テーパ510t付近で押しゴム510の横方向の厚みt1が厚くなると、プレス圧P500がテーパ510t付近の粉末原料20xに十分に掛からないためと考えられる。
By the way, in the case of the method of Patent Document 1, in order to inject the slurry into the molding mold, it is necessary to increase the ratio of the liquid component (volatile component in drying / firing) in the slurry. Therefore, when the slurry dries, cracks are likely to occur due to shrinkage, and there is a problem that the strength of the porous protective layer is weakened.
Therefore, the present inventors applied the technique of Patent Document 2 and installed the gas sensor element 100 in advance inside the rubber mold 500 as shown in the cross-sectional view 8, and inside the rubber mold 500 around the gas sensor element 100. An attempt was made to put the powder raw material 20x of the porous protective layer into the cavity and apply a press pressure P500 to perform press molding.
Then, as shown in FIG. 9, in order to form the above-mentioned corner portion 20R, a recess 510r is provided in the push rubber 510 that presses the tip side of the gas sensor element 100 from above the rubber mold 500, and the taper 510t that becomes the corner portion 20R is formed. However, it was found that the powder raw material 20x in the cavity was not sufficiently solidified near the taper 510t. This is because the hardness of the push rubber 510 is higher than the hardness of the rubber mold 500, so that when the lateral thickness t1 of the push rubber 510 becomes thicker near the taper 510t, the press pressure P500 is sufficient for the powder raw material 20x near the taper 510t. It is thought that it does not hang.

そこで、本発明は、先端側の角部が面取りされた多孔質保護層を確実かつ低コストで形成することができるガスセンサ素子及びガスセンサの製造方法の提供を目的とする。 Therefore, an object of the present invention is to provide a gas sensor element and a method for manufacturing a gas sensor capable of forming a porous protective layer having chamfered corners on the tip side reliably and at low cost.

上記課題を解決するため、本発明のガスセンサ素子の製造方法は、軸線方向に延び、自身の先端側に被測定ガス中の特定ガス成分を検出するための検出部を有する板状又は筒状のガスセンサ素子に対し、該検出部の周囲に多孔質保護層を形成するガスセンサ素子の製造方法において、前記検出部が露出するように前記ガスセンサ素子をラバーモールドのキャビティ内に保持する保持工程と、前記キャビティに連通し前記検出部の先端側に対向する投入孔から、前記多孔質保護層の原料粉末を前記キャビティ内に投入し、前記投入孔内を進退する押しゴムにて前記原料粉末をプレスする第1プレス工程と、前記ラバーモールドの外側を等方圧プレスして前記多孔質保護層を形成する第2プレス工程と、を有し、前記押しゴムのデュロメータ硬度が前記ラバーモールドのデュロメータ硬度より高く、前記キャビティの内壁には、前記投入孔から前記キャビティに向かって広がるテーパ面が設けられ、前記保持工程にて前記検出部の先端の角部を前記テーパ面に対向させて保持する。 In order to solve the above problems, the method for manufacturing a gas sensor element of the present invention extends in the axial direction and has a plate-like or tubular shape having a detection unit for detecting a specific gas component in the gas to be measured on its tip side. In the method for manufacturing a gas sensor element that forms a porous protective layer around the detection unit with respect to the gas sensor element, a holding step of holding the gas sensor element in a cavity of a rubber mold so that the detection unit is exposed, and the above-mentioned The raw material powder of the porous protective layer is charged into the cavity through a charging hole that communicates with the cavity and faces the tip end side of the detection unit, and the raw material powder is pressed by a pressing rubber that advances and retreats in the charging hole. It has a first pressing step and a second pressing step of isotropically pressing the outside of the rubber mold to form the porous protective layer, and the durometer hardness of the pressed rubber is higher than the durometer hardness of the rubber mold. High, the inner wall of the cavity is provided with a tapered surface that extends from the input hole toward the cavity, and in the holding step, the corner portion of the tip of the detection unit is held so as to face the tapered surface.

このガスセンサ素子の製造方法によれば、キャビティに設けたテーパ面に検出部の先端の角部を対向させて保持し、押しゴムにて原料粉末をプレスした後、ラバーモールドの外側を等方圧プレスして多孔質保護層を形成する。
これにより、押しゴムの硬度がラバーモールドの硬度よりも高くても、テーパ面付近で押しゴムの横方向の厚みが厚くならず、テーパ面は押しゴムより柔らかいラバーモールドから構成される。このため、等方圧プレスの際の圧力がテーパ面付近の検出部の角部の原料粉末に十分に掛かり、先端側の角部が面取りされた多孔質保護層を確実かつ低コストで形成することができる
さらに原料粉末を圧縮して多孔質保護層を形成するので、スラリーにする必要がないため、多孔質保護層の強度も向上する。
さらに、プレス圧を変えることで、多孔質保護層の強度や気孔率を従来法よりも広範囲に変化させることができる。
なお、プレス成形にラバーモールドを用いて等方圧プレスを行うと、ラバーモールドの外側からプレス圧が均等(等方的)に内部に加わるので、原料粉末の圧縮ムラ等がなく、多孔質保護層の厚みや特性がより均一になるという利点がある。
According to this method of manufacturing a gas sensor element, the corner portion of the tip of the detection portion is held facing the tapered surface provided in the cavity, the raw material powder is pressed with a pressing rubber, and then the outside of the rubber mold is subjected to isotropic pressure. Press to form a porous protective layer.
As a result, even if the hardness of the push rubber is higher than the hardness of the rubber mold, the lateral thickness of the push rubber does not increase near the tapered surface, and the tapered surface is composed of a rubber mold softer than the push rubber. Therefore, the pressure at the time of isotropic pressure pressing is sufficiently applied to the raw material powder at the corner of the detection portion near the tapered surface, and a porous protective layer with the corner at the tip side chamfered is formed reliably and at low cost. Further, since the raw material powder is compressed to form the porous protective layer, it is not necessary to make a slurry, so that the strength of the porous protective layer is also improved.
Furthermore, by changing the press pressure, the strength and porosity of the porous protective layer can be changed in a wider range than in the conventional method.
When isotropic pressure pressing is performed using a rubber mold for press molding, the press pressure is evenly (isotropically) applied to the inside from the outside of the rubber mold, so that there is no uneven compression of the raw material powder and the porosity is protected. There is an advantage that the thickness and characteristics of the layer become more uniform.

本発明のガスセンサ素子の製造方法において、前記投入孔の最大径D1が、前記キャビティの最大径D2に対し、(D2×0.5)≦D1≦D2の関係を満たすとよい。
このガスセンサ素子の製造方法によれば、スムースに原料粉末を供給し、プレスを行うことができる。
In the method for manufacturing a gas sensor element of the present invention, it is preferable that the maximum diameter D1 of the input hole satisfies the relationship of (D2 × 0.5) ≦ D1 ≦ D2 with respect to the maximum diameter D2 of the cavity.
According to this method of manufacturing the gas sensor element, the raw material powder can be smoothly supplied and pressed.

本発明のガスセンサ素子の製造方法において、前記押しゴムの押圧面が凹んでいてもよい。
このガスセンサ素子の製造方法によれば、第1プレス工程で押しゴムにて原料粉末をより確実に圧縮できる。
In the method for manufacturing a gas sensor element of the present invention, the pressing surface of the pressing rubber may be recessed.
According to this method of manufacturing the gas sensor element, the raw material powder can be more reliably compressed by the pressing rubber in the first pressing step.

本発明のガスセンサ素子の製造方法において、前記テーパ面のテーパ角が15〜45度をなしてもよい。
このガスセンサ素子の製造方法によれば、多孔質保護層の先端側の角部をより確実に面取りして、多孔質保護層の先端側の熱容量を確実に低減することができる。
In the method for manufacturing a gas sensor element of the present invention, the taper angle of the tapered surface may be 15 to 45 degrees.
According to this method of manufacturing the gas sensor element, the corner portion on the tip side of the porous protective layer can be chamfered more reliably, and the heat capacity on the tip side of the porous protective layer can be surely reduced.

本発明のガスセンサの製造方法は、ガスセンサ素子に主体金具を組み付けるガスセンサの製造方法において、ガスセンサ素子として、前記ガスセンサ素子の製造方法によって製造されたガスセンサ素子を用いる。 In the method for manufacturing a gas sensor of the present invention, in the method for manufacturing a gas sensor in which a main metal fitting is attached to the gas sensor element, the gas sensor element manufactured by the method for manufacturing the gas sensor element is used as the gas sensor element.

この発明によれば、ガスセンサ素子及びガスセンサの先端側の角部が面取りされた多孔質保護層を確実かつ低コストで形成することができる。 According to the present invention, the gas sensor element and the porous protective layer in which the corners on the tip side of the gas sensor are chamfered can be formed reliably and at low cost.

本発明の実施形態に係るガスセンサ素子の製造方法によって製造されたガスセンサ素子の模式斜視図である。It is a schematic perspective view of the gas sensor element manufactured by the manufacturing method of the gas sensor element which concerns on embodiment of this invention. 図1のA−A線に沿う図である。It is a figure which follows the AA line of FIG. 多孔質保護層の先端側の面取りされた角部を示す断面図である。It is sectional drawing which shows the chamfered corner part on the tip side of the porous protective layer. 本発明の実施形態に係るガスセンサ素子の製造方法に用いるプレス成形機の一例を示す上下方向に沿う断面図である。It is sectional drawing along the vertical direction which shows an example of the press molding machine used in the manufacturing method of the gas sensor element which concerns on embodiment of this invention. 図4の部分拡大図である。It is a partially enlarged view of FIG. 図4のプレス成形機の水平方向に沿う断面図である。It is sectional drawing which follows the horizontal direction of the press molding machine of FIG. ガスセンサ素子の製造方法を示す工程図である。It is a process drawing which shows the manufacturing method of a gas sensor element. 従来のゴム型を用いて多孔質保護層を形成する方法を示す断面図である。It is sectional drawing which shows the method of forming a porous protective layer using a conventional rubber mold. 従来のゴム型を用いて多孔質保護層を形成する方法を示す上下方向に沿う断面図である。It is sectional drawing along the vertical direction which shows the method of forming a porous protective layer using a conventional rubber mold.

以下、本発明の実施形態について説明する。
図1は本発明の実施形態に係るガスセンサ素子の製造方法によって製造されたガスセンサ素子100の模式斜視図、図2は図1のA−A線に沿う図である。
図1に示すように、ガスセンサ素子100は軸線O方向に延びる板状に構成され、先端側に被測定ガス中の特定ガス成分を検出するための検出部10を有し、検出部10の周囲に多孔質保護層20が形成されている。ガスセンサ素子100等は、図示しない主体金具等によってガスセンサに組み付けられる。
なお、主体金具は、軸線方向に貫通する貫通孔を有する略筒状に構成され、ガスセンサ素子100の検知部100を貫通孔の先端よりも先端側に配置し、ガスセンサ素子100の後端側を貫通孔137の後端よりも後端側に配置する状態で、貫通孔に挿通されたガスセンサ素子100を保持するよう構成されている。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a schematic perspective view of a gas sensor element 100 manufactured by the method for manufacturing a gas sensor element according to an embodiment of the present invention, and FIG. 2 is a view taken along the line AA of FIG.
As shown in FIG. 1, the gas sensor element 100 is formed in a plate shape extending in the axis O direction, has a detection unit 10 for detecting a specific gas component in the gas to be measured on the tip side, and is around the detection unit 10. A porous protective layer 20 is formed on the surface. The gas sensor element 100 or the like is assembled to the gas sensor by a main metal fitting or the like (not shown).
The main metal fitting is formed in a substantially cylindrical shape having a through hole penetrating in the axial direction, the detection unit 100 of the gas sensor element 100 is arranged on the tip side of the tip of the through hole, and the rear end side of the gas sensor element 100 is arranged. It is configured to hold the gas sensor element 100 inserted through the through hole in a state of being arranged on the rear end side of the through hole 137.

又、図2に示すように、ガスセンサ素子100は、検出素子部300及び検出素子部300に積層されるヒータ部200を備えている。
検出素子部300は、酸素濃度検出セル130と酸素ポンプセル140とを備えており、被測定ガス中の酸素濃度から空燃比を検出する、いわゆる全領域空燃比センサを実現する。酸素濃度検出セル130は、第1固体電解質体105と、その第1固体電解質105の両面に形成された第1電極104及び第2電極106とから形成されている。一方、酸素ポンプセル140は、第2固体電解質体109と、その第2固体電解質体109の両面に形成された第3電極108、第4電極110とから形成されている。
Further, as shown in FIG. 2, the gas sensor element 100 includes a detection element unit 300 and a heater unit 200 laminated on the detection element unit 300.
The detection element unit 300 includes an oxygen concentration detection cell 130 and an oxygen pump cell 140, and realizes a so-called all-region air-fuel ratio sensor that detects the air-fuel ratio from the oxygen concentration in the gas to be measured. The oxygen concentration detection cell 130 is formed of a first solid electrolyte body 105 and a first electrode 104 and a second electrode 106 formed on both sides of the first solid electrolyte 105. On the other hand, the oxygen pump cell 140 is formed of a second solid electrolyte body 109 and a third electrode 108 and a fourth electrode 110 formed on both sides of the second solid electrolyte body 109.

そして、上記酸素ポンプセル140と酸素濃度検出セル130との間に測定室107cが形成され、それぞれ第2電極106及び第3電極108が測定室107cに臨んでいる。測定室107cは、素子の幅方向で外部と連通しており、該連通部分には、外部と測定室107cとの間のガス拡散を所定の律速条件下で実現する拡散抵抗部115が配置されている。
又、第4電極110の外面は多孔質の電極保護部113aで覆われ、電極保護部113aは素子の外面に露出している。これにより、第4電極110から電極保護部113a及び多孔質保護層20を介して外部から酸素を汲み入れ又は外部へ汲み出すようになっている。
A measurement chamber 107c is formed between the oxygen pump cell 140 and the oxygen concentration detection cell 130, and the second electrode 106 and the third electrode 108 face the measurement chamber 107c, respectively. The measurement chamber 107c communicates with the outside in the width direction of the element, and a diffusion resistance portion 115 that realizes gas diffusion between the outside and the measurement chamber 107c under a predetermined rate-determining condition is arranged in the communication portion. ing.
Further, the outer surface of the fourth electrode 110 is covered with a porous electrode protection portion 113a, and the electrode protection portion 113a is exposed on the outer surface of the element. As a result, oxygen is taken in from the outside or pumped out from the outside through the electrode protection portion 113a and the porous protective layer 20 from the fourth electrode 110.

多孔質保護層20は、検出素子部300とヒータ部200との積層体の外表面を覆って形成されている。すなわち、多孔質保護層20は、ガスセンサ素子100の先端側部位に設けられた検出部10の全周を覆って設けられている。
なお、検出部10とは、検出素子部300が有する電極104〜110及び電極104〜110に挟まれた固体電解質体105、109、更には測定室107cを指す。よって、検出部10の軸線O方向の最後端を越えて後端側まで多孔質保護層20が覆われていれば良い。
また、多孔質保護層20は検出部10の全周を覆っていればよく、検出部10が設けられる検出素子部300を被覆すればよいが、上記実施形態のように検出素子部300がヒータ部200と積層体を形成している場合、多孔質保護層20は検出素子部300を含む積層体(ガスセンサ素子100の先端側部位)を被覆することになる。
一方、ガスセンサ素子100がヒータ部200を備えていない場合、多孔質保護層20は検出素子部300(検出部10)の全周を被覆すればよい。
The porous protective layer 20 is formed so as to cover the outer surface of the laminate of the detection element portion 300 and the heater portion 200. That is, the porous protective layer 20 is provided so as to cover the entire circumference of the detection unit 10 provided at the tip end side portion of the gas sensor element 100.
The detection unit 10 refers to the solid electrolytes 105 and 109 sandwiched between the electrodes 104 to 110 and the electrodes 104 to 110 of the detection element unit 300, and further to the measurement chamber 107c. Therefore, it is sufficient that the porous protective layer 20 is covered from the rearmost end of the detection unit 10 in the axis O direction to the rear end side.
Further, the porous protective layer 20 may cover the entire circumference of the detection unit 10 and may cover the detection element unit 300 provided with the detection unit 10, but the detection element unit 300 is a heater as in the above embodiment. When the laminated body is formed with the portion 200, the porous protective layer 20 covers the laminated body (the tip end side portion of the gas sensor element 100) including the detection element portion 300.
On the other hand, when the gas sensor element 100 does not include the heater unit 200, the porous protective layer 20 may cover the entire circumference of the detection element unit 300 (detection unit 10).

なお、既に説明したが、図3に示すように、検出部10の先端側の多孔質保護層20の熱容量を下げ、被測定ガスの温度変化に対する応答性を向上させるため、先端側の多孔質保護層20の角部20Rが面取りされて他の部位と均一な厚みにされている。 As described above, as shown in FIG. 3, in order to reduce the heat capacity of the porous protective layer 20 on the tip side of the detection unit 10 and improve the responsiveness to the temperature change of the gas to be measured, the porosity on the tip side is improved. The corner portion 20R of the protective layer 20 is chamfered to have a uniform thickness with other portions.

次に、本発明の実施形態に係るガスセンサ素子の製造方法について説明する。
図4は、本発明の実施形態に係るガスセンサ素子の製造方法に用いるプレス成形機の一例を示す上下方向に沿う断面図、図5は図4の部分拡大図、図6はプレス成形機の水平方向に沿う断面図、図7はガスセンサ素子の製造方法を示す工程図である。
図4に示すように、プレス成形機は、ラバーモールド(ゴム型)204を備えた冷間等方圧プレス(CIP)機であり、ラバーモールド204が水槽202内に設置され、水槽202内の等方圧(静水圧)P1によってプレス成形を行うようになっている。
Next, a method of manufacturing the gas sensor element according to the embodiment of the present invention will be described.
FIG. 4 is a cross-sectional view taken along the vertical direction showing an example of a press molding machine used in the method for manufacturing a gas sensor element according to an embodiment of the present invention, FIG. 5 is a partially enlarged view of FIG. 4, and FIG. 6 is a horizontal view of the press molding machine. A cross-sectional view taken along the direction, FIG. 7 is a process diagram showing a method of manufacturing a gas sensor element.
As shown in FIG. 4, the press molding machine is a cold isotropic press (CIP) machine provided with a rubber mold (rubber mold) 204, and the rubber mold 204 is installed in the water tank 202 and is in the water tank 202. Press molding is performed by isotropic pressure (hydrostatic pressure) P1.

図6に示すように、ラバーモールド204は、内孔をなす挿入孔204hが矩形断面の円筒状をなし、この挿入孔204hにガスセンサ素子100の検出部10を離間して配置し、挿入孔204hと検出部10との間の空隙(キャビティ)に、多孔質保護層の原料粉末20xを投入した後、ラバーモールド204に外側から静水圧P1を掛けることで、ラバーモールド204、ひいては原料粉末20xが圧縮され、多孔質保護層20の形状に固化して成形される。その後、ガスセンサ素子100をラバーモールド204から取り出し、多孔質保護層20を焼成する。 As shown in FIG. 6, in the rubber mold 204, the insertion hole 204h forming the inner hole has a cylindrical shape with a rectangular cross section, and the detection unit 10 of the gas sensor element 100 is arranged in the insertion hole 204h so as to be separated from the insertion hole 204h. After the raw material powder 20x of the porous protective layer is put into the void (cavity) between the detection unit 10 and the detection unit 10, the rubber mold 204 and the raw material powder 20x are obtained by applying the hydrostatic pressure P1 to the rubber mold 204 from the outside. It is compressed and solidified into the shape of the porous protective layer 20 to be formed. Then, the gas sensor element 100 is taken out from the rubber mold 204, and the porous protective layer 20 is fired.

ここで、図4に示すように、ラバーモールド204の上面側開口には、押しゴム208aを保持する上ピンホルダ208が挿入され、上ピンホルダ208の上方に油圧ピストン206が接する。そして、油圧ピストン206も油圧P3によって下方に下がって上ピンホルダ208を下方に押圧し、ラバーモールド204内の原料粉末20xを圧縮するようになっている。
一方、下ピンホルダ210には軸方向に沿ってガスセンサ素子100の断面よりやや大きい矩形断面の内孔210hが貫通しており、この内孔210hにガスセンサ素子100を収容して保持しつつ、下ピンホルダ210の先端(上方)からガスセンサ素子100の検出部10が上方に突出する。又、下ピンホルダ210の先端とガスセンサ素子100の隙間に環状のゴムシール210aが介装されている。
Here, as shown in FIG. 4, the upper pin holder 208 for holding the push rubber 208a is inserted into the upper surface side opening of the rubber mold 204, and the hydraulic piston 206 comes into contact with the upper pin holder 208. Then, the hydraulic piston 206 is also lowered by the hydraulic pressure P3 to press the upper pin holder 208 downward, and the raw material powder 20x in the rubber mold 204 is compressed.
On the other hand, the lower pin holder 210 has an inner hole 210h having a rectangular cross section slightly larger than the cross section of the gas sensor element 100 along the axial direction, and the lower pin holder 210h accommodates and holds the gas sensor element 100 in the inner hole 210h. The detection unit 10 of the gas sensor element 100 projects upward from the tip (upper side) of the 210. Further, an annular rubber seal 210a is interposed between the tip of the lower pin holder 210 and the gap between the gas sensor element 100.

そして、ラバーモールド204の下面側開口から下ピンホルダ210を挿入し、押しゴム208a及びゴムシール210aにより、ラバーモールド204の上下面が液密にシールされる。
なお、キャビティは、ラバーモールド204の挿入孔204hと、検出部10と、押しゴム208a及びゴムシール210aで囲まれた空隙で構成される。
Then, the lower pin holder 210 is inserted through the opening on the lower surface side of the rubber mold 204, and the upper and lower surfaces of the rubber mold 204 are liquid-tightly sealed by the push rubber 208a and the rubber seal 210a.
The cavity is composed of an insertion hole 204h of the rubber mold 204, a detection unit 10, a gap surrounded by the push rubber 208a and the rubber seal 210a.

原料粉末20xは、多孔質保護層20の成分(例えば、アルミナ等のセラミック粉末)、及びPVA等のバインダーを含み、さらに必要に応じて焼失性の粒子、滑材(離型剤)、分散剤等の添加剤を含有することができる。 The raw material powder 20x contains a component of the porous protective layer 20 (for example, a ceramic powder such as alumina) and a binder such as PVA, and further contains burnable particles, a lubricant (release agent), and a dispersant, if necessary. Etc. can be contained.

ここで、図4に示すように、下ピンホルダ210は、下面にフランジ部210fが形成され、フランジ部210fから上方に立ち上がり、さらに上方に向かって窄まる肩部210sを有し、さらに肩部210sから上方に立ち上がる形状をなしている。
そして、下ピンホルダ210のうち、肩部210sより上方の部位がラバーモールド204の挿入孔204hに挿入されている。又、フランジ部210fは基台300上に載置され、水平(左右)方向に摺動可能になっている。これにより、下ピンホルダ210がラバーモールド204に対して可動する。
Here, as shown in FIG. 4, the lower pin holder 210 has a flange portion 210f formed on the lower surface thereof, a shoulder portion 210s that rises upward from the flange portion 210f and further narrows upward, and further shoulder portion 210s. It has a shape that rises upward from.
Then, the portion of the lower pin holder 210 above the shoulder portion 210s is inserted into the insertion hole 204h of the rubber mold 204. Further, the flange portion 210f is placed on the base 300 and can slide in the horizontal (left and right) direction. As a result, the lower pin holder 210 is movable with respect to the rubber mold 204.

ここで、拡大図5に示すように、ラバーモールド204の上面側開口をなす投入孔204h2内を押しゴム208aが進退する。又、キャビティ(ラバーモールド204)の内壁には、投入孔204h2からキャビティに向かって広がるテーパ面204tが設けられ、ガスセンサ素子100(検出部10)の先端の角部100Rをテーパ面204tに対向させてガスセンサ素子100が配置される。
又、押しゴム208aのデュロメータ硬度がラバーモールド204のデュロメータ硬度より高くなっている。これにより、押しゴム208aでキャビティ内の原料粉末20xを確実に圧縮すると共に、押しゴム208aより柔らかいラバーモールド204を等方圧プレスの静水圧P1で圧縮させ易くなる。
Here, as shown in the enlarged view 5, the rubber 208a advances and retreats in the insertion hole 204h2 forming the opening on the upper surface side of the rubber mold 204. Further, the inner wall of the cavity (rubber mold 204) is provided with a tapered surface 204t extending from the input hole 204h2 toward the cavity, and the corner portion 100R at the tip of the gas sensor element 100 (detection unit 10) is made to face the tapered surface 204t. The gas sensor element 100 is arranged.
Further, the durometer hardness of the push rubber 208a is higher than the durometer hardness of the rubber mold 204. As a result, the raw material powder 20x in the cavity is reliably compressed by the pressing rubber 208a, and the rubber mold 204, which is softer than the pressing rubber 208a, is easily compressed by the hydrostatic pressure P1 of the isotropic press.

なお、本実施形態では、投入孔204h2の最大径D1が、キャビティの最大径D2に対し、(D2×0.5)≦D1≦D2の関係を満たす。
又、押しゴム208aの押圧面208fが凹んでおり、テーパ面204のテーパ角θが15〜45度をなしている。
In the present embodiment, the maximum diameter D1 of the input hole 204h2 satisfies the relationship of (D2 × 0.5) ≦ D1 ≦ D2 with respect to the maximum diameter D2 of the cavity.
Further, the pressing surface 208f of the push rubber 208a is recessed, and the taper angle θ of the tapered surface 204 is 15 to 45 degrees.

次に、図7を参照し、本発明の実施形態に係るガスセンサ素子の製造方法の各工程について説明する。
まず、検出部10が露出するようにガスセンサ素子100を下ピンホルダ210に保持する(図7(a))。
そして、ガスセンサ素子100を保持した下ピンホルダ210をラバーモールド204の下面側開口に挿入する(図7(b):保持工程)。ここでは、下ピンホルダ210の上方に突出した検出部10がラバーモールド204のキャビティ内に配置されるようにガスセンサ素子100(下ピンホルダ210)を挿入する。さらに、上述の図5のように、ガスセンサ素子100(検出部10)の先端の角部100Rをテーパ面204tに対向させる。又、下ピンホルダ210の肩部210sより上方の部位をラバーモールド204の挿入孔204hに挿入し、下ピンホルダ210をラバーモールド204に対して可動させる。
Next, with reference to FIG. 7, each step of the method for manufacturing the gas sensor element according to the embodiment of the present invention will be described.
First, the gas sensor element 100 is held in the lower pin holder 210 so that the detection unit 10 is exposed (FIG. 7A).
Then, the lower pin holder 210 holding the gas sensor element 100 is inserted into the lower surface side opening of the rubber mold 204 (FIG. 7 (b): holding step). Here, the gas sensor element 100 (lower pin holder 210) is inserted so that the detection portion 10 protruding above the lower pin holder 210 is arranged in the cavity of the rubber mold 204. Further, as shown in FIG. 5, the corner portion 100R at the tip of the gas sensor element 100 (detection unit 10) is made to face the tapered surface 204t. Further, a portion of the lower pin holder 210 above the shoulder portion 210s is inserted into the insertion hole 204h of the rubber mold 204, and the lower pin holder 210 is moved with respect to the rubber mold 204.

次に、多孔質保護層の原料粉末20xを、ラバーモールド204の投入孔204h2からキャビティ内(挿入孔204hと、検出部10と、ゴムシール210aで囲まれ、上方が開口した空隙)に投入する。さらに、ラバーモールド204の投入孔204h2に上ピンホルダ208を挿入し、上ピンホルダ208の上方に油圧ピストン206を配置する(図7(c))。これにより、上記キャビティの上部開口を押しゴム208aが閉塞し、キャビティが完成する。 Next, the raw material powder 20x of the porous protective layer is charged into the cavity (the gap surrounded by the insertion hole 204h, the detection unit 10 and the rubber seal 210a, and the upper part is open) from the charging hole 204h2 of the rubber mold 204. Further, the upper pin holder 208 is inserted into the insertion hole 204h2 of the rubber mold 204, and the hydraulic piston 206 is arranged above the upper pin holder 208 (FIG. 7 (c)). As a result, the rubber 208a is closed by pushing the upper opening of the cavity, and the cavity is completed.

そして、油圧ピストン206から油圧P3によって上ピンホルダ208を下方に押圧することで、キャビティ内の原料粉末20xをプレス成形する(図7(d):第1プレス工程)。
次に、ラバーモールド204に外側から静水圧P1を掛けて等方圧プレスし多孔質保護層20を形成する(図7(d):第2プレス工程)。
最後に、ラバーモールド204から下ピンホルダ210及び上ピンホルダ208を取り出し、下ピンホルダ210からガスセンサ素子100を取り出す(図7(e))。
Then, by pressing the upper pin holder 208 downward from the hydraulic piston 206 with the hydraulic pressure P3, the raw material powder 20x in the cavity is press-molded (FIG. 7 (d): first press step).
Next, a hydrostatic pressure P1 is applied to the rubber mold 204 from the outside and the rubber mold 204 is isotropically pressed to form the porous protective layer 20 (FIG. 7 (d): second pressing step).
Finally, the lower pin holder 210 and the upper pin holder 208 are taken out from the rubber mold 204, and the gas sensor element 100 is taken out from the lower pin holder 210 (FIG. 7 (e)).

本発明の実施形態に係るガスセンサ素子の製造方法によれば、図5に示したように、キャビティに設けたテーパ面204tに検出部10の先端の角部100Rを対向させて保持し、押しゴム208aにて原料粉末20xをプレスした後、ラバーモールド204の外側を等方圧プレスして多孔質保護層20を形成する。
これにより、押しゴム208aの硬度がラバーモールド204の硬度よりも高くても、テーパ面204t付近で押しゴム208aの横方向の厚みが厚くならず、テーパ面204tは押しゴム208aより柔らかいラバーモールド204から構成される。このため、等方圧プレスの際に静水圧P1がテーパ面204t付近の検出部10の角部100Rの原料粉末20xに十分に掛かり、先端側の角部20Rが面取りされた多孔質保護層20を確実かつ低コストで形成することができる
According to the method for manufacturing a gas sensor element according to the embodiment of the present invention, as shown in FIG. 5, the corner portion 100R at the tip of the detection unit 10 is held facing the tapered surface 204t provided in the cavity, and the push rubber is pressed. After pressing the raw material powder 20x with 208a, the outside of the rubber mold 204 is isotropically pressed to form the porous protective layer 20.
As a result, even if the hardness of the push rubber 208a is higher than the hardness of the rubber mold 204, the lateral thickness of the push rubber 208a does not increase near the tapered surface 204t, and the tapered surface 204t is softer than the push rubber 208a. Consists of. Therefore, during the isotropic pressure press, the hydrostatic pressure P1 is sufficiently applied to the raw material powder 20x of the corner portion 100R of the detection portion 10 near the tapered surface 204t, and the corner portion 20R on the tip side is chamfered. Can be formed reliably and at low cost

さらに原料粉末20xを圧縮して多孔質保護層20を形成するので、スラリーにする必要がないため、多孔質保護層20の強度も向上する。
さらに、プレス圧を変えることで、多孔質保護層20の強度や気孔率を従来法よりも広範囲に変化させることができる。
なお、プレス成形にラバーモールド204を用いて等方圧プレスを行うと、図6に示すように、ラバーモールド204の外側からプレス圧となる静水圧P1が均等(等方的)に内部に加わるので、原料粉末20xの圧縮ムラ等がなく、多孔質保護層20の厚みや特性がより均一になるという利点がある。
Further, since the raw material powder 20x is compressed to form the porous protective layer 20, it is not necessary to make a slurry, so that the strength of the porous protective layer 20 is also improved.
Further, by changing the press pressure, the strength and porosity of the porous protective layer 20 can be changed in a wider range than in the conventional method.
When isotropic pressure pressing is performed using the rubber mold 204 for press molding, as shown in FIG. 6, the hydrostatic pressure P1 which is the pressing pressure is evenly (isotropically) applied to the inside from the outside of the rubber mold 204. Therefore, there is an advantage that the thickness and characteristics of the porous protective layer 20 become more uniform without uneven compression of the raw material powder 20x.

又、(D2×0.5)≦D1≦D2の関係を満たすと、スムースに原料粉末を供給し、プレスを行うことができる。D1<(D2×0.5)であると、ガスセンサ素子100とラバーモールド204の間の隙間が狭くなり過ぎ、ラバーモールド204内へスムースに原料粉末20xを供給し難い場合がある。また、D1>D2であると、押しゴム208aの径がキャビティ外寸を超えるため、軸線O方向のプレス時にプレス圧が充分に伝わらない場合がある。
又、押しゴム208aの押圧面208fが凹んでいると、第1プレス工程で押しゴム208aにて原料粉末20xをより確実に圧縮できる。
テーパ面204のテーパ角θが15〜45度をなしていると、多孔質保護層20の先端側の角部20Rをより確実に面取りして、多孔質保護層20の先端側の熱容量を確実に低減することができる。
Further, if the relationship of (D2 × 0.5) ≦ D1 ≦ D2 is satisfied, the raw material powder can be smoothly supplied and pressed. If D1 <(D2 × 0.5), the gap between the gas sensor element 100 and the rubber mold 204 becomes too narrow, and it may be difficult to smoothly supply the raw material powder 20x into the rubber mold 204. Further, when D1> D2, the diameter of the push rubber 208a exceeds the outer dimension of the cavity, so that the press pressure may not be sufficiently transmitted during pressing in the axis O direction.
Further, when the pressing surface 208f of the pressing rubber 208a is recessed, the raw material powder 20x can be more reliably compressed by the pressing rubber 208a in the first pressing step.
When the taper angle θ of the tapered surface 204 is 15 to 45 degrees, the corner portion 20R on the tip side of the porous protective layer 20 is chamfered more reliably to ensure the heat capacity on the tip side of the porous protective layer 20. Can be reduced to.

なお、本発明は上記各実施の形態に限られず、各種の変形が可能である。例えば、上記実施形態では、多孔質保護層は1層であったが、2層以上としてもよい。この場合、少なくとも最外層の多孔質保護層につき、本発明の実施形態に係るガスセンサ素子の製造方法を適用すればよいが、2層以上、又はすべての層の多孔質保護層につき、本発明の実施形態に係るガスセンサ素子の製造方法を適用しても勿論よい。多孔質保護層を2層以上とする場合、各層の材質、厚み、気孔度等は異なってもよい。
なお、多孔質保護層の1層当たりの厚みは限定されないが、例えば100〜1000μmとすることができる。
The present invention is not limited to each of the above embodiments, and various modifications can be made. For example, in the above embodiment, the porous protective layer is one layer, but it may be two or more layers. In this case, the method for producing a gas sensor element according to the embodiment of the present invention may be applied to at least the outermost porous protective layer, but the present invention may be applied to two or more or all of the porous protective layers of the present invention. Of course, the method for manufacturing the gas sensor element according to the embodiment may be applied. When the number of porous protective layers is two or more, the material, thickness, porosity, etc. of each layer may be different.
The thickness of the porous protective layer per layer is not limited, but can be, for example, 100 to 1000 μm.

また、本実施形態では全領域空燃比センサを例に説明したが、他の酸素センサ素子、NOxセンサ素子、HCセンサ素子等にも同様に適用できる。ガスセンサ素子は筒状でもよい。 Further, in the present embodiment, the air-fuel ratio sensor in all regions has been described as an example, but it can be similarly applied to other oxygen sensor elements, NOx sensor elements, HC sensor elements and the like. The gas sensor element may be cylindrical.

10 検出部
100R 検出部の先端の角部
20 多孔質保護層
20x 多孔質保護層の原料粉末
100 ガスセンサ素子
204 ラバーモールド
204h2 ラバーモールドの投入孔
204t テーパ面
208a 押しゴム
208f 押しゴムの押圧面
O 軸線
θ テーパ角
10 Detection part 100R Corner of the tip of the detection part 20 Porous protective layer 20x Raw material powder of porous protective layer 100 Gas sensor element 204 Rubber mold 204h2 Rubber mold input hole 204t Tapered surface 208a Pressing rubber 208f Pressing rubber pressing surface O axis θ taper angle

Claims (5)

軸線方向に延び、自身の先端側に被測定ガス中の特定ガス成分を検出するための検出部を有する板状又は筒状のガスセンサ素子に対し、該検出部の周囲に多孔質保護層を形成するガスセンサ素子の製造方法において、
前記検出部が露出するように前記ガスセンサ素子をラバーモールドのキャビティ内に保持する保持工程と、
前記キャビティに連通し前記検出部の先端側に対向する投入孔から、前記多孔質保護層の原料粉末を前記キャビティ内に投入し、前記投入孔内を進退する押しゴムにて前記原料粉末をプレスする第1プレス工程と、
前記ラバーモールドの外側を等方圧プレスして前記多孔質保護層を形成する第2プレス工程と、を有し、
前記押しゴムのデュロメータ硬度が前記ラバーモールドのデュロメータ硬度より高く、
前記キャビティの内壁には、前記投入孔から前記キャビティに向かって広がるテーパ面が設けられ、前記保持工程にて前記検出部の先端の角部を前記テーパ面に対向させて保持するガスセンサ素子の製造方法。
For a plate-shaped or tubular gas sensor element that extends in the axial direction and has a detection unit for detecting a specific gas component in the gas to be measured on its tip side, a porous protective layer is formed around the detection unit. In the manufacturing method of the gas sensor element
A holding step of holding the gas sensor element in the cavity of the rubber mold so that the detection portion is exposed, and
The raw material powder of the porous protective layer is charged into the cavity through a charging hole that communicates with the cavity and faces the tip end side of the detection unit, and the raw material powder is pressed by a pressing rubber that advances and retreats in the charging hole. 1st press process and
It has a second pressing step of forming the porous protective layer by isotropically pressing the outside of the rubber mold.
The durometer hardness of the pressed rubber is higher than the durometer hardness of the rubber mold.
The inner wall of the cavity is provided with a tapered surface that extends from the input hole toward the cavity, and a gas sensor element that holds the corner of the tip of the detection unit facing the tapered surface in the holding step is manufactured. Method.
前記投入孔の最大径D1が、前記キャビティの最大径D2に対し、(D2×0.5)≦D1≦D2の関係を満たす請求項1に記載のガスセンサ素子の製造方法。 The method for manufacturing a gas sensor element according to claim 1, wherein the maximum diameter D1 of the input hole satisfies the relationship of (D2 × 0.5) ≦ D1 ≦ D2 with respect to the maximum diameter D2 of the cavity. 前記押しゴムの押圧面が凹んでいる請求項1又は2に記載のガスセンサ素子の製造方法。 The method for manufacturing a gas sensor element according to claim 1 or 2, wherein the pressing surface of the push rubber is recessed. 前記テーパ面のテーパ角が15〜45度をなす請求項1〜3のいずれか一項に記載のガスセンサ素子の製造方法。 The method for manufacturing a gas sensor element according to any one of claims 1 to 3, wherein the taper angle of the tapered surface is 15 to 45 degrees. ガスセンサ素子に主体金具を組み付けるガスセンサの製造方法において、
前記ガスセンサ素子として、請求項1〜4のいずれか一項に記載のガスセンサ素子の製造方法によって製造されたガスセンサ素子を用いるガスセンサの製造方法。
In the method of manufacturing a gas sensor in which the main metal fitting is attached to the gas sensor element
A method for manufacturing a gas sensor using a gas sensor element manufactured by the method for manufacturing a gas sensor element according to any one of claims 1 to 4 as the gas sensor element.
JP2018098536A 2018-05-23 2018-05-23 Gas sensor element and gas sensor manufacturing method Active JP6957410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018098536A JP6957410B2 (en) 2018-05-23 2018-05-23 Gas sensor element and gas sensor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018098536A JP6957410B2 (en) 2018-05-23 2018-05-23 Gas sensor element and gas sensor manufacturing method

Publications (2)

Publication Number Publication Date
JP2019203767A JP2019203767A (en) 2019-11-28
JP6957410B2 true JP6957410B2 (en) 2021-11-02

Family

ID=68726702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018098536A Active JP6957410B2 (en) 2018-05-23 2018-05-23 Gas sensor element and gas sensor manufacturing method

Country Status (1)

Country Link
JP (1) JP6957410B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028570A (en) * 1998-07-07 2000-01-28 Ngk Spark Plug Co Ltd Manufacture of oxygen sensor element
US7323134B2 (en) * 2003-04-02 2008-01-29 Alcoa, Inc. Method of forming inert anodes
JP4758117B2 (en) * 2005-03-08 2011-08-24 京セラ株式会社 Gas sensor element and manufacturing method thereof
JP5024243B2 (en) * 2007-09-07 2012-09-12 株式会社デンソー Gas concentration detecting element and manufacturing method thereof
JP2013217733A (en) * 2012-04-06 2013-10-24 Toyota Motor Corp Gas sensor element manufacturing method
JP6530620B2 (en) * 2014-03-28 2019-06-12 日本碍子株式会社 Manufacturing method of membrane junction structure
JP6936025B2 (en) * 2017-03-08 2021-09-15 日本特殊陶業株式会社 Manufacturing method of gas sensor element
JP2019074444A (en) * 2017-10-18 2019-05-16 日本特殊陶業株式会社 Manufacturing method of gas sensor element

Also Published As

Publication number Publication date
JP2019203767A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
US11385199B2 (en) Sensor element
CN108572210B (en) Method for manufacturing gas sensor element
US11067530B2 (en) Method of operation of a gas sensor
US20210310982A1 (en) Gas sensor
US8460526B2 (en) Gas sensor and process for producing the same
US20200309734A1 (en) Sensor element and gas sensor
US10876991B2 (en) Gas sensor
JP6957410B2 (en) Gas sensor element and gas sensor manufacturing method
JPH0612354B2 (en) Method for manufacturing oxygen concentration measuring device
CN213633096U (en) Rock core holder for end side missing rock sample
CN105044188B (en) Gas sensor element and its manufacturing method
JP2019074444A (en) Manufacturing method of gas sensor element
US7004472B2 (en) Cylinder head gasket
WO2018173548A1 (en) Piston of internal combustion engine and manufacturing method therefor
JP5008128B2 (en) Porous cover and method for manufacturing the same
US20220260518A1 (en) Sensor element of gas sensor and method for forming protective layer of sensor element
JP4325386B2 (en) Multilayer gas sensor element
JP6895308B2 (en) Sensor element
JP7319214B2 (en) SENSOR ELEMENT, GAS SENSOR, AND SENSOR ELEMENT MANUFACTURING METHOD
WO2021100569A1 (en) Method of manufacturing sensor element
US11535569B2 (en) Method for manufacturing sensor element
JP7324127B2 (en) Sensor element and gas sensor
CN112525967B (en) Sensor element, gas sensor, and method for manufacturing sensor element
KR19990076984A (en) Electrochemical sensor
WO2021100571A1 (en) Sensor element and gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211006

R150 Certificate of patent or registration of utility model

Ref document number: 6957410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350