JP6957301B2 - Solar power system - Google Patents

Solar power system Download PDF

Info

Publication number
JP6957301B2
JP6957301B2 JP2017194537A JP2017194537A JP6957301B2 JP 6957301 B2 JP6957301 B2 JP 6957301B2 JP 2017194537 A JP2017194537 A JP 2017194537A JP 2017194537 A JP2017194537 A JP 2017194537A JP 6957301 B2 JP6957301 B2 JP 6957301B2
Authority
JP
Japan
Prior art keywords
storage battery
parallel
constant current
solar cell
current circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017194537A
Other languages
Japanese (ja)
Other versions
JP2019068688A (en
Inventor
彰訓 加藤
Original Assignee
河村電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河村電器産業株式会社 filed Critical 河村電器産業株式会社
Priority to JP2017194537A priority Critical patent/JP6957301B2/en
Publication of JP2019068688A publication Critical patent/JP2019068688A/en
Application granted granted Critical
Publication of JP6957301B2 publication Critical patent/JP6957301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

本発明は、太陽電池に蓄電池を並列に接続して太陽光発電電力の効率の良い使用を実施する太陽光発電システムに関する。 The present invention relates to a photovoltaic power generation system in which a storage battery is connected in parallel to a photovoltaic cell to efficiently use the photovoltaic power generation.

太陽光発電電力を平滑化するために太陽電池に蓄電池を並列接続した太陽光発電システムがある。例えば特許文献1では、太陽電池モジュールの出力に対してスイッチを介して並列に蓄電池モジュールを接続し、スイッチにより太陽電池モジュールの出力と太陽電池モジュールに蓄電池モジュールを加えた出力とを切り替えて平滑化を図った。
この太陽電池に蓄電池を並列接続した構成は、太陽電池が発電した直流電力を交流に変換することなく充電できるため効率良く充放電ができ、単に発電した電力の余剰分を蓄電する目的に使用しても好ましい構成となっている。
There is a photovoltaic power generation system in which a storage battery is connected in parallel to the solar cell in order to smooth the photovoltaic power generation. For example, in Patent Document 1, a storage battery module is connected in parallel to the output of the solar cell module via a switch, and the switch switches between the output of the solar cell module and the output of the solar cell module plus the storage battery module for smoothing. I tried.
This configuration in which a storage battery is connected in parallel to the solar cell can be charged without converting the DC power generated by the solar cell into AC, so it can be charged and discharged efficiently, and is simply used for the purpose of storing the surplus power generated. However, it has a preferable configuration.

特開2007−201257号公報Japanese Unexamined Patent Publication No. 2007-201257

一方で、太陽光発電電力の効率の良い利用を考えた場合、最大点電力追従制御(MPPT制御)が実施されるが、上記蓄電池を備えた構成をこのMPPT制御を適用すると、太陽電池の発電電力が十分でない場合にMPPT制御を実行しようとすると蓄電池から大きな電流を取り出す制御が実行され、その場合蓄電池の過放電による事故や過電流による電路が発火する恐れがあった。 On the other hand, when considering the efficient use of photovoltaic power generation, maximum power point tracking control (MPPT control) is implemented, but if this MPPT control is applied to the configuration equipped with the above storage battery, solar cell power generation If MPPT control is attempted when the power is insufficient, control for extracting a large current from the storage battery is executed, and in that case, there is a risk of an accident due to over-discharging of the storage battery or ignition of the electric circuit due to over-current.

そこで、本発明はこのような問題点に鑑み、太陽電池に蓄電池を並列接続した構成に対してMPPT制御を実施しても蓄電池が過放電することのない太陽光発電システムを提供することを目的としている。 Therefore, in view of such problems, it is an object of the present invention to provide a photovoltaic power generation system in which the storage battery is not over-discharged even if MPPT control is performed on a configuration in which the storage battery is connected in parallel to the solar cell. It is said.

上記課題を解決する為に、請求項1の発明は、蓄電池が並列接続された太陽電池をパワーコンディショナを介して負荷及び系統電源に接続した太陽光発電システムであって、太陽電池には、並列接続された複数の蓄電池が接続されており、蓄電池全体が、当該蓄電池全体の放電電流を制限する1つの第1定電流回路を介して太陽電池に並列接続されると共に、個々の蓄電池は、当該蓄電池からの放電電流を制限する第2定電流回路を介して互いに並列接続されて成り、第1定電流回路及び全ての第2定電流回路には、蓄電池への充電電流を通過させる電流通過手段が並列接続されていることを特徴とする。
この構成によれば、パワーコンディショナがMPPT制御を実施しても、蓄電池から出力される最大電流は制限されるため、蓄電池を保護できるし電線の発熱や発火を防止できる。
In order to solve the above problems, the invention of claim 1 is a solar power generation system in which a solar cell in which storage batteries are connected in parallel is connected to a load and a grid power source via a power conditioner . A plurality of storage batteries connected in parallel are connected, and the entire storage battery is connected in parallel to the solar cell via one first constant current circuit that limits the discharge current of the entire storage battery, and the individual storage batteries are connected to each other. It is connected in parallel to each other via a second constant current circuit that limits the discharge current from the storage battery, and the first constant current circuit and all the second constant current circuits pass a current that allows the charging current to pass through the storage battery. The means are connected in parallel.
According to this configuration, even if the power conditioner performs MPPT control, the maximum current output from the storage battery is limited, so that the storage battery can be protected and the heat generation and ignition of the electric wire can be prevented.

また、並列接続された蓄電池の放電に偏りがでても、個々の蓄電池の放電が第2定電流回路により制限されるため、何れの蓄電池も保護できる。 Further , even if the discharge of the storage batteries connected in parallel is biased, the discharge of each storage battery is limited by the second constant current circuit, so that any storage battery can be protected.

本発明によれば、パワーコンディショナがMPPT制御を実施しても、蓄電池から出力される最大電流は制限されるため、蓄電池を保護できるし電線の発熱や発火を防止できる。 According to the present invention, even if the power conditioner performs MPPT control, the maximum current output from the storage battery is limited, so that the storage battery can be protected and the heat generation and ignition of the electric wire can be prevented.

本発明に係る太陽光発電システムの一例を示す構成図である。It is a block diagram which shows an example of the solar power generation system which concerns on this invention. 1つの太陽電池に対して複数の蓄電池が並列接続された太陽光発電システムの構成図である。It is a block diagram of a photovoltaic power generation system in which a plurality of storage batteries are connected in parallel to one solar cell. 複数の太陽電池が並列接続された場合の太陽光発電システムを示す構成図である。It is a block diagram which shows the solar power generation system when a plurality of solar cells are connected in parallel.

以下、本発明を具体化した実施の形態を、図面を参照して詳細に説明する。図1は本発明に係る太陽光発電システムの一例を示す構成図であり、1は太陽電池、2はパワーコンディショナ、3は系統電源、4は負荷、5は蓄電池、6は定電流回路である。また、10は太陽光発電電力を集電するための接続箱であり、蓄電池5や定電流回路6はこの接続箱10に収容されている。
尚、ここで言う太陽電池1は、例えば太陽電池ストリングであり、複数の太陽電池モジュールを備えた構成を太陽電池1としている。
Hereinafter, embodiments embodying the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing an example of a photovoltaic power generation system according to the present invention, in which 1 is a solar cell, 2 is a power conditioner, 3 is a system power supply, 4 is a load, 5 is a storage battery, and 6 is a constant current circuit. be. Reference numeral 10 denotes a junction box for collecting photovoltaic power generation, and the storage battery 5 and the constant current circuit 6 are housed in the junction box 10.
The solar cell 1 referred to here is, for example, a solar cell string, and a configuration including a plurality of solar cell modules is defined as the solar cell 1.

蓄電池5は、例えばリチウムイオン電池で構成され、端子電圧が一定で例えば48Vとなっている。そのため、太陽電池1の出力電圧はこの蓄電池5の端子電圧で規定された電圧で出力されるよう構成されている。 The storage battery 5 is composed of, for example, a lithium ion battery, and has a constant terminal voltage of, for example, 48V. Therefore, the output voltage of the solar cell 1 is configured to be output at a voltage defined by the terminal voltage of the storage battery 5.

パワーコンディショナ2は、インバータ回路、昇圧回路等を具備し、直流/交流変換を行って系統電源3に連系させるための交流電力を生成する。また、ここではMPPT制御を実施して、太陽電池1の発電効率が最大となるよう電流制御される。尚、系統電源3は、例えば200V単相電路等の商用電力系統である。 The power conditioner 2 includes an inverter circuit, a booster circuit, and the like, and generates AC power for performing DC / AC conversion and connecting to the system power supply 3. Further, here, MPPT control is performed to control the current so that the power generation efficiency of the solar cell 1 is maximized. The system power supply 3 is a commercial power system such as a 200 V single-phase electric circuit.

定電流回路6は、通電可能な電流の上限(閾値)が設定されており、例えば50アンペア以上の電流がパワーコンディショナ2へ流れ出ないよう構成されている。またその逆方向の電流は阻止するよう構成されている。そのため、蓄電池5への充電電流を通過させるためのダイオード8が並列に接続されている。 The constant current circuit 6 has an upper limit (threshold value) of a current that can be energized, and is configured so that, for example, a current of 50 amperes or more does not flow out to the power conditioner 2. Further, the current in the opposite direction is configured to be blocked. Therefore, the diode 8 for passing the charging current to the storage battery 5 is connected in parallel.

接続箱10は、複数の太陽電池ストリングの発電電力を1系統にまとめて出力するためのものである。但し、ここでは接続箱10に接続される太陽電池ストリングを1つとして、これを太陽電池1として説明する。そして、蓄電池5、定電流回路6を収容し、7は太陽電池1を回路から分離するための開閉器、9は太陽電池1を保護する逆流防止ダイオードである。 The junction box 10 is for collectively outputting the generated power of a plurality of solar cell strings into one system. However, here, the solar cell string connected to the junction box 10 is regarded as one, and this will be described as the solar cell 1. A storage battery 5 and a constant current circuit 6 are housed, 7 is a switch for separating the solar cell 1 from the circuit, and 9 is a backflow prevention diode that protects the solar cell 1.

このように構成された太陽光発電システムは、太陽電池1により発電された直流電力が、パワーコンディショナ2により系統電源に同調した交流に変換され、負荷に供給されたり系統電源に連系されて逆潮流される。 In the photovoltaic power generation system configured in this way, the DC power generated by the solar cell 1 is converted into alternating current tuned to the system power supply by the power conditioner 2, and is supplied to the load or connected to the system power supply. Reverse tide.

ここで定電流回路6の作用について説明する。パワーコンディショナ2はMPPT制御を実施し、太陽電池1を最大効率で発電させる制御が成される。そのため、必要に応じて蓄電池5から電流を取り出して太陽光発電電力に加えることで、太陽電池1の発電効率を良好な状態で維持する制御が実施される。
その際、蓄電池5から取り出される電流が大きく、蓄電池5の定格電流を超える場合が発生してしまう。このような場合、定電流回路6により制限が掛かり、設定された閾値以上の電流が取り出されないよう制御される。
Here, the operation of the constant current circuit 6 will be described. The power conditioner 2 performs MPPT control and controls the solar cell 1 to generate electricity with maximum efficiency. Therefore, control is performed to maintain the power generation efficiency of the solar cell 1 in a good state by extracting a current from the storage battery 5 and adding it to the photovoltaic power generation as needed.
At that time, the current taken out from the storage battery 5 is large, and the rated current of the storage battery 5 may be exceeded. In such a case, the constant current circuit 6 limits the current so that the current exceeding the set threshold value is not taken out.

尚、蓄電池5の充電は、太陽電池1の発電電力に余裕がある場合、或いは、負荷4での消費が少なく、また連系する系統電源への逆潮流に制限が掛かって売電できない場合に実施される。このとき定電流回路6に並列に接続されているダイオード8を介して充電電流が蓄電池5に流れ込む。また、図1では、蓄電池5の正極側に定電流回路6を設けているが、負極側であっても良い。 The storage battery 5 is charged when the power generated by the solar cell 1 has a margin, or when the load 4 consumes a small amount of power and the reverse power flow to the interconnection system power supply is restricted so that the power cannot be sold. Will be implemented. At this time, the charging current flows into the storage battery 5 via the diode 8 connected in parallel to the constant current circuit 6. Further, in FIG. 1, the constant current circuit 6 is provided on the positive electrode side of the storage battery 5, but it may be on the negative electrode side.

このように、パワーコンディショナ2がMPPT制御を実施しても、蓄電池5から出力される最大電流は制限されるため、蓄電池5を保護できるし、電線の発熱や発火を防止できる。 As described above, even if the power conditioner 2 performs MPPT control, the maximum current output from the storage battery 5 is limited, so that the storage battery 5 can be protected and the heat generation and ignition of the electric wire can be prevented.

図2は、太陽光発電システムの他の形態を示し、2つの蓄電池5が並列接続されている場合を示している。複数の蓄電池5が並列接続されている場合は、図2に示すように、個々の蓄電池5に第2定電流回路6bが直列に接続され、蓄電池5と第2定電流回路6bの組が並列接続されている。そして、共通する1つの第1定電流回路6aを介してこの蓄電池5と第2定電流回路6bの直列回路が太陽電池1に並列接続されている。
また、第1定電流回路6aに対して蓄電池5の充電を可能とするダイオード8aが並列に接続され、第2定電流回路6bに対して蓄電池5の充電を可能とするダイオード8bが並列接続されている。
FIG. 2 shows another form of the photovoltaic power generation system, and shows a case where two storage batteries 5 are connected in parallel. When a plurality of storage batteries 5 are connected in parallel, as shown in FIG. 2, the second constant current circuit 6b is connected in series to each storage battery 5, and the pair of the storage battery 5 and the second constant current circuit 6b is connected in parallel. It is connected. Then, the series circuit of the storage battery 5 and the second constant current circuit 6b is connected in parallel to the solar cell 1 via one common first constant current circuit 6a.
Further, a diode 8a capable of charging the storage battery 5 is connected in parallel to the first constant current circuit 6a, and a diode 8b capable of charging the storage battery 5 is connected in parallel to the second constant current circuit 6b. ing.

尚、この場合、第2定電流回路6bは蓄電池5を過電流の放電から保護する閾値に設定すれば良いし、第1定電流回路6aは電線や端子を保護する閾値に設定すれば良い。また、ここでは2つの蓄電池5を並列接続した場合を説明したが、更に多数の蓄電池5が並列接続された場合は、並列接続した全ての蓄電池5に対して第2定電流回路6bを直列に接続すれば良い。 In this case, the second constant current circuit 6b may be set to a threshold value for protecting the storage battery 5 from overcurrent discharge, and the first constant current circuit 6a may be set to a threshold value for protecting the electric wires and terminals. Further, here, the case where two storage batteries 5 are connected in parallel has been described, but when a larger number of storage batteries 5 are connected in parallel, the second constant current circuit 6b is connected in series to all the storage batteries 5 connected in parallel. Just connect.

このように、1つの第1定電流回路6aと蓄電池5毎に第2定電流回路6bを設けることで、並列接続された蓄電池5からの電流の取り出しに偏りがでても、第2定電流回路6bが電流を制限するため、何れの蓄電池5も保護できる。 In this way, by providing the second constant current circuit 6b for each of the first constant current circuit 6a and the storage battery 5, even if the current extraction from the storage batteries 5 connected in parallel is biased, the second constant current Since the circuit 6b limits the current, any storage battery 5 can be protected.

尚、上記実施形態では、太陽電池ストリングが1つの場合を説明したが、太陽電池ストリングが複数、即ち太陽電池1が複数の場合は、それぞれの太陽電池1に定電流回路6が設けられる。図3はこの構成、即ち太陽電池1が複数の場合の構成図であり、図3に示すように個々の太陽電池1a〜1nに対して定電流回路6が並列に接続された構成を示している。 In the above embodiment, the case where there is one solar cell string has been described, but when there are a plurality of solar cell strings, that is, there are a plurality of solar cells 1, a constant current circuit 6 is provided in each solar cell 1. FIG. 3 is a configuration diagram in the case of a plurality of solar cells 1, that is, a configuration diagram in which a constant current circuit 6 is connected in parallel to each of the solar cells 1a to 1n as shown in FIG. There is.

1・・太陽電池、2・・パワーコンディショナ、3・・系統電源、4・・負荷、5・・蓄電池、6・・定電流回路、6a・・第1定電流回路、6b・・第2定電流回路、8,8a,8b・・ダイオード(電流通過手段)。 1 ... Solar cell, 2 ... Power conditioner, 3 ... System power supply, 4 ... Load, 5 ... Storage battery, 6 ... Constant current circuit, 6a ... 1st constant current circuit, 6b ... 2nd Constant current circuit, 8,8a, 8b ... Diode (current passing means).

Claims (1)

蓄電池が並列接続された太陽電池をパワーコンディショナを介して負荷及び系統電源に接続した太陽光発電システムであって、
前記太陽電池には、並列接続された複数の蓄電池が接続されており、前記蓄電池全体が、当該蓄電池全体の放電電流を制限する1つの第1定電流回路を介して前記太陽電池に並列接続されると共に、
個々の前記蓄電池は、当該蓄電池からの放電電流を制限する第2定電流回路を介して互いに並列接続されて成り、
前記第1定電流回路及び全ての前記第2定電流回路には、前記蓄電池への充電電流を通過させる電流通過手段が並列接続されていることを特徴とする太陽光発電システム。
A solar power generation system in which storage batteries are connected in parallel to a load and system power supply via a power conditioner.
A plurality of storage batteries connected in parallel are connected to the solar cell, and the entire storage battery is connected in parallel to the solar cell via one first constant current circuit that limits the discharge current of the entire storage battery. At the same time
The individual storage batteries are connected in parallel to each other via a second constant current circuit that limits the discharge current from the storage battery.
A photovoltaic power generation system characterized in that a current passing means for passing a charging current to the storage battery is connected in parallel to the first constant current circuit and all the second constant current circuits.
JP2017194537A 2017-10-04 2017-10-04 Solar power system Active JP6957301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017194537A JP6957301B2 (en) 2017-10-04 2017-10-04 Solar power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017194537A JP6957301B2 (en) 2017-10-04 2017-10-04 Solar power system

Publications (2)

Publication Number Publication Date
JP2019068688A JP2019068688A (en) 2019-04-25
JP6957301B2 true JP6957301B2 (en) 2021-11-02

Family

ID=66338510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017194537A Active JP6957301B2 (en) 2017-10-04 2017-10-04 Solar power system

Country Status (1)

Country Link
JP (1) JP6957301B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008154334A (en) * 2006-12-15 2008-07-03 Matsushita Electric Ind Co Ltd Power conditioner
JP6531501B2 (en) * 2015-06-09 2019-06-19 オムロン株式会社 Battery control unit

Also Published As

Publication number Publication date
JP2019068688A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6156919B2 (en) Storage battery system, storage battery control device, and storage battery system control method
US8482155B2 (en) Power converting device for renewable energy storage system
JP5279147B2 (en) Grid-connected power storage system and control method of power storage system
Franklin Solar photovoltaic (PV) system components
JP5211772B2 (en) Power conditioner operation control device and photovoltaic power generation system
US8525369B2 (en) Method and device for optimizing the use of solar electrical power
JP2017028822A (en) Solar power generation system
KR101462338B1 (en) AC-connected power conversion circuit
JP2017060359A (en) Photovoltaic power generation system and power generation unit
JP6957301B2 (en) Solar power system
JP6932607B2 (en) DC power supply system
CN108123465A (en) Light stores up direct-current grid variable power control method under a kind of island mode
Sabry et al. Battery Backup Power System for Electrical Appliances with Two Options of Primary Power Sources
JP6519553B2 (en) Solar power system
JP7165507B2 (en) DC power supply system
Komilov Power of network photoelectric power stations
Irwan et al. Design the balance of system of photovoltaic for low load application
Weiss et al. High safety photovoltaic insular power supply system employing re-used lithium-ion cells
JP2019009943A (en) Photovoltaic power generation power storage system
Carbone et al. Maximizing benefits of batteries in residential grid-connected PV-plants subject to partial shading
CN117318160B (en) Photovoltaic inversion power supply control system, method and device and storage medium
JP2017139853A (en) Power storage type charging apparatus
JP7046600B2 (en) Power controllers, PV systems, and programs
JP2017169434A (en) Connection box and hybrid power storage system
JP2021019493A (en) Solar power generation and storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211006

R150 Certificate of patent or registration of utility model

Ref document number: 6957301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150