JP6953095B2 - Iron powder for contaminated water treatment and iron powder manufacturing method for contaminated water treatment - Google Patents

Iron powder for contaminated water treatment and iron powder manufacturing method for contaminated water treatment Download PDF

Info

Publication number
JP6953095B2
JP6953095B2 JP2018200656A JP2018200656A JP6953095B2 JP 6953095 B2 JP6953095 B2 JP 6953095B2 JP 2018200656 A JP2018200656 A JP 2018200656A JP 2018200656 A JP2018200656 A JP 2018200656A JP 6953095 B2 JP6953095 B2 JP 6953095B2
Authority
JP
Japan
Prior art keywords
iron
contaminated water
iron powder
treating contaminated
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018200656A
Other languages
Japanese (ja)
Other versions
JP2020066778A (en
Inventor
一嘉 澤田
一嘉 澤田
智之 古田
智之 古田
飯島 勝之
勝之 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018200656A priority Critical patent/JP6953095B2/en
Priority to CN201980048442.4A priority patent/CN112469518B/en
Priority to KR1020217007948A priority patent/KR102414870B1/en
Priority to PCT/JP2019/037696 priority patent/WO2020084997A1/en
Publication of JP2020066778A publication Critical patent/JP2020066778A/en
Application granted granted Critical
Publication of JP6953095B2 publication Critical patent/JP6953095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Description

本発明は、汚染水処理用鉄粉及び汚染水処理用鉄粉製造方法に関する。 The present invention relates to iron powder for treating contaminated water and a method for producing iron powder for treating contaminated water.

重金属等によって汚染された水を浄化する方法としては、凝集剤を用いる方法及び多孔質吸着剤を用いる方法に加えて、例えば特許第4755159号公報に記載されるように鉄粉(処理剤)の表面に重金属等を析出させて除去する方法が提案されている。上記公報に記載の鉄粉は、硫黄を含むものであり、セレン、鉛、カドミウム及びクロムの少なくとも1種の重金属類を鉄粉表面に析出させて除去することができるとされている。 As a method for purifying water contaminated with heavy metals or the like, in addition to a method using a coagulant and a method using a porous adsorbent, for example, as described in Japanese Patent No. 4755159, iron powder (treatment agent) A method of depositing and removing heavy metals and the like on the surface has been proposed. The iron powder described in the above publication contains sulfur, and it is said that at least one heavy metal such as selenium, lead, cadmium and chromium can be deposited and removed on the surface of the iron powder.

水道法では、上記公報に記載の方法により除去されるセレン、鉛、カドミウム及びクロム等の重金属類以外にも、フッ素についても含有量が基準値以下でなければならないとされている。 According to the Waterworks Law, in addition to heavy metals such as selenium, lead, cadmium and chromium, which are removed by the method described in the above publication, the content of fluorine must be equal to or less than the standard value.

特許第4755159号公報Japanese Patent No. 4755159

上記事情に鑑みて、本発明は、汚染水中の重金属類及びフッ素を除去することができる汚染水処理用鉄粉及び汚染水処理用鉄粉製造方法を提供することを課題とする。 In view of the above circumstances, it is an object of the present invention to provide an iron powder for treating contaminated water and a method for producing iron powder for treating contaminated water, which can remove heavy metals and fluorine in the contaminated water.

上記課題を解決するためになされた本発明の一態様に係る汚染水処理用鉄粉は、汚染水中の重金属類を除去する汚染水処理用鉄粉であって、鉄を主成分とし、シリコン、マンガン、リン、硫黄及びクロムの少なくとも1種を含む鉄系析出物を粒子内に有することを特徴とする。 The iron powder for treating contaminated water according to one aspect of the present invention, which has been made to solve the above problems, is an iron powder for treating contaminated water that removes heavy metals in contaminated water, and contains iron as a main component and silicon. It is characterized by having an iron-based precipitate containing at least one of manganese, phosphorus, sulfur and chromium in the particles.

当該汚染水処理用鉄粉は、シリコン、マンガン、リン、硫黄及びクロムの少なくとも1種を含む鉄系析出物を粒子内に有することによって、この鉄系析出物と鉄基材との間に電位差が生じる局部電池作用によって鉄のアノード反応が促進され、汚染水中の汚染元素の還元反応又は不溶化反応が促進される。このため、当該汚染水処理用鉄粉は、汚染水中の重金属類に加えてフッ素を鉄粉粒子の表面に析出させて除去することができる。 The iron powder for treating contaminated water has an iron-based precipitate containing at least one of silicon, manganese, phosphorus, sulfur and chromium in the particles, so that the potential difference between the iron-based precipitate and the iron substrate The local battery action that occurs promotes the iron anode reaction and promotes the reduction reaction or insolubilization reaction of pollutant elements in the polluted water. Therefore, the iron powder for treating contaminated water can be removed by precipitating fluorine on the surface of the iron powder particles in addition to heavy metals in the contaminated water.

当該汚染水処理用鉄粉において、粒子断面における上記鉄系析出物の平均面積率としては0.8%以上50%以下が好ましい。このように、粒子断面における上記鉄系析出物の平均面積率が上記範囲内であることによって、当該汚染水処理用鉄粉は、鉄基材のアノード反応を効果的に促進し、汚染水中の重金属類及びフッ素を効率よく除去することができる。 In the iron powder for treating contaminated water, the average area ratio of the iron-based precipitates in the particle cross section is preferably 0.8% or more and 50% or less. As described above, when the average area ratio of the iron-based precipitates in the particle cross section is within the above range, the iron powder for treating contaminated water effectively promotes the anode reaction of the iron base material, and in the contaminated water. Heavy metals and fluorine can be removed efficiently.

当該汚染水処理用鉄粉において、粒子内の平均空隙率としては5%以下が好ましい。このように、粒子内の平均空隙率を上記上限以下とすることによって、当該汚染水処理用鉄粉は、アトマイズ法により製造することができるので、組成の調整が容易であり、かつ上記鉄系析出物を確実に形成できるため、効率よく製造することができる。 In the iron powder for treating contaminated water, the average porosity in the particles is preferably 5% or less. By setting the average porosity in the particles to be equal to or less than the above upper limit in this way, the iron powder for treating contaminated water can be produced by the atomizing method, so that the composition can be easily adjusted and the above iron system is used. Since the precipitate can be reliably formed, it can be efficiently produced.

本発明の一態様に係る汚染水処理用鉄粉製造方法は、汚染水中の重金属類を除去する汚染水処理用鉄粉の製造方法であって、炉で溶鉄を調製する工程と、取鍋で上記溶鉄にシリコン、マンガン、リン、硫黄及びクロムの少なくとも1種を含む副原料を添加する工程と、上記添加後の上記溶鉄に水を噴射して粉化する工程と備えることを特徴とする。 The method for producing iron powder for treating contaminated water according to one aspect of the present invention is a method for producing iron powder for treating contaminated water that removes heavy metals in contaminated water, in which a step of preparing molten iron in a furnace and a pan are used. It is characterized by comprising a step of adding an auxiliary raw material containing at least one of silicon, manganese, phosphorus, sulfur and chromium to the molten iron, and a step of injecting water into the molten iron after the addition to pulverize the molten iron.

当該汚染水処理用鉄粉製造方法は、上記調製工程、上記添加工程及び上記粉化工程を備え、上記添加工程において、取鍋の中で溶鉄にシリコン、マンガン、リン、硫黄及びクロムの少なくとも1種を含む副原料を添加するので、上記副原料が完全に溶融して鉄と合金化する前に上記粉化工程を行って、鉄を主成分とし、シリコン、マンガン、リン、硫黄及びクロムの少なくとも1種を含む鉄系析出物を鉄粉粒子内に均一に分散して形成することができる。このため、当該汚染水処理用鉄粉製造方法によって得られる当該汚染水処理用鉄粉は、上記鉄系析出物を粒子内に有するため、この鉄系析出物と鉄基材との局部電池作用によって汚染水中の重金属類に加えてフッ素を鉄粉粒子の表面に析出させて除去することができる。 The method for producing iron powder for treating contaminated water includes the preparation step, the addition step, and the pulverization step. In the addition step, at least one of silicon, manganese, phosphorus, sulfur, and chromium is added to the molten iron in the pan. Since an auxiliary material containing seeds is added, the powdering step is performed before the auxiliary material is completely melted and alloyed with iron, and iron is the main component, and silicon, manganese, phosphorus, sulfur and chromium are used. An iron-based precipitate containing at least one type can be uniformly dispersed and formed in the iron powder particles. Therefore, since the iron powder for treating contaminated water obtained by the method for producing iron powder for treating contaminated water has the iron-based precipitate in the particles, the local battery action between the iron-based precipitate and the iron substrate In addition to the heavy metals in the contaminated water, fluorine can be deposited and removed on the surface of the iron powder particles.

ここで、「主成分」とは、最も質量含有率が大きい成分を意味する。また、「溶鉄」とは、炭素含有量を問わず、溶融した鉄及び鋼全般を包含する概念である。 Here, the "main component" means the component having the highest mass content. Further, "molten iron" is a concept that includes molten iron and steel in general regardless of the carbon content.

上述のように、本発明の汚染水処理用鉄粉及び汚染水処理用鉄粉製造方法によって製造される汚染水処理用鉄粉は、汚染水中の重金属類及びフッ素を除去することができる。 As described above, the contaminated water treatment iron powder and the contaminated water treatment iron powder produced by the method for producing contaminated water treatment iron powder of the present invention can remove heavy metals and fluorine in the contaminated water.

本発明の一実施形態の汚染水処理用鉄粉の粒子断面の電子顕微鏡画像である。It is an electron microscope image of the particle cross section of the iron powder for treatment of contaminated water of one Embodiment of this invention. 汚染水処理用鉄粉の試作例を用いた汚染水処理試験における汚染元素の除去率を示すグラフである。It is a graph which shows the removal rate of the contaminated element in the contaminated water treatment test using the prototype example of iron powder for contaminated water treatment.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[汚染水処理用鉄粉]
本発明に係る汚染水処理用鉄粉は、汚染水中のヒ素、セレン、鉛、カドミウム及びクロムを含む重金属類を除去するために用いられるものである。さらに、当該汚染水処理用鉄粉は、重金属類に加えてフッ素を除去することができる。
[Iron powder for treating contaminated water]
The iron powder for treating contaminated water according to the present invention is used for removing heavy metals including arsenic, selenium, lead, cadmium and chromium in the contaminated water. Further, the iron powder for treating contaminated water can remove fluorine in addition to heavy metals.

当該汚染水処理用鉄粉は、鉄を主成分とし、シリコン、マンガン、リン、硫黄及びクロム(以下、包括して特定元素ということがある)の少なくとも1種を含む鉄系析出物を粒子内に有する。つまり、当該汚染水処理用鉄粉は、鉄又は鉄合金からなる鉄基材の粒子内に上記鉄系析出物を有する。 The iron powder for treating contaminated water contains iron as a main component and iron-based precipitates containing at least one of silicon, manganese, phosphorus, sulfur and chromium (hereinafter, may be collectively referred to as specific elements) in the particles. Have in. That is, the iron powder for treating contaminated water has the iron-based precipitate in the particles of the iron base material made of iron or an iron alloy.

当該汚染水処理用鉄粉は、例えばアトマイズ鉄粉、鋳鉄粉、還元鉄粉等であってもよいが、成分や粒径を揃えやすく、上記鉄系析出物を効率よく形成できる点で、水アトマイズ鉄粉であることが好ましい。 The iron powder for treating contaminated water may be, for example, atomized iron powder, cast iron powder, reduced iron powder, etc. It is preferably atomized iron powder.

当該汚染水処理用鉄粉が含有する鉄及び上記特定元素以外の元素としては、例えば炭素、酸素、銅、ニッケル、モリブデン、亜鉛、アルミニウム、コバルト等を挙げることができる。また、当該汚染水処理用鉄粉は、意図的に添加される元素以外の不可避的不純物を含み得る。本発明においては、上記不可避的不純物は、上記鉄系析出物に含まれる上記特定元素の対象とはしない。つまり、不可避的にシリコン、マンガン、リン、硫黄又はクロムが含まれても、鉄系析出物が「シリコン、マンガン、リン、硫黄及びクロムの少なくとも1種を含む」とはみなさないものとする。なお、上記不可避的不純物は、元素単体の含有量で通常1質量%未満であり、好ましくは0.01質量%未満である。 Examples of elements other than iron contained in the iron powder for treating contaminated water and the above-mentioned specific elements include carbon, oxygen, copper, nickel, molybdenum, zinc, aluminum and cobalt. In addition, the iron powder for treating contaminated water may contain unavoidable impurities other than elements that are intentionally added. In the present invention, the unavoidable impurities are not the target of the specific element contained in the iron-based precipitate. That is, even if silicon, manganese, phosphorus, sulfur or chromium is inevitably contained, the iron-based precipitate is not considered to "contain at least one of silicon, manganese, phosphorus, sulfur and chromium". The content of the unavoidable impurities is usually less than 1% by mass, preferably less than 0.01% by mass in terms of the content of a single element.

図1に、当該汚染水処理用鉄粉の粒子の断面を走査型電子顕微鏡を用いて撮影した画像の一例を図示する。図において、黒点状の部分が鉄系析出物である。このように、当該汚染水処理用鉄粉は、粒子内に複数の鉄系析出物を分散して有することが好ましい。 FIG. 1 illustrates an example of an image obtained by taking a cross section of the particles of the iron powder for treating contaminated water using a scanning electron microscope. In the figure, the black spots are iron-based precipitates. As described above, it is preferable that the iron powder for treating contaminated water has a plurality of iron-based precipitates dispersed in the particles.

当該汚染水処理用鉄粉の鉄系析出物は、上記特定元素を核として形成されるものであり、鉄を主成分とし、通常は酸素を含む。 The iron-based precipitate of the iron powder for treating contaminated water is formed with the above-mentioned specific element as a nucleus, contains iron as a main component, and usually contains oxygen.

当該汚染水処理用鉄粉の平均粒径の下限としては、1μmが好ましく、10μmがより好ましい。一方、当該汚染水処理用鉄粉の平均粒径の上限としては、1000μmが好ましく、500μmがより好ましく、100μmがさらに好ましい。当該汚染水処理用鉄粉の平均粒径が上記下限に満たない場合、当該汚染水処理用鉄粉の生産効率や取り扱い性が不十分となるおそれがある。逆に、当該汚染水処理用鉄粉の平均粒径が上記上限を超える場合、表面積が小さくなることで汚染水中の重金属類及びフッ素を十分に除去することができないおそれがある。なお、「平均粒径」とは、JIS−Z8801(2006)に規定されるふるいを用いた乾式ふるい分け試験により粒子径分布を求め、この粒子径分布において累積質量が50%となる粒径をいう。 The lower limit of the average particle size of the iron powder for treating contaminated water is preferably 1 μm, more preferably 10 μm. On the other hand, the upper limit of the average particle size of the iron powder for treating contaminated water is preferably 1000 μm, more preferably 500 μm, and even more preferably 100 μm. If the average particle size of the contaminated water treatment iron powder is less than the above lower limit, the production efficiency and handleability of the contaminated water treatment iron powder may be insufficient. On the contrary, when the average particle size of the iron powder for treating contaminated water exceeds the above upper limit, heavy metals and fluorine in the contaminated water may not be sufficiently removed due to the small surface area. The "average particle size" refers to a particle size in which the particle size distribution is determined by a dry sieving test using a sieve specified in JIS-Z8801 (2006) and the cumulative mass is 50% in this particle size distribution. ..

当該汚染水処理用鉄粉における上記特定元素の合計含有量の下限としては、0.3質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。一方、当該汚染水処理用鉄粉における上記特定元素の合計含有量の上限としては、5質量%が好ましく、3質量%がより好ましく、2質量%がさらに好ましい。当該汚染水処理用鉄粉における上記特定元素の合計含有量が上記下限に満たない場合、十分な量の鉄系析出物を形成することが困難となるおそれがある。逆に、当該汚染水処理用鉄粉における上記特定元素の合計含有量が上記上限を超える場合、当該汚染水処理用鉄粉の製造コストが不必要に増大するおそれがある。 The lower limit of the total content of the specific elements in the iron powder for treating contaminated water is preferably 0.3% by mass, more preferably 0.5% by mass, and even more preferably 1% by mass. On the other hand, as the upper limit of the total content of the specific element in the iron powder for treating contaminated water, 5% by mass is preferable, 3% by mass is more preferable, and 2% by mass is further preferable. If the total content of the specific elements in the iron powder for treating contaminated water is less than the above lower limit, it may be difficult to form a sufficient amount of iron-based precipitates. On the contrary, when the total content of the specific elements in the iron powder for treating contaminated water exceeds the above upper limit, the production cost of the iron powder for treating contaminated water may increase unnecessarily.

当該汚染水処理用鉄粉の鉄系析出物における上記特定元素の合計含有量の下限としては、1質量%が好ましく、2質量%がより好ましい。上記特定元素の合計含有量が上記下限未満であると、汚染水中の重金属類及びフッ素の除去効率が不十分となるおそれがある。一方、上記特定元素の合計含有量は、特に限定されず、除去対象となる汚染水の成分等により適宜決定されるが、たとえば50質量%とできる。 The lower limit of the total content of the specific elements in the iron-based precipitate of the iron powder for treating contaminated water is preferably 1% by mass, more preferably 2% by mass. If the total content of the specific elements is less than the above lower limit, the efficiency of removing heavy metals and fluorine in the contaminated water may be insufficient. On the other hand, the total content of the specific elements is not particularly limited and is appropriately determined depending on the components of the contaminated water to be removed, and can be, for example, 50% by mass.

当該汚染水処理用鉄粉の粒子内の平均空隙率の上限としては、5%が好ましく、3%がより好ましい。一方、当該汚染水処理用鉄粉の粒子内の平均空隙率の上限としては特に限定されず、物理的な限界値として0%である。当該汚染水処理用鉄粉の粒子内の平均空隙率が上記上限を超える場合、水アトマイズ法によって製造することが難しくなるため、全体組成及び鉄系析出物の含有量を調節することが困難となるおそれがある。つまり、当該汚染水処理用鉄粉は、平均空隙率を上記上限以下にすることによって、水アトマイズ法により比較的効率よく製造することができる。なお、空隙率は、粒子断面の電子顕微鏡観察画像における空隙の面積率として測定される。 The upper limit of the average porosity in the particles of the iron powder for treating contaminated water is preferably 5%, more preferably 3%. On the other hand, the upper limit of the average porosity in the particles of the iron powder for treating contaminated water is not particularly limited, and the physical limit value is 0%. When the average porosity in the particles of the iron powder for treating contaminated water exceeds the above upper limit, it is difficult to produce by the water atomization method, so that it is difficult to adjust the overall composition and the content of iron-based precipitates. There is a risk of becoming. That is, the iron powder for treating contaminated water can be produced relatively efficiently by the water atomization method by setting the average porosity to the above upper limit or less. The porosity is measured as the area ratio of the voids in the electron microscope observation image of the particle cross section.

当該汚染水処理用鉄粉の粒子断面における鉄系析出物の平均面積率の下限としては、0.8%が好ましく、1.0%がより好ましい。一方、当該汚染水処理用鉄粉の粒子断面における鉄系析出物の平均面積率の上限としては、50%が好ましく、30%がより好ましい。当該汚染水処理用鉄粉の粒子断面における鉄系析出物の平均面積率が上記下限に満たない場合、局部電池作用が不十分となることで重金属類及びフッ素を効率よく析出させることができず、汚染水中の重金属類及びフッ素を十分に除去することができないおそれがある。逆に、当該汚染水処理用鉄粉の粒子断面における鉄系析出物の平均面積率が上記上限を超える場合、局部電池作用においてアノードとなる鉄基材の面積が相対的に小さくなることで、汚染水中の重金属類及びフッ素を十分に除去することができないおそれがある。なお、当該汚染水処理用鉄粉の粒子断面における鉄系析出物の平均面積率は、画像解析ソフトウェアを用いて粒子断面の電子顕微鏡観察画像を鉄系析出物部分と鉄基材部分とに二値化することによって測定できる。この場合、二値化のための閾値が適宜設定されるが、電子顕微鏡観察画像における鉄系析出物と鉄基材とのコントラストは大きいため、閾値を技術常識に従って適切な範囲内で設定する限り、二値化に起因する測定誤差は十分に小さい。 The lower limit of the average area ratio of iron-based precipitates in the particle cross section of the iron powder for treating contaminated water is preferably 0.8%, more preferably 1.0%. On the other hand, the upper limit of the average area ratio of iron-based precipitates in the particle cross section of the iron powder for treating contaminated water is preferably 50%, more preferably 30%. If the average area ratio of iron-based precipitates in the particle cross section of the contaminated water treatment iron powder is less than the above lower limit, heavy metals and fluorine cannot be efficiently precipitated due to insufficient local battery action. , Heavy metals and fluorine in contaminated water may not be sufficiently removed. On the contrary, when the average area ratio of iron-based precipitates in the particle cross section of the iron powder for treating contaminated water exceeds the above upper limit, the area of the iron base material serving as the anode in the local battery operation becomes relatively small. Heavy metals and fluorine in contaminated water may not be sufficiently removed. The average area ratio of iron-based precipitates in the particle cross section of the iron powder for treating contaminated water is determined by using image analysis software to obtain an electron microscope observation image of the particle cross section in the iron-based precipitate portion and the iron substrate portion. It can be measured by digitizing. In this case, the threshold value for binarization is appropriately set, but since the contrast between the iron-based precipitate and the iron substrate in the electron microscope observation image is large, as long as the threshold value is set within an appropriate range according to common general knowledge. , The measurement error due to binarization is sufficiently small.

当該汚染水処理用鉄粉の粒子断面における鉄系析出物の平均径(円相当径)の下限としては、0.1μmが好ましく、0.15μmがより好ましい。一方、当該汚染水処理用鉄粉の粒子断面における鉄系析出物の平均径の上限としては、10μmが好ましく、1μmがより好ましい。当該汚染水処理用鉄粉の粒子断面における鉄系析出物の平均径が上記下限に満たない場合、局部電池作用が不十分となるおそれがある。逆に、当該汚染水処理用鉄粉の粒子断面における鉄系析出物の平均径が上記上限を超える場合、当該汚染水処理用鉄粉の粒子毎の重金属類及びフッ素を除去する能力にばらつきが生じ、結果として当該汚染水処理用鉄粉全体としての重金属類及びフッ素を除去する能力が不十分となるおそれがある。 The lower limit of the average diameter (circular equivalent diameter) of the iron-based precipitate in the particle cross section of the contaminated water treatment iron powder is preferably 0.1 μm, more preferably 0.15 μm. On the other hand, the upper limit of the average diameter of the iron-based precipitate in the particle cross section of the iron powder for treating contaminated water is preferably 10 μm, more preferably 1 μm. If the average diameter of iron-based precipitates in the particle cross section of the iron powder for treating contaminated water is less than the above lower limit, the local battery operation may be insufficient. On the contrary, when the average diameter of iron-based precipitates in the particle cross section of the contaminated water treatment iron powder exceeds the above upper limit, the ability of each particle of the contaminated water treatment iron powder to remove heavy metals and fluorine varies. As a result, the ability of the iron powder for treating contaminated water as a whole to remove heavy metals and fluorine may be insufficient.

<利点>
当該汚染水処理用鉄粉は、上述の鉄系析出物を粒子内に有することによって、この鉄系析出物と鉄基材との間に電位差が生じて局部電池作用により鉄基材のアノード反応が促進されることで、重金属類に加えてフッ素も粒子表面に析出させて比較的効率よく除去することができる。
<Advantage>
The iron powder for treating contaminated water has the above-mentioned iron-based precipitate in the particles, so that a potential difference is generated between the iron-based precipitate and the iron base material, and the anode reaction of the iron base material is caused by the local battery action. By promoting the above, fluorine can be deposited on the particle surface in addition to heavy metals and can be removed relatively efficiently.

[汚染水処理用鉄粉製造方法]
上述の汚染水処理用鉄粉は、本発明の一実施形態に係る汚染水処理用鉄粉製造方法によって製造することができる。
[Iron powder manufacturing method for contaminated water treatment]
The above-mentioned iron powder for treating contaminated water can be produced by the method for producing iron powder for treating contaminated water according to the embodiment of the present invention.

当該汚染水処理用鉄粉製造方法は、炉で溶鉄を調製する工程<調製工程>と、取鍋で溶鉄にシリコン、マンガン、リン、硫黄及びクロムの少なくとも1種を含む副原料を添加する工程<添加工程>と、副原料を添加した後の溶鉄に水を噴射して粉化する工程<粉化工程>とを備える。 The iron powder production method for contaminated water treatment includes a step of preparing molten iron in a furnace <preparation step> and a step of adding an auxiliary raw material containing at least one of silicon, manganese, phosphorus, sulfur and chromium to the molten iron in a pan. It includes a <addition step> and a step of injecting water into the molten iron after adding an auxiliary raw material to pulverize it <a pulverization step>.

<調製工程>
調製工程では、例えば転炉、電気炉等の炉において溶鉄を調製する。この調製工程では、例えば脱珪、脱燐、脱炭、脱酸等の不純物を除去する公知の精錬処理を行ってもよく、溶鉄の成分を調整するために鉄以外の原料を加えてもよい。
<Preparation process>
In the preparation step, molten iron is prepared in a furnace such as a converter or an electric furnace. In this preparation step, for example, a known refining treatment for removing impurities such as desiliconization, dephosphorization, decarburization, and deoxidation may be performed, or a raw material other than iron may be added to adjust the components of molten iron. ..

<添加工程>
添加工程では、取鍋において、上記鉄系析出物を形成する核となる特定元素を含む副原料を添加する。このように、取鍋において副原料を添加することによって、副原料の添加から次の粉化工程までの時間を短くして、副原料中の特定元素が鉄と完全には合金化せず、溶鉄中に特定元素のクラスターが分散(微視的に特定元素が偏在)している状態で溶鉄を粉化することができると考えられる。これにより、溶鉄中に分散している特定元素のクラスターを核として鉄系析出物を形成することができる。
<Addition process>
In the addition step, an auxiliary raw material containing a specific element as a core for forming the iron-based precipitate is added in the ladle. In this way, by adding the auxiliary material in the ladle, the time from the addition of the auxiliary material to the next pulverization step is shortened, and the specific element in the auxiliary material is not completely alloyed with iron. It is considered that the molten iron can be pulverized in a state where clusters of specific elements are dispersed in the molten iron (specific elements are microscopically unevenly distributed). As a result, iron-based precipitates can be formed with clusters of specific elements dispersed in molten iron as nuclei.

この添加工程では、炉から抜き出した溶鉄を貯留している取鍋に後から副原料を投入してもよいが、予め副原料を投入した取鍋に溶鉄を注ぎ入れることによって、短時間で効率よく溶鉄に副原料を添加することができる。 In this addition step, the auxiliary raw material may be added later to the ladle that stores the molten iron extracted from the furnace, but by pouring the molten iron into the ladle in which the auxiliary material has been added in advance, efficiency can be achieved in a short time. Auxiliary raw materials can be added to molten iron well.

また、副原料は、一部が合金化して得られる汚染水処理用鉄粉の鉄基材中に取り込まれる。このため、この添加工程で添加される副原料を考慮して、先の調製工程において調製する溶鉄の組成を調節することが好ましい。逆に、副原料の添加量が同じであっても、調製工程で調製される溶鉄の組成によって形成される鉄系析出物の量や組成が変化する。このため、添加工程において溶鉄に添加する副原料の種類及び量は、調製工程で調製される溶鉄の組成を考慮して選択することが好ましい。 Further, the auxiliary raw material is incorporated into the iron base material of the iron powder for treating contaminated water obtained by partially alloying. Therefore, it is preferable to adjust the composition of the molten iron prepared in the previous preparation step in consideration of the auxiliary raw materials added in this addition step. On the contrary, even if the amount of the auxiliary raw material added is the same, the amount and composition of the iron-based precipitate formed by the composition of the molten iron prepared in the preparation step changes. Therefore, it is preferable to select the type and amount of the auxiliary raw material to be added to the molten iron in the addition step in consideration of the composition of the molten iron prepared in the preparation step.

(副原料)
副原料としては、例えばフェロシリコン、フェロマンガン、リン鉄、硫化鉄、フェロクロム等の特定元素と鉄との化合物が好適に用いられる。これらの副原料は、一部又は全部が、調製工程において精錬処理に用いられる処理剤又は溶鋼の組成調整のために添加される材料と同じものであってもよい。
(Auxiliary raw material)
As the auxiliary raw material, for example, a compound of a specific element such as ferrosilicon, ferromanganese, iron phosphorus, iron sulfide, and ferrochrome and iron is preferably used. These auxiliary raw materials may be partially or wholly the same as the treatment agent used for the refining treatment in the preparation step or the material added for adjusting the composition of the molten steel.

<粉化工程>
粉化工程では、水アトマイズ法により、溶鉄を微細化しつつ急速冷却して粉化する。このとき、溶鉄中に分散している特定元素のクラスターが核となり、粉体粒子内に鉄系析出物を形成することで、当該汚染水処理用鉄粉が得られると考えられる。
<Powdering process>
In the pulverization step, the molten iron is rapidly cooled and pulverized by the water atomization method while making the molten iron finer. At this time, it is considered that the iron powder for treating contaminated water can be obtained by forming iron-based precipitates in the powder particles with clusters of specific elements dispersed in the molten iron as nuclei.

水アトマイズ法では、溶鉄を流下し、流下している溶鉄に水を噴射することにより、溶鉄を微細化すると共に急速冷却して鉄粉を得る。溶鉄に噴射する水の量及び圧力を調節することによって、得られる鉄粉の粒径を調節することができる。 In the water atomization method, molten iron flows down and water is sprayed onto the flowing molten iron to make the molten iron finer and rapidly cool it to obtain iron powder. By adjusting the amount and pressure of water sprayed on the molten iron, the particle size of the obtained iron powder can be adjusted.

<利点>
当該汚染水処理用鉄粉製造方法は、上記調製工程、上記添加工程及び上記粉化工程を備え、添加工程において、取鍋の中で溶鉄に特定元素を含む副原料を添加するので、副原料が完全に分散する前に粉化工程を行って、鉄系析出物を鉄粉粒子内に均一に分散して形成することができる。このため、当該汚染水処理用鉄粉製造方法によって得られる汚染水処理用鉄粉は、鉄系析出物と鉄基材との局部電池作用によって汚染水中の重金属類及びフッ素を鉄粉表面に析出させて効率よく除去することができる。
<Advantage>
The method for producing iron powder for treating contaminated water includes the above preparation step, the above addition step, and the above pulverization step. In the addition step, an auxiliary raw material containing a specific element is added to the molten iron in a pan. The iron-based precipitate can be uniformly dispersed and formed in the iron powder particles by performing a pulverization step before the powder is completely dispersed. Therefore, in the contaminated water treatment iron powder obtained by the contaminated water treatment iron powder production method, heavy metals and fluorine in the contaminated water are precipitated on the surface of the iron powder by the local battery action of the iron-based precipitate and the iron base material. It can be removed efficiently.

また、当該汚染水処理用鉄粉製造方法は、添加工程において、取鍋の中で溶鉄に副原料を添加するので、調製工程を行う炉の耐火物の融点が副原料により低下することを防止できる。このため、当該汚染水処理用鉄粉製造方法は、製錬工程を行う炉の耐火物の劣化が比較的小さく、冷却や保全のための停止時間を抑制して生産効率を向上できる。 Further, in the method for producing iron powder for treating contaminated water, since the auxiliary material is added to the molten iron in the ladle in the addition process, it is possible to prevent the melting point of the refractory of the furnace in which the preparation process is performed from being lowered by the auxiliary material. can. Therefore, in the method for producing iron powder for treating contaminated water, the deterioration of the refractory of the furnace in which the smelting process is performed is relatively small, and the downtime for cooling and maintenance can be suppressed to improve the production efficiency.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The above embodiment does not limit the configuration of the present invention. Therefore, in the above-described embodiment, the components of each part of the above-described embodiment can be omitted, replaced or added based on the description of the present specification and common general technical knowledge, and all of them are construed as belonging to the scope of the present invention. Should be.

本発明に係る汚染水処理用鉄粉は、上述の汚染水処理用鉄粉製造方法によって製造されるものに限定されない。 The iron powder for treating contaminated water according to the present invention is not limited to that produced by the above-mentioned method for producing iron powder for treating contaminated water.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。 Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not limitedly interpreted based on the description of this Example.

<試作例1>
電気炉で鉄原料を溶解して鉄原料比0.1質量%のフェロマンガンを投入して不純物を除去することにより調製された溶鉄全量を予め鉄原料比0.1質量%のフェロマンガンを投入しておいた取鍋に取り出してから、水アトマイズ法により粉化することで、平均粒径90μmの汚染水処理用鉄粉の試作例1を得た。なお、「平均粒径」は、JIS−Z8801(2006)に規定されるふるいを用いた乾式ふるい分け試験により測定した「粒度分布」からロジンラムラー分布で近似することにより算出した。
<Prototype example 1>
The total amount of molten iron prepared by melting the iron raw material in an electric furnace and adding 0.1% by mass of ferromanganese to the iron raw material to remove impurities is added in advance with 0.1% by mass of ferromanganese to the iron raw material. After taking it out into the prepared pan, it was pulverized by the water atomization method to obtain Prototype Example 1 of iron powder for treating contaminated water having an average particle size of 90 μm. The "average particle size" was calculated by approximating the "particle size distribution" measured by a dry sieving test using a sieve specified in JIS-Z8801 (2006) with a rosin Ramler distribution.

<試作例2>
電気炉で鉄原料を溶解して鉄原料比0.2質量%のフェロマンガンを投入して不純物を除去することにより調製された溶鉄全量を予め鉄原料比0.1質量%のフェロマンガン及び鉄原料比0.8質量%の硫化鉄を投入しておいた取鍋に取り出してから、水アトマイズ法により粉化することで、平均粒径92μmの汚染水処理用鉄粉の試作例2を得た。
<Prototype example 2>
The total amount of molten iron prepared by melting the iron raw material in an electric furnace and adding 0.2% by mass of ferromanganese to the iron raw material to remove impurities is preliminarily converted to 0.1% by mass of ferromanganese and iron. Prototype 2 of iron powder for treating contaminated water having an average particle size of 92 μm was obtained by taking it out into a pan containing 0.8% by mass of iron sulfide and then pulverizing it by the water atomization method. rice field.

<試作例3>
電気炉で鉄原料を溶解して鉄原料比3.5質量%の硫化鉄を投入して不純物を除去することにより調製された溶鉄全量を予め鉄原料比0.1質量%のフェロマンガン及び鉄原料比0.3質量%の硫化鉄を投入しておいた取鍋に取り出してから、水アトマイズ法により粉化することで、平均粒径88μmの汚染水処理用鉄粉の試作例3を得た。
<Prototype example 3>
The total amount of molten iron prepared by melting the iron raw material in an electric furnace and adding 3.5% by mass of iron sulfide to remove impurities is preliminarily made into ferromanganese and iron with a ratio of 0.1% by mass of the iron raw material. Prototype 3 of iron powder for treating contaminated water having an average particle size of 88 μm was obtained by taking it out into a pan containing 0.3% by mass of iron sulfide and then pulverizing it by the water atomization method. rice field.

汚染水処理用鉄粉の試作例1〜3中の微量元素の含有量を測定した。具体的には、C及びSの含有量を赤外線吸収法により測定し、Si、Mn及びPの含有量をICP(誘導結合プラズマ)発光分光分析法により測定した。この結果を次の表1に示す。 The content of trace elements in Prototype Examples 1 to 3 of iron powder for treating contaminated water was measured. Specifically, the contents of C and S were measured by an infrared absorption method, and the contents of Si, Mn and P were measured by ICP (inductively coupled plasma) emission spectroscopy. The results are shown in Table 1 below.

Figure 0006953095
Figure 0006953095

また、汚染水処理用鉄粉の試作例1〜3を樹脂で固めた試料をダイアモンド砥粒で1μm研磨することにより、汚染水処理用鉄粉の粒子を切断した。そして、この粒子断面をFEI社製の「Quanta200FEG」を用いて撮影した。走査型電子顕微鏡の設定は、電圧15.0kV、レンズから物体面までの作動距離10mmとし、BSE(反射電子像)を取得した。また、電子像の取得にあたり、コントラストは90程度、ブライトネスは40程度の設定とした。さらに、この電子顕微鏡画像を三谷商事社の画像解析ソフト「WIN−ROOF ver5.5.0」を用い、256階調(0〜255)での輝度範囲80以上175以下の画素を鉄系析出物領域として抽出する二値化処理を行い、ノイズ除去(設定値0.001)及び穴埋め処理を行って鉄系析出物の面積率を算出した。 Further, the particles of the iron powder for treating contaminated water were cut by polishing the sample obtained by solidifying the trial examples 1 to 3 of the iron powder for treating contaminated water with a resin by 1 μm with diamond abrasive grains. Then, this particle cross section was photographed using "Quanta200FEG" manufactured by FEI. The scanning electron microscope was set to a voltage of 15.0 kV, a working distance of 10 mm from the lens to the object surface, and a BSE (reflected electron image) was acquired. Further, when acquiring the electronic image, the contrast was set to about 90 and the brightness was set to about 40. Furthermore, using this electron microscope image with the image analysis software "WIN-ROOF ver 5.5.0" of Mitani Shoji Co., Ltd., pixels with a brightness range of 80 or more and 175 or less in 256 gradations (0 to 255) are iron-based precipitates. The binarization process for extracting as a region was performed, and the noise removal (set value 0.001) and the fill-in-the-blank process were performed to calculate the area ratio of the iron-based precipitate.

また、上記試料の断面の鉄系析出物部分の組成をエネルギー分散型X線分析(EDX)により分析した。具体的には、各試料の中から粒子径が異なる3つの粒子を選択して、各粒子内の3つの鉄系析出物についてエネルギー分散型X線分析を行ない、各汚染水処理用鉄粉の試作品の粒度分布に基づいて加重平均することによって、鉄系析出物の組成を算出した。 In addition, the composition of the iron-based precipitate portion of the cross section of the sample was analyzed by energy dispersive X-ray analysis (EDX). Specifically, three particles having different particle sizes are selected from each sample, energy dispersive X-ray analysis is performed on the three iron-based precipitates in each particle, and the iron powder for treating contaminated water is subjected to energy dispersive X-ray analysis. The composition of the iron-based precipitate was calculated by weighted averaging based on the particle size distribution of the prototype.

次の表2に、汚染水処理用鉄粉の試作例1〜3の鉄系析出物の面積率及び鉄系析出物に組成を示す。なお、表中の「−」は、その元素が検出されなかったことを意味する。 Table 2 below shows the area ratio of the iron-based precipitates of Prototype Examples 1 to 3 of the iron powder for treating contaminated water and the composition of the iron-based precipitates. In addition, "-" in the table means that the element was not detected.

Figure 0006953095
Figure 0006953095

試験用汚染水として、As濃度を1mg/Lに調整したヒ酸水素二ナトリウム七水和物水溶液、Se濃度を1mg/Lに調整したセレン酸ナトリウムの水溶液、Cr濃度を1mg/Lに調整した二クロム酸カリウムの水溶液、Pb濃度を1mg/Lに調整した硝酸鉛の水溶液、Cd濃度を1mg/Lに調整した硝酸カドミウムの水溶液、及びF濃度を1mg/Lに調整したフッ化ナトリウムの水溶液を用意した。 As the test contaminated water, an aqueous solution of disodium hydrogen arsenide heptahydrate having an As concentration adjusted to 1 mg / L, an aqueous solution of sodium selenate having an Se concentration adjusted to 1 mg / L, and a Cr concentration adjusted to 1 mg / L. An aqueous solution of potassium dichromate, an aqueous solution of lead nitrate with a Pb concentration adjusted to 1 mg / L, an aqueous solution of cadmium nitrate with a Cd concentration adjusted to 1 mg / L, and an aqueous solution of sodium fluoride with an F concentration adjusted to 1 mg / L. I prepared.

上記試験用汚染水に汚染水処理用鉄粉の試作例1〜3を0.1質量%加え、室温で24時間連続振とう(200rpm、振とう幅は3〜5cm)した後、目開き0.45μmのフィルターで濾過してから、溶液中の汚染元素(除去対象となる重金属又はフッ素)の濃度を測定する汚染水処理試験を行った。汚染元素の濃度は、JIS−K0102(2016)に準拠して測定した。 0.1% by mass of Prototype Examples 1 to 3 of iron powder for treating contaminated water was added to the above contaminated water for testing, and the mixture was continuously shaken at room temperature for 24 hours (200 rpm, shaking width was 3 to 5 cm), and then the opening was 0. After filtering with a .45 μm filter, a contaminated water treatment test was conducted to measure the concentration of contaminated elements (heavy metals or fluorine to be removed) in the solution. The concentration of pollutant elements was measured according to JIS-K0102 (2016).

次の表3に、汚染水処理用鉄粉の試作例1〜3による処理後の各試験用汚染水の残留汚染元素の濃度の測定結果を示す。 Table 3 below shows the measurement results of the concentration of residual contaminated elements in each test contaminated water after treatment by Prototype Examples 1 to 3 of iron powder for contaminated water treatment.

Figure 0006953095
Figure 0006953095

上記残留汚染元素の濃度の測定結果から、汚染水処理用鉄粉の試作例1〜3による各汚染元素の除去率を算出し、これをまとめて図2に示す。 From the measurement results of the concentration of the residual contaminated elements, the removal rates of the contaminated elements according to the trial examples 1 to 3 of the iron powder for treating contaminated water were calculated, and these are summarized in FIG.

このように、鉄系析出物を有する汚染水処理用鉄粉の試作例1〜3は、試験用汚染水中の重金属類及びフッ素を除去することができた。中でも粒子断面における鉄系析出物の面積率が比較的大きい汚染水処理用鉄粉の試作例2,3は、比較的除去が困難なクロム、カドミウム及びフッ素についても十分に大きい除去率を得ることができた。 As described above, the prototype examples 1 to 3 of the iron powder for treating contaminated water having iron-based precipitates were able to remove heavy metals and fluorine in the contaminated water for testing. Among them, Prototype Examples 2 and 3 of iron powder for treating contaminated water having a relatively large area ratio of iron-based precipitates in the particle cross section obtain a sufficiently large removal rate for chromium, cadmium and fluorine, which are relatively difficult to remove. Was done.

本発明に係る汚染水処理用鉄粉及び本発明に係る汚染水処理用鉄粉製造方法によって得られる汚染水処理用鉄粉は、汚染水の浄化に広く利用することができる。 The iron powder for treating contaminated water according to the present invention and the iron powder for treating contaminated water obtained by the method for producing iron powder for treating contaminated water according to the present invention can be widely used for purifying contaminated water.

Claims (4)

汚染水中の重金属類を除去する汚染水処理用鉄粉であって、
鉄を主成分とし、残部がシリコン、マンガン、リン、硫黄及びクロムの少なくとも1種と不可避的不純物とで構成される鉄系析出物を粒子内に有し、
当該汚染水処理用鉄粉における上記シリコン、マンガン、リン、硫黄及びクロムの合計含有量が、0.3質量%以上5質量%以下であることを特徴とする汚染水処理用鉄粉。
Iron powder for treating contaminated water that removes heavy metals in contaminated water.
Iron as a main component, possess the balance silicon, manganese, phosphorus, iron precipitates composed of at least one and inevitable impurities sulfur and chromium in the particles,
An iron powder for treating contaminated water, wherein the total content of silicon, manganese, phosphorus, sulfur and chromium in the iron powder for treating contaminated water is 0.3% by mass or more and 5% by mass or less .
粒子断面における上記鉄系析出物の平均面積率が0.8%以上50%以下である請求項1に記載の汚染水処理用鉄粉。 The iron powder for treating contaminated water according to claim 1, wherein the average area ratio of the iron-based precipitate in the particle cross section is 0.8% or more and 50% or less. 粒子内の平均空隙率が5%以下である請求項1又は請求項2に記載の汚染水処理用鉄粉。 The iron powder for treating contaminated water according to claim 1 or 2, wherein the average porosity in the particles is 5% or less. 汚染水中の重金属類を除去する汚染水処理用鉄粉の製造方法であって、
炉で溶鉄を調製する工程と、
取鍋で上記溶鉄にシリコン、マンガン、リン、硫黄クロム及びこれらの鉄との化合物の少なくとも1種と不可避的不純物とで構成される副原料を添加する工程と、
上記添加後の上記溶鉄に水を噴射して粉化する工程と
を備え、
汚染水処理用鉄粉における上記シリコン、マンガン、リン、硫黄及びクロムの合計含有量が、0.3質量%以上5質量%以下であることを特徴とする汚染水処理用鉄粉製造方法。
A method for producing iron powder for treating contaminated water that removes heavy metals in contaminated water.
The process of preparing molten iron in the furnace and
A step of adding an auxiliary raw material composed of silicon, manganese, phosphorus, sulfur , chromium and at least one compound of these irons and unavoidable impurities to the molten iron in a ladle.
It is provided with a step of injecting water into the molten iron after the addition to pulverize it.
A method for producing iron powder for contaminated water treatment, wherein the total content of silicon, manganese, phosphorus, sulfur and chromium in the iron powder for contaminated water treatment is 0.3% by mass or more and 5% by mass or less .
JP2018200656A 2018-10-25 2018-10-25 Iron powder for contaminated water treatment and iron powder manufacturing method for contaminated water treatment Active JP6953095B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018200656A JP6953095B2 (en) 2018-10-25 2018-10-25 Iron powder for contaminated water treatment and iron powder manufacturing method for contaminated water treatment
CN201980048442.4A CN112469518B (en) 2018-10-25 2019-09-25 Iron powder for treating contaminated water and method for producing iron powder for treating contaminated water
KR1020217007948A KR102414870B1 (en) 2018-10-25 2019-09-25 Method of manufacturing iron powder for treatment of contaminated water and iron powder for treatment of contaminated water
PCT/JP2019/037696 WO2020084997A1 (en) 2018-10-25 2019-09-25 Iron powder for treating contaminated water, and method for manufacturing iron powder for treating contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200656A JP6953095B2 (en) 2018-10-25 2018-10-25 Iron powder for contaminated water treatment and iron powder manufacturing method for contaminated water treatment

Publications (2)

Publication Number Publication Date
JP2020066778A JP2020066778A (en) 2020-04-30
JP6953095B2 true JP6953095B2 (en) 2021-10-27

Family

ID=70331299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018200656A Active JP6953095B2 (en) 2018-10-25 2018-10-25 Iron powder for contaminated water treatment and iron powder manufacturing method for contaminated water treatment

Country Status (4)

Country Link
JP (1) JP6953095B2 (en)
KR (1) KR102414870B1 (en)
CN (1) CN112469518B (en)
WO (1) WO2020084997A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073100A (en) * 1999-08-31 2001-03-21 Daido Steel Co Ltd Ferrous sintered compact, powder for manufacture of ferrous sintered compact, and manufacture of ferrous sintered compact
JP4755159B2 (en) 2007-09-28 2011-08-24 株式会社神戸製鋼所 Treatment agent and treatment method for contaminated water containing heavy metals
JP5046853B2 (en) * 2007-10-24 2012-10-10 株式会社神戸製鋼所 Treatment agent and treatment method for contaminated water containing heavy metals
CN101615465B (en) * 2008-05-30 2012-10-17 株式会社日立制作所 Soft magnetic powder for compact powder body and compact powder body using the same
JP5690106B2 (en) * 2010-09-24 2015-03-25 Dowaエコシステム株式会社 Decomposing agent for organic halogen compounds containing iron particles and method for producing the same
CN102248171A (en) * 2011-07-12 2011-11-23 中南大学 Gas atomization method for preparing oxygen supersaturated iron-based alloy powder
EP2743361A1 (en) * 2012-12-14 2014-06-18 Höganäs AB (publ) New product and use thereof
JP6776163B2 (en) * 2017-03-24 2020-10-28 株式会社神戸製鋼所 Purification agent and purification method

Also Published As

Publication number Publication date
CN112469518A (en) 2021-03-09
JP2020066778A (en) 2020-04-30
KR20210046719A (en) 2021-04-28
WO2020084997A1 (en) 2020-04-30
KR102414870B1 (en) 2022-06-29
CN112469518B (en) 2023-02-17

Similar Documents

Publication Publication Date Title
CN1053130C (en) Microstructurally refined multiphase castings
CA2968321C (en) Alloy steel powder for powder metallurgy, and sintered body
CA3105403A1 (en) Wear-resistant iron-based alloy compositions comprising nickel
KR20030091710A (en) Powder additive for powder metallurgy, iron-based powder mixture for powder metallurgy, and method for manufacturing the same
CN104942278A (en) Metal powder for powder metallurgy, compound, granulated powder, sintered body, and method for producing sintered body
CN103209789A (en) Mixed powder for powder metallurgy, and method for manufacturing same
JP2013519792A (en) Master alloy for producing sintered hardened steel parts and process for producing sintered hardened parts
JP2022084836A (en) Iron-based powder
JP4217997B2 (en) Soft magnetic alloy powder
JP6953095B2 (en) Iron powder for contaminated water treatment and iron powder manufacturing method for contaminated water treatment
WO2017051541A1 (en) Method for manufacturing alloy steel powder for sintered member raw material
JP2013142175A (en) Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
US20130152735A1 (en) Iron-based mixture powder for sintering and iron-based sintered alloy
WO2021045183A1 (en) Ni-BASED ALLOY, Ni-BASED ALLOY POWDER, NI-BASED ALLOY MEMBER, AND PRODUCT PROVIDED WITH Ni-BASED ALLOY MEMBER
WO2015129754A1 (en) Molding-machine cylinder and method for producing same
CN105506392A (en) Dental casting billet material, metal powder for powder metallurgy, dental metal component, and dental prosthesis
JP6551539B2 (en) Sliding part provided with wear resistant coating and method of forming wear resistant coating
JPWO2019123538A1 (en) Magnesium alloy powder and its sintered parts
JP6690781B2 (en) Alloy steel powder
CN105750536A (en) Metal powder for powder metallurgy, compound, granulated powder, and sintered body
CN112352061A (en) Method for manufacturing aluminum alloy parts
WO2019111834A1 (en) Partial diffusion alloyed steel powder
US11932921B2 (en) Alloy composition, method for producing alloy composition, and die
JP5207922B2 (en) Binderless powder for surface hardening
JP7296232B2 (en) Method for producing solid spherical powder and method for producing shaped products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210928

R150 Certificate of patent or registration of utility model

Ref document number: 6953095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150