JP6950508B2 - Manufacturing method of electrode plate for plasma processing equipment and electrode plate for plasma processing equipment - Google Patents

Manufacturing method of electrode plate for plasma processing equipment and electrode plate for plasma processing equipment Download PDF

Info

Publication number
JP6950508B2
JP6950508B2 JP2017237943A JP2017237943A JP6950508B2 JP 6950508 B2 JP6950508 B2 JP 6950508B2 JP 2017237943 A JP2017237943 A JP 2017237943A JP 2017237943 A JP2017237943 A JP 2017237943A JP 6950508 B2 JP6950508 B2 JP 6950508B2
Authority
JP
Japan
Prior art keywords
concentration
sintered
layer
low
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017237943A
Other languages
Japanese (ja)
Other versions
JP2019106292A (en
Inventor
野村 聡
聡 野村
周司 藤森
周司 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017237943A priority Critical patent/JP6950508B2/en
Publication of JP2019106292A publication Critical patent/JP2019106292A/en
Application granted granted Critical
Publication of JP6950508B2 publication Critical patent/JP6950508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、プラズマ処理装置用電極板およびプラズマ処理装置用電極板の製造方法に関する。 The present invention relates to an electrode plate for a plasma processing apparatus and a method for manufacturing an electrode plate for a plasma processing apparatus.

半導体デバイス製造プロセスに使用されるプラズマエッチング装置やプラズマCVD装置等のプラズマ処理装置は、真空チャンバー内に、上下方向に対向配置された一対の電極が備えられている。一般に上側の電極には、プラズマ生成用のガスを通過させるための通気孔が形成されており、下側の電極は、架台となっており、ウェハなどの被処理基板が固定可能とされている。そして、上側電極の通気孔からプラズマ生成用のガスを下側電極に固定された被処理基板に供給しながら、その上側電極と下側電極間に高周波電圧を印加することによりプラズマを発生させ、被処理基板にエッチング等の処理を行う構成とされている。 Plasma processing devices such as plasma etching devices and plasma CVD devices used in the semiconductor device manufacturing process are provided with a pair of electrodes arranged so as to face each other in the vertical direction in a vacuum chamber. Generally, the upper electrode is formed with a ventilation hole for passing a gas for plasma generation, and the lower electrode is a gantry, and a substrate to be processed such as a wafer can be fixed. .. Then, while supplying gas for plasma generation from the ventilation holes of the upper electrode to the substrate to be processed fixed to the lower electrode, plasma is generated by applying a high frequency voltage between the upper electrode and the lower electrode. The substrate to be processed is configured to be subjected to processing such as etching.

上記の構成のプラズマ処理装置では、電極がエッチング処理時にプラズマの照射を受けることにより、徐々に消耗する。このため、電極としては、耐プラズマ性が高く、耐熱に優れたSiCの焼結体が広く利用されている。また、SiC焼結体を電極基板として用い、この電極基板の表面にコーティング層を設けて、電極表面の耐プラズマ性を向上させることが行なわれている。 In the plasma processing apparatus having the above configuration, the electrodes are gradually consumed by being irradiated with plasma during the etching process. Therefore, as an electrode, a SiC sintered body having high plasma resistance and excellent heat resistance is widely used. Further, a SiC sintered body is used as an electrode substrate, and a coating layer is provided on the surface of the electrode substrate to improve the plasma resistance of the electrode surface.

特許文献1には、プラズマエッチング装置用電極(ガス吹き出し板)のプラズマ生成用のガスが噴き出す側の表面に、緻密質炭化珪素層を形成することが開示されている。この特許文献1には、緻密質炭化珪素層として、化学気相成長法(CVD法)により形成されたSiC(CVD−SiC)と、緻密な炭化珪素焼結体からなる焼結層とが挙げられている。 Patent Document 1 discloses that a dense silicon carbide layer is formed on the surface of an electrode (gas blowing plate) for a plasma etching apparatus on the side where a gas for plasma generation is ejected. In Patent Document 1, as the dense silicon carbide layer, SiC (CVD-SiC) formed by a chemical vapor deposition method (CVD method) and a sintered layer made of a dense silicon carbide sintered body are mentioned. Has been done.

特開2005−285845号公報Japanese Unexamined Patent Publication No. 2005-285845

SiC焼結体に緻密質炭化珪素層を形成したプラズマ処理装置用電極板においては、プラズマ処理中に、SiC焼結体と緻密質炭化珪素層とが剥離することがあるという問題があった。 In the electrode plate for a plasma processing apparatus in which a dense silicon carbide layer is formed on a SiC sintered body, there is a problem that the SiC sintered body and the dense silicon carbide layer may be peeled off during plasma treatment.

この発明は、前述した事情に鑑みてなされたものであって、SiC焼結体と緻密質炭化珪素層とが剥がれにくいプラズマ処理装置用電極板及びその製造方法を提供することを、その目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrode plate for a plasma processing apparatus in which the SiC sintered body and the dense silicon carbide layer are not easily peeled off, and a method for manufacturing the same. do.

上記の課題を解決するために、本発明のプラズマ処理装置用電極板は、YとSiCとを含むY含有SiC焼結体と、前記Y含有SiC焼結体の少なくとも一方の表面に備えられている緻密質炭化珪素層とを有するプラズマ処理装置用電極板であって、前記Y含有SiC焼結体は、Y濃度が0.3質量%以上7質量%以下の範囲にあるY高濃度焼結基材と、前記Y高濃度焼結基材の少なくとも一方の表面に備えられているY濃度が前記Y高濃度焼結基材よりも低いY低濃度焼結層とを有し、前記Y低濃度焼結層は厚さが1.0mm以上1.9mm以下の範囲にあり、前記緻密質炭化珪素層は、前記Y低濃度焼結層側の表面に備えられていることを特徴としている。 In order to solve the above problems, the electrode plate for the plasma processing apparatus of the present invention includes a Y 2 O 3 containing SiC sintered body containing Y 2 O 3 and SiC and the Y 2 O 3 containing SiC sintered body. a plasma processing apparatus for electrode plates and a dense silicon carbide layer that is provided on at least one surface of the Y 2 O 3 containing SiC sintered body, Y concentration 0.3 mass% or more 7 The Y concentration provided on at least one surface of the Y high-concentration sintered base material in the range of mass% or less and the Y high-concentration sintered base material is lower than that of the Y high-concentration sintered base material. It has a concentration sintered layer, the Y low concentration sintered layer has a thickness in the range of 1.0 mm or more and 1.9 mm or less, and the dense silicon carbide layer is on the Y low concentration sintered layer side. It is characterized by being provided on the surface.

この構成のプラズマ処理装置用電極板においては、電極基板としてYとSiCとを含むY含有SiC焼結体を用い、Y含有SiC焼結体は、Y高濃度焼結基材と、このY高濃度焼結基材の少なくとも一方の表面に備えられているY低濃度焼結層とを有し、Y高濃度焼結基材はY濃度が0.3質量%以上7質量%以下の範囲にあり、焼結助剤として作用するYを比較的多く含むので、緻密で強度が高くなる。また、Y含有SiC焼結体のY低濃度焼結層は、Y濃度がY高濃度焼結基材よりも低く、Yの欠損による微細な気孔(微孔)が形成されているので、この微孔に緻密質炭化珪素層が入り込むことによって、Y低濃度焼結層と緻密質炭化珪素層との接合力が高くなる。そして、Y低濃度焼結層は厚さが1.0mm以上1.9mm以下の範囲にあり、Y低濃度焼結層に多くの緻密質炭化珪素層を入り込ませることができるので、Y含有SiC焼結体と緻密質炭化珪素層とを剥がれにくくすることが可能となる。 In the electrode plate for a plasma processing apparatus having this configuration, a Y 2 O 3 containing SiC sintered body containing Y 2 O 3 and SiC is used as an electrode substrate, and the Y 2 O 3 containing SiC sintered body has a high Y concentration. It has a sintered base material and a Y low-concentration sintered layer provided on at least one surface of the Y high-concentration sintered base material, and the Y high-concentration sintered base material has a Y concentration of 0.3 mass. % or more 7 located in the mass% or less, because it contains a relatively large amount of Y 2 O 3 which acts as a sintering aid, a dense intensity increases. Further, the Y low-concentration sintered layer of the Y 2 O 3- containing SiC sintered body has a lower Y concentration than the Y high-concentration sintered base material, and fine pores (micropores) are formed due to the lack of Y 2 O 3. As a result, the dense silicon carbide layer penetrates into the micropores, so that the bonding force between the Y low-concentration sintered layer and the dense silicon carbide layer is increased. Then, the Y low density sintered layer is in the range of less than 1.0mm 1.9mm or less in thickness, it is possible to enter the number of dense silicon carbide layer in the Y low density sintered layer, Y 2 O It is possible to make it difficult for the 3- containing SiC sintered body and the dense silicon carbide layer to peel off.

ここで、本発明のプラズマ処理装置用電極板においては、前記Y高濃度焼結基材に対する前記Y低濃度焼結層のY濃度の比が0.2以下であることが好ましい。
この場合、Y低濃度焼結層には、Yの欠損による微孔が多数形成されているので、Y含有SiC焼結体と緻密質炭化珪素層とがより確実に剥がれにくくなる。なお、Y高濃度焼結基材のY濃度は、Y含有SiC焼結体の厚さ方向における中央部分でのY濃度である。
Here, in the electrode plate for the plasma processing apparatus of the present invention, the ratio of the Y concentration of the Y low concentration sintered layer to the Y high concentration sintered base material is preferably 0.2 or less.
In this case, Y in the low density sinter layers, since microporous by deficiency of Y 2 O 3 is formed a number, Y 2 O 3 and containing SiC sintered body and dense silicon carbide layer is peeled off more reliably It becomes difficult. Incidentally, Y concentration of Y-rich sintered substrate is Y concentration in the central portion in the thickness direction of the Y 2 O 3 containing SiC sintered body.

本発明のプラズマ処理装置用電極板の製造方法は、YとSiCとを含むY含有SiC焼結体と、前記Y含有SiC焼結体の少なくとも一方の表面に備えられている緻密質炭化珪素層とを有するプラズマ処理装置用電極板の製造方法であって、Y濃度が0.3質量%以上7質量%以下の範囲にあるY高濃度焼結基材と、前記Y高濃度焼結基材の少なくとも一方の表面に備えられているY濃度が前記Y高濃度焼結基材よりも低いY低濃度焼結層とを有し、前記Y低濃度焼結層は厚さが1.0mm以上1.9mm以下の範囲にあるY含有SiC焼結体の前記Y低濃度焼結層の表面に、化学的気相成長法によって緻密質炭化珪素層を形成する工程を有することを特徴としている。 In the method for producing an electrode plate for a plasma processing apparatus of the present invention, on at least one surface of a Y 2 O 3 containing SiC sintered body containing Y 2 O 3 and SiC and the Y 2 O 3 containing SiC sintered body. A method for manufacturing an electrode plate for a plasma processing apparatus having a dense silicon carbide layer provided, which comprises a Y high-concentration sintered base material having a Y concentration in the range of 0.3% by mass or more and 7% by mass or less. The Y low-concentration sintered base material has a Y low-concentration sintered layer having a Y concentration lower than that of the Y high-concentration sintered base material provided on at least one surface of the Y high-concentration sintered base material. The layer is a dense silicon carbide layer on the surface of the Y low-concentration sintered layer of a Y 2 O 3- containing SiC sintered body having a thickness in the range of 1.0 mm or more and 1.9 mm or less by a chemical vapor phase growth method. It is characterized by having a step of forming.

この構成のプラズマ処理装置用電極板の製造方法においては、Y濃度がY高濃度焼結基材よりも低く、Yの欠損による微孔が形成されているY低濃度焼結層の表面に、化学的気相成長法によって緻密質炭化珪素層を形成するので、Y低濃度焼結層の微孔に緻密質炭化珪素層を確実に入り込ませることができる。よって、Y含有SiC焼結体と緻密質炭化珪素層とが剥がれにくいプラズマ処理装置用電極板を得ることができる。 In the method for manufacturing an electrode plate for a plasma processing apparatus having this configuration, the Y concentration is lower than that of the Y high concentration sintered base material, and the Y low concentration sintered layer in which micropores are formed due to the loss of Y 2 O 3 is formed. Since the dense silicon carbide layer is formed on the surface by the chemical vapor deposition method, the dense silicon carbide layer can be surely penetrated into the micropores of the Y low-concentration sintered layer. Thus, Y 2 O 3 can be the containing SiC sintered body and dense silicon carbide layer to obtain a peeling difficult for a plasma processing apparatus electrode plate.

ここで、本発明のプラズマ処理装置用電極板の製造方法においては、Y低濃度焼結層の気孔率が3%以上10%以下の範囲にあることが好ましい。
この場合は、Y低濃度焼結層には、Yの欠損による微孔が多数形成されているので、Y含有SiC焼結体と緻密質炭化珪素層とをより確実に剥がれにくくすることができる。
Here, in the method for producing an electrode plate for a plasma processing apparatus of the present invention, it is preferable that the porosity of the Y low-concentration sintered layer is in the range of 3% or more and 10% or less.
In this case, Y in the low density sinter layers, since microporous by deficiency of Y 2 O 3 is formed a number, Y 2 O 3 and containing SiC sintered body and dense silicon carbide layer more reliably It can be made difficult to peel off.

本発明によれば、SiC焼結体と緻密質炭化珪素層とが剥がれにくいプラズマ処理装置用電極板及びその製造方法を提供することが可能となる。 According to the present invention, it is possible to provide an electrode plate for a plasma processing apparatus in which the SiC sintered body and the dense silicon carbide layer are not easily peeled off, and a method for manufacturing the same.

本実施形態に係るプラズマ処理装置用電極板の概略説明図であって、(a)は斜視図であり、(b)は(a)のb−b線断面図である。It is a schematic explanatory view of the electrode plate for a plasma processing apparatus which concerns on this embodiment, (a) is a perspective view, and (b) is a sectional view taken along line bb of (a). 本実施形態に係るプラズマ処理装置用電極板で用いられるY含有SiC焼結体の拡大断面図である。Is an enlarged sectional view of a Y 2 O 3 containing SiC sintered body used in the plasma processing apparatus electrode plate according to the present embodiment. 図2のY含有SiC焼結体に緻密質炭化珪素層を形成した状態を説明する拡大断面図である。It is an enlarged cross-sectional view explaining the state which formed the dense silicon carbide layer in the Y 2 O 3 containing SiC sintered body of FIG. 本実施形態に係るプラズマ処理装置用電極板の製造方法を示すフロー図である。It is a flow chart which shows the manufacturing method of the electrode plate for a plasma processing apparatus which concerns on this embodiment.

以下に本発明の実施形態であるプラズマ処理装置用電極板、およびプラズマ処理装置用電極板の製造方法について添付した図面を参照して説明する。
本実施形態に係るプラズマ処理装置用電極板は、例えば、半導体デバイス製造プロセスに使用されるプラズマエッチング装置やプラズマCVD装置等のプラズマ処理装置の真空チャンバー内に備えられる一対の電極のうちの上側電極として用いられるものである。
Hereinafter, the electrode plate for the plasma processing apparatus and the method for manufacturing the electrode plate for the plasma processing apparatus according to the embodiment of the present invention will be described with reference to the attached drawings.
The electrode plate for a plasma processing apparatus according to the present embodiment is, for example, an upper electrode of a pair of electrodes provided in a vacuum chamber of a plasma processing apparatus such as a plasma etching apparatus or a plasma CVD apparatus used in a semiconductor device manufacturing process. It is used as.

図1は、本実施形態に係るプラズマ処理装置用電極板の概略説明図であり、(a)は斜視図であり、(b)は(a)のb−b線断面図である。図2は、本実施形態に係るプラズマ処理装置用電極板で用いられるY含有SiC焼結体の拡大断面図である。図3は、図2のY含有SiC焼結体に緻密質炭化珪素層を形成した状態を説明する拡大断面図である。 1A and 1B are schematic explanatory views of an electrode plate for a plasma processing apparatus according to the present embodiment, FIG. 1A is a perspective view, and FIG. 1B is a sectional view taken along line bb of FIG. 1A. Figure 2 is an enlarged sectional view of a Y 2 O 3 containing SiC sintered body used in the plasma processing apparatus electrode plate according to the present embodiment. Figure 3 is an enlarged sectional view illustrating a state of forming a dense silicon carbide layer in Y 2 O 3 containing SiC sintered body of FIG.

図1において、プラズマ処理装置用電極板10は、円板状とされており、プラズマ生成用のガスを通過させる通気孔11が複数個形成されている。プラズマ処理装置用電極板10は、電極基板であるYとSiCとを含むY含有SiC焼結体12と、Y含有SiC焼結体12の少なくとも一方の表面に備えられている緻密質炭化珪素層16とを有する。 In FIG. 1, the electrode plate 10 for a plasma processing apparatus has a disk shape, and a plurality of ventilation holes 11 through which a gas for plasma generation is passed are formed. The plasma processing apparatus electrode plate 10, a Y 2 O 3 containing SiC sintered body 12 and a Y 2 O 3 and SiC as an electrode substrate, at least one surface of the Y 2 O 3 containing SiC sintered body 12 It has a dense silicon carbide layer 16 provided.

本実施形態のプラズマ処理装置用電極板10において、通気孔11は、直径が0.1mm以上1.0mm以下の範囲にあることが好ましい。Y含有SiC焼結体12における通気孔11のアスペクト比(Y含有SiC焼結体12の厚さ/通気孔11の直径)は3以上であることが好ましい。通気孔11のアスペクト比が3以上であると、プラズマがプラズマ処理装置用電極板10の背面にまで到達しにくくなり、プラズマ処理装置用電極板10の背面に配置される部材の消耗を抑えることができる。また、プラズマ生成用のガスの逆流を防ぐためには、通気孔11のアスペクト比は50以下であることが好ましい。 In the electrode plate 10 for a plasma processing apparatus of the present embodiment, the ventilation holes 11 preferably have a diameter in the range of 0.1 mm or more and 1.0 mm or less. Y 2 O 3 aspect ratio of the vent holes 11 in the containing SiC sintered body 12 (the diameter of Y 2 O 3 content thickness / vent hole 11 of the SiC sintered body 12) is preferably 3 or more. When the aspect ratio of the ventilation holes 11 is 3 or more, it becomes difficult for the plasma to reach the back surface of the electrode plate 10 for the plasma processing device, and the wear of the members arranged on the back surface of the electrode plate 10 for the plasma processing device is suppressed. Can be done. Further, in order to prevent the backflow of the gas for plasma generation, the aspect ratio of the ventilation holes 11 is preferably 50 or less.

含有SiC焼結体12は、図2に示すように、Y高濃度焼結基材13と、Y高濃度焼結基材13の少なくとも一方の表面に備えられているY濃度がY高濃度焼結基材13よりも低いY低濃度焼結層14とを有する。 As shown in FIG. 2, the Y 2 O 3- containing SiC sintered body 12 has a Y concentration provided on at least one surface of the Y high-concentration sintered base material 13 and the Y high-concentration sintered base material 13. It has a Y low-concentration sintered layer 14 that is lower than the Y high-concentration sintered base material 13.

Y高濃度焼結基材13は、Y濃度が0.3質量%以上7質量%以下の範囲とされている。Yは、通常、Yとして存在している。Yは焼結助剤として作用し、Y高濃度焼結基材13を緻密化させて、Y高濃度焼結基材13の強度や耐熱衝撃を向上させる作用がある。Y濃度が少なくなりすぎると、Y高濃度焼結基材13が緻密になりにくく、強度が低下するおそれがある。一方、Y濃度が多くなりすぎると、相対的にSiCの含有量が低減して、Y高濃度焼結基材13の強度や耐熱衝撃が低下するおそれがある。
以上のことから、本実施形態では、Y高濃度焼結基材13のY濃度を0.3質量%以上7質量%以下の範囲と設定している。なお、Y高濃度焼結基材13の強度と耐熱衝撃をより向上させるためには、Y濃度は0.8質量%以上5質量%以下の範囲にあることが好ましく、0.8質量%以上4質量%以下の範囲とあることが特に好ましい。
The Y high-concentration sintered base material 13 has a Y concentration in the range of 0.3% by mass or more and 7% by mass or less. Y usually exists as Y 2 O 3. Y 2 O 3 acts as a sintering aid and has an effect of densifying the Y high-concentration sintered base material 13 to improve the strength and thermal impact of the Y high-concentration sintered base material 13. If the Y concentration is too low, the Y high-concentration sintered base material 13 is unlikely to become dense, and the strength may decrease. On the other hand, if the Y concentration is too high, the SiC content may be relatively reduced, and the strength and thermal impact of the Y high-concentration sintered base material 13 may be lowered.
From the above, in the present embodiment, the Y concentration of the Y high-concentration sintered base material 13 is set in the range of 0.3% by mass or more and 7% by mass or less. In order to further improve the strength and thermal impact of the Y high-concentration sintered base material 13, the Y concentration is preferably in the range of 0.8% by mass or more and 5% by mass or less, and 0.8% by mass or more. It is particularly preferable that the range is 4% by mass or less.

Y高濃度焼結基材13の厚さは、1mm以上20mm以下の範囲にあることが好ましい。Y高濃度焼結基材13の厚さがこの範囲にあると、プラズマ処理装置用電極板10の強度が強く、プラズマによる反りや歪みが発生しにくく、またプラズマ生成用のガスを通過させることができる。 The thickness of the Y high-concentration sintered base material 13 is preferably in the range of 1 mm or more and 20 mm or less. When the thickness of the Y high-concentration sintered base material 13 is within this range, the strength of the electrode plate 10 for the plasma processing apparatus is strong, warpage and distortion due to plasma are unlikely to occur, and gas for plasma generation is allowed to pass through. Can be done.

Y低濃度焼結層14は、Y濃度がY高濃度焼結基材13よりも低く、Yが欠損している。このYの欠損によって、Y低濃度焼結層14には図2に示すように、微孔15が生成している。図3に示すように、Y低濃度焼結層14の微孔15に緻密質炭化珪素層16が入り込むことによって、Y低濃度焼結層14と緻密質炭化珪素層16との接合力が高まる効果が発揮される。この効果を確実に得るために、本実施形態では、Y高濃度焼結基材13に対するY低濃度焼結層14のY濃度の比(Y低濃度焼結層/Y高濃度焼結基材)が0.2以下とされている。Y高濃度焼結基材13に対するY低濃度焼結層14のY濃度の比は、0.01以上であることが好ましい。また、微孔15は、平均直径が0.1μm以上20μm以下の範囲にあることが好ましい。 The Y low-concentration sintered layer 14 has a lower Y concentration than the Y high-concentration sintered base material 13, and Y 2 O 3 is missing. As shown in FIG. 2, micropores 15 are formed in the Y low-concentration sintered layer 14 due to the deficiency of Y 2 O 3. As shown in FIG. 3, the bonding force between the Y low-concentration sintered layer 14 and the dense silicon carbide layer 16 is enhanced by the inclusion of the dense silicon carbide layer 16 in the micropores 15 of the Y low-concentration sintered layer 14. The effect is exhibited. In order to surely obtain this effect, in the present embodiment, the ratio of the Y concentration of the Y low concentration sintered layer 14 to the Y high concentration sintered base material 13 (Y low concentration sintered layer / Y high concentration sintered base material). ) Is 0.2 or less. The ratio of the Y concentration of the Y low concentration sintered layer 14 to the Y high concentration sintered base material 13 is preferably 0.01 or more. Further, the micropores 15 preferably have an average diameter in the range of 0.1 μm or more and 20 μm or less.

Y低濃度焼結層14の厚さが薄くなりすぎると、微孔15に入り込む緻密質炭化珪素層16の量が少なくなり、十分な接合力の向上が得られずに、緻密質炭化珪素層16が剥離しやすくなるおそれがある。一方、Y低濃度焼結層14の厚さが厚くなりすぎると、緻密質炭化珪素層16が入り込めない部分で剥離しやすくなるおそれがある。
以上のことから、本実施形態では、Y低濃度焼結層14の厚さを1.0mm以上1.9mm以下の範囲と設定している。なお、接合力の向上を確実に得るためには、Y低濃度焼結層14の厚さを1.3mm以上とすることが好ましい。
If the thickness of the Y low-concentration sintered layer 14 becomes too thin, the amount of the dense silicon carbide layer 16 that penetrates into the fine pores 15 decreases, and sufficient improvement in bonding force cannot be obtained, so that the dense silicon carbide layer cannot be obtained. 16 may be easily peeled off. On the other hand, if the thickness of the Y low-concentration sintered layer 14 becomes too thick, it may be easily peeled off at a portion where the dense silicon carbide layer 16 cannot enter.
From the above, in the present embodiment, the thickness of the Y low-concentration sintered layer 14 is set in the range of 1.0 mm or more and 1.9 mm or less. It is preferable that the thickness of the Y low-concentration sintered layer 14 is 1.3 mm or more in order to surely obtain an improvement in the bonding force.

緻密質炭化珪素層16は、密度3.20g/cm以上のSiCの層であることが好ましい。緻密質炭化珪素層16は、化学的気相成長法(CVD法)によって形成されたCVD−SiC層であることが好ましい。CVD法によって形成することによって、Y低濃度焼結層14の微孔15に緻密質炭化珪素層16が入り込みやすくなる。よって、CVD−SiC層は、Y低濃度焼結層14との接合力が高くなる。 The dense silicon carbide layer 16 is preferably a layer of SiC having a density of 3.20 g / cm 3 or more. The dense silicon carbide layer 16 is preferably a CVD-SiC layer formed by a chemical vapor deposition method (CVD method). By forming by the CVD method, the dense silicon carbide layer 16 can easily penetrate into the fine holes 15 of the Y low-concentration sintered layer 14. Therefore, the CVD-SiC layer has a high bonding force with the Y low-concentration sintered layer 14.

次に、本実施形態のプラズマ処理装置用電極板10の製造方法について説明する。
本実施形態のプラズマ処理装置用電極板10の製造方法は、図3に示すように、Y含有SiC焼結体の製造工程S01と、緻密質炭化珪素層の形成工程S02と、加工工程S03と、を備える。
Next, a method of manufacturing the electrode plate 10 for the plasma processing apparatus of the present embodiment will be described.
Method of manufacturing a plasma processing apparatus for electrode plates 10 of the present embodiment, as shown in FIG. 3, the manufacturing process S01 of Y 2 O 3 containing SiC sintered body, and forming step S02 of dense silicon carbide layer, processed The process S03 is provided.

(Y含有SiC焼結体の製造工程)
含有SiC焼結体の製造工程S01では、Y粉末とSiC粉末とを混合して得た原料粉末混合物を焼結させて、Y含有SiC焼結体を得る。Y含有SiC焼結体は、Y濃度が0.3質量%以上7質量%以下の範囲にあるY高濃度焼結基材と、Y高濃度焼結基材の少なくとも一方の表面に備えられているY濃度がY高濃度焼結基材よりも低いY低濃度焼結層とを有し、Y低濃度焼結層は厚さが1.0mm以上1.9mm以下の範囲にある焼結体とする。
( Manufacturing process of Y 2 O 3 containing SiC sintered body)
In the manufacturing process S01 of the Y 2 O 3 containing SiC sintered body, the raw material powder mixture obtained by mixing the Y 2 O 3 powder and the SiC powder is sintered to obtain a Y 2 O 3 containing SiC sintered body. .. The Y 2 O 3- containing SiC sintered body is formed on the surface of at least one of the Y high-concentration sintered base material having a Y concentration in the range of 0.3% by mass or more and 7% by mass or less and the Y high-concentration sintered base material. It has a Y low-concentration sintered layer having a Y concentration lower than that of the Y high-concentration sintered base material, and the Y low-concentration sintered layer has a thickness in the range of 1.0 mm or more and 1.9 mm or less. It is a sintered body.

原料粉末混合物のY粉末とSiC粉末の配合割合は、それらの合計に対するY粉末の含有量が0.5質量%以上8質量%以下の範囲となる割合であることが好ましい。Y粉末の含有量が少なくなりすぎると、SiCの焼結が進みにくくなり、得られるY含有SiC焼結体は、気孔率が高くなり、密度が低くなるため、強度が低下するおそれがある。また、Y低濃度焼結層14の厚さが薄くなりすぎるおそれがある。一方、Y23粉末の含有量が多くなりすぎると、相対的にSiCの含有量が少なくなるため、得られるY含有SiC焼結体は、強度と耐熱衝撃性が低くなるおそれがある。また、Y低濃度焼結層14の厚さが厚くなりすぎるおそれがある。 The blending ratio of the Y 2 O 3 powder and the SiC powder in the raw material powder mixture is preferably a ratio in which the content of the Y 2 O 3 powder is in the range of 0.5% by mass or more and 8% by mass or less with respect to the total of them. .. If the content of the Y 2 O 3 powder is too small, it becomes difficult to proceed with the sintering of SiC, and the obtained Y 2 O 3 containing SiC sintered body has a high porosity and a low density, so that the strength is high. It may decrease. In addition, the thickness of the Y low-concentration sintered layer 14 may become too thin. On the other hand, if the content of the Y 23 powder is too high, the content of SiC is relatively low, so that the obtained Y 2 O 3- containing SiC sintered body may have low strength and thermal shock resistance. .. In addition, the thickness of the Y low-concentration sintered layer 14 may become too thick.

SiC粉末としては、α−SiC粉末とβ−SiC粉末のいずれを用いてもよい。SiC粉末は、D50(メジアン径)が0.1μm以上10μm以下の範囲にあることが好ましい。また、SiC粉末は、純度が99.9質量%以上99.999質量%以下の範囲にあることが好ましい。また、Y粉末は、D50が1μm以上10μm以下の範囲にあることが好ましい。また、Y粉末は、純度が99.9質量%以上99.999質量%以下の範囲にあることが好ましい。 As the SiC powder, either α-SiC powder or β-SiC powder may be used. The SiC powder preferably has a D50 (median diameter) in the range of 0.1 μm or more and 10 μm or less. The purity of the SiC powder is preferably in the range of 99.9% by mass or more and 99.99% by mass or less. Further, the Y 2 O 3 powder preferably has a D50 in the range of 1 μm or more and 10 μm or less. The purity of the Y 2 O 3 powder is preferably in the range of 99.9% by mass or more and 99.999% by mass or less.

SiC粉末とY粉末とは、粉砕機能を有する混合装置を用いて混合することが好ましい。粉砕機能を有する混合装置としては、ボールミル装置を用いることができる。ボールミル装置のボールとしては、Si製ボール、SiC製ボールあるいはSiCより硬度が高い材質からなるボールを用いることが好ましい。ボールミル装置の容器としては金属成分を含まない樹脂製容器を用いることが好ましい。粉砕、混合後の原料粉末混合物中のY粉末の平均粒子径は、0.1μm以上8μm以下の範囲にあることが好ましい。0.1μm未満では、Yの欠損が生成しやすくなり、Y低濃度焼結層の気孔率が過度に大きくなるおそれがあり、逆に、8μm超えのY粉末では、Yの欠損が生成しにくくなり、気孔率が過度に小さくなるおそれがある。 The SiC powder and Y 2 O 3 powder, it is preferable to mix with the mixing apparatus having a pulverizing function. A ball mill device can be used as the mixing device having a crushing function. As the ball of the ball mill device, it is preferable to use a Si 3 N 4 ball, a SiC ball, or a ball made of a material having a hardness higher than that of SiC. As the container of the ball mill device, it is preferable to use a resin container that does not contain a metal component. The average particle size of the Y 2 O 3 powder in the raw material powder mixture after pulverization and mixing is preferably in the range of 0.1 μm or more and 8 μm or less. If it is less than 0.1 μm, Y 2 O 3 defects are likely to occur, and the porosity of the Y low-concentration sintered layer may become excessively large. On the contrary, if the Y 2 O 3 powder exceeds 8 μm, Y Defects of 2 O 3 are less likely to occur, and the porosity may become excessively small.

原料粉末混合物を焼結させる方法としては、ホットプレス法を用いることができる。具体的には、原料粉末混合物を、所定形状のモールド内に充填し、ホットプレス装置を用いて加圧焼成して焼結体を作製する。ホットプレス装置内の雰囲気は、還元雰囲気とすることが好ましい。還元雰囲気としては、炭化ガスや水素ガスを含む雰囲気とすることができる。焼成温度は、1900℃以上2100℃以下の範囲にあることが好ましい。焼成時の圧力は、20MPa以上40MPa以下の範囲にあることが好ましい。焼成時間は、2時間以上6時間以下の範囲にあることが好ましい。以上のように原料粉末混合物を、適切に調整された条件のホットプレス法を用いて焼結することによって、得られるY含有SiC焼結体の表層部分(Y低濃度焼結層)にはYの欠損が生成しやすくなり、微孔が形成されやすくなる。 As a method for sintering the raw material powder mixture, a hot press method can be used. Specifically, the raw material powder mixture is filled in a mold having a predetermined shape and fired under pressure using a hot press device to prepare a sintered body. The atmosphere inside the hot press device is preferably a reducing atmosphere. The reducing atmosphere can be an atmosphere containing carbonized gas or hydrogen gas. The firing temperature is preferably in the range of 1900 ° C. or higher and 2100 ° C. or lower. The pressure at the time of firing is preferably in the range of 20 MPa or more and 40 MPa or less. The firing time is preferably in the range of 2 hours or more and 6 hours or less. By sintering using raw material powder mixture, the hot press method of appropriately adjusting conditions as described above, the surface portion of the obtained Y 2 O 3 containing SiC sintered body (Y low concentration sintered layer) Y 2 O 3 deficiency is likely to occur, and micropores are likely to be formed.

(緻密質炭化珪素層の形成工程)
緻密質炭化珪素層の形成工程S02では、上記Y含有SiC焼結体の製造工程S01で得られたY含有SiC焼結体のY低濃度焼結層の表面に化学的気相成長法(CVD法)によって緻密質炭化珪素層(CVD−SiC層)を形成して、CVD−SiC層付Y含有SiC焼結体を得る。CVD法によるCVD−SiC層の形成条件については、特に制限はなく、通常のプラズマ処理装置用電極板の製造においてCVD−SiC層を成形する際に用いられている形成条件を採用できる。
(Step of forming a dense silicon carbide layer)
In forming step S02 of dense silicon carbide layer, the chemical on the surface of the Y 2 O 3 of Y 2 O 3 containing SiC sintered body obtained in the manufacturing process S01 containing SiC sintered body Y low density sintered layer vapor deposition to form dense silicon carbide layer by chemical vapor deposition (CVD) to (CVD-SiC layer), obtaining with CVD-SiC layer Y 2 O 3 containing SiC sintered body. The conditions for forming the CVD-SiC layer by the CVD method are not particularly limited, and the formation conditions used when forming the CVD-SiC layer in the production of an electrode plate for a normal plasma processing apparatus can be adopted.

(緻密質炭化珪素層の形成工程)
加工工程S03では、緻密質炭化珪素層の形成工程S02で得られたCVD−SiC層付Y含有SiC焼結体に対して、穴あけ加工を行って通気孔11を形成する。穴あけ加工としては、特に制限はなく、例えば、ドリルやレーザによる加工を用いることができる。
(Step of forming a dense silicon carbide layer)
In processing step S03, with respect to dense with the resultant CVD-SiC layer forming step S02 of the silicon carbide layer Y 2 O 3 containing SiC sintered body, to form a vent hole 11 by performing the drilling. The drilling process is not particularly limited, and for example, drilling or laser processing can be used.

以上のような構成とされた本実施形態であるプラズマ処理装置用電極板10によれば、電極基板としてYとSiCとを含むY含有SiC焼結体12を用い、Y含有SiC焼結体12は、Y高濃度焼結基材13と、このY高濃度焼結基材の少なくとも一方の表面に備えられているY低濃度焼結層14とを有している。Y高濃度焼結基材13はY濃度が0.3質量%以上7質量%以下の範囲にあり、焼結助剤として作用するYを比較的多く含むので、緻密で強度が高くなる。また、Y低濃度焼結層14は、Y濃度がY高濃度焼結基材よりも低く、Yの欠損による微孔15が形成されているので、この微孔15に緻密質炭化珪素層16が入り込むことによって、Y低濃度焼結層14と緻密質炭化珪素層16との接合力が高くなる。そして、Y低濃度焼結層14は厚さが1.0mm以上1.9mm以下の範囲にあり、Y低濃度焼結層14に多くの緻密質炭化珪素層16を入り込ませることができるので、Y含有SiC焼結体12と緻密質炭化珪素層16とを剥がれにくくすることが可能となる。 According to the electrode plate 10 for the plasma processing apparatus according to the present embodiment having the above configuration, the Y 2 O 3 containing SiC sintered body 12 containing Y 2 O 3 and SiC is used as the electrode substrate, and Y is used. 2 O 3 content SiC sintered body 12, Y high concentration sintered Yuimotozai 13, and a the Y-enriched sintered substrate of at least one Y of is provided on the surface lightly doped sintered layer 14 ing. Y-enriched sintered Yuimotozai 13 is in the range Y concentration below 0.3 wt% or more 7 wt%, because it contains a relatively large amount of Y 2 O 3 which acts as a sintering aid, a dense and high strength Become. Further, Y low concentration sintered layer 14, Y concentration is lower than Y-enriched sintered substrate, the fine holes 15 by loss of Y 2 O 3 is formed, dense this microporous 15 carbide By incorporating the silicon layer 16, the bonding force between the Y low-concentration sintered layer 14 and the dense silicon carbide layer 16 is increased. The Y low-concentration sintered layer 14 has a thickness in the range of 1.0 mm or more and 1.9 mm or less, and many dense silicon carbide layers 16 can be inserted into the Y low-concentration sintered layer 14. It is possible to make it difficult for the Y 2 O 3 containing SiC sintered body 12 and the dense silicon carbide layer 16 to be peeled off.

さらに、本発明のプラズマ処理装置用電極板10においては、Y高濃度焼結基材13に対するY低濃度焼結層14のY濃度の比が0.2以下とされており、Y低濃度焼結層14には、Yの欠損による微孔15が多数形成されているので、Y含有SiC焼結体12と緻密質炭化珪素層16とがより確実に剥がれにくくなる。 Further, in the electrode plate 10 for the plasma processing apparatus of the present invention, the ratio of the Y concentration of the Y low concentration sintered layer 14 to the Y high concentration sintered base material 13 is 0.2 or less, and the Y low concentration baking is performed. the sintered layer 14, since the fine holes 15 by loss of Y 2 O 3 is formed a number, and Y 2 O 3 containing SiC sintered body 12 and the dense silicon carbide layer 16 is less likely to reliably peel off.

また、本発明のプラズマ処理装置用電極板の製造方法によれば、Y濃度がY高濃度焼結基材よりも低く、Yの欠損による微孔が形成されているY低濃度焼結層の表面に、CVD法によってCVD−SiC層を形成するので、Y低濃度焼結層の微孔に緻密質炭化珪素層を確実に入り込ませることができる。よって、Y含有SiC焼結体と緻密質炭化珪素層とが剥がれにくいプラズマ処理装置用電極板を得ることができる。 Further, according to the method for producing an electrode plate for a plasma processing apparatus of the present invention, the Y concentration is lower than that of the Y high-concentration sintered base material, and the Y low-concentration firing in which micropores are formed due to the defect of Y 2 O 3. Since the CVD-SiC layer is formed on the surface of the layer by the CVD method, the dense silicon carbide layer can be surely penetrated into the micropores of the Y low-concentration sintered layer. Thus, Y 2 O 3 can be the containing SiC sintered body and dense silicon carbide layer to obtain a peeling difficult for a plasma processing apparatus electrode plate.

さらに、本発明のプラズマ処理装置用電極板の製造方法においては、Y低濃度焼結層の気孔率が3%以上10%以下の範囲とされており、Y低濃度焼結層には、Yの欠損による微孔が多数形成されているので、Y含有SiC焼結体と緻密質炭化珪素層とをより確実に剥がれにくくすることができる。 Further, in the method for manufacturing an electrode plate for a plasma processing apparatus of the present invention, the porosity of the Y low-concentration sintered layer is in the range of 3% or more and 10% or less, and the Y low-concentration sintered layer has Y. Since a large number of micropores are formed due to the defect of 2 O 3 , the Y 2 O 3 containing SiC sintered body and the dense silicon carbide layer can be more reliably prevented from peeling off.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、本実施形態では、プラズマ処理装置用電極板10を円板状としたが、プラズマ処理装置用電極板10の形状は特に制限はなく、角板状としてもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the invention.
For example, in the present embodiment, the electrode plate 10 for the plasma processing device has a disk shape, but the shape of the electrode plate 10 for the plasma processing device is not particularly limited and may be a square plate shape.

以下に、本発明に係るプラズマ処理装置用電極板の作用効果を確認するために行った評価試験の結果について説明する。 The results of the evaluation test conducted to confirm the action and effect of the electrode plate for the plasma processing apparatus according to the present invention will be described below.

[本発明例1〜4、比較例1〜4]
原料粉末として、β−SiC粉末(純度:99.9質量%、平均粒子径:0.4μm)とY粉末(純度:99.9質量%、平均粒子径:3.5μm)とを用意した。
[Examples 1 to 4 of the present invention, Comparative Examples 1 to 4]
As raw material powders, beta-SiC powder (purity: 99.9 wt%, average particle size: 0.4 .mu.m) and Y 2 O 3 powder (purity: 99.9 wt%, average particle diameter: 3.5 [mu] m) and the I prepared it.

SiC粉末とY粉末とを、下記表1に示す配合割合となるように秤量し、ボールミル装置の容器にボールと共に投入し、下記表1に記載の混合時間にて混合した。ボールミル装置の容器は、樹脂製容器を用い、ボールはSi製ボールを用いた。 The SiC powder and the Y 2 O 3 powder were weighed so as to have the blending ratios shown in Table 1 below, put into the container of the ball mill device together with the balls, and mixed at the mixing time shown in Table 1 below. A resin container was used as the container of the ball mill device, and a Si 3 N 4 ball was used as the ball.

得られた原料粉末混合物を、グラファイト製のモールドに充填し、次いで真空ホットプレス装置を用いて、温度1950℃、圧力34.3MPaの条件で4時間加圧焼成して、直径が380mmで、厚さ10mmのY含有SiC焼結体を作製した。加圧焼成の際、モールド内は、グラファイト製部材から発生する炭化ガスにより還元雰囲気とした。得られたY含有SiC焼結体に対して、比較例3では、Y低濃度焼結層の厚さが0.8mmとなるように、研磨加工を行った。その他の本発明例1〜4および比較例1、2、4では、研磨加工は行わなかった。 The obtained raw material powder mixture was filled in a graphite mold and then pressure-baked for 4 hours at a temperature of 1950 ° C. and a pressure of 34.3 MPa using a vacuum hot press device to have a diameter of 380 mm and a thickness of 34.3 MPa. is to prepare a Y 2 O 3 containing SiC sintered body 10 mm. At the time of pressure firing, the inside of the mold was made into a reducing atmosphere by the carbonized gas generated from the graphite member. The obtained Y 2 O 3 containing SiC sintered body was polished so that the thickness of the Y low concentration sintered layer was 0.8 mm in Comparative Example 3. In other Examples 1 to 4 of the present invention and Comparative Examples 1, 2 and 4, no polishing process was performed.

得られたY含有SiC焼結体について、下記の評価を行った。その結果を下記の表1に示す。 The obtained Y 2 O 3 containing SiC sintered body was evaluated as follows. The results are shown in Table 1 below.

(Y低濃度焼結層の厚さ)
Y低濃度焼結層の厚さは、走査型電子顕微鏡(SEM)と電子線マイクロアナライザ(EPMA)とを用いて測定した。Y含有SiC焼結体を、切断機を用いて切断し、得られた切断面をSEMで観察しながら、EPMAでY濃度を測定し、Y含有SiC焼結体の厚さ方向の中央部のY濃度に対するY濃度の比が0.2以下となる領域の厚さを、Y低濃度焼結層の厚さとした。なお、Y低濃度焼結層の厚さは、Y含有SiC焼結体の両面について測定し、表1には、その平均値を記載した。
(Thickness of Y low-concentration sintered layer)
The thickness of the Y low-concentration sintered layer was measured using a scanning electron microscope (SEM) and an electron probe microanalyzer (EPMA). The Y 2 O 3 containing SiC sintered body was cut using a cutting machine, and the Y concentration was measured by EPMA while observing the obtained cut surface with SEM, and the thickness of the Y 2 O 3 containing SiC sintered body was measured. The thickness of the region where the ratio of the Y concentration to the Y concentration in the central portion in the longitudinal direction was 0.2 or less was defined as the thickness of the Y low concentration sintered layer. The thickness of the Y low density sintered layer was measured for both sides of the Y 2 O 3 containing SiC sintered body, in Table 1, describing the average value.

(Y濃度)
含有SiC焼結体の表面のY濃度をグロー放電質量分析法(GD−MS)により測定し、これをY低濃度焼結層のY濃度とした。
次いで、Y含有SiC焼結体の径方向および厚さ方向の中心部からサンプルを切り出し、そのY濃度をGD−MSにより測定し、これをY高濃度焼結基材のY濃度とした。なお、表1には、Y濃度比として、Y低濃度焼結層のY濃度とY高濃度焼結基材のY濃度の比(Y低濃度焼結層/Y高濃度焼結基材)を併せて記載した。
(Y concentration)
The Y concentration on the surface of the Y 2 O 3 containing SiC sintered body was measured by glow discharge mass spectrometry (GD-MS), and this was defined as the Y concentration of the Y low concentration sintered layer.
Next, a sample was cut out from the center of the Y 2 O 3 containing SiC sintered body in the radial and thickness directions, and the Y concentration thereof was measured by GD-MS, which was referred to as the Y concentration of the Y high concentration sintered base material. bottom. In Table 1, the Y concentration ratio is the ratio of the Y concentration of the Y low concentration sintered layer to the Y concentration of the Y high concentration sintered base material (Y low concentration sintered layer / Y high concentration sintered base material). Was also described.

(気孔率)
Y低濃度焼結層の気孔率は、上記で測定したY低濃度焼結層の厚さに基づいて、Y含有SiC焼結体のY低濃度焼結層を切り出し、この切り出したY低濃度焼結層を用いて水中密度計により測定した。
Y高濃度焼結基材の気孔率は、Y含有SiC焼結体の径方向および厚さ方向の中央から縦5mm×横5mm×厚さ5mmのサイズの立方体状のサンプルを切り出し、この切り出したサンプルを用いて水中密度計により測定した。
(Porosity)
The porosity of the Y low-concentration sintered layer was determined by cutting out the Y low-concentration sintered layer of the Y 2 O 3- containing SiC sintered body based on the thickness of the Y low-concentration sintered layer measured above. Y Measured with an underwater densitometer using a low-concentration sintered layer.
For the porosity of the Y high-concentration sintered base material, a cubic sample having a size of 5 mm in length × 5 mm in width × 5 mm in thickness was cut out from the center in the radial and thickness directions of the Y 2 O 3 containing SiC sintered body. This cut-out sample was used for measurement with an underwater densitometer.

(基材強度)
各焼結体の中心部から、長さ40mm×幅4mm×厚さ3mmの長方体状のサンプルを切り出し、この切り出したサンプルを用いてJIS R 1601(ファインセラミックスの室温曲げ強さ試験方法)に規定された方法に基づいて、三点曲げ強度を測定した。
(Base strength)
A rectangular sample of 40 mm in length × 4 mm in width × 3 mm in thickness is cut out from the center of each sintered body, and JIS R 1601 (room temperature bending strength test method for fine ceramics) is used using the cut out sample. The three-point bending strength was measured based on the method specified in.

(耐熱衝撃性)
含有SiC焼結体を100℃、200℃、300℃、400℃、500℃、600℃の各温度に保持した電気炉にそれぞれ投入し、その温度で30分加熱した後、十分な量の水を貯めて室温に保持した水槽に投入し急冷した。冷却後のY含有SiC焼結体を目視で観察し、割れがないか確認した。割れが確認されなかった加熱温度の最高温度を、耐熱衝撃性とした。
(Heat-resistant impact resistance)
Y 2 O 3 containing SiC sintered to 100 ℃, 200 ℃, 300 ℃ , 400 ℃, 500 ℃, poured respectively in an electric furnace maintained at respective temperatures of 600 ° C., was heated at that temperature for 30 minutes, sufficient A large amount of water was stored and placed in a water tank kept at room temperature for quenching. The Y 2 O 3 containing SiC sintered body after cooling was visually observed, and confirmed that there are no cracks. The maximum heating temperature at which no cracks were confirmed was defined as thermostable impact resistance.

(CVD−SiC層付Y含有SiC焼結体のCVD−SiC層の剥がれ)
含有SiC焼結体を基材とし、その片側表面に、CVD装置を用いて厚さ2mmのCVD−SiC層(3.20g/cm以上)を形成して、CVD−SiC層付Y含有SiC焼結体を作製した。このCVD−SiC層付Y含有SiC焼結体に、厚さ方向に貫通する直径0.5mmの通気孔を、8mmピッチで1000個、同心円状に形成し、プラズマ処理装置用電極板を得た。
(Peeling of CVD-SiC layer with Y 2 O 3 CVD-SiC layer containing SiC sinter)
A Y 2 O 3- containing SiC sintered body is used as a base material, and a CVD-SiC layer (3.20 g / cm 3 or more) having a thickness of 2 mm is formed on one side surface thereof using a CVD device to form a CVD-SiC layer. It was prepared with Y 2 O 3 containing SiC sintered body. This with CVD-SiC layer Y 2 O 3 containing SiC sintered body, the vent hole diameter 0.5mm penetrating in the thickness direction, 1000 in 8mm pitch, formed concentrically, a plasma processing apparatus for electrode plates Got

作製した電極板を、RIE(反応性イオンエッチング、Reactive Ion Etching)プラズマエッチング装置に取付けた。次いで、RIEプラズマエッチング装置内を真空とした後、SFガスを50sccmで導入し、300Wで、1時間、電極板にプラズマ照射した。プラズマ照射後、電極板をRIEプラズマエッチング装置から取出し、その表面を光学顕微鏡(100倍)で、10か所、総観察視野面積が12mmとなるように観察して、CVD−SiC層の剥がれの有無を確認した。10か所中、剥離が確認された数を、表1に示す。 The prepared electrode plate was attached to a RIE (Reactive Ion Etching) plasma etching apparatus. Next, after the inside of the RIE plasma etching apparatus was evacuated, SF 6 gas was introduced at 50 sccm, and the electrode plate was plasma-irradiated at 300 W for 1 hour. After plasma irradiation, the electrode plate is taken out from the RIE plasma etching apparatus, and the surface thereof is observed with an optical microscope (100 times) at 10 places so that the total observation field area is 12 mm 2, and the CVD-SiC layer is peeled off. The presence or absence of was confirmed. Table 1 shows the number of confirmed peelings out of 10 locations.

Figure 0006950508
Figure 0006950508

の配合量が0.1質量%とされた比較例1では、Y含有SiC焼結体のY高濃度焼結基材のY濃度が本発明の範囲よりも低く、Y低濃度焼結層の厚さが測定できなかった。また、Y含有SiC焼結体の基材強度が低下した。これは、Yの配合量が少なくなりすぎたため、SiCの焼結が進まずに、Y含有SiC焼結体全体の気孔率が高くなり、密度が低くなったためと考えられる。また、CVD−SiC層付Y含有SiC焼結体は、プラズマ照射後にCVD−SiC層の剥がれが見られた。これは、Y含有SiC焼結体全体の強度が低くなったためであると考えられる。
一方、Yの配合量が9質量%とされた比較例2では、Y含有SiC焼結体のY高濃度焼結基材のY濃度が本発明の範囲よりも高く、Y低濃度焼結層の厚さが本発明の範囲よりも厚くなった。また、基材強度と耐熱衝撃性が低くなった。これは、相対的にSiCの含有量が低下したためであると考えられる。また、CVD−SiC層付Y含有SiC焼結体は、プラズマ照射後にCVD−SiC層の剥がれが見られた。これは、Y含有SiC焼結体全体の基材強度と耐熱衝撃性が低下したためであると考えられる。
In Comparative Example 1 in which the blending amount of Y 2 O 3 was 0.1% by mass, the Y concentration of the Y high-concentration sintered base material of the Y 2 O 3- containing SiC sintered body was lower than the range of the present invention. Y The thickness of the low-concentration sintered layer could not be measured. Further, the substrate strength of Y 2 O 3 containing SiC sintered body is lowered. It is considered that this is because the amount of Y 2 O 3 blended was too small, so that the SiC sintering did not proceed, and the porosity of the entire Y 2 O 3 containing SiC sintered body became high and the density became low. .. Further, CVD-SiC Y 2 O 3 containing SiC sintered body with layers, peeling of CVD-SiC layer after the plasma irradiation was observed. This, Y 2 O 3 containing SiC sintered overall strength is believed to be due to lower.
On the other hand, in Comparative Example 2 in which the blending amount of Y 2 O 3 was 9% by mass, the Y concentration of the Y high-concentration sintered base material of the Y 2 O 3- containing SiC sintered body was higher than the range of the present invention. The thickness of the Y low-concentration sintered layer became thicker than the range of the present invention. In addition, the strength of the base material and the thermal impact resistance were lowered. It is considered that this is because the content of SiC was relatively reduced. Further, CVD-SiC Y 2 O 3 containing SiC sintered body with layers, peeling of CVD-SiC layer after the plasma irradiation was observed. This, Y 2 O 3 substrate strength of the whole containing SiC sintered body and the thermal shock resistance is considered to be due to decreased.

含有SiC焼結体のY低濃度焼結層の厚さが本発明の範囲よりも薄い比較例3では、プラズマ照射後にCVD−SiC層の剥がれが見られた。これは、Y低濃度焼結層の微孔による接合力の向上が十分に発揮されなかったためであると考えられる。
含有SiC焼結体のY低濃度焼結層の厚さが本発明の範囲よりも厚い比較例4では、プラズマ照射後にCVD−SiC層の剥がれが見られた。これは、Y低濃度焼結層が厚くなりすぎたため、CVD−SiC層が入り込めない部分で剥離が生じたためであると考えられる。なお、比較例4では、粉砕混合時間を8時間と短くして、原料粉末混合物中のY粉末の粒子径を相対的に大きくすることによって、Y低濃度焼結層の厚さを厚くした。
In Comparative Example 3 in which the thickness of the Y low-concentration sintered layer of the Y 2 O 3- containing SiC sintered body was thinner than the range of the present invention, peeling of the CVD-SiC layer was observed after plasma irradiation. It is considered that this is because the improvement of the bonding force due to the fine pores of the Y low-concentration sintered layer was not sufficiently exhibited.
In Comparative Example 4 in which the thickness of the Y low-concentration sintered layer of the Y 2 O 3- containing SiC sintered body was thicker than the range of the present invention, peeling of the CVD-SiC layer was observed after plasma irradiation. It is considered that this is because the Y low-concentration sintered layer became too thick and peeling occurred in the portion where the CVD-SiC layer could not enter. In Comparative Example 4, the thickness of the Y low-concentration sintered layer was increased by shortening the pulverization and mixing time to 8 hours and relatively increasing the particle size of the Y 2 O 3 powder in the raw material powder mixture. I made it thicker.

これに対して、本発明例1〜4で得られたY含有SiC焼結体は、Y高濃度焼結基材のY濃度が0.3質量%以上7質量%以下の範囲にあり、Y低濃度焼結層は厚さが1.0mm以上1.9mm以下の範囲にあって、基材強度と耐熱衝撃性に優れていた。また、このY含有SiC焼結体にCVD−SiC層を形成したCVD−SiC層付Y含有SiC焼結体は、プラズマ照射後にCVD−SiC層の剥がれが見らなかった。
したがって、本発明例によれば、プラズマ処理装置用電極板として有用なCVD−SiC層付Y含有SiC焼結体を提供できることが確認された。
On the other hand, in the Y 2 O 3- containing SiC sintered body obtained in Examples 1 to 4 of the present invention, the Y concentration of the Y high-concentration sintered base material is in the range of 0.3% by mass or more and 7% by mass or less. The Y low-concentration sintered layer had a thickness in the range of 1.0 mm or more and 1.9 mm or less, and was excellent in substrate strength and thermal shock resistance. Further, in the Y 2 O 3 containing SiC sintered body with the CVD-SiC layer in which the CVD-SiC layer was formed on the Y 2 O 3 containing SiC sintered body, the CVD-SiC layer was not peeled off after plasma irradiation. ..
Therefore, according to the present invention embodiment, it was confirmed that can provide useful with CVD-SiC layer Y 2 O 3 containing SiC sintered body as a plasma processing apparatus for electrode plates.

10 プラズマ処理装置用電極板
11 通気孔
12 Y含有SiC焼結体
13 Y高濃度焼結基材
14 Y低濃度焼結層
15 微孔
16 緻密質炭化珪素層
10 Electrode plate for plasma processing equipment 11 Vent holes 12 Y 2 O 3- containing SiC sintered body 13 Y High-concentration sintered base material 14 Y Low-concentration sintered layer 15 Fine holes 16 Dense silicon carbide layer

Claims (4)

とSiCとを含むY含有SiC焼結体と、前記Y含有SiC焼結体の少なくとも一方の表面に備えられている緻密質炭化珪素層とを有するプラズマ処理装置用電極板であって、
前記Y含有SiC焼結体は、Y濃度が0.3質量%以上7質量%以下の範囲にあるY高濃度焼結基材と、前記Y高濃度焼結基材の少なくとも一方の表面に備えられているY濃度が前記Y高濃度焼結基材よりも低いY低濃度焼結層とを有し、前記Y低濃度焼結層は厚さが1.0mm以上1.9mm以下の範囲にあり、
前記緻密質炭化珪素層は、前記Y低濃度焼結層側の表面に備えられていることを特徴とするプラズマ処理装置用電極板。
Plasma treatment with a Y 2 O 3 containing SiC sintered body containing Y 2 O 3 and SiC and a dense silicon carbide layer provided on at least one surface of the Y 2 O 3 containing SiC sintered body. It is an electrode plate for equipment
The Y 2 O 3- containing SiC sintered body includes at least one of the Y high-concentration sintered base material having a Y concentration in the range of 0.3% by mass or more and 7% by mass or less and the Y high-concentration sintered base material. The surface has a Y low-concentration sintered layer having a Y concentration lower than that of the Y high-concentration sintered base material, and the Y low-concentration sintered layer has a thickness of 1.0 mm or more and 1.9 mm or less. Is in the range of
An electrode plate for a plasma processing apparatus, wherein the dense silicon carbide layer is provided on the surface of the Y low-concentration sintered layer side.
前記Y高濃度焼結基材に対する前記Y低濃度焼結層のY濃度の比が0.2以下であることを特徴とする請求項1に記載のプラズマ処理装置用電極板。 The electrode plate for a plasma processing apparatus according to claim 1, wherein the ratio of the Y concentration of the Y low-concentration sintered layer to the Y high-concentration sintered base material is 0.2 or less. とSiCとを含むY含有SiC焼結体と、前記Y含有SiC焼結体の少なくとも一方の表面に備えられている緻密質炭化珪素層とを有するプラズマ処理装置用電極板の製造方法であって、
Y濃度が0.3質量%以上7質量%以下の範囲にあるY高濃度焼結基材と、前記Y高濃度焼結基材の少なくとも一方の表面に備えられているY濃度が前記Y高濃度焼結基材よりも低いY低濃度焼結層とを有し、前記Y低濃度焼結層は厚さが1.0mm以上1.9mm以下の範囲にあるY含有SiC焼結体の前記Y低濃度焼結層の表面に、化学的気相成長法によって緻密質炭化珪素層を形成する工程を有することを特徴とするプラズマ処理装置用電極板の製造方法。
Plasma treatment with a Y 2 O 3 containing SiC sintered body containing Y 2 O 3 and SiC and a dense silicon carbide layer provided on at least one surface of the Y 2 O 3 containing SiC sintered body. It is a method of manufacturing electrode plates for equipment.
The Y concentration provided on at least one surface of the Y high-concentration sintered base material having a Y concentration in the range of 0.3% by mass or more and 7% by mass or less and the Y high-concentration sintered base material is the Y high. and a low Y low concentration sintered layer than the concentration sintered substrate, the Y low density sintered layer is in 1.9mm below the range of 1.0mm thickness Y 2 O 3 containing SiC sintered A method for manufacturing an electrode plate for a plasma processing apparatus, which comprises a step of forming a dense silicon carbide layer on the surface of the Y low-concentration sintered layer of the body by a chemical vapor phase growth method.
Y低濃度焼結層の気孔率が3%以上10%以下の範囲にある請求項3に記載のプラズマ処理装置用電極板の製造方法。 Y The method for manufacturing an electrode plate for a plasma processing apparatus according to claim 3, wherein the porosity of the low-concentration sintered layer is in the range of 3% or more and 10% or less.
JP2017237943A 2017-12-12 2017-12-12 Manufacturing method of electrode plate for plasma processing equipment and electrode plate for plasma processing equipment Active JP6950508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017237943A JP6950508B2 (en) 2017-12-12 2017-12-12 Manufacturing method of electrode plate for plasma processing equipment and electrode plate for plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017237943A JP6950508B2 (en) 2017-12-12 2017-12-12 Manufacturing method of electrode plate for plasma processing equipment and electrode plate for plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2019106292A JP2019106292A (en) 2019-06-27
JP6950508B2 true JP6950508B2 (en) 2021-10-13

Family

ID=67061530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017237943A Active JP6950508B2 (en) 2017-12-12 2017-12-12 Manufacturing method of electrode plate for plasma processing equipment and electrode plate for plasma processing equipment

Country Status (1)

Country Link
JP (1) JP6950508B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022545494A (en) * 2019-08-23 2022-10-27 シルフェックス・インコーポレーテッド 3D Printing of Fully Dense, Crack-Free Silicon by Selective Laser Melting/Sintering at High Temperature
JP7319205B2 (en) * 2020-01-29 2023-08-01 日本碍子株式会社 Dense composite material, manufacturing method thereof, bonded body and member for semiconductor manufacturing equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4057443B2 (en) * 2003-02-10 2008-03-05 日本碍子株式会社 Semiconductor manufacturing apparatus member and manufacturing method thereof
JP2005285845A (en) * 2004-03-26 2005-10-13 Ibiden Co Ltd Gas-jetting board for plasma etching apparatus
JP5082246B2 (en) * 2006-01-20 2012-11-28 東京エレクトロン株式会社 Electrode for generating plasma, plasma processing apparatus, and method for manufacturing electrode for generating plasma
JP2010189203A (en) * 2009-02-16 2010-09-02 Sumitomo Osaka Cement Co Ltd SiC-BASED ABRASION RESISTANT MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP6850252B2 (en) * 2015-03-31 2021-03-31 北陸成型工業株式会社 Silicon carbide member for plasma processing equipment

Also Published As

Publication number Publication date
JP2019106292A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP5345580B2 (en) Ceramic heater and manufacturing method thereof
JP6697363B2 (en) Semiconductor manufacturing equipment member, manufacturing method thereof, and heater with shaft
JP5836522B2 (en) Method for manufacturing silicon nitride substrate
KR102347643B1 (en) Aluminum nitride sintered compact and semiconductor holding device
JP6950508B2 (en) Manufacturing method of electrode plate for plasma processing equipment and electrode plate for plasma processing equipment
EP3061739B1 (en) Silicon nitride substrate and silicon nitride circuit board using same
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP2010006635A (en) Silicon nitride sintered body
WO2019235594A1 (en) Plate-like silicon nitride sintered body and production method thereof
JP5450059B2 (en) Magnetron stem, magnetron using the same, and method for manufacturing magnetron stem
KR20190119038A (en) Regeneration method of electrode plate for plasma processing device and electrode plate for plasma processing device
JP3983362B2 (en) Porous composite ceramics and method for producing the same
JP2011111341A (en) Aluminum nitride substrate having oxidized layer, method for producing the substrate, circuit board obtained by using the substrate, and led module
KR101972350B1 (en) A ZrC Composites and A Manufacturing method of the same
KR101639576B1 (en) Manufacturing Method of Sintered Reaction Bonded Silicon Nitride With High Thermal Conductivity
JP2007217215A (en) Silicon carbide sintered compact tool used for manufacturing semiconductor, and method of manufacturing the same
JP6855958B2 (en) Manufacturing method of electrode plate for plasma processing equipment and electrode plate for plasma processing equipment
EP1953124B1 (en) Graphite member for beam-line internal member of ion implantation apparatus
JP4615873B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JPWO2020090832A1 (en) Manufacturing method of silicon nitride substrate and silicon nitride substrate
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2018070436A (en) Production method of silicon nitride sintered body
JP2009221028A (en) Yttrium oxide material, and member for semiconductor manufacturing apparatus
JP2000327424A (en) Aluminum nitride base sintered compact, its production and susceptor using the same
JP5864631B2 (en) Silicon nitride sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6950508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150