JP6948077B2 - A polymerizable composition using N-substituted (meth) acrylamide, a polymer thereof, and a molded product comprising them. - Google Patents

A polymerizable composition using N-substituted (meth) acrylamide, a polymer thereof, and a molded product comprising them. Download PDF

Info

Publication number
JP6948077B2
JP6948077B2 JP2019145326A JP2019145326A JP6948077B2 JP 6948077 B2 JP6948077 B2 JP 6948077B2 JP 2019145326 A JP2019145326 A JP 2019145326A JP 2019145326 A JP2019145326 A JP 2019145326A JP 6948077 B2 JP6948077 B2 JP 6948077B2
Authority
JP
Japan
Prior art keywords
meth
acrylamide
adhesive composition
acrylate
koh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019145326A
Other languages
Japanese (ja)
Other versions
JP2020007552A (en
Inventor
晴香 古荘
晴香 古荘
新太郎 龍野
新太郎 龍野
増田 英樹
英樹 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KJ Chemicals Corp
Original Assignee
KJ Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015091502A external-priority patent/JP6634556B2/en
Application filed by KJ Chemicals Corp filed Critical KJ Chemicals Corp
Priority to JP2019145326A priority Critical patent/JP6948077B2/en
Publication of JP2020007552A publication Critical patent/JP2020007552A/en
Application granted granted Critical
Publication of JP6948077B2 publication Critical patent/JP6948077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱に暴露あるいは光に暴露した場合においても、着色や変色が極めて少なく、金属に接触しても、腐食を生じず、N−置換(メタ)アクリルアミドを用いた重合性樹脂組成物、該組成物を重合して得られる重合物及び、該組成物と重合物からなる成形品に関する。 The present invention is a polymerizable resin composition using N-substituted (meth) acrylamide, which has very little coloring or discoloration even when exposed to heat or light, does not cause corrosion even when in contact with a metal. The present invention relates to a polymer obtained by polymerizing the composition, and a molded product composed of the composition and the polymer.

近年、N−置換(メタ)アクリルアミドは光学部材用粘着剤、偏光板用活性エネルギー硬化性接着剤、光造形用樹脂組成物やインクジェット用インク、半導体や電子材料用封止材、ガラスや樹脂成形品のコーティング剤等の原料モノマーとして幅広く応用されるようになった(特許文献1〜4)。特に、アミド基の凝集力が高く、各種基材に対する密着性に優れており、金属あるいは金属酸化物に対して腐食性を有しないため、(メタ)アクリル酸の代替として用いられることが多く報告されてきた(特許文献5〜7)。しかし、N−置換(メタ)アクリルアミドは光照射や加熱による黄変が生じやすいという指摘があり、また(メタ)アクリル酸などの酸性成分が含有される場合、長期に渡って金属に対する腐食発生の恐れがあった。そのため、電子材料、光学材料などの用途において、N−置換(メタ)アクリルアミドの配合量を低減するケースや(特許文献8)、または完全に用いないケースもあった(特許文献9、10)。 In recent years, N-substituted (meth) acrylamide has been used as an adhesive for optical members, an active energy curable adhesive for polarizing plates, a resin composition for stereolithography, an ink for inkjet, a sealing material for semiconductors and electronic materials, and glass and resin molding. It has come to be widely applied as a raw material monomer for coating agents of products (Patent Documents 1 to 4). In particular, it is often reported that it is used as a substitute for (meth) acrylic acid because it has high cohesiveness of amide groups, excellent adhesion to various substrates, and does not have corrosiveness to metals or metal oxides. (Patent Documents 5 to 7). However, it has been pointed out that N-substituted (meth) acrylamide is prone to yellowing due to light irradiation or heating, and when acidic components such as (meth) acrylic acid are contained, corrosion of metals occurs over a long period of time. I was afraid. Therefore, in applications such as electronic materials and optical materials, there are cases where the blending amount of N-substituted (meth) acrylamide is reduced (Patent Document 8), or cases where it is not completely used (Patent Documents 9 and 10).

そこで、N−置換(メタ)アクリルアミドを樹脂組成成分として使用したときに、硬化膜の経時的耐湿熱黄変性を抑制するため、本発明者らがアミン系不純物の低減(特許文献11)や酸化防止剤や紫外線吸収剤などを添加することを提案してきた(特許文献12、13)。これらの提案により加熱黄変が確かに改善されたが、高純度品N−置換(メタ)アクリルアミドを取得するための精製工程追加、黄変を抑制するための添加剤配合等でコストが上昇し、また添加剤による最終製品への影響懸念が残っている。 Therefore, when N-substituted (meth) acrylamide is used as a resin composition component, the present inventors reduce amine-based impurities and oxidize in order to suppress the time-dependent heat-resistant heat denaturation of the cured film. It has been proposed to add an inhibitor, an ultraviolet absorber, or the like (Patent Documents 12 and 13). These proposals did improve heating yellowing, but the cost increased due to the addition of a purification process to obtain high-purity N-substituted (meth) acrylamide and the addition of additives to suppress yellowing. In addition, there remains concern about the impact of additives on the final product.

一方、N−置換(メタ)アクリルアミドが活性エネルギー線硬化性樹脂の構成成分としてよく使用されているが、紫外線、可視光など光照射による着色や変色の抑制方法について、未だに報告されてない。 On the other hand, N-substituted (meth) acrylamide is often used as a constituent component of an active energy ray-curable resin, but a method for suppressing coloring or discoloration by light irradiation such as ultraviolet rays and visible light has not yet been reported.

特開2008−287207号公報Japanese Unexamined Patent Publication No. 2008-287207 特開2011−122013号公報Japanese Unexamined Patent Publication No. 2011-12203 特開2001−310918号公報Japanese Unexamined Patent Publication No. 2001-310918 特開2010−155889号公報Japanese Unexamined Patent Publication No. 2010-155889 特開2011−137181号公報Japanese Unexamined Patent Publication No. 2011-137181 特開2010−235646号公報Japanese Unexamined Patent Publication No. 2010-235646 特開2013−256552号公報Japanese Unexamined Patent Publication No. 2013-256552 特開2008−24818号公報Japanese Unexamined Patent Publication No. 2008-24818 特開2005−255877号公報Japanese Unexamined Patent Publication No. 2005-255877 特開2005−015524号公報Japanese Unexamined Patent Publication No. 2005-015524 特開2012−025675号公報Japanese Unexamined Patent Publication No. 2012-0256775 特開2013−035893号公報Japanese Unexamined Patent Publication No. 2013-035893 特開2013−057020号公報Japanese Unexamined Patent Publication No. 2013-057020

本発明が解決しようとする課題は、特殊な精製工程が必要せず、一般的な製造方法で生産される工業品グレードのN−置換(メタ)アクリルアミドを含有し、懸念のある添加剤の配合も必要せず、熱に暴露あるいは光に暴露した場合において、着色や変色(黄変)が極めて少なく、光学用途を含む各種機能性材料としても有用な重合性樹脂組成物を提供する。また、重合性樹脂組成物を重合してなる耐湿熱黄変性、耐光黄変性及び耐腐食性に優れる重合物、さらにこれらの重合性樹脂組成物、重合物を用いて製造される成形品を提供することである。 The problem to be solved by the present invention is the formulation of an additive of concern, which contains industrial grade N-substituted (meth) acrylamide produced by a general manufacturing method without requiring a special purification step. Provided is a polymerizable resin composition which is not required to be used, has extremely little coloring or discoloration (yellowing) when exposed to heat or light, and is also useful as various functional materials including optical applications. Further, a polymer having excellent moisture-heat yellowing resistance, photoyellowing resistance and corrosion resistance obtained by polymerizing a polymerizable resin composition, and a molded product produced by using these polymerizable resin compositions and polymers are provided. It is to be.

本発明者らは、かかる課題を解決すべく鋭意検討を行い、N−置換(メタ)アクリルアミドを用いた重合性樹脂組成物中の塩基性成分と酸性成分の含有量に注目した結果、全塩基価が12.0KOHmg/g以下、全酸価は8.0KOHmg/g以下であり、且つ、全塩基価と全酸価の差(全塩基価−全酸価)は−1.0〜5.0KOHmg/gである範囲内に制御することによって、N−置換(メタ)アクリルアミドを用いた、耐黄変性と耐腐食性に優れる重合性樹脂組成物、該組成物の重合物及びそれらからなる耐黄変性と耐腐食性に優れる成形品が得られることを見出した。 The present inventors have conducted diligent studies to solve this problem, and as a result of paying attention to the contents of the basic component and the acidic component in the polymerizable resin composition using N-substituted (meth) acrylamide, all the bases are used. The valence is 12.0 KOH mg / g or less, the total acid value is 8.0 KOH mg / g or less, and the difference between the total base value and the total acid value (total base value-total acid value) is -1.0 to 5. By controlling within the range of 0 KOH mg / g, a polymerizable resin composition having excellent yellowing resistance and corrosion resistance using N-substituted (meth) acrylamide, a polymer of the composition, and resistance to the same. It has been found that a molded product having excellent yellowing and corrosion resistance can be obtained.

すなわち本発明は、
(1)一般式[1]で表されるN−置換(メタ)アクリルアミドを1〜90重量%含有する活性エネルギー線硬化性樹脂組成物であって、組成物の全塩基価は12.0KOHmg/g以下、全酸価は8.0KOHmg/g以下、かつ、全塩基価と全酸価の差(全塩基価−全酸価)は−1.0〜5.0KOHmg/gであることを特徴とする活性エネルギー線硬化性樹脂組成物、

Figure 0006948077
(式中、Rは水素原子またはメチル基を示し、R及びRは同一または異なって、水素原子、水酸基、アミン基、アルコキシ基、カルボニル基で置換されていてもよい炭素数1乃至6の直鎖状または分岐鎖状のアルキル基、炭素数3乃至6の脂肪族または芳香環を示し、また、R及びRは、それらを担持する窒素原子と一緒になって、さらに酸素原子または窒素原子を含まれていてもよい飽和あるいは不飽和の5〜7員環を形成してもよい。但し、R及びRが同時に水素原子の場合を除く。)
(2)N−置換(メタ)アクリルアミドが、(メタ)アクリロイルモルホリン、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−ビニルピロリドン、N−ビニルカプロラクタム、N−ヒドロキシエチル(メタ)アクリルアミド、N−メチル−N−ヒドロキシエチル(メタ)アクリルアミド、ダイアセトンアクリルアミドから選ばれる1種以上であることを特徴とする前記(1)に記載の樹脂組成物、
(3)光重合開始剤を0.1〜10重量%と不飽和結合を有するモノマーを1〜70重量%さらに含有することを特徴とする前記(1)又は(2)に記載の樹脂組成物、
(4)不飽和結合を有するモノマーは単官能モノマー及び/又は多官能モノマーであることを特徴とする前記(1)〜(3)の何れか一項に記載の樹脂組成物、
(5)前記(1)〜(4)の何れか一項に記載の樹脂組成物を含有する活性エネルギー線硬化性粘着剤組成物であって、粘着剤組成物の全塩基価は12.0KOHmg/g以下、全酸価は8.0KOHmg/g以下、かつ、全塩基価と全酸価の差は−1.0〜5.0KOHmg/gであることを特徴とする活性エネルギー線硬化性粘着剤組成物、
(6)前記(5)に記載の粘着剤組成物であって、粘着剤組成物の全塩基価は3.0KOHmg/g以下、全酸価は2.0KOHmg/g以下、かつ、全塩基価と全酸価の差は−0.2〜1.0KOHmg/gであることを特徴とする光学用活性エネルギー線硬化性粘着剤組成物、
(7)前記(1)〜(4)の何れか一項に記載の樹脂組成物を含有する活性エネルギー線硬化性コーティング組成物であって、コーティング組成物の全塩基価は12.0KOHmg/g以下、全酸価は8.0KOHmg/g以下、かつ、全塩基価と全酸価の差は−1.0〜5.0KOHmg/gであることを特徴とする活性エネルギー線硬化性コーティング組成物、
(8)前記(7)に記載のコーティング組成物であって、コーティング組成物の全塩基価は3.0KOHmg/gを超え且つ12.0KOHmg/g以下、全酸価は2.0KOHmg/gを超えかつ8.0KOHmg/g以下、全塩基価と全酸価の差は−1.0〜−0.2KOHmg/g未満或いは1.0KOHmg/gを超え〜5.0KOHmg/g以下であることを特徴とする金属基材用エネルギー線硬化性コーティング組成物。
(9)前記(1)〜(4)の何れか一項に記載の樹脂組成物を含有する活性エネルギー線硬化性インク組成物であって、インク組成物の全塩基価は12.0KOHmg/g以下、全酸価は8.0KOHmg/g以下、かつ、全塩基価と全酸価の差は−1.0〜5.0KOHmg/gであることを特徴とする活性エネルギー線硬化性インク組成物、
(10)前記(9)に記載のインク組成物であって、インク組成物の全塩基価は3.0KOHmg/g以下、全酸価は2.0KOHmg/g以下、かつ、全塩基価と全酸価の差は−0.2〜1.0KOHmg/gであることを特徴とする立体造形用インク組成物、
(11)前記(1)〜(4)の何れか一項に記載の樹脂組成物を含有する活性エネルギー線硬化性接着剤組成物であって、接着剤組成物の全塩基価は12.0KOHmg/g以下、全酸価は8.0KOHmg/g以下、かつ、全塩基価と全酸価の差は−1.0〜5.0KOHmg/gであることを特徴とする活性エネルギー線硬化性接着剤組成物、
(12)前記(11)に記載の接着剤組成物であって、かつ、全塩基価は3.0KOHmg/g以下、全酸価は2.0KOHmg/g以下、全塩基価と全酸価の差(全塩基価−全酸価)は−0.2〜1.0KOHmg/gであることを特徴とする電子材料用接着剤組成物、
(13)前記(1)〜(4)の何れか一項に記載の樹脂組成物を含有する活性エネルギー線硬化性封止剤組成物であって、封止剤組成物の全塩基価は12.0KOHmg/g以下、全酸価は8.0KOHmg/g以下、かつ、全塩基価と全酸価の差は−1.0〜5.0KOHmg/gであることを特徴とする活性エネルギー線硬化性封止剤組成物、
(14)前記(1)〜(4)の何れか一項に記載の樹脂組成物を含有する活性エネルギー線硬化性防曇剤組成物であって、防曇剤組成物の全塩基価は12.0KOHmg/g以下、全酸価は8.0KOHmg/g以下、かつ、全塩基価と全酸価の差は−1.0〜5.0KOHmg/gであることを特徴とする活性エネルギー線硬化性防曇剤組成物
を提供することである。 That is, the present invention
(1) An active energy ray-curable resin composition containing 1 to 90% by weight of N-substituted (meth) acrylamide represented by the general formula [1], wherein the total base value of the composition is 12.0 KOH mg /. It is characterized in that it is g or less, the total acid value is 8.0 KOHmg / g or less, and the difference between the total base value and the total acid value (total base value-total acid value) is -1.0 to 5.0 KOHmg / g. Active energy ray-curable resin composition,
Figure 0006948077
(In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 and R 3 are the same or different, and may be substituted with a hydrogen atom, a hydroxyl group, an amine group, an alkoxy group, or a carbonyl group. It exhibits a linear or branched alkyl group of 6, an aliphatic or aromatic ring having 3 to 6 carbon atoms, and R 2 and R 3 together with a nitrogen atom carrying them further oxygen. A saturated or unsaturated 5- to 7-membered ring may be formed, which may contain an atom or a nitrogen atom, except when R 2 and R 3 are hydrogen atoms at the same time.)
(2) N-substituted (meth) acrylamide is (meth) acryloylmorpholin, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-vinylpyrrolidone. , N- vinyl caprolactam, N- hydroxyethyl (meth) acrylamide, N- methyl -N- hydroxyethyl (meth) acrylamide, according to (1), wherein the at least one selected from diacetone acrylamide Resin composition,
(3) The resin composition according to (1) or (2) above, which further contains 0.1 to 10% by weight of a photopolymerization initiator and 1 to 70% by weight of a monomer having an unsaturated bond. ,
(4) The resin composition according to any one of (1) to (3) above, wherein the monomer having an unsaturated bond is a monofunctional monomer and / or a polyfunctional monomer.
(5) An active energy ray-curable pressure-sensitive adhesive composition containing the resin composition according to any one of (1) to (4) above, wherein the total base value of the pressure-sensitive adhesive composition is 12.0 KOH mg. Active energy ray-curable adhesive characterized by having a total acid value of 8.0 KOH mg / g or less and a difference between the total base value and the total acid value of -1.0 to 5.0 KOH mg / g. Agent composition,
(6) The pressure-sensitive adhesive composition according to (5) above, wherein the total base value of the pressure-sensitive adhesive composition is 3.0 KOH mg / g or less, the total acid value is 2.0 KOH mg / g or less, and the total base value is 2.0 KOH mg / g or less. An active energy ray-curable pressure-sensitive adhesive composition for optics, wherein the difference between the total acid value and the total acid value is −0.2 to 1.0 KOH mg / g.
(7) An active energy ray-curable coating composition containing the resin composition according to any one of (1) to (4) above, wherein the total base value of the coating composition is 12.0 KOH mg / g. Hereinafter, the active energy ray-curable coating composition is characterized in that the total acid value is 8.0 KOH mg / g or less, and the difference between the total base value and the total acid value is −1.0 to 5.0 KOH mg / g. ,
(8) The coating composition according to (7 ) above, wherein the total base value of the coating composition exceeds 3.0 KOH mg / g and is 12.0 KOH mg / g or less, and the total acid value is 2.0 KOH mg / g. Exceeding and less than 8.0 KOH mg / g, the difference between total base value and total acid value is -1.0 to less than -0.2 KOH mg / g or more than 1.0 KOH mg / g to 5. An energy ray-curable coating composition for a metal substrate, which is characterized by being 0 KOH mg / g or less.
(9) An active energy ray-curable ink composition containing the resin composition according to any one of (1) to (4) above, wherein the total base value of the ink composition is 12.0 KOH mg / g. Hereinafter, the active energy ray-curable ink composition is characterized in that the total acid value is 8.0 KOH mg / g or less, and the difference between the total base value and the total acid value is −1.0 to 5.0 KOH mg / g. ,
(10) The ink composition according to (9 ) above, wherein the total base value of the ink composition is 3.0 KOH mg / g or less, the total acid value is 2.0 KOH mg / g or less, and the total base value and the total. An ink composition for three-dimensional modeling, characterized in that the difference in acid value is −0.2 to 1.0 KOH mg / g.
(11) An active energy ray-curable adhesive composition containing the resin composition according to any one of (1) to (4) above, wherein the total base value of the adhesive composition is 12.0 KOH mg. Active energy ray-curable adhesion characterized in that the total acid value is 8.0 KOHmg / g or less, and the difference between the total base value and the total acid value is -1.0 to 5.0 KOHmg / g. Agent composition,
(12) The adhesive composition according to (11) above, having a total base value of 3.0 KOH mg / g or less, a total acid value of 2.0 KOH mg / g or less, and a total base value and a total acid value. An adhesive composition for electronic materials, wherein the difference (total base value-total acid value) is -0.2 to 1.0 KOH mg / g.
(13) An active energy ray-curable encapsulant composition containing the resin composition according to any one of (1) to (4) above, wherein the total base value of the encapsulant composition is 12. Active energy ray curing characterized in that the total acid value is 8.0 KOH mg / g or less, and the difference between the total base value and the total acid value is −1.0 to 5.0 KOH mg / g. Sex sealant composition,
(14) An active energy ray-curable antifogging agent composition containing the resin composition according to any one of (1) to (4) above, wherein the total base value of the antifogging agent composition is 12. Active energy ray curing characterized in that the total acid value is 8.0 KOH mg / g or less, and the difference between the total base value and the total acid value is −1.0 to 5.0 KOH mg / g. To provide a sex antifogging agent composition.

本発明のN−置換(メタ)アクリルアミドを用いた重合性樹脂組成物は、低粘度で高硬化性を有し、また耐熱性、密着性、透明性に優れるといった点で粘着剤、接着剤、封止剤、コーティング剤、防曇剤、インクとして好適に用いることができ、さらに得られる成形品が長期にわたって黄変しにくく、金属や金属酸化物に対する腐食が生じないものである。本発明の樹脂組成物は、光学用途を含む、特殊な精製工程や懸念のある添加剤の配合を必要とせず、工業品のN−置換(メタ)アクリルアミドを原料モノマーや構成成分として用いることができる。また、N−置換(メタ)アクリルアミドを樹脂組成物中に多量に配合することが可能であり、耐候性、耐熱性、耐傷性と耐薬品性の向上が期待できる。 The polymerizable resin composition using N-substituted (meth) acrylamide of the present invention has low viscosity and high curability, and is excellent in heat resistance, adhesion, and transparency. It can be suitably used as a sealing agent, a coating agent, an antifogging agent, and an ink, and the obtained molded product does not easily turn yellow for a long period of time and does not corrode to metals or metal oxides. The resin composition of the present invention does not require a special purification process including optical applications or the addition of additives of concern, and the industrial product N-substituted (meth) acrylamide can be used as a raw material monomer or a constituent component. can. Further, N-substituted (meth) acrylamide can be blended in a large amount in the resin composition, and improvement in weather resistance, heat resistance, scratch resistance and chemical resistance can be expected.

以下、本発明を詳細に記載する。
本発明の重合性樹脂組成物の構成成分であるN−置換(メタ)アクリルアミドは、一般式[1](式中、Rは水素原子またはメチル基を示し、R及びRは同一または異なって、水素原子、または水酸基、アミノ基、アルコキシ基、カルボニル基で置換されていてもよい炭素数1乃至6の直鎖状または分岐鎖状のアルキル基、炭素数3乃至6の脂肪族または芳香環を示し、また、R及びRは、それらを担持する窒素原子と一緒になって、さらに酸素原子または窒素原子を含まれていてもよい飽和あるいは不飽和の5〜7員環を形成してもよい。但し、R及びRが同時に水素原子の場合を除く。)で表されるものである。

Figure 0006948077
Hereinafter, the present invention will be described in detail.
The N-substituted (meth) acrylamide, which is a constituent of the polymerizable resin composition of the present invention, has the general formula [1] (in the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 and R 3 are the same or Differently, a linear or branched alkyl group having 1 to 6 carbon atoms, which may be substituted with a hydrogen atom, or a hydroxyl group, an amino group, an alkoxy group, or a carbonyl group, an aliphatic group having 3 to 6 carbon atoms, or Aroma rings are shown, and R 2 and R 3 together with the nitrogen atoms carrying them form a saturated or unsaturated 5- to 7-membered ring which may further contain oxygen or nitrogen atoms. It may be formed, except when R 2 and R 3 are hydrogen atoms at the same time).
Figure 0006948077

N−置換(メタ)アクリルアミドは、具体的に、例えば、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−ブチル(メタ)アクリルアミド、N−イソブチル(メタ)アクリルアミド、N−ヘキシル(メタ)アクリルアミド、N−アルコキシ(炭素数1〜6の直鎖又は分岐構造)アルキル(炭素数1〜6の直鎖又は分岐構造)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N,N−ジ−n−プロピル(メタ)アクリルアミド、N,N−ジイソプロピル(メタ)アクリルアミド、N,N−ジ−n−ブチル(メタ)アクリルアミド、N,N−ジイソブチル(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−メチルエチル(メタ)アクリルアミド、N,N−メチルプロピル(メタ)アクリルアミド、N,N−メチルブチル(メタ)アクリルアミド、N,N−エチルプロピル(メタ)アクリルアミド、N,N−ジエチルアミノプロピル(メタ)アクリルアミド、N−ビニルピロリドン、N−ビニルカプロラクタム、N−(2−ヒドロキシエチル)アクリルアミド、N−(メタ)アクリロイルモルホリン、アリル(メタ)アクリルアミド、2−エチルヘキシル(メタ)アクリルアミドなどが挙げられる。これらは1種類に限らず、複数の種類を組み合わせて使用してもよい。また、工業品で容易に入手できる点及び硬化性が高い点から、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、N−ヒドロキシエチルアクリルアミド、N−メチルーヒドロキシエチルアクリルアミド、ダイアセトンアクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−ビニルピロリドン、N−ビニルカプロラクタムが好ましい。 Specific examples of N-substituted (meth) acrylamide include N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, and N-butyl. (Meta) acrylamide, N-isobutyl (meth) acrylamide, N-hexyl (meth) acrylamide, N-alkoxy (linear or branched structure with 1 to 6 carbon atoms) Alkyl (linear or branched structure with 1 to 6 carbon atoms) ) (Meta) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-di-n-propyl (meth) acrylamide, N, N-diisopropyl (meth) acrylamide, N, N-di-n-butyl (meth) acrylamide, N, N-diisobutyl (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-Methylethyl (meth) acrylamide, N, N-methylpropyl (meth) acrylamide, N, N-methylbutyl (meth) acrylamide, N, N-ethylpropyl (meth) acrylamide, N, N-diethylaminopropyl (meth) Examples thereof include acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, N- (2-hydroxyethyl) acrylamide, N- (meth) acryloylmorpholine, allyl (meth) acrylamide, 2-ethylhexyl (meth) acrylamide and the like. These are not limited to one type, and a plurality of types may be used in combination. In addition, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, (meth) acryloylmorpholin, N-hydroxyethylacrylamide, because they are easily available as industrial products and have high curability. N-Methyl-hydroxyethyl acrylamide, diacetone acrylamide, N-isopropyl (meth) acrylamide, N-vinylpyrrolidone, and N-vinylcaprolactam are preferred.

本発明の樹脂組成物は、全塩基価が12.0KOHmg/g以下、全酸価は8.0KOHmg/g以下であり、且つ、全塩基価と全酸価の差(全塩基価−全酸価)は−1.0〜5.0mg/gであることが好ましい。ここで、組成物の全塩基価は、塩基性の構成成分や、N−置換(メタ)アクリルアミド及びその他の中性成分中に含まれる塩基性不純物に由来する塩基価の合計である。塩基性の構成成分や不純物として、アルカリ性の化合物であれば、特に限定されないが、本発明の耐黄変の観点から、アミン類由来の塩基価の低減が最も好ましい。アミン類が窒素原子に非共有電子対を有するため、着色しやすい同時に、組成物に含まれるビニル基、N−置換(メタ)アクリルアミドのアミド基や(メタ)アクリレート系多官能、単官能モノマーのエステル基などに対する影響が大きいと本発明者らが推測している。 The resin composition of the present invention has a total base value of 12.0 KOH mg / g or less, a total acid value of 8.0 KOH mg / g or less, and a difference between the total base value and the total acid value (total base value-total acid). The value) is preferably −1.0 to 5.0 mg / g. Here, the total base value of the composition is the total of the base values derived from the basic constituents, N-substituted (meth) acrylamide and other basic impurities contained in the neutral component. The basic constituents and impurities are not particularly limited as long as they are alkaline compounds, but from the viewpoint of yellowing resistance of the present invention, reduction of the base value derived from amines is most preferable. Since amines have an unshared electron pair at the nitrogen atom, they are easy to color, and at the same time, vinyl groups, N-substituted (meth) acrylamide amide groups and (meth) acrylate-based polyfunctional and monofunctional monomers contained in the composition. The present inventors presume that the effect on the ester group and the like is large.

本発明において、組成物の全酸価は、酸性の構成成分や、N−置換(メタ)アクリルアミド及びその他の中性成分中に含まれる酸性不純物に由来する酸価の合計である。ここで、酸性の構成成分や不純物として、酸性の化合物であれば、特に限定されないが、本発明の耐黄変と耐腐食の観点から、アクリル酸やメタクリル酸など不飽和結合を有するカルボン酸類由来の酸価が、組成物に含まれるビニル基、N−置換(メタ)アクリルアミドのアミド基や(メタ)アクリレート系多官能、単官能モノマーのエステル基などに対する影響が大きく、それらの低減が最も好ましいと本発明者らが考える。 In the present invention, the total acid value of the composition is the total acid value derived from the acidic constituents, N-substituted (meth) acrylamide and other acidic impurities contained in the neutral component. Here, the acidic constituents and impurities are not particularly limited as long as they are acidic compounds, but are derived from carboxylic acids having unsaturated bonds such as acrylic acid and methacrylic acid from the viewpoint of yellowing resistance and corrosion resistance of the present invention. The acid value of the acid has a large effect on the vinyl group contained in the composition, the amide group of N-substituted (meth) acrylamide, the (meth) acrylate-based polyfunctionality, the ester group of the monofunctional monomer, etc., and its reduction is most preferable. The present inventors think.

全塩基価、全酸価及びそれらの差が前記範囲から外れた場合、樹脂組成物を用いた成形品が熱或いは光により経時的黄変する恐れがあり、さらに金属や金属酸化物に接触すると腐食を招いてしまう可能がある。 If the total base value, total acid value, and their differences are out of the above ranges, the molded product using the resin composition may turn yellow over time due to heat or light, and if it comes into contact with a metal or metal oxide. It may cause corrosion.

本発明の樹脂組成物は、N−置換(メタ)アクリルアミドを含め、各種構成成分を所定比例に応じて均一に混合させることにより、製造することができる。組成物の全塩基価、全酸価及びそれらの差を前記範囲内に入らなかった場合は、酸性又は塩基性成分を添加して中和する方法や、組成物中に含まれる特定な酸性又は塩基性成分を除去して精製する方法など通常の手段により調整すればよい。 The resin composition of the present invention can be produced by uniformly mixing various constituent components including N-substituted (meth) acrylamide in a predetermined proportion. If the total base value, total acid value of the composition and their differences do not fall within the above range, a method of adding an acidic or basic component to neutralize the composition, or a specific acidic or specific acid contained in the composition or It may be adjusted by ordinary means such as a method of removing basic components and purifying.

本発明の樹脂組成物の全塩基価、全酸価及びそれらの差を調整する際に、酸性又は塩基性成分を添加して中和する方法として、酸性又は塩基性の気体を樹脂組成物中に吹き込む方法、酸性又は塩基性の液体或いは固体を樹脂組成物中に加える方法等が挙げられる。また、酸性成分と塩基性成分は無機系も有機系も用いることができる。固体酸または塩基において、粉末状、イオン交換樹脂等の粒子状、担体に固定されたキレート剤等も用いることができる。用いる中和剤の状態、品種と添加量によって、中和反応の生成物が組成物中に残しても構わない場合があるが、ろ過、蒸留、遠心分離等通常の方法で除去することが好ましい。さらに、重合性酸又は塩基を用いると、中和後の生成物が組成物の構成成分となるため、特に好ましい。 An acidic or basic gas is added to the resin composition as a method for neutralizing by adding an acidic or basic component when adjusting the total base value, the total acid value and their differences in the resin composition of the present invention. Examples include a method of blowing into a resin composition, a method of adding an acidic or basic liquid or solid to the resin composition, and the like. Further, the acidic component and the basic component can be either inorganic or organic. For solid acids or bases, powders, particles such as ion exchange resins, and chelating agents immobilized on a carrier can also be used. Depending on the state of the neutralizing agent used, the type and the amount of the neutralizing agent added, the product of the neutralization reaction may be left in the composition, but it is preferable to remove it by a usual method such as filtration, distillation, or centrifugation. .. Further, it is particularly preferable to use a polymerizable acid or base because the product after neutralization becomes a constituent component of the composition.

本発明の樹脂組成物の全塩基価、全酸価及びそれらの差を調整する際に、組成物中に含まれる酸性又は塩基性成分を除去して精製する方法として、沸点差による蒸留やイオン交換樹脂等による吸着、分子サイズや浸透圧の差による浸透膜、逆浸透膜による分離、電気泳動による分離等の方法が挙げられる。また、バッチも連続的流通式も用いることができる。高収率で確実に除去可能の観点から、イオン交換樹脂の充填塔やカートリッジを通す方法が好ましい。 When adjusting the total base value, total acid value, and their differences in the resin composition of the present invention, as a method for purifying by removing acidic or basic components contained in the composition, distillation or ions due to a difference in boiling point can be used. Examples thereof include adsorption with an exchange resin and the like, separation with a osmosis membrane due to a difference in molecular size and osmotic pressure, separation with a reverse osmosis membrane, and separation with electrophoresis. In addition, both batch and continuous distribution type can be used. From the viewpoint of high yield and reliable removal, a method of passing an ion exchange resin packed bed or a cartridge is preferable.

本発明における樹脂組成物の全塩基価及び全酸価の測定は自動電位差滴定装置によって行う。詳細は実施例にて述べる。 The total base value and total acid value of the resin composition in the present invention are measured by an automatic potentiometric titrator. Details will be described in Examples.

本発明の樹脂組成物は、従来着色や腐食が問題となっている光学部材用粘着剤、粘着剤シート、偏光板用活性エネルギー硬化性接着剤、光造形用樹脂組成物やインクジェット用インク、ガラスや樹脂成形品のコーティング剤、有機EL素子用封止剤等の改質に使用できる。このときの樹脂組成物は、全塩基価は3.0KOHmg/g、全酸価は2.0KOHmg/g以下、全塩基価と全酸価の差(全塩基価−全酸価)は−0.2〜1.0KOHmg/gであることがより好ましい。全塩基価、全酸価及びそれらの差がこれらの範囲内であれば、長期に渡って、成形品の黄変、赤変等の着色、腐食による性能低下が発生せず、透明性も維持できる。 The resin composition of the present invention is a pressure-sensitive adhesive for optical members, a pressure-sensitive adhesive sheet, an active energy-curable adhesive for polarizing plates, a resin composition for photoforming, ink for inkjet, and glass, which have conventionally been problematic in coloring and corrosion. It can be used for modifying coating agents for resin molded products, sealing agents for organic EL elements, and the like. The resin composition at this time has a total base value of 3.0 KOH mg / g, a total acid value of 2.0 KOH mg / g or less, and a difference between the total base value and the total acid value (total base value-total acid value) is −0. .2 to 1.0 KOH mg / g is more preferable. If the total base value, total acid value, and their differences are within these ranges, the molded product will not deteriorate in performance due to yellowing, redness, etc., or corrosion over a long period of time, and transparency will be maintained. can.

本発明の樹脂組成物は、N−置換(メタ)アクリルアミドをモノマー単位として100重合%を含有することもよいが、1〜90重量%含有することが好ましい。また、樹脂組成物中のN−置換(メタ)アクリルアミド含有量は5〜70重量%であることがさらに好ましい。N−置換(メタ)アクリルアミドの配合により樹脂を希釈させると共に、樹脂組成物の密着性や相溶性、硬化性等の性能を向上させることができる。含有量が1%未満の場合、N−置換(メタ)アクリルアミドの特性を十分に発揮できず、配合効果が得られない場合がある。 The resin composition of the present invention may contain 100% of polymerization of N-substituted (meth) acrylamide as a monomer unit, but preferably contains 1 to 90% by weight. Further, the N-substituted (meth) acrylamide content in the resin composition is more preferably 5 to 70% by weight. The resin can be diluted by blending N-substituted (meth) acrylamide, and the performance of the resin composition such as adhesion, compatibility, and curability can be improved. If the content is less than 1%, the characteristics of N-substituted (meth) acrylamide cannot be sufficiently exhibited, and the compounding effect may not be obtained.

本発明の樹脂組成物は、N−置換(メタ)アクリルアミドにさらに光重合開始剤と不飽和結合を有するモノマーを添加し、活性エネルギー線硬化性樹脂組成物として好適に用いることができる。また、粘度調整目的に応じて、不飽和結合1個を有する単官能モノマー、架橋率を調整する目的で多官能モノマー、さらに柔軟性改善するため単官能又は多官能オリゴマー、非重合性ポリマー等を併用することができる。これらの併用成分がN−置換(メタ)アクリルアミドに対して単独で加えてもよいし、2種類以上組み合わせることもできる。それぞれの配合量は、具体的な用途に応じて、適意に調整すれば良いが、樹脂組成物全量中では、単官能モノマーが1〜70重量%、多官能モノマーが1〜50重量%、オリゴマーは1〜50重量%、ポリマーは0.1〜10重量%であることが好ましい。 The resin composition of the present invention can be suitably used as an active energy ray-curable resin composition by further adding a monomer having an unsaturated bond with a photopolymerization initiator to N-substituted (meth) acrylamide. Further, depending on the purpose of adjusting the viscosity, a monofunctional monomer having one unsaturated bond, a polyfunctional monomer for the purpose of adjusting the crosslink rate, a monofunctional or polyfunctional oligomer for improving flexibility, a non-polymerizable polymer, etc. Can be used together. These concomitant components may be added alone to N-substituted (meth) acrylamide, or two or more of them may be combined. The amount of each compound may be appropriately adjusted according to the specific application, but in the total amount of the resin composition, the monofunctional monomer is 1 to 70% by weight, the polyfunctional monomer is 1 to 50% by weight, and the oligomer. Is preferably 1 to 50% by weight, and the polymer is preferably 0.1 to 10% by weight.

本発明の樹脂組成物に用いられる多官能モノマーは、不飽和結合2個以上を有する多官能(メタ)アクリレートや多官能(メタ)アクリルアミドが挙げられ、また、主鎖構造からウレタン系、エポキシ系とアクリル系等が分けられる。 Examples of the polyfunctional monomer used in the resin composition of the present invention include polyfunctional (meth) acrylate and polyfunctional (meth) acrylamide having two or more unsaturated bonds, and from the main chain structure, urethane-based and epoxy-based. And acrylic type etc. are separated.

前記の多官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジテトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,7−ヘプタンジオールジ(メタ)アクリレート、1,8−オクタンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールAジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、アクリレートエステル(ジオキサングリコールジアクリレート)、アルコキシ化ヘキサンジオールジ(メタ)アクリレート、アルコキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ウレタン(メタ)アクリルアミド等のモノマーとオリゴマーが挙げられる。また、市販品で入手容易の観点から、ウレタンアクリレートとしては、例えば日本合成化学社製、商品名UV−3200B、UV−3000B、UV―6640B、UV−3700B、UV−3310B、UV−7000Bや新中村化学工業社製、商品名U−4HA、U−200PA、ダイセル・サイテック社製、商品名EBECRYL245、EBECRYL1259、EBECRYL8210、EBECRYL284、EBECRYL8402、SARTOMER社製、商品名CN944、CN969、CN9002、CN9029、根上工業社製、商品名UN1255、UN−5507、共栄社製、商品名AH−600、UA−306I等を用いることができ、ウレタン(メタ)アクリルアミドとしては、KJケミカルズ社製、KJSA5100、KJSA6100等を用いられ、エポキシ樹脂としては、ダイセル・サイテック社製、商品名EBECRYL1259、EBECRYL605、EBECRYL1606やSARTOMER社製、商品名CN110、CN120、CN153等を使用できる。アクリル樹脂としては、SARTOMER社製、商品名CN2203、CN2270、東亜合成社製、商品名M−6100、M−8060等を用いることができる。さらに、樹脂組成物の粘度や取扱いの容易さ等の観点から、ウレタンアクリレートUV−6640BまたはU−200PAがより好ましい。
これらの多官能(メタ)アクリレート1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the polyfunctional (meth) acrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, and ditetraethylene glycol di. (Meta) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (Meta) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,7-heptanediol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 1,9-Nonandiol di (meth) acrylate, neopentyl glycol di (meth) acrylate of hydroxypivalate, dicyclopentanyl di (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, ethylene oxide-modified di-phosphate (Meta) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, Trimethylol ethanetri (meth) acrylate, trimethylolpropantri (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, ethylene oxide-modified bisphenol A di (meth) acrylate, propylene oxide-modified bisphenol A di (meth) acrylate. , Cyclohexanedimethanol di (meth) acrylate, acrylate ester (dioxane glycol diacrylate), alkoxylated hexanediol di (meth) acrylate, alkoxylated cyclohexanedimethanol di (meth) acrylate, epoxy (meth) acrylate, urethane (meth) Examples thereof include monomers and oligomers such as acrylate and urethane (meth) acrylamide. From the viewpoint of easy availability of commercially available products, urethane acrylates include, for example, UV-3200B, UV-3000B, UV-6640B, UV-3700B, UV-3310B, UV-7000B, and new products manufactured by Nippon Synthetic Chemical Co., Ltd. Nakamura Chemical Industry Co., Ltd., product name U-4HA, U-200PA, Daicel Cytec Co., Ltd., product name EBECRYL245, EBECRYL1259, EBECRYL8210, EBECRYL284, EBECRYL8402, SARTOMER, product name CN944, CN969, CN9002 Product names UN1255, UN-5507, Kyoei Co., Ltd., product names AH-600, UA-306I, etc. can be used, and as the urethane (meth) acrylamide, KJSA5100, KJSA6100, etc. manufactured by KJ Chemicals Co., Ltd. can be used. As the epoxy resin, EBECRYL1259, EBECRYL605, EBECRYL1606, SARTOMER, trade names CN110, CN120, CN153, etc. manufactured by Daicel Cytec Co., Ltd. can be used. As the acrylic resin, SARTOMER's trade names CN2203 and CN2270, Toagosei's trade names M-6100, M-8060 and the like can be used. Further, urethane acrylate UV-6640B or U-200PA is more preferable from the viewpoint of viscosity of the resin composition, ease of handling, and the like.
One of these polyfunctional (meth) acrylates may be used alone, or two or more thereof may be used in combination.

前記の多官能(メタ)アクリルアミドとしては、メチレンビス(メタ)アクリルアミド、エチレンビス(メタ)アクリルアミド、ジアリル(メタ)アクリルアミド等が挙げられる。 Examples of the polyfunctional (meth) acrylamide include methylenebis (meth) acrylamide, ethylenebis (meth) acrylamide, diallyl (meth) acrylamide and the like.

本発明の樹脂組成物に用いられる単官能モノマーは、単官能(メタ)アクリレート、単官能(メタ)アクリルアミドや不飽和ニトリルモノマー、スチレン、アミド基含有モノマー、メチロール基含有モノマー、アルコキシメチル基含有モノマー、ビニルエステル、オレフィン等分子鎖中に反応性二重結合を持つラジカル重合性化合物が挙げられる。 The monofunctional monomer used in the resin composition of the present invention includes monofunctional (meth) acrylate, monofunctional (meth) acrylamide, unsaturated nitrile monomer, styrene, amide group-containing monomer, methylol group-containing monomer, and alkoxymethyl group-containing monomer. , Vinyl ester, olefin, etc. Examples thereof include radically polymerizable compounds having a reactive double bond in the molecular chain.

前記単官能(メタ)アクリレートは、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ヒドロキシエチルアクリレート、tert−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、トリデシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、プロポキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシテトラエチレングリコール(メタ)アクリレート、2−(2−エトキシエトキシ)エチルアクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、tert−ブチルシクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリルアクリレート、2−メチル−2−アダマンチル(メタ)アクリレート、アリル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等が挙げられる。 The monofunctional (meth) acrylate includes, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and hydroxy. Ethyl acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, tridecyl (meth) acrylate, Methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, propoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxytetraethylene glycol (meth) ) Acrylate, 2- (2-ethoxyethoxy) ethyl acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, phenoxyhexaethylene glycol (meth) acrylate, methoxydipropylene glycol (Meta) acrylate, methoxytripropylene glycol (meth) acrylate, cyclohexyl (meth) acrylate, tert-butylcyclohexyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate , Dicyclopentenyl (meth) acrylate, Bornyl (meth) acrylate, Isobornyl (meth) acrylate, Tetrahydrofurfuryl acrylate, 2-Methyl-2-adamantyl (meth) acrylate, Allyl (meth) acrylate, Hydroxyethyl (meth) acrylate , Hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate and the like.

前記単官能(メタ)アクリルアミドは、例えば、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N−エトキシメチル(メタ)アクリルアミド、N−メトキシエチル(メタ)アクリルアミド、N−エトキシエチル(メタ)アクリルアミド、N−n−ブトキシメチル(メタ)アクリルアミド、N−イソブトキシメチル(メタ)アクリルアミド、N−ビニルピロリドン、N−ビニルカプロラクタム、N−(2−ヒドロキシエチル)アクリルアミド、N−[3−(ジメチルアミノ)]プロピルアクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−アクリロイルモルホリン、ヒドロキシアルキル(メタ)アクリルアミド等が挙げられる。これらの単官能モノマーは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The monofunctional (meth) acrylamide is, for example, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N-methoxyethyl ( Meta) acrylamide, N-ethoxyethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, N- (2-hydroxy) Ethyl) acrylamide, N- [3- (dimethylamino)] propylacrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-acrylloylmorpholin, hydroxyalkyl (meth) acrylamide, etc. Can be mentioned. One of these monofunctional monomers may be used alone, or two or more thereof may be used in combination.

本発明の樹脂組成物に用いられるオリゴマーやポリマーは、アクリル、エステル、エーテル、ウレタン、アミド等の骨格を有する直鎖状及び/又は分岐状のオリゴマー、ポリマーが挙げられ、具体的には、重量平均分子量が10,000未満の、前記の多官能(メタ)アクリレート及び/又は多官能(メタ)アクリルアミドからなるオリゴマー、及び/又は、重量平均分子量が10,000以上である硬化性樹脂が挙げられる。 Examples of the oligomers and polymers used in the resin composition of the present invention include linear and / or branched oligomers and polymers having a skeleton such as acrylic, ester, ether, urethane, and amide, and specific examples thereof include weight. Examples thereof include the above-mentioned oligomers composed of polyfunctional (meth) acrylates and / or polyfunctional (meth) acrylamides having an average molecular weight of less than 10,000, and / or curable resins having a weight average molecular weight of 10,000 or more. ..

前記の重量平均分子量が10,000以上である硬化性樹脂としては、例えば、二官能ポリウレタン(メタ)アクリレート、多官能ポリウレタン(メタ)アクリレート、二官能ポリエステル(メタ)アクリレート、多官能ウレタン(メタ)アクリレート、二官能ポリエステル(メタ)アクリレート、多官能ポリエステル(メタ)アクリレート、二官能ポリエーテル(メタ)アクリレート、多官能ポリエーテル(メタ)アクリレート、二官能ポリアミド(メタ)アクリレート、多官能ポリアミド(メタ)アクリレート、二官能ポリ(メタ)アクリル酸エステル(メタ)アクリレート、多官能ポリ(メタ)アクリル酸エステル(メタ)アクリレート、二官能ポリ(メタ)アクリル酸エステル(メタ)アクリルアミド、多官能ポリ(メタ)アクリル酸エステル(メタ)アクリルアミド、二官能ポリ(メタ)アクリルアミド(メタ)アクリレート、多官能ポリ(メタ)アクリルアミド(メタ)アクリレート、二官能ポリスチレン(メタ)アクリレート、多官能ポリスチレン(メタ)アクリレート、二官能ポリアクリロニトリル(メタ)アクリレート、多官能ポリアクリロニトリル(メタ)アクリレート、二官能エポキシアクリレート(ビスフェノールA型)、多官能エポキシアクリレート(ビスフェノールA型)等が挙げられる。また、これらのポリマーは1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the curable resin having a weight average molecular weight of 10,000 or more include bifunctional polyurethane (meth) acrylate, polyfunctional polyurethane (meth) acrylate, bifunctional polyester (meth) acrylate, and polyfunctional urethane (meth). Acrylate, bifunctional polyester (meth) acrylate, polyfunctional polyester (meth) acrylate, bifunctional polyether (meth) acrylate, polyfunctional polyether (meth) acrylate, bifunctional polyamide (meth) acrylate, polyfunctional polyamide (meth) Acrylate, bifunctional poly (meth) acrylic acid ester (meth) acrylate, polyfunctional poly (meth) acrylic acid ester (meth) acrylate, bifunctional poly (meth) acrylic acid ester (meth) acrylamide, polyfunctional poly (meth) Acrylate ester (meth) acrylamide, bifunctional poly (meth) acrylamide (meth) acrylate, polyfunctional poly (meth) acrylamide (meth) acrylate, bifunctional polystyrene (meth) acrylate, polyfunctional polystyrene (meth) acrylate, bifunctional Examples thereof include polyacrylonitrile (meth) acrylate, polyfunctional polyacrylonitrile (meth) acrylate, bifunctional epoxy acrylate (bisphenol A type), and polyfunctional epoxy acrylate (bisphenol A type). In addition, these polymers may be used alone or in combination of two or more.

本発明の活性エネルギー線硬化性樹脂組成物は、基材に塗布または成型した後、活性エネルギー線照射により硬化し、粘着シート、3次元成形方法で得られる立体造形物、ハードコーティング膜、防曇膜、及び粘着剤、接着剤、封止剤などを有する成型品を製造することができる。 The active energy ray-curable resin composition of the present invention is coated or molded on a substrate and then cured by irradiation with active energy rays to obtain a pressure-sensitive adhesive sheet, a hard coating film, and an antifogging agent obtained by a three-dimensional molding method. A molded product having a film, an adhesive, an adhesive, a sealing agent, and the like can be produced.

前記の活性エネルギー線とは、活性種を発生する化合物(光重合開始剤)を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、電子線、紫外線、赤外線、X線、α線、β線、γ線等の光エネルギー線が挙げられる。中でも、活性エネルギー線の発生装置、硬化速度及び安全性のバランスから紫外線を使用することが好ましい。又、紫外線源としては、キセノンランプ、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、紫外線LEDランプ、マイクロ波方式エキシマランプ等を挙げられる。 The active energy ray is defined as an energy ray capable of decomposing a compound (photopolymerization initiator) that generates an active species to generate an active species. Examples of such active energy rays include light energy rays such as visible light, electron beams, ultraviolet rays, infrared rays, X-rays, α-rays, β-rays, and γ-rays. Above all, it is preferable to use ultraviolet rays from the viewpoint of the balance between the active energy ray generator, the curing speed and the safety. Examples of the ultraviolet source include xenon lamps, low-pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, ultraviolet LED lamps, microwave excimer lamps, and the like.

活性エネルギー線照射は、窒素ガスや炭酸ガス等の不活性ガス雰囲気又は酸素濃度を低下させた雰囲気下で行うことが好ましいが、本発明の樹脂組成物にはN−置換(メタ)アクリルアミドを有するため、硬化性が良く、通常の空気雰囲気でも、薄膜も厚膜も、十分に硬化させることができる。活性エネルギー線の照射温度は、好ましくは10〜200℃であり、照射時間は、好ましくは1秒〜60分である。 The active energy ray irradiation is preferably carried out in an atmosphere of an inert gas such as nitrogen gas or carbon dioxide gas or an atmosphere in which the oxygen concentration is lowered, but the resin composition of the present invention has N-substituted (meth) acrylamide. Therefore, the curability is good, and both the thin film and the thick film can be sufficiently cured even in a normal air atmosphere. The irradiation temperature of the active energy ray is preferably 10 to 200 ° C., and the irradiation time is preferably 1 second to 60 minutes.

本発明の活性エネルギー線硬化性樹脂組成物を硬化させる際には、必要に応じて光重合開始剤を添加しておくことができるが、電子線を用いる場合には特に必要はない。光重合開始剤はアセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサントン系等の通常のものから適宜選択すればよい。市販品としてはBASF社製、商品名Darocur 1116、Darocur 1173、Irgacure 184、Irgacure 369、Irgacure 500、Irgacure 651、Irgacure 754、Irgacure 819、Irgacure 907、Irgacure 1300、Irgacure 1800、Irgacure 1870、Irgacure 2959、Darocur 4265、Darocur TPO、UCB社製、商品名ユベクリルP36等を用いることができる。これらの光重合開始剤は1種又は2種以上を組み合わせて用いることができる。 When the active energy ray-curable resin composition of the present invention is cured, a photopolymerization initiator can be added if necessary, but it is not particularly necessary when an electron beam is used. The photopolymerization initiator may be appropriately selected from ordinary ones such as acetophenone-based, benzoin-based, benzophenone-based, and thioxanthone-based. Commercially available products are manufactured by BASF, trade names Darocur 1116, Darocur 1173, Irgacure 184, Irgacure 369, Irgacure 500, Irgacure 651, Irgacure 754, Irgacure 819, Irgacure 819, Irgacure 4265, Darocur TPO, manufactured by UCB, trade name Yubekrill P36 and the like can be used. These photopolymerization initiators can be used alone or in combination of two or more.

これらの光重合開始剤の使用量は特に制限されていないが、一般に活性エネルギー線硬化性樹脂組成物に対して、0.1〜10重量%、中で1〜5重量%が添加されることが好ましい。0.1重量%未満だと十分な硬化性が得られず、10重量%を越えると硬化物の強度など性能が低下してしまう可能性がある。 The amount of these photopolymerization initiators used is not particularly limited, but generally 0.1 to 10% by weight, of which 1 to 5% by weight is added to the active energy ray-curable resin composition. Is preferable. If it is less than 0.1% by weight, sufficient curability cannot be obtained, and if it exceeds 10% by weight, performance such as strength of the cured product may deteriorate.

本発明の樹脂組成物は、N−置換(メタ)アクリルアミドにさらに熱重合開始剤と不飽和結合を有するモノマーを添加し、重合性樹脂組成物として好適に用いることができる。ここでいう不飽和結合を有するモノマーは、前述の各種単官能、多官能のモノマー、オリゴマーのことであり、また、物性調整しやすい熱可塑性の重合体を得るため、不飽和結合1個を有する単官能モノマーが好ましく、さらに得られる重合体の凝集力を高めるために架橋点を導入できるモノマーが特に好ましい。前述の単官能モノマーが単独で加えてもよいし、2種類以上組み合わせることもできる。それらの配合量は、具体的な用途に応じて、任意に調整すれば良いが、樹脂組成物全量中では、合計で10〜99重量%であることが好ましい。 The resin composition of the present invention can be suitably used as a polymerizable resin composition by further adding a monomer having an unsaturated bond with a thermal polymerization initiator to N-substituted (meth) acrylamide. The monomer having an unsaturated bond referred to here is the above-mentioned various monofunctional and polyfunctional monomers and oligomers, and also has one unsaturated bond in order to obtain a thermoplastic polymer whose physical properties can be easily adjusted. A monofunctional monomer is preferable, and a monomer capable of introducing a cross-linking point in order to enhance the cohesiveness of the obtained polymer is particularly preferable. The above-mentioned monofunctional monomer may be added alone, or two or more kinds may be combined. The blending amount thereof may be arbitrarily adjusted according to the specific use, but is preferably 10 to 99% by weight in total in the total amount of the resin composition.

前記の架橋点を導入できるモノマーとしては、例えば、水酸基含有(メタ)アクリル系モノマー、カルボキシル基含有(メタ)アクリル系モノマー、アミノ基含有(メタ)アクリル系モノマー、アセトアセチル基含有(メタ)アクリル系モノマー、イソシアネート基含有(メタ)アクリル系モノマー、グリシジル基含有(メタ)アクリル系モノマー、オキサゾリン基含有(メタ)アクリル系モノマーなどが挙げられる。 Examples of the monomer capable of introducing the cross-linking point include a hydroxyl group-containing (meth) acrylic monomer, a carboxyl group-containing (meth) acrylic monomer, an amino group-containing (meth) acrylic monomer, and an acetoacetyl group-containing (meth) acrylic. Examples thereof include based monomers, isocyanate group-containing (meth) acrylic monomers, glycidyl group-containing (meth) acrylic monomers, and oxazoline group-containing (meth) acrylic monomers.

前記の水酸基含有(メタ)アクリル系モノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、5−ヒドロキシペンチル(メタ)アクリレート、6−ヒドロキシヘキシル(メタ)アクリレート、8−ヒドロキシオクチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類、N−ヒドロキシエチル(メタ)アクリルアミド、N−ヒドロキシプロピル(メタ)アクリルアミドなどのヒドロキシアルキル(メタ)アクリルアミド類、その他、2−アクリロイルオキシエチル2−ヒドロキシエチルフタル酸、N−メチロール(メタ)アクリルアミドなどの1級水酸基含有(メタ)アクリル系モノマー、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ3−フェノキシプロピル(メタ)アクリレート、3−クロロ2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシ3−フェノキシプロピル(メタ)アクリレートなどの2級水酸基含有(メタ)アクリル系モノマー、2,2−ジメチル2−ヒドロキシエチル(メタ)アクリレートなどの3級水酸基含有(メタ)アクリル系モノマーを挙げることができる。中でもヒドロキシアルキル(メタ)アクリレート類が好ましく用いられる。 Examples of the hydroxyl group-containing (meth) acrylic monomer include 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 5-hydroxypentyl (meth) acrylate, and 6-hydroxyhexyl (meth) acrylate. , Hydroxyalkyl (meth) acrylates such as 8-hydroxyoctyl (meth) acrylates, hydroxyalkyl (meth) acrylamides such as N-hydroxyethyl (meth) acrylamide, N-hydroxypropyl (meth) acrylamide, and others 2- Primary hydroxyl group-containing (meth) acrylic monomers such as acryloyloxyethyl 2-hydroxyethylphthalic acid and N-methylol (meth) acrylamide, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- Secondary hydroxyl group-containing (meth) acrylic monomers such as hydroxy3-phenoxypropyl (meth) acrylate, 3-chloro2-hydroxypropyl (meth) acrylate, 2-hydroxy3-phenoxypropyl (meth) acrylate, 2,2- Examples thereof include tertiary hydroxyl group-containing (meth) acrylic monomers such as dimethyl2-hydroxyethyl (meth) acrylate. Of these, hydroxyalkyl (meth) acrylates are preferably used.

前記のカルボキシル基含有(メタ)アクリル系モノマーとしては、例えば、(メタ)アクリル酸、クロトン酸などのモノカルボン酸、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸などのジカルボン酸、などが挙げられ、中でも(メタ)アクリル酸が好ましく用いられる。 Examples of the carboxyl group-containing (meth) acrylic monomer include monocarboxylic acids such as (meth) acrylic acid and crotonic acid, dicarboxylic acids such as maleic acid, maleic anhydride, fumaric acid, citraconic acid, and itaconic acid. Among them, (meth) acrylic acid is preferably used.

前記アミノ基含有(メタ)アクリル系モノマーとしては、例えば、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、N,N−ジ−t−ブチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレートなどのアミノアルキル(メタ)アクリレート類、N,N−ジメチルアミノエチル(メタ)アクリルアミド、N,N−ジエチルアミノエチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミドなどのアミノアルキル(メタ)アクリルアミド類が挙げられる。 Examples of the amino group-containing (meth) acrylic monomer include N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, and N, N-di-t-butylaminoethyl. (Meta) acrylates, aminoalkyl (meth) acrylates such as N, N-diethylaminoethyl (meth) acrylates, N, N-dimethylaminoethyl (meth) acrylamide, N, N-diethylaminoethyl (meth) acrylamide, N, Examples thereof include aminoalkyl (meth) acrylamides such as N-dimethylaminopropyl (meth) acrylamide.

前記アセトアセチル基含有(メタ)アクリル系モノマーとしては、例えば、2−(アセトアセトキシ)エチル(メタ)アクリレートなどが挙げられる。 Examples of the acetacetyl group-containing (meth) acrylic monomer include 2- (acetoacetoxy) ethyl (meth) acrylate.

前記イソシアネート基含有(メタ)アクリル系モノマーとしては、2−アクリロイルオキシエチルイソシアネート、2−メタクリロイルオキシエチルイソシアネートやそれらのアルキレンオキサイド付加物などが挙げられる。 Examples of the isocyanate group-containing (meth) acrylic monomer include 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate, and alkylene oxide adducts thereof.

前記グリシジル基含有(メタ)アクリル系モノマーとしては、(メタ)アクリル酸グリシジル、(メタ)アクリル酸アリルグリシジル、(メタ)アクリルアミドグリシジルなどが挙げられる。 Examples of the glycidyl group-containing (meth) acrylic monomer include glycidyl (meth) acrylate, allyl glycidyl (meth) acrylate, and acrylamide glycidyl (meth).

前記オキサゾリン基含有(メタ)アクリル系モノマーとしては、2−ビニル−2−オキサゾリン、4−メチル−2−ビニル−2−オキサゾリン、5−メチル−2−ビニル−2−オキサゾリン、4−エチル−2−ビニル−2−オキサゾリン、5−エチル−2−ビニル−2−オキサゾリン、4,4−ジメチル−2−ビニル−2−オキサゾリン、4,4−ジエチル−2−ビニル−2−オキサゾリン、4,5−ジメチル−2−ビニル−2−オキサゾリン、4,5−ジエチル−2−ビニル−2−オキサゾリン、2−イソプロペニル−2−オキサゾリン、4−メチル−2−イソプロペニル−2−オキサゾリン、5−メチル−2−イソプロペニル−2−オキサゾリン、4−エチル−2−イソプロペニル−2−オキサゾリン、5−エチル−2−イソプロペニル−2−オキサゾリン、4,4−ジメチル−2−イソプロペニル−2−オキサゾリン、4,4−ジエチル−2−イソプロペニル−2−オキサゾリン、4,5−ジメチル−2−イソプロペニル−2−オキサゾリン、4,5−ジエチル−2−イソプロペニル−2−オキサゾリンなど等が挙げられる。また、高反応性を有する2−ビニル−2−オキサゾリン、5−メチル−2−ビニル−2−オキサゾリン、4,4−ジメチル−2−ビニル−2−オキサゾリンが好ましく、さらに2−ビニル−2−オキサゾリンが最も好ましい。これら官能基含有(メタ)アクリル系モノマーは、1種類に限らず、複数の種類を組み合わせて使用してもよい。 Examples of the oxazoline group-containing (meth) acrylic monomer include 2-vinyl-2-oxazoline, 4-methyl-2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline, and 4-ethyl-2. -Vinyl-2-oxazoline, 5-ethyl-2-vinyl-2-oxazoline, 4,4-dimethyl-2-vinyl-2-oxazoline, 4,4-diethyl-2-vinyl-2-oxazoline, 4,5 -Dimethyl-2-vinyl-2-oxazoline, 4,5-diethyl-2-vinyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 4-methyl-2-isopropenyl-2-oxazoline, 5-methyl -2-isopropenyl-2-oxazoline, 4-ethyl-2-isopropenyl-2-oxazoline, 5-ethyl-2-isopropenyl-2-oxazoline, 4,4-dimethyl-2-isopropenyl-2-oxazoline , 4,4-diethyl-2-isopropenyl-2-oxazoline, 4,5-dimethyl-2-isopropenyl-2-oxazoline, 4,5-diethyl-2-isopropenyl-2-oxazoline and the like. .. Further, 2-vinyl-2-oxazoline, 5-methyl-2-vinyl-2-oxazoline and 4,4-dimethyl-2-vinyl-2-oxazoline having high reactivity are preferable, and 2-vinyl-2- Oxazolines are most preferred. These functional group-containing (meth) acrylic monomers are not limited to one type, and a plurality of types may be used in combination.

熱重合性樹脂組成物の熱重合は、ラジカル重合開始剤存在下で公知の方法によって行うことができる。例えば、乳化重合、溶液重合、懸濁重合、塊状重合等の方法を用いられる。溶液重合は有機溶媒中の溶液重合法を採用する場合、重合して得られる重合体を溶解する溶媒であれば特に制限は無く、例えば、重合溶媒としては、ベンゼン、トルエン、エチルベンゼン、キシレンなどの芳香族炭化水素類、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサンなどの脂肪族炭化水素類、酢酸エチル、酢酸ブチル、酢酸2−ヒドロキシエチルなどのエステル類、エチルアルコール、n−プロピルアルコール、イソプロピルアルコールなどの脂肪族アルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、アセトニトリル、N,N-ジメチルホルムアミドなどが挙げられる。これらの有機溶媒はそれぞれ単独で、または2種以上を混合して用いることができる。特に、成形品を形成する際に除去しやすい点から低沸点の酢酸エチル、メチルエチルケトン、アセトンなどの使用が好ましい。 The thermal polymerization of the thermopolymerizable resin composition can be carried out by a known method in the presence of a radical polymerization initiator. For example, methods such as emulsion polymerization, solution polymerization, suspension polymerization, and bulk polymerization are used. When the solution polymerization method in an organic solvent is adopted for solution polymerization, there is no particular limitation as long as it is a solvent that dissolves the polymer obtained by polymerization. For example, the polymerization solvent includes benzene, toluene, ethylbenzene, xylene and the like. Aromatic hydrocarbons, aliphatic hydrocarbons such as hexane, heptane, octane, decane, cyclohexane, esters such as ethyl acetate, butyl acetate, 2-hydroxyethyl acetate, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, etc. Examples thereof include aliphatic alcohols, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, acetonitrile, N, N-dimethylformamide and the like. These organic solvents can be used alone or in admixture of two or more. In particular, it is preferable to use ethyl acetate, methyl ethyl ketone, acetone, etc. having a low boiling point because they can be easily removed when forming a molded product.

また、熱ラジカル重合開始剤としては、アゾビスイソブチロニトリル、アゾビスバレロニトリル等のアゾ化合物系触媒や、ベンゾイルパーオキシド、過酸化水素等の過酸化物系触媒、過硫酸アンモニウム、過硫酸ナトリウムなどの過硫酸塩系触媒等を用いることができる。重合開始剤の使用量は、通常重合性単量体成分総量に対して0.001〜10重量%程度である。さらに、連鎖移動剤による分子量の調整など通常のラジカル重合技術が適用される。 Examples of the thermal radical polymerization initiator include azo compound-based catalysts such as azobisisobutyronitrile and azobisvaleronitrile, peroxide-based catalysts such as benzoylperoxide and hydrogen peroxide, ammonium persulfate, and sodium persulfate. Persulfate-based catalysts such as, etc. can be used. The amount of the polymerization initiator used is usually about 0.001 to 10% by weight based on the total amount of the polymerizable monomer components. Further, ordinary radical polymerization techniques such as adjustment of molecular weight by a chain transfer agent are applied.

本発明重合体の分子量は重量平均で1千〜300万であり、また5千〜250万であることが好ましく、さらに1万〜200万であることが特に好ましい。重量平均分子量が1千〜300万の範囲内であれば、溶媒で溶解した場合の溶液粘度が高過ぎなく、低過ぎないため、好適に取り扱うことができ、塗膜やシート等の加工精度が高い。このような重合体が30%になるように酢酸エチルで希釈した場合、通常、溶液粘度が10〜10万Pa・s/25℃であり、より好ましくは500〜1万mPa・s/25℃、特に好ましくは2000〜5000mPa・s/25℃である。なお、粘度の測定は、JIS K5600−2−3(1999)のコーンプレート粘度計法に準じて行うことができる。 The molecular weight of the polymer of the present invention is, on average, 10 to 3 million, preferably 50 to 2.5 million, and particularly preferably 10,000 to 2 million. When the weight average molecular weight is in the range of 10 to 3 million, the solution viscosity when dissolved in a solvent is neither too high nor too low, so that it can be handled favorably and the processing accuracy of the coating film, sheet, etc. is improved. high. When such a polymer is diluted with ethyl acetate so as to be 30%, the solution viscosity is usually 100,000 to 100,000 Pa · s / 25 ° C, more preferably 500 to 10,000 mPa · s / 25 ° C. Particularly preferably, it is 2000 to 5000 mPa · s / 25 ° C. The viscosity can be measured according to the cone plate viscometer method of JIS K5600-2-3 (1999).

本発明の重合体は、N−置換(メタ)アクリルアミドを構成成分として含有するため、十分な凝集力や粘着力、各種基材に対する密着性、耐熱性、耐久性を有するため、そのまま用いることができ、さらに架橋剤により架橋されることで、より耐熱性、耐久性に優れたものを得ることができる。また、架橋する方法としては、(1)架橋剤を用いて架橋する方法、(2)不飽和基含有化合物及び重合開始剤を含有させ、活性エネルギー線及び/または熱による架橋する方法などが挙げられる。これらの架橋方法は一方を用いてもよいし、両方を併用してもよい。 Since the polymer of the present invention contains N-substituted (meth) acrylamide as a constituent component, it has sufficient cohesive strength and adhesive strength, adhesion to various substrates, heat resistance, and durability, and thus can be used as it is. Further, by cross-linking with a cross-linking agent, it is possible to obtain a product having more excellent heat resistance and durability. Examples of the cross-linking method include (1) a method of cross-linking with a cross-linking agent, (2) a method of containing an unsaturated group-containing compound and a polymerization initiator and cross-linking with active energy rays and / or heat. Be done. One of these cross-linking methods may be used, or both may be used in combination.

前記(1)架橋剤を用いて架橋する方法としては、イソシアネート化合物、エポキシ化合物、アジリジン化合物、カルボキシル基化合物など、前記(メタ)アクリル系樹脂に含まれる官能基と反応し得る官能基を有する化合物を添加し、反応させる方法が挙げられる。 As a method of cross-linking using the (1) cross-linking agent, a compound having a functional group capable of reacting with a functional group contained in the (meth) acrylic resin, such as an isocyanate compound, an epoxy compound, an aziridine compound, and a carboxyl group compound. Can be mentioned as a method of adding and reacting.

このうち、イソシアネート化合物としては、トリレンジイソシアネート、キシレンジイソシアネートなどの芳香族イソシアネート、イソホロンジイソシアネートなどの脂環族イソシアネート、ヘキサメチレンジイソシアネートなどの脂肪族イソシアネートなどが挙げられる。より具体的には、イソシアネート化合物としては、例えば、ブチレンジイソシアネート、ヘキサメチレンジイソシアネートなどの低級脂肪族ポリイソシアネート類、シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネートなどの脂環族イソシアネート類、2,4−トリレンジイソシアネート、4,4'−ジフェニルメタンジイソシアネート、キシリレンジイソシアネートなどの芳香族ジイソシアネート類、トリメチロールプロパン/トリレンジイソシアネート3量体付加物(日本ポリウレタン工業社製、商品名:コロネートL)、トリメチロールプロパン/ヘキサメチレンジイソシアネート3量体付加物(日本ポリウレタン工業社製、商品名:コロネートHL)、ヘキサメチレンジイソシアネートのイソシアヌレート体(日本ポリウレタン工業社製、商品名:コロネートHX)などのイソシアネート付加物などが挙げられる。これらのイソシアネート化合物は単独で使用してもよく、また2種以上を混合して使用してもよい。 Among these, examples of the isocyanate compound include aromatic isocyanates such as tolylene diisocyanate and xylene diisocyanate, alicyclic isocyanates such as isophorone diisocyanate, and aliphatic isocyanates such as hexamethylene diisocyanate. More specifically, examples of the isocyanate compound include lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate, alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate, and isophorone diisocyanate, 2,4 -Aromatic diisocyanates such as -tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, trimethylolpropane / tolylene diisocyanate trimer adduct (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name: Coronate L), tri Isocyanate adducts such as methylolpropane / hexamethylene diisocyanate trimeric adduct (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name: Coronate HL) and isocyanurates of hexamethylene diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name: Coronate HX). And so on. These isocyanate compounds may be used alone or in combination of two or more.

エポキシ化合物としては、例えば、ポリエチレングリコールジグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、グリセリンジグリシジルエーテル、ジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、N,N,N',N'−テトラグリシジル−m−キシレンジアミン(三菱瓦斯化学社製、商品名:TETRAD−X)や1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(三菱ガス化学社製、商品名:TETRAD−C)などが挙げられる。これらの化合物は単独で使用してもよく、また2種以上を混合して使用してもよい。 Examples of the epoxy compound include polyethylene glycol diglycidyl ether, polyglycerol polyglycidyl ether, glycerin diglycidyl ether, diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidyl aniline, N, N, N', N'-tetra. Glycidyl-m-xylene diamine (manufactured by Mitsubishi Gas Chemicals, trade name: TETRAD-X) and 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane (manufactured by Mitsubishi Gas Chemicals, trade name: TETRAD-C) ) And so on. These compounds may be used alone or in combination of two or more.

アジリジン化合物としては、例えば、市販品としての商品名:HDU、商品名:TAZM、商品名:TAZO(以上、相互薬工社製)などが挙げられる。これらの化合物は単独で使用してもよく、また2種以上を混合して使用してもよい。 Examples of the aziridine compound include a commercially available product name: HDU, a product name: TAZM, and a product name: TAZO (all manufactured by Mutual Pharmaceutical Co., Ltd.). These compounds may be used alone or in combination of two or more.

カルボキシル基化合物として、L−乳酸、D−乳酸、イソフタル酸、フタル酸、1,4−ナフタレンジカルボキシル基、2,6−ナフタレンジカルボキシル基、ジフェニルジカルボキシル基、ジフェノキシエタンジカルボキシル基、ジフェニルエーテルジカルボキシル基、ジフェニルスルホンジカルボキシル基などの芳香族ジカルボキシル基、1,3−シクロペンタンジカルボキシル基、1,3−シクロヘキサンジカルボキシル基、1,4−シクロヘキサンジカルボキシル基などの脂環式ジカルボキシル基、マロン酸、ジメチルマロン酸、コハク酸、3,3−ジエチルコハク酸、グルタル酸、2,2−ジメチルグルタル酸、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、セバシン酸、スベリン酸などの脂肪族ジカルボン酸、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ吉草酸、ヒドロキシプロピオン酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸などのヒドロキシカルボキシル基、及びそれらのエステル形成性誘導体などから誘導されるジカルボキシル基を有する化合物が挙げられる。これらの化合物は単独で使用してもよく、また2種以上を混合して使用してもよい。 Carboxyl group compounds include L-lactic acid, D-lactic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxyl group, 2,6-naphthalenedicarboxyl group, diphenyldicarboxyl group, diphenoxyetane dicarboxyl group, diphenyl ether. Aromatic dicarboxyl groups such as dicarboxyl group and diphenylsulfone dicarboxyl group, alicyclic dicarboxyl group such as 1,3-cyclopentane dicarboxyl group, 1,3-cyclohexanedicarboxyl group and 1,4-cyclohexanedicarboxyl group. Carboxyl group, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladiponic acid, pimeric acid, azelaic acid , Aliphatic dicarboxylic acids such as sebacic acid and suberic acid, glycolic acid, 3-hydroxybutyric acid, 4-hydroxyvaleric acid, hydroxypropionic acid, hydroxycaproic acid, hydroxycarboxyl groups such as hydroxybenzoic acid, and their ester-forming properties. Examples thereof include compounds having a dicarboxyl group derived from a derivative or the like. These compounds may be used alone or in combination of two or more.

これらの架橋剤の使用量は、架橋すべき前記重合体中に含まれる官能基の量や分子量とのバランスにより、さらには、用途目的により適宜選択できるが、通常は、重合体100重量%に対して、0.1〜15重量%含有されていることが好ましく、0.5〜10重量%含有されていることがより好ましい。含有量が0.1重量%よりも少ない場合、架橋剤による架橋形成が不十分となり、粘着剤等の成形品の凝集力が不足して十分な耐熱性が得られない場合があり、また、糊残りの原因となる傾向がある。一方、含有量が15重量%を超える場合、架橋後樹脂組成物の凝集力が大きく、柔軟性及び弾力が低下し、被着体へのなじみ性(濡れ性)が不十分となる傾向がある。 The amount of these cross-linking agents used can be appropriately selected depending on the balance with the amount of functional groups and the molecular weight contained in the polymer to be cross-linked and further depending on the purpose of use, but is usually 100% by weight of the polymer. On the other hand, it is preferably contained in an amount of 0.1 to 15% by weight, more preferably 0.5 to 10% by weight. If the content is less than 0.1% by weight, the cross-linking by the cross-linking agent may be insufficient, the cohesive force of the molded product such as the adhesive may be insufficient, and sufficient heat resistance may not be obtained. It tends to cause adhesive residue. On the other hand, when the content exceeds 15% by weight, the cohesive force of the crosslinked resin composition is large, the flexibility and elasticity are lowered, and the adaptability (wetting property) to the adherend tends to be insufficient. ..

さらに、前記架橋剤とともに、架橋を促進するために酸触媒、例えば、パラトルエンスルホン酸、リン酸、塩酸、塩化アンモニウムなどの架橋促進剤を併用することも可能であり、前記架橋促進剤の添加量は架橋剤に対して10〜50重量%であることが好ましい。 Further, it is also possible to use an acid catalyst such as paratoluene sulfonic acid, phosphoric acid, hydrochloric acid, ammonium chloride or the like in combination with the cross-linking agent in order to promote the cross-linking, and the addition of the cross-linking accelerator The amount is preferably 10 to 50% by weight based on the cross-linking agent.

前記(2)不飽和基含有化合物及び重合開始剤を含有させ、活性エネルギー線及び/または熱により架橋する方法としては、架橋剤として活性エネルギー線及び/または熱反応性不飽和結合を2個以上有する多官能モノマー、と重合開始剤を添加し、活性エネルギー線及び/または熱で架橋させる方法が挙げられる。 As a method of (2) containing an unsaturated group-containing compound and a polymerization initiator and cross-linking with active energy rays and / or heat, two or more active energy rays and / or thermally reactive unsaturated bonds are used as the cross-linking agent. Examples thereof include a method in which a polyfunctional monomer having a substance and a polymerization initiator are added and crosslinked with active energy rays and / or heat.

前記活性エネルギー線及び/または熱反応性不飽和結合を2個以上有する多官能モノマーとしてはビニル基、アクリロイル基、メタクリロイル基、ビニルベンジル基のような活性エネルギー線及び/または熱の照射で架橋処理(硬化)し得る1種または2種以上の活性エネルギー線及び/または熱反応性不飽和結合を2個以上有する多官能モノマー成分が用いられる。なお一般的には活性エネルギー線及び/または熱反応性不飽和結合が10個以下のものが好適に用いられる。多官能モノマーは2種以上を併用することも可能である。 As the polyfunctional monomer having two or more active energy rays and / or heat-reactive unsaturated bonds, cross-linking treatment is performed by irradiation with active energy rays and / or heat such as a vinyl group, an acryloyl group, a methacryloyl group, and a vinylbenzyl group. A polyfunctional monomer component having one or more active energy rays and / or two or more thermally reactive unsaturated bonds that can be (cured) is used. Generally, those having 10 or less active energy rays and / or thermoreactive unsaturated bonds are preferably used. It is also possible to use two or more kinds of polyfunctional monomers in combination.

前記多官能モノマーは、2官能モノマー、3官能以上のモノマーを用いることができ、具体例としては、2官能モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールエチレンオキサイド変性ジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性ジアクリレート、2−(メタ)アクリロイルオキシエチルアシッドホスフェートジエステルなどのモノマーが挙げられる。 As the polyfunctional monomer, a bifunctional monomer and a trifunctional or higher functional monomer can be used. Specific examples of the bifunctional monomer include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and tetra. Ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neo Pentyl glycol di (meth) acrylate, ethylene oxide-modified bisphenol A type di (meth) acrylate, propylene oxide-modified bisphenol A type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,6-hexanediol Ethylene oxide-modified di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, phthalic acid diglycidyl ester Examples thereof include monomers such as di (meth) acrylate, hydroxypivalic acid-modified neopentyl glycol di (meth) acrylate, isocyanuric acid ethylene oxide-modified diacrylate, and 2- (meth) acryloyloxyethyl acid phosphate diester.

前記3官能以上のモノマーとしては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド変性トリ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラ(メタ)アクリレート、コハク酸変性ペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。 Examples of the trifunctional or higher functional monomer include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, trimethylpropanthry (meth) acrylate, dipentaerythritol tri (meth) acrylate, and dipentaerythritol tetra (dipentaerythritol tetra (meth) acrylate. Meta) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tri (meth) acryloyloxyethoxytrimethylol propane, glycerin polyglycidyl ether poly (meth) acrylate, isocyanurate ethylene oxide-modified tri (meth) acrylate Meta) acrylate, ethylene oxide-modified dipentaerythritol penta (meth) acrylate, ethylene oxide-modified dipentaerythritol hexa (meth) acrylate, ethylene oxide-modified pentaerythritol tri (meth) acrylate, ethylene oxide-modified pentaerythritol tetra (meth) acrylate, Examples thereof include succinic acid-modified pentaerythritol tri (meth) acrylate.

前記多官能モノマーの使用量は、架橋すべき重合体に対して0.05〜50重量%で配合するのが好ましく、柔軟性、接着性(密着性)の点から、より好ましくは、0.1〜30重量%である。含有量が0.05重量%よりも少ない場合、架橋剤による架橋形成が不十分となり、粘着剤や接着剤に用いた場合の凝集力が不足、十分な耐熱性が得られない場合がある。一方、含有量が50重量%を超える場合、例えば、ポリマーの凝集力が高くなりすぎ、柔軟性及び粘着力が低下し、被着体への濡れが不十分となって、剥離の原因となる傾向がある。 The amount of the polyfunctional monomer used is preferably 0.05 to 50% by weight based on the polymer to be crosslinked, and more preferably 0. It is 1 to 30% by weight. If the content is less than 0.05% by weight, the cross-linking by the cross-linking agent may be insufficient, the cohesive force when used as an adhesive or an adhesive may be insufficient, and sufficient heat resistance may not be obtained. On the other hand, when the content exceeds 50% by weight, for example, the cohesive force of the polymer becomes too high, the flexibility and adhesive force decrease, and the wettability to the adherend becomes insufficient, which causes peeling. Tend.

本発明の樹脂組成物及びそれから作製される成形品の特性を阻害しない範囲で、顔料、染料、界面活性剤、ブロッキング防止剤、レベリング剤、分散剤、消泡剤、酸化防止剤、紫外線増感剤、防腐剤等の他の任意成分を併用してもよい。 Pigments, dyes, surfactants, blocking inhibitors, leveling agents, dispersants, defoamers, antioxidants, UV sensitizers, as long as they do not impair the properties of the resin composition of the present invention and the molded products produced from it. Other optional ingredients such as agents and preservatives may be used in combination.

本発明の樹脂組成物を紙、布、不織布、ガラス、ポリエチレンテレフタレート、ジアセテートセルロース、トリアセテートセルロース、アクリル系ポリマー、ポリ塩化ビニル、セロハン、セルロイド、ポリカーボネート、ポリイミド等のプラスチック及び金属等の基材の表面や間に塗布、硬化させることにより、高性能のコーティング層やインク層、粘着剤層、封止剤層又は接着剤層を得ることができる。特に、本発明の活性エネルギー線硬化性樹脂組成物が高透明性のウレタンオリゴマーを有するため、光学用粘着剤、光学用接着剤や封止剤、光学用フィルムのコート材等光学用樹脂組成物として好適に用いることができる。又、これらの樹脂組成物を基材上に塗布する方法としては、スピンコート法、スプレーコート法、ディッピング法、グラビアロール法、ナイフコート法、リバースロール法、スクリーン印刷法、バーコーター法等通常の塗膜形成法が用いられることができる。又、基材間に塗布する方法としては、ラミネート法、ロールツーロール法等が挙げられる。 The resin composition of the present invention is used as a base material such as paper, cloth, non-woven fabric, glass, polyethylene terephthalate, diacetate cellulose, triacetate cellulose, acrylic polymer, polyvinyl chloride, cellophane, celluloid, polycarbonate, polyimide and other plastics and metals. By applying and curing on or between the surfaces, a high-performance coating layer, ink layer, pressure-sensitive adhesive layer, sealing agent layer or adhesive layer can be obtained. In particular, since the active energy ray-curable resin composition of the present invention has a highly transparent urethane oligomer, an optical resin composition such as an optical pressure-sensitive adhesive, an optical adhesive or sealant, and an optical film coating material. Can be suitably used as. Further, as a method of applying these resin compositions on a substrate, a spin coating method, a spray coating method, a dipping method, a gravure roll method, a knife coating method, a reverse roll method, a screen printing method, a bar coater method, etc. are usually used. The coating film forming method of can be used. Further, as a method of applying between the base materials, a laminating method, a roll-to-roll method and the like can be mentioned.

以下に実施例と比較例を挙げて本発明を更に詳しく説明するが、本発明は以下の実施例に限定されるものではない。実施例及び比較例に記載する各構成成分の略称は以下の通りである。
(1)N−置換(メタ)アクリルアミド(KJケミカルズ(株)製、登録商標「Kohshylmer」)
「DEAA」:N,N−ジエチルアクリルアミド(登録商標「DEAA」)
「DMAA」:N,N−ジメチルアクリルアミド(登録商標「DMAA」)
「ACMO」:アクリロイルモルホリン(登録商標「ACMO」)
「NIPAM」:N−イソプロピルアクリルアミド(登録商標「NIPAM」)
「HEAA」:N−ヒドロキシエチルアクリルアミド(登録商標「HEAA」)
MHEAA:N−メチル−N−ヒドロキシエチルアクリルアミド
HEMAA:N−ヒドロキシエチルメタクリルアミド
「DMAPAA」:N,N−ジメチルアミノプロピルアクリルアミド(登録商標「DMAPAA」)
(2)多官能モノマー、オリゴマー、ポリマー
PETA:ペンタエリスリトールトリアクリレート
DPHA:ジペンタエリスリトールヘキサアクリレート
HDDA:1,6−ヘキサンジオールジアクリレート
TPGDA:トリプロピレングリコールジアクリレート
UV6640B:ウレタンアクリレート(日本合成化学(株)製)
U200−PA:ウレタンアクリレート(新中村化学工業(株)製)
KJSA−6100:ウレタンアクリルアミド(KJケミカルズ(株)製)
EBECRYL 112:脂肪族エポキシアクリレート(ダイセルサイテック(株)製)
(3)単官能モノマー
PEA:フェノキシエチルアクリレート
BZA:ベンジルアクリレート
HEA:ヒドロキシエチルアクリレート
4HBA:4−ヒドロキシブチルアクリレート
EEA:2−(2−エトキシエトキシ)エチルアクリレート
THFA:テトラヒドロフルフリルアクリレート
IBOA:イソボルニルアクリレート
CHA:シクロヘキシルアクリレート
M−106:o−フェニルフェノールEO変性アクリレート(東亜合成(株)製)
LA:ラウリルアクリレート
DMAEA:N,N−ジメチルアミノエチルアクリレート
AAc:アクリル酸
BA:ブチルアクリレート
2EHA:2−エチルヘキシルアクリレート
(4)その他
I-184:IRGACURE 184(光重合開始剤、BASFジャパン(株)製)
D−1173:Darocur 1173(光重合開始剤、BASFジャパン(株)製)
D−TPO:Darocur TPO(光重合開始剤、BASFジャパン(株)製)
KE−359:水添ロジン(タッキーファイア)(荒川化学工業製)
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. The abbreviations of the constituents described in Examples and Comparative Examples are as follows.
(1) N-substituted (meth) acrylamide (manufactured by KJ Chemicals Co., Ltd., registered trademark "Kohsylmer")
"DEAA": N, N-diethylacrylamide (registered trademark "DEAA")
"DMAA": N, N-dimethylacrylamide (registered trademark "DMAA")
"ACMO": Acryloyl morpholine (registered trademark "ACMO")
"NIPAM": N-isopropylacrylamide (registered trademark "NIPAM")
"HEAA": N-Hydroxyethyl acrylamide (registered trademark "HEAA")
MHEAA: N-Methyl-N-Hydroxyethyl acrylamide HEMAA: N-Hydroxyethyl methacrylamide "DMAPAA": N, N-dimethylaminopropyl acrylamide (registered trademark "DMAPAA")
(2) Polyfunctional Monomer, Oligomer, Polymer PETA: Pentaerythritol Triacrylate DPHA: Dipentaerythritol Hexacrylate HDDA: 1,6-Hexanediol Diacrylate TPGDA: Tripropylene Glycol Diacrylate UV6640B: Urethane Acrylate (Nippon Synthetic Chemical Co., Ltd.) ) Made)
U200-PA: Urethane acrylate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)
KJSA-6100: Urethane acrylamide (manufactured by KJ Chemicals Co., Ltd.)
EBECRYL 112: Aliphatic epoxy acrylate (manufactured by Daicel Cytec Co., Ltd.)
(3) Monofunctional Monomer PEA: Phenoxyethyl Acrylate BZA: benzyl Acrylate HEA: Hydroxyethyl Acrylate 4HBA: 4-Hydroxybutyl Acrylate EEA: 2- (2-ethoxyethoxy) Ethyl Acrylate THFA: Tetrahydrofurfuryl Acrylate IBOA: Isobornyl Acrylate CHA: Cyclohexyl acrylate M-106: o-phenylphenol EO modified acrylate (manufactured by Toa Synthetic Co., Ltd.)
LA: Lauryl Acrylate DMAEA: N, N-Dimethylaminoethyl Acrylate AAc: Acrylic Acid BA: Butyl Acrylate 2EHA: 2-Ethylhexyl Acrylate (4) Others I-184: IRGACURE 184 (Photopolymerization Initiator, manufactured by BASF Japan Ltd.) )
D-1173: Darocur 1173 (photopolymerization initiator, manufactured by BASF Japan Ltd.)
D-TPO: Darocur TPO (photopolymerization initiator, manufactured by BASF Japan Ltd.)
KE-359: Hydrogenated rosin (tacky fire) (manufactured by Arakawa Chemical Industry Co., Ltd.)

本発明の樹脂組成物の諸物性は、以下の測定方法に従って求めた。
(5)全塩基価
全塩基価は、樹脂組成物1gに含まれる全塩基性成分を中和するのに要する塩酸または過塩素酸を当量の水酸化カリウムのmg数で表し、本発明はJIS K7237−1995を参考に、電位差自動滴定装置により測定した。測定溶媒は樹脂組成物の溶解性に合わせて脱イオン水、メタノール、エタノール、イソプロパノール、テトラヒドロフランの中から選べる1種また2種以上の混合物を用いた。以下に手順を述べる。
200mL容量のビーカーに樹脂組成物10gを精確に量り取って、測定溶媒(特級品)50mLを入れて均一に溶解させ、サンプル液とした。測定溶媒50mLを200mLのビーカーに加え、ブランク液とした。サンプル液とブランク液それぞれを自動電位差滴定装置(AT−510N、京都電子工業(株)製)により、濃度0.01mol/Lの過塩素酸の酢酸溶液にて滴定を行った。滴定結果を式1により計算し、全塩基価(KOHmg/L)を求めた(Fは標準塩酸溶液を用いて求めた滴定液のファクターを示す。ここでF=1.000)。なお、測定には複合ガラス電極C−173((株)堀場製作所製)を用いた。
The physical characteristics of the resin composition of the present invention were determined according to the following measuring methods.
(5) Total base value The total base value represents hydrochloric acid or perchloric acid required to neutralize all the basic components contained in 1 g of the resin composition by the equivalent number of mg of potassium hydroxide, and the present invention relates to JIS. It was measured by a potential difference automatic titrator with reference to K7237-1995. As the measurement solvent, one type or a mixture of two or more types that can be selected from deionized water, methanol, ethanol, isopropanol, and tetrahydrofuran was used according to the solubility of the resin composition. The procedure is described below.
10 g of the resin composition was accurately weighed in a 200 mL beaker, 50 mL of the measurement solvent (special grade product) was added, and the mixture was uniformly dissolved to prepare a sample solution. 50 mL of the measurement solvent was added to a 200 mL beaker to prepare a blank solution. Each of the sample solution and the blank solution was titrated with an acetic acid solution of perchloric acid having a concentration of 0.01 mol / L by an automatic potentiometric titrator (AT-510N, manufactured by Kyoto Denshi Kogyo Co., Ltd.). The titration result was calculated by Equation 1 and the total base value (KOHmg / L) was determined (F indicates the factor of the titration solution determined using a standard hydrochloric acid solution, where F = 1.000). A composite glass electrode C-173 (manufactured by HORIBA, Ltd.) was used for the measurement.

式1Equation 1

Figure 0006948077
(6)全酸価
全酸価は樹脂組成物1gに含まれる酸性成分を中和するのに要する水酸化カリウムのmg数で表し、本発明はJIS K0070−1992を参考に、電位差自動滴定装置により測定した。測定溶媒は樹脂組成物の溶解性と酸性成分の解離能に合わせて脱イオン水、メタノール、エタノール、イソプロパノール、テトラヒドロフランの中から選べる1種また2種以上の混合物を用いた。以下に手順を述べる。
200mL容量のビーカーに樹脂組成物20gと測定溶媒(特級品)(例えば、テトラヒドロフラン/脱イオン水=5/1、v/v)120mLを入れて均一に溶解させ、サンプル液とした。測定溶媒120mLを200mLのビーカーに加え、ブランク液とした。サンプル液とブランク液それぞれを自動電位差滴定装置により、濃度0.0425mol/Lの 水酸化カリウム水溶液(又はエタノール溶液)にて滴定した。滴定結果を式2により計算し、全酸価(KOHmg/L)を求めた(Fは標準塩酸溶液を用いて求めた滴定液のファクターを示す。ここでF=1.000)。なお、測定には複合ガラス電極C−171((株)堀場製作所製)を用いた。
Figure 0006948077
(6) Total acid value The total acid value is represented by the number of mg of potassium hydroxide required to neutralize the acidic component contained in 1 g of the resin composition. Measured by. As the measurement solvent, one or a mixture of two or more, which can be selected from deionized water, methanol, ethanol, isopropanol, and tetrahydrofuran, was used according to the solubility of the resin composition and the dissociation ability of the acidic component. The procedure is described below.
20 g of the resin composition and 120 mL of a measurement solvent (special grade) (for example, tetrahydrofuran / deionized water = 5/1, v / v) were placed in a 200 mL beaker and dissolved uniformly to prepare a sample solution. 120 mL of the measurement solvent was added to a 200 mL beaker to prepare a blank solution. Each of the sample solution and the blank solution was titrated with an aqueous potassium hydroxide solution (or ethanol solution) having a concentration of 0.0425 mol / L by an automatic potentiometric titrator. The titration result was calculated by Equation 2 and the total acid value (KOHmg / L) was determined (F indicates the factor of the titration solution determined using the standard hydrochloric acid solution, where F = 1.000). A composite glass electrode C-171 (manufactured by HORIBA, Ltd.) was used for the measurement.

式2Equation 2

Figure 0006948077
Figure 0006948077

実施例A−1
「DEAA」 50gとUV6640B 50gを量り取って、室温にて均一に混合して、全塩基価と全酸価を測定した。表1に示すように、混合物の全塩基価は1.0KOHmg/g、全酸価は1.2KOHmg/g、全塩基価と全酸価の差が−0.2KOHmg/gであることを確認し、特に再処理をせず、本発明の重合性樹脂組成物とした。
Example A-1
50 g of "DEAA" and 50 g of UV6640B were weighed and mixed uniformly at room temperature, and the total base value and total acid value were measured. As shown in Table 1, it was confirmed that the total base value of the mixture was 1.0 KOH mg / g, the total acid value was 1.2 KOH mg / g, and the difference between the total base value and the total acid value was -0.2 KOH mg / g. The polymerizable resin composition of the present invention was obtained without any particular retreatment.

実施例A−2〜A−10
実施例A−1と同様に、N−置換(メタ)アクリルアミドと他の構成成分を表1に示す割合で精確に測って、混合し、全塩基価と全酸価を測定した。表1に示すように、これら混合物の全塩基価は12.0mgKOH/g以下であり、全酸価は8.0mgKOH/g以下であり、かつ、全塩基価と全酸価の差は−1.0〜5.0KOHmg/gであることを確認し、特に再処理をせず、本発明の重合性樹脂組成物とした。なお、実施例A−1、A−2、A−6、A−7、A−9〜A−11は参考例である。
Examples A-2 to A-10
In the same manner as in Example A-1, N-substituted (meth) acrylamide and other constituents were accurately measured and mixed at the ratios shown in Table 1, and the total base value and total acid value were measured. As shown in Table 1, the total base value of these mixtures is 12.0 mgKOH / g or less, the total acid value is 8.0 mgKOH / g or less, and the difference between the total base value and the total acid value is -1. It was confirmed that the content was 0 to 5.0 KOH mg / g, and the polymerizable resin composition of the present invention was obtained without any particular retreatment. In addition, Examples A-1, A-2, A-6, A-7, A-9 to A-11 are reference examples.

実施例A−11
「DMAA」 70g、EBECRY 112 15g、TPGDA 5g、HEA 5gとTHFA 5gを量り取って、室温にて均一に混合して、全塩基価と全酸価を測定したが、それぞれは18.8KOHmg/gと3.3KOHmg/gであった。該混合液を強酸性イオン交換樹脂(三菱化学(株)社製、商品名ダイヤイオンSK1B)10gを充填したガラスカラムに通液した。通液後の混合物を再度分析し、全塩基価は11.5KOHmg/g、全酸価は7.2KOHmg/g、全塩基価と全酸価の差が4.3KOHmg/gであることを確認し、本発明の重合性樹脂組成物とした。
Example A-11
70 g of "DMAA", 112 15 g of EBECRY, 5 g of TPGDA, 5 g of HEA and 5 g of THFA were weighed and mixed uniformly at room temperature, and the total base value and total acid value were measured. And 3.3 KOH mg / g. The mixed solution was passed through a glass column packed with 10 g of a strongly acidic ion exchange resin (manufactured by Mitsubishi Chemical Corporation, trade name: Diaion SK1B). The mixture after passing the solution was analyzed again, and it was confirmed that the total base value was 11.5 KOH mg / g, the total acid value was 7.2 KOH mg / g, and the difference between the total base value and the total acid value was 4.3 KOH mg / g. The polymerizable resin composition of the present invention was obtained.

実施例A−12
HEMAA 10g、UV−6640B 20g、HDDA 40g、HEA 20g、THFA 20g、AAc 1gとCHA 10gを量り取って、室温にて均一に混合して、全塩基価と全酸価を測定したが、それぞれは1.5KOHmg/gと25.8KOHmg/gであった。該混合液に水酸化ナトリウム1.28gを加え、10分間ゆっくり撹拌し、さらに氷水で1時間冷やした。その後、混合液中に析出した白色固形物をろ過により除去した。得られた透明な液体状混合物を再度分析し、全塩基価は7.0KOHmg/g、全酸価は8.0KOHmg/g、全塩基価と全酸価の差が−1.0KOHmg/gであることを確認し、本発明の重合性樹脂組成物とした。
Example A-12
HEMAA 10 g, UV-6640B 20 g, HDDA 40 g, HEA 20 g, THFA 20 g, AAc 1 g and CHA 10 g were weighed and mixed uniformly at room temperature, and the total base value and total acid value were measured. It was 1.5 KOH mg / g and 25.8 KOH mg / g. 1.28 g of sodium hydroxide was added to the mixture, the mixture was slowly stirred for 10 minutes, and further cooled with ice water for 1 hour. Then, the white solid matter precipitated in the mixed solution was removed by filtration. The resulting clear liquid mixture was analyzed again and the total base value was 7.0 KOHmg / g, the total acid value was 8.0 KOHmg / g, and the difference between the total base value and the total acid value was -1.0 KOHmg / g. It was confirmed that there was, and it was used as the polymerizable resin composition of the present invention.

Figure 0006948077
Figure 0006948077

比較例A−13〜A−17
実施例A−1と同様に、N−置換(メタ)アクリルアミド等の構成成分を表1に示す割合で精確に測って、混合し、全塩基価と全酸価を測定した。表1に示すように、これら混合物の全塩基価は12.0mgKOH/gを超えたり、全酸価は8.0mgKOH/gを超えたり、或いは、全塩基価と全酸価の差は−1.0〜5.0KOHmg/gの範囲外であることを確認したが、特に再処理をせず、本発明の比較用重合性樹脂組成物とした。
Comparative Examples A-13 to A-17
Similar to Example A-1, constituent components such as N-substituted (meth) acrylamide were accurately measured at the ratios shown in Table 1, mixed, and the total base value and total acid value were measured. As shown in Table 1, the total base value of these mixtures exceeds 12.0 mgKOH / g, the total acid value exceeds 8.0 mgKOH / g, or the difference between the total base value and the total acid value is -1. Although it was confirmed that the content was out of the range of 0 to 5.0 KOH mg / g, no particular retreatment was carried out to obtain the comparative polymerizable resin composition of the present invention.

実施例A−1〜A−12と比較例A−13〜A−17で得られた各種の重合性樹脂組成物100重量部に対して、光重合開始剤としてD−1173 3重量部を加え、均一に混合して活性エネルギー線硬化性樹脂組成物を調製した。そして、これらの樹脂組成物を用い、下記方法にて活性エネルギー線硬化膜の作製と特性評価を行った。 To 100 parts by weight of the various polymerizable resin compositions obtained in Examples A-1 to A-12 and Comparative Examples A-13 to A-17, 3 parts by weight of D-1173 as a photopolymerization initiator was added. , Uniformly mixed to prepare an active energy ray-curable resin composition. Then, using these resin compositions, an active energy ray-cured film was prepared and its characteristics were evaluated by the following method.

卓上塗工機(コーターTC−1、三井電気精機(株)社製)を用いて、実施例A1〜A12及び比較例A13〜17の混合液を膜厚100μmになるようにアルミ基板(Al、A5052)に塗膜後、紫外線を照射(装置:アイグラフィックス製 インバーター式コンベア装置ECS−4011GX、メタルハライドランプ:アイグラフィックス製 M04−L41、紫外線照度:700mW/cm、積算光量:3000mJ/cm)して硬化膜とした。得られた硬化膜をアルミ基板からゆっくり剥がして、初期の透明性(透明率)と耐黄変性(黄変度b値)を下記方法に従って測定した。また、耐湿熱黄変性と耐光黄変性の加速試験を下記通り行い、試験後の透明性と耐黄変性を同様に評価した。さらに、金属材料としてアミル基板と銅箔を用い、下記方法により耐腐食性を評価し、結果を表2に示す。 Using a tabletop coating machine (Coater TC-1, manufactured by Mitsui Denki Seiki Co., Ltd.), an aluminum substrate (Al, A5052) is coated with ultraviolet rays and then irradiated with ultraviolet rays (device: Inverter type conveyor device ECS-4011GX manufactured by Eye Graphics, metal halide lamp: M04-L41 manufactured by Eye Graphics, ultraviolet illuminance: 700 mW / cm 2 , integrated light amount: 3000 mJ / cm. 2 ) to obtain a cured film. The obtained cured film was slowly peeled off from the aluminum substrate, and the initial transparency (transparency) and yellowing resistance (yellowing degree b value) were measured according to the following methods. In addition, an accelerated test of moisture resistance heat yellowing resistance and light yellowing resistance was carried out as follows, and the transparency and yellowing resistance after the test were evaluated in the same manner. Further, using an amyl substrate and a copper foil as metal materials, the corrosion resistance was evaluated by the following method, and the results are shown in Table 2.

(7)透明性(透過率)
得られた初期又は耐黄変加速試験後の硬化膜を用いて、温度23℃、相対湿度50%の雰囲気下で、24時間を静止した。それ後、ヘイズメーター(日本電色工業社製、NDH−2000)により硬化膜の透過率を測定し、透明性を下記通り4段階分けて評価した。
◎:透過率は90%以上
○:透過率は85%以上、かつ90%未満
△:透過率は50%以上、かつ85%未満
×:透過率は50%未満
(8)耐湿熱黄変性
得られた初期の硬化膜を用いて、温度23℃、相対湿度50%の雰囲気下で、24時間を静止した。それ後、硬化膜の透過スペクトルを透過色測定専用機(TZ−6000、日本電色工業(株)製)により測定し、初期b値とした。硬化膜を用いて、85℃、相対湿度85%に設定した恒温恒湿機に500時間を静置し、耐湿熱黄変性の加速試験を行った。試験後の硬化膜を同様に温度23℃、相対湿度50%の雰囲気下で24時間を静止し、透過色測定し、湿熱後b値とした。また、湿熱後b値と初期b値の差は変化値Δbとした(Δb=湿熱後b値−初期b値)。耐湿熱黄変性は下記通り4段階分けて評価した。
◎:初期b値、湿熱後b値は共に0.2以下、かつ、Δbは0.1以下である
○:初期b値、湿熱後b値は何れか一つまたは共に0.2を超えるが、共に0.5以下であり、かつ、Δbは0.2以下である
△:初期b値、湿熱後b値は何れか一つまたは共に0.5を超えるが、共に1.0以下であり、かつ、Δbは0.3以下である
×:初期b値、湿熱後b値は何れか一つまたは共に1.0を超え、或いは、Δbは0.3を超える
(9)耐光黄変性
上記の耐湿熱黄変性評価と同様に、耐光黄変性の加速試験を行い、試験前後のb値とそれらの差であるΔbを測定、算出した。耐光黄変性の加速試験は紫外線フェードメーター(スガ試験機(株)社製、U48)を用いて、ブラックパネル温度を63℃に設定し、500W/m2の条件で168時間照射を行った。耐湿熱黄変性と同様に4段階分けて評価した。
(10)耐腐食性
前記方法で活性エネルギー線硬化膜を作製し、得られた硬化膜をアルミ基板に付着したままの試験片(Al耐腐食性評価用)、及びアルミ基板から硬化膜をゆっくり剥がして、銅箔(厚み80μm)に貼りあわせた試験片(Cu耐腐食性評価用)を用いて、温度60℃、相対湿度95%に設定した恒温恒湿機に168時間を静置した。その後、硬化膜をアルミ基板又は銅箔から剥がして、目視でアルミ基板と銅箔の表面を観察し、硬化膜の耐腐食性を評価し、結果を表2に示す。
◎:腐食なし
○:僅かに腐食
△:少し腐食
×:著しい腐食
(7) Transparency (transmittance)
Using the obtained cured film after the initial or yellowing resistance acceleration test, the film was allowed to stand still for 24 hours in an atmosphere having a temperature of 23 ° C. and a relative humidity of 50%. After that, the transmittance of the cured film was measured with a haze meter (NDH-2000, manufactured by Nippon Denshoku Kogyo Co., Ltd.), and the transparency was evaluated in four stages as follows.
⊚: Transmittance is 90% or more ○: Transmittance is 85% or more and less than 90% Δ: Transmittance is 50% or more and less than 85% ×: Transmittance is less than 50% (8) Moisture-resistant thermal yellowing The initial cured film was allowed to stand still for 24 hours in an atmosphere having a temperature of 23 ° C. and a relative humidity of 50%. After that, the transmission spectrum of the cured film was measured with a transmission color measurement dedicated machine (TZ-6000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) and used as the initial b value. Using the cured film, the mixture was allowed to stand in a constant temperature and humidity chamber set at 85 ° C. and a relative humidity of 85% for 500 hours to perform an accelerated test of moisture resistance and thermal yellowing. Similarly, the cured film after the test was allowed to stand still for 24 hours in an atmosphere having a temperature of 23 ° C. and a relative humidity of 50%, and the transmitted color was measured to obtain the b value after moist heat. Further, the difference between the b value after moist heat and the initial b value was set to the change value Δb (Δb = b value after moist heat − initial b value). Moisture-resistant thermal yellowing was evaluated in four stages as follows.
⊚: The initial b value and the b value after moist heat are both 0.2 or less, and Δb is 0.1 or less. ◯: The initial b value and the b value after moist heat both exceed 0.2. , Both are 0.5 or less, and Δb is 0.2 or less Δ: The initial b value and the b value after moist heat are any one or both are more than 0.5, but both are 1.0 or less. And, Δb is 0.3 or less ×: Initial b value, b value after moist heat exceeds 1.0, or Δb exceeds 0.3 (9) Light yellowing resistance In the same manner as the evaluation of moisture resistance and thermal yellowing, an accelerated test of light yellowing was performed, and the b value before and after the test and Δb, which is the difference between them, were measured and calculated. In the accelerated test of light yellowing resistance, an ultraviolet fade meter (U48 manufactured by Suga Test Instruments Co., Ltd.) was used, the black panel temperature was set to 63 ° C., and irradiation was performed for 168 hours under the condition of 500 W / m2. Similar to the moisture-resistant thermal yellowing, the evaluation was performed in 4 stages.
(10) Corrosion resistance A test piece (for evaluation of Al corrosion resistance) in which an active energy ray-cured film is prepared by the above method and the obtained cured film is still attached to an aluminum substrate, and the cured film is slowly removed from the aluminum substrate. Using a test piece (for evaluation of Cu corrosion resistance) that was peeled off and attached to a copper foil (thickness 80 μm), it was allowed to stand in a constant temperature and humidity chamber set at a temperature of 60 ° C. and a relative humidity of 95% for 168 hours. Then, the cured film is peeled off from the aluminum substrate or the copper foil, the surfaces of the aluminum substrate and the copper foil are visually observed, the corrosion resistance of the cured film is evaluated, and the results are shown in Table 2.
◎: No corrosion ○: Slightly corroded △: Slightly corroded ×: Significant corrosion

Figure 0006948077
Figure 0006948077

実施例B−1
「DEAA」 40g、BA 40g、2EHA 15g、4HBA 5gとAIBN 0.2gを量り取って、室温にて均一に混合して、全塩基価と全酸価を測定した。表3に示すように、混合物の全塩基価は1.80KOHmg/g、全酸価は2.0KOHmg/g、全塩基価と全酸価の差が−0.2KOHmg/gであることを確認し、特に再処理をせず、本発明の熱重合性樹脂組成物とした。
温度計、撹拌機、還流冷却器及び窒素導入管を備えた反応装置内に、酢酸エチル200gと前記熱重合性樹脂組成物100gを加え、撹拌しながら窒素ガスを導入して装置内の空気を窒素に置換した後、還流温度まで昇温し、窒素を通しながら7時間反応させた。反応終了後、酢酸エチルを添加して、固形分30%の重合体溶液を得た。コーンプレート型粘度計(東機産業(株)社製、RE550型)を使用し、JIS K5600−2−3に準じて、25℃で溶液粘度を測定し、3500mPa・sであった。
また、前記重合体溶液から30部を取り出し、溶液中の揮発成分を完全に除去することにより重合体を取得した。その後、テトラヒドロフラン(THF)に溶解して、濃度0.5重量%の重合体溶液を調製し、一晩静置した。重合体のTHF溶液を0.45μmメンブレンフィルターでろ過し、ろ液を用いてゲルパーミエーションクロマトグラフィ(GPC)測定を行い(島津製作所製Prominence GPCシステム、ShodexのKF−806Lカラム、溶離液THF)、ポリスチレン換算値により、重合体の重量平均分子量(Mw)を116万であること算出した。
Example B-1
40 g of "DEAA", 40 g of BA, 15 g of 2EHA, 5 g of 4HBA and 0.2 g of AIBN were weighed and mixed uniformly at room temperature, and the total base value and total acid value were measured. As shown in Table 3, it was confirmed that the total base value of the mixture was 1.80 KOH mg / g, the total acid value was 2.0 KOH mg / g, and the difference between the total base value and the total acid value was -0.2 KOH mg / g. The thermopolymerizable resin composition of the present invention was obtained without any particular retreatment.
200 g of ethyl acetate and 100 g of the thermopolymerizable resin composition were added to a reactor equipped with a thermometer, a stirrer, a reflux condenser and a nitrogen introduction tube, and nitrogen gas was introduced while stirring to remove air from the device. After substituting with nitrogen, the temperature was raised to the reflux temperature, and the reaction was carried out for 7 hours while passing nitrogen. After completion of the reaction, ethyl acetate was added to obtain a polymer solution having a solid content of 30%. The solution viscosity was measured at 25 ° C. using a cone plate type viscometer (RE550 type manufactured by Toki Sangyo Co., Ltd.) according to JIS K5600-2-3, and was 3500 mPa · s.
Further, 30 parts were taken out from the polymer solution, and the volatile components in the solution were completely removed to obtain a polymer. Then, it was dissolved in tetrahydrofuran (THF) to prepare a polymer solution having a concentration of 0.5% by weight, and the mixture was allowed to stand overnight. The THF solution of the polymer was filtered through a 0.45 μm membrane filter, and gel permeation chromatography (GPC) measurement was performed using a filtrate (Prominence GPC system manufactured by Shimadzu Corporation, Shodex KF-806L column, eluent THF). The weight average molecular weight (Mw) of the polymer was calculated to be 1.16 million by the polystyrene conversion value.

実施例B−2〜B−6と比較例B−7〜B−9
表3に示す重合性組成物に変更する以外は、実施例B−1と同様にして熱重合性樹脂組成物の実施例B−2〜B−6、及び比較例B−7〜B−9を調製し、全塩基価と全酸価を測定した。また、熱重合を同様に行い、得られた重合体溶液の固形分を30%に調製し、溶液の粘度測定を行った。さらに、実施例B−1と同様に溶液中の揮発成分を完全に除去することによりそれぞれの重合体を取得し、重量平均分子量を測定した。各種評価の結果を表3に示す。なお、実施例B−1〜B−6は参考例である。
Examples B-2 to B-6 and Comparative Examples B-7 to B-9
Examples B-2 to B-6 and Comparative Examples B-7 to B-9 of the heat-polymerizable resin composition in the same manner as in Example B-1 except that the composition was changed to the polymerizable composition shown in Table 3. Was prepared, and the total base value and total acid value were measured. Further, thermal polymerization was carried out in the same manner, the solid content of the obtained polymer solution was adjusted to 30%, and the viscosity of the solution was measured. Further, as in Example B-1, each polymer was obtained by completely removing the volatile components in the solution, and the weight average molecular weight was measured. The results of various evaluations are shown in Table 3. Examples B-1 to B-6 are reference examples.

Figure 0006948077
Figure 0006948077

実施例C−1、2と比較例C−11
厚さ100μmのポリエチレンテレフタラート(PET)フィルムに、乾燥後の厚みが25μmとなるよう実施例B−1、B−4と比較例B−7で得られた重合物溶液を塗布し、90℃で2分間乾燥させて、粘着剤層を形成した。次いで、温度23℃、相対湿度50%の環境に1日置き、試験用粘着シート(タイプa)を得た。
Examples C-1, 2 and Comparative Example C-11
The polymer solutions obtained in Examples B-1 and B-4 and Comparative Example B-7 were applied to a polyethylene terephthalate (PET) film having a thickness of 100 μm so that the thickness after drying was 25 μm, and the temperature was 90 ° C. Was dried for 2 minutes to form a pressure-sensitive adhesive layer. Then, it was left in an environment of a temperature of 23 ° C. and a relative humidity of 50% for one day to obtain a test adhesive sheet (type a).

実施例C−3、4と比較例C−12
また、実施例B−3、B−5と比較例B−8で得られた固形分30%の重合物溶液100gを量り取って、ヘキサメチレンジイソシアネート(HDI)の50%酢酸エチルの溶液3gを添加し、均一に混合した後、同様に乾燥後の厚みが25μmとなるPETフィルムに塗布し、90℃で2分間乾燥させて、粘着剤層を形成した。その後、40℃の恒温槽で3日間エージングさせ、温度23℃、相対湿度50%の環境に1日置き、試験用粘着シート(タイプb)を得た。なお、実施例C−1〜C−は参考例である。
Examples C-3 and 4 and Comparative Example C-12
Further, 100 g of the polymer solution having a solid content of 30% obtained in Examples B-3 and B-5 and Comparative Example B-8 was weighed, and 3 g of a solution of hexamethylene diisocyanate (HDI) in 50% ethyl acetate was added. After adding and uniformly mixing, the mixture was similarly applied to a PET film having a thickness of 25 μm after drying, and dried at 90 ° C. for 2 minutes to form an adhesive layer. Then, it was aged in a constant temperature bath at 40 ° C. for 3 days and left in an environment with a temperature of 23 ° C. and a relative humidity of 50% for 1 day to obtain a test adhesive sheet (type b). Examples C-1 to C- 9 are reference examples.

実施例C−5、6と比較例C−13
実施例B−2とB−6で得られた固形分30%の重合物溶液100g、比較例B−9をで得られた固形分30%の重合物溶液70gをそれぞれ量り取って、多官能モノマーとしてDPHAの50%酢酸エチルの溶液5gと光重合開始剤I−184 1gを添加し、均一に混合した後、同様に乾燥後の厚みが25μmとなるPETフィルムに塗布し、90℃で2分間乾燥させて、粘着剤層を形成した。その後、紫外線を照射(装置:アイグラフィックス製 インバーター式コンベア装置ECS−4011GX、メタルハライドランプ:アイグラフィックス製 M04−L41、紫外線照度:700mW/cm、積算光量:1000mJ/cm)し、硬化させ、温度23℃、相対湿度50%の環境に1日置き、試験用粘着シート(タイプc)を得た。
Examples C-5 and 6 and Comparative Example C-13
100 g of the 30% solid content polymer solution obtained in Examples B-2 and B-6 and 70 g of the 30% solid content polymer solution obtained in Comparative Example B-9 were weighed and polyfunctional. 5 g of a 50% ethyl acetate solution of DPHA and 1 g of a photopolymerization initiator I-184 were added as monomers, mixed uniformly, and then similarly applied to a PET film having a thickness of 25 μm after drying, and 2 at 90 ° C. Allowed to dry for minutes to form a pressure-sensitive adhesive layer. After that, it is irradiated with ultraviolet rays (device: ECS-4011GX, an inverter type conveyor device manufactured by Eye Graphics, metal halide lamp: M04-L41 manufactured by Eye Graphics, ultraviolet illuminance: 700 mW / cm 2 , integrated light intensity: 1000 mJ / cm 2 ) and cured. The mixture was allowed to stand in an environment having a temperature of 23 ° C. and a relative humidity of 50% for one day to obtain a test adhesive sheet (type c).

実施例C−7〜9
実施例A−1、A−7とA−10で得られた重合性組成物、多官能モノマーとしてDPHA、ポリマーとしてKE−359及び光重合開始剤としてI−184を表4に示す所定量で量り取って、均一に混合した後、重剥離セパレーター(シリコーンコートPETフィルム)に塗工し、軽剥離セパレーター(シリコーンコートPETフィルム)で気泡を噛まないように卓上型ロール式ラミネーター機(Royal Sovereign製 RSL−382S)を用いて、粘着層が厚さ25μmになるように貼り合わせ、紫外線を照射(装置:アイグラフィックス製 インバーター式コンベア装置ECS−4011GX、メタルハライドランプ:アイグラフィックス製 M04−L41、紫外線照度:700mW/cm、積算光量:1000mJ/cm)し、光学用透明粘着シート(タイプd)を作製した。
Examples C-7-9
The polymerizable compositions obtained in Examples A-1, A-7 and A-10, DPHA as a polyfunctional monomer, KE-359 as a polymer and I-184 as a photopolymerization initiator in predetermined amounts shown in Table 4. After weighing and mixing uniformly, it is coated on a heavy peeling separator (silicone coated PET film), and a tabletop roll type laminator machine (made by Royal Sovereign) so as not to bite air bubbles with a light peeling separator (silicone coated PET film). Using RSL-382S), the adhesive layer is bonded so that the thickness is 25 μm, and irradiated with ultraviolet rays (device: Inverter type conveyor device ECS-4011GX manufactured by Eye Graphics, metal halide lamp: M04-L41 manufactured by Eye Graphics, The ultraviolet illuminance: 700 mW / cm 2 , the integrated light amount : 1000 mJ / cm 2 ) was used to prepare a transparent adhesive sheet for optics (type d).

実施例C−10と比較例C−14
実施例A−4と比較例A−15で得られた重合性組成物、架橋剤としてHDI、多官能モノマーとしてDPHA及び光重合開始剤としてI−184を表4に示す所定量で量り取って、均一に混合した後、タイプcと同様に粘着シートを作製し、紫外線により硬化を行った。その後、40℃の恒温槽で3日間エージングさせ、温度23℃、相対湿度50%の環境に1日置き、試験用粘着シート(タイプe)を得た。
Example C-10 and Comparative Example C-14
Weigh the polymerizable compositions obtained in Example A-4 and Comparative Example A-15, HDI as a cross-linking agent, DPHA as a polyfunctional monomer, and I-184 as a photopolymerization initiator in the predetermined amounts shown in Table 4. After mixing uniformly, an adhesive sheet was prepared in the same manner as in type c, and cured by ultraviolet rays. Then, it was aged in a constant temperature bath at 40 ° C. for 3 days and left in an environment with a temperature of 23 ° C. and a relative humidity of 50% for 1 day to obtain a test adhesive sheet (type e).

作製した粘着シートの特性を下記方法で評価し、結果を表4に示す。
(11)透明性
作製した粘着シートを、温度23℃、相対湿度50%の雰囲気下で、24時間を静止した。それ後、前記と同様にヘイズメーターにより透過率を測定し、透明性を評価した。
(12)粘着力
温度23℃、相対湿度50%の条件下、被着体として厚さ100μmのPETフィルム又はガラスの基板に転写し、重さ2kgの圧着ローラーを用いて2往復することにより加圧貼付し、同雰囲気下で30分間放置した。その後、引っ張り試験機(装置名:テンシロンRTA−100 ORIENTEC社製)を用いて、剥離速度300mm/分にて180°剥離強度(N/25mm)を測定した。
◎ :30(N/25mm)以上
○ :15(N/25mm)以上、30(N/25mm)未満
△ :8(N/25mm)以上、15(N/25mm)未満
× :8(N/25mm)未満
(13)耐汚染性
粘着シートを前述の粘着力の測定と同様に被着体に貼り付け、80℃、24時間放置した後、粘着シートを剥がした後の被着体表面の汚染を目視によって観察した。
◎:汚染なし
○:ごく僅かに汚染がある。
△:僅かに汚染がある。
×:糊(粘着剤)残りがある。
(14)耐光黄変性
粘着シートの耐光黄変性評価を前記と同様に行い、結果を表4に纏めた。
The characteristics of the produced adhesive sheet were evaluated by the following method, and the results are shown in Table 4.
(11) Transparency The prepared adhesive sheet was allowed to stand still for 24 hours in an atmosphere having a temperature of 23 ° C. and a relative humidity of 50%. After that, the transmittance was measured with a haze meter in the same manner as described above, and the transparency was evaluated.
(12) Under the conditions of an adhesive temperature of 23 ° C. and a relative humidity of 50%, the adherend is transferred to a PET film or glass substrate having a thickness of 100 μm and reciprocated twice using a pressure-bonding roller weighing 2 kg. It was pressure-applied and left in the same atmosphere for 30 minutes. Then, using a tensile tester (device name: Tencilon RTA-100 manufactured by ORIENTEC), 180 ° peel strength (N / 25 mm) was measured at a peel rate of 300 mm / min.
⊚: 30 (N / 25 mm) or more ○: 15 (N / 25 mm) or more, less than 30 (N / 25 mm) Δ: 8 (N / 25 mm) or more, less than 15 (N / 25 mm) ×: 8 (N / 25 mm) ) Less than (13) Stain-resistant adhesive sheet is attached to the adherend in the same manner as in the above-mentioned measurement of adhesive strength, left at 80 ° C. for 24 hours, and then the surface of the adherend is contaminated after the adhesive sheet is peeled off. Observed visually.
⊚: No contamination ○: Very slightly contaminated.
Δ: Slightly contaminated.
X: There is adhesive (adhesive) residue.
(14) The light yellowing resistance evaluation of the light yellowing resistant adhesive sheet was carried out in the same manner as described above, and the results are summarized in Table 4.

Figure 0006948077
Figure 0006948077

実施例D−1〜8と比較例D−9〜12
実施例Aで得られた重合性組成物、実施例Bで得られた重合物を用いて、その他成分と共に表5に示す所定量で量り取って、均一に混合し、紫外線硬化性封止剤を調製した。その後、得られた封止剤を用い、下記方法にて、紫外線硬化による封止剤樹脂硬化物の作製及び物性評価を行った。
Examples D-1 to 8 and Comparative Examples D-9 to 12
Using the polymerizable composition obtained in Example A and the polymer obtained in Example B, weighed together with other components in a predetermined amount shown in Table 5, mixed uniformly, and an ultraviolet curable sealant. Was prepared. Then, using the obtained encapsulant, a cured product of the encapsulant resin by ultraviolet curing was prepared and its physical properties were evaluated by the following method.

紫外線硬化型封止剤樹脂硬化物の作製方法
ガラス板(縦50mm×横50mm×厚さ5mm)上にシリコン製のスペーサー(縦30mm×横15mm×厚さ3mm)をセットし、スペーサーの内部に銅箔(縦5mm×横50m×厚み80μm)を入れ、上記にて調製した紫外線硬化型封止剤を注入した。十分に脱気した後、紫外線を照射(装置:アイグラフィックス製 インバーター式コンベア装置ECS−4011GX、メタルハライドランプ:アイグラフィックス製 M04−L41、紫外線照度:700mW/cm2、積算光量:1000mJ/cm2)し、封止剤樹脂硬化物を作製した。得られた硬化物の特性を下記方法で評価し、結果を表5に示す。
UV curable sealant Method for manufacturing resin cured product A silicon spacer (length 30 mm x width 15 mm x thickness 3 mm) is set on a glass plate (length 50 mm x width 50 mm x thickness 5 mm), and inside the spacer. A copper foil (length 5 mm × width 50 m × thickness 80 μm) was put in, and the ultraviolet curable sealant prepared above was injected. After sufficient deaeration, irradiate with ultraviolet rays (device: Inverter type conveyor device ECS-4011GX made by Eye Graphics, metal halide lamp: M04-L41 made by Eye Graphics, ultraviolet illuminance: 700 mW / cm2, integrated light intensity: 1000 mJ / cm2) Then, a cured resin resin was prepared. The characteristics of the obtained cured product were evaluated by the following method, and the results are shown in Table 5.

(15)透明性
作製した硬化物を温度23℃、相対湿度50%の雰囲気下で、24時間を静止した。それ後、前記と同様にヘイズメーターにより透過率を測定し、透明性を評価した。
(16) 耐湿熱黄変性
得られた硬化物を前記と同様に耐湿熱黄変性評価を行い、結果を表5に示す。
(17)吸水率試験
得られた硬化物から1gを切り取って、試験片として温度85℃×相対湿度95%の恒温恒湿機にセットし、48時間静置後、再び試験片の重量を測定し、吸水率を式3により算出した。
(15) Transparency The produced cured product was allowed to stand still for 24 hours in an atmosphere having a temperature of 23 ° C. and a relative humidity of 50%. After that, the transmittance was measured with a haze meter in the same manner as described above, and the transparency was evaluated.
(16) Moisture-resistant heat-yellowing The obtained cured product was evaluated for moisture-resistant heat-yellowing in the same manner as described above, and the results are shown in Table 5.
(17) Water absorption test 1 g of the obtained cured product was cut out, set as a test piece in a constant temperature and humidity chamber having a temperature of 85 ° C. and a relative humidity of 95%, allowed to stand for 48 hours, and then the weight of the test piece was measured again. Then, the water absorption rate was calculated by Equation 3.

式3Equation 3

Figure 0006948077
◎:吸水率は1.0%未満
○:吸水率は1.0%以上、かつ2.0%未満
△:吸水率は2.0%以上、かつ3.0%未満
×:吸水率は3.0%以上
(18)アウトガス試験
得られた硬化物から1gを切り取って、試験片として温度100℃に設定した恒温槽に静置し、乾燥窒素気流を24時間流して、その後再び試験片の重量を測定し、式4によりアウトガスの発生率を算出した。
Figure 0006948077
⊚: Water absorption rate is less than 1.0% ○: Water absorption rate is 1.0% or more and less than 2.0% Δ: Water absorption rate is 2.0% or more and less than 3.0% ×: Water absorption rate is 3 0.0% or more (18) Outgas test 1 g of the obtained cured product was cut out and allowed to stand in a constant temperature bath set at a temperature of 100 ° C. as a test piece, and a dry nitrogen stream was allowed to flow for 24 hours. The weight was measured, and the outgas generation rate was calculated by Equation 4.

式4Equation 4

Figure 0006948077
◎:発生率は0.1%未満
○:発生率は0.1%以上、かつ0.3%未満
△:発生率は0.3%以上、かつ1.0%未満
×:発生率は1.0%以上
(19)耐ヒートサイクル性
得られた硬化物を−40℃で30分間、次に100℃で30分間放置を1サイクルとして100回繰り返し、硬化物の状態を目視によって観察した。
◎:全く変化が見られない
〇:わずかに気泡の発生が見られるが、クラックの発生が見られない。透明である。
△:多少の気泡或いはクラックの発生が見られ、わずかな曇である。
×:気泡又はクラックが全面的に発生し、半透明状態である。
(20)耐腐食性
耐湿熱黄変性試験後、銅箔の表面を目視で観察し、前記と同様に硬化膜の耐腐食性を評価し、結果を表5に示す。
Figure 0006948077
⊚: Incidence rate is less than 0.1% ○: Incidence rate is 0.1% or more and less than 0.3% Δ: Occurrence rate is 0.3% or more and less than 1.0% ×: Occurrence rate is 1 0.0% or more (19) Heat cycle resistance The obtained cured product was left at −40 ° C. for 30 minutes and then left at 100 ° C. for 30 minutes 100 times as one cycle, and the state of the cured product was visually observed.
⊚: No change is seen 〇: Slight bubbles are seen, but no cracks are seen. It is transparent.
Δ: Some bubbles or cracks were observed, and it was slightly cloudy.
X: Bubbles or cracks are generated on the entire surface, and the state is translucent.
(20) Corrosion resistance After the moisture-heat yellowing test, the surface of the copper foil was visually observed, the corrosion resistance of the cured film was evaluated in the same manner as described above, and the results are shown in Table 5.

Figure 0006948077
Figure 0006948077

実施例E−1〜8と比較例E−9〜12
実施例Aで得られた重合性組成物及び実施例Bで得られた重合物を用い、表6に示す組成で紫外線硬化性接着剤を調製し、下記方法にて偏光板作製及び偏光板の物性評価を行い、結果を表6に示す。
Examples E-1 to 8 and Comparative Examples E-9 to 12
Using the polymerizable composition obtained in Example A and the polymer obtained in Example B, an ultraviolet curable adhesive was prepared with the composition shown in Table 6, and a polarizing plate was prepared and a polarizing plate was prepared by the following method. Physical properties were evaluated and the results are shown in Table 6.

紫外線照射による偏光板の作製
卓上型ロール式ラミネーター機(Royal Sovereign製 RSL−382S)を用いて、2枚の透明フィルムの間に偏光フィルムを挟み、透明フィルムと偏光フィルムの間に、実施例又は比較例の接着剤を、厚さ10μmになるように貼り合わせた。貼り合わせた透明フィルムの上面から紫外線を照射(装置:アイグラフィックス製 インバーター式コンベア装置ECS−4011GX、メタルハライドランプ:アイグラフィックス製 M04−L41、紫外線照度:700mW/cm2、積算光量:1000mJ/cm2)し、偏光フィルムの両側に透明フィルムを有する偏光板を作製した。なお、透明フィルムとして、アクリル系保護フィルム(カネカ社製のサンデュレンSD−014)を使用した。
Fabrication of Polarizing Plate by UV Irradiation Using a desktop roll-type laminator machine (RSL-382S manufactured by Royal Sovereign), a polarizing film is sandwiched between two transparent films, and an example or the case is used between the transparent film and the polarizing film. The adhesive of the comparative example was bonded so as to have a thickness of 10 μm. Irradiate ultraviolet rays from the upper surface of the bonded transparent film (device: Inverter type conveyor device ECS-4011GX made by Eye Graphics, metal halide lamp: M04-L41 made by Eye Graphics, ultraviolet illuminance: 700 mW / cm2, integrated light amount: 1000 mJ / cm2 ), And a polarizing plate having transparent films on both sides of the polarizing film was prepared. As the transparent film, an acrylic protective film (Sanduren SD-014 manufactured by Kaneka Corporation) was used.

(21)表面形状観察
得られた偏光板表面を目視によって観察し、下記基準で評価した。
◎:偏光板の表面に微小なスジも凹凸ムラも確認できない
○:偏光板の表面に部分的に微小なスジが確認できる
△:偏光板の表面に微小なスジや凹凸ムラが確認できる
×:偏光板の表面に明らかなスジや凹凸ムラが確認できる
(22)剥離強度
温度23℃、相対湿度50%の条件下、20mm×150mmに裁断した偏光板(試験片)を、引っ張り試験機(島津製作所製 オートグラフAGXS−X 500N)に取り付けた試験板に両面接着テープを用いて貼り付けた。両面接着テープを貼付していない方の透明保護フィルムと偏光フィルムの一片を、20〜30mm程度あらかじめ剥がしておき、上部つかみ具にチャックし、剥離速度300mm/minにて90°剥離強度(N/20mm)を測定した。
◎:3.0(N/20mm)以上
○:1.5(N/20mm)以上、3.0(N/20mm)未満
△:1.0(N/20mm)以上、1.5(N/20mm)未満
×:1.0(N/20mm)未満
(23)耐水性
得られた偏光板を20×80mmに切断し、60℃の温水に48時間浸漬した後、偏光子と保護フィルム、位相差フィルム、光学補償フィルムとの界面における剥離の有無を確認した。判定は下記の基準で行った。
◎:偏光子と保護フィルムとの界面で剥離なし(1mm未満)
○:偏光子と保護フィルムとの界面の一部に剥離あり(1mm以上、3mm未満)
△:偏光子と保護フィルムとの界面の一部に剥離あり(3mm以上、5mm未満)
×:偏光子と保護フィルムとの界面で剥離あり(5mm以上)
(24)耐久性
得られた偏光板を150mm×150mmに裁断し、冷熱衝撃装置(エスペック社製TSA−101L−A)に入れ、−40℃〜80℃のヒートショックを各30分間、100回行い、下記基準で評価した。
◎:クラックの発生なし
○:端部にのみ5mm以下の短いクラックの発生あり
△:端部以外の場所にクラックが短い線状に発生している。しかし、その線により偏光板が2つ以上の部分に分離してはいない
×:端部以外の場所にクラックの発生あり、その線により、偏光板が2つ以上の部分に分離している
(25)耐熱黄変性
得られた偏光板を30mm×30mmに裁断し、透過色相のa値及びb値を測定し((株)島津製作所製の紫外可視分光光度計UV−2450にて、波長380〜780nmの平行透過色相a値及び直交透過色相b値を測定し、透過色相のab値(ab=(a2+b2)1/2)を算出した。その後、偏光板を90℃の恒温槽に48時間保持し、耐熱黄変性試験を行った。試験後のab値を同様に算出し、Δab(Δab=試験後のab値−試験前のab値)の値が黄変の指標とした。Δab=0の場合は、黄変せず、Δabが大きくなるほど黄変が大きいことを意味する。
◎:0<=Δab<=2
○:2<Δab<=6
△:6<Δab<=10
×:10<Δab
(21) Observation of surface shape The surface of the obtained polarizing plate was visually observed and evaluated according to the following criteria.
⊚: Fine streaks and unevenness of unevenness cannot be confirmed on the surface of the polarizing plate ○: Fine streaks can be partially confirmed on the surface of the polarizing plate Δ: Fine streaks and unevenness of unevenness can be confirmed on the surface of the polarizing plate ×: Clear streaks and unevenness can be confirmed on the surface of the polarizing plate. (22) Under the conditions of peeling strength temperature of 23 ° C. and relative humidity of 50%, the polarizing plate (test piece) cut into 20 mm × 150 mm was subjected to a tensile tester (Shimadzu). It was attached to a test plate attached to an Autograph AGXS-X 500N manufactured by Mfg. Co., Ltd. using a double-sided adhesive tape. Peel off the transparent protective film and the piece of polarizing film from which the double-sided adhesive tape is not attached in advance by about 20 to 30 mm, chuck them on the upper gripper, and peel off at 90 ° strength (N /) at a peeling speed of 300 mm / min. 20 mm) was measured.
⊚: 3.0 (N / 20 mm) or more ○: 1.5 (N / 20 mm) or more, less than 3.0 (N / 20 mm) Δ: 1.0 (N / 20 mm) or more, 1.5 (N / Less than 20 mm) ×: Less than 1.0 (N / 20 mm) (23) Water resistance The obtained polarizing plate is cut into 20 × 80 mm, immersed in warm water at 60 ° C. for 48 hours, and then the polarizer and protective film, position. The presence or absence of peeling at the interface between the retardation film and the optical compensation film was confirmed. The judgment was made according to the following criteria.
⊚: No peeling at the interface between the polarizer and the protective film (less than 1 mm)
◯: There is peeling at a part of the interface between the polarizer and the protective film (1 mm or more and less than 3 mm).
Δ: There is peeling at a part of the interface between the polarizer and the protective film (3 mm or more and less than 5 mm).
X: There is peeling at the interface between the polarizer and the protective film (5 mm or more)
(24) Durability The obtained polarizing plate is cut into 150 mm × 150 mm, placed in a thermal shock device (TSA-101LA manufactured by ESPEC), and heat shocked at -40 ° C to 80 ° C 100 times for 30 minutes each. The results were evaluated according to the following criteria.
⊚: No cracks ◯: Short cracks of 5 mm or less are generated only at the end Δ: Cracks are generated in a short linear shape at a place other than the end. However, the line does not separate the polarizing plate into two or more parts. ×: There is a crack in a place other than the end part, and the line separates the polarizing plate into two or more parts ( 25) Heat-resistant yellowing The obtained polarizing plate is cut into 30 mm × 30 mm, the a value and b value of the transmitted hue are measured, and the wavelength is 380 with an ultraviolet visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation. The parallel transmission hue a value and the orthogonal transmission hue b value of about 780 nm were measured, and the ab value of the transmission hue (ab = (a2 + b2) 1/2) was calculated. After that, the polarizing plate was placed in a constant temperature bath at 90 ° C. for 48 hours. The heat-resistant yellowing test was carried out. The ab value after the test was calculated in the same manner, and the value of Δab (Δab = ab value after the test-ab value before the test) was used as an index of yellowing. When it is 0, it does not turn yellow, and the larger Δab, the larger the yellowing.
⊚: 0 <= Δab <= 2
◯: 2 <Δab <= 6
Δ: 6 <Δab <= 10
X: 10 <Δab

Figure 0006948077
Figure 0006948077

実施例F−1〜8と比較例F−9〜12
実施例Aで得られた重合性組成物及び実施例Bで得られた重合物を用い、表7に示す組成で光硬化性インク組成物を調製し、その後、下記方法にてインクジェット印刷を行い、得られた印刷物の評価を行った。なお、クリアインク組成物においては顔料と顔料分散剤を配合せず、ブラックインク組成物は顔料ピグメントブラック7(略称PMB−7)と顔料分散剤アジスパーPB821(略称PB821)を表7に示す所定量で配合したものである。
Examples F-1 to 8 and Comparative Examples F-9 to 12
Using the polymerizable composition obtained in Example A and the polymer obtained in Example B, a photocurable ink composition having the composition shown in Table 7 was prepared, and then inkjet printing was performed by the following method. , The obtained printed matter was evaluated. The clear ink composition does not contain a pigment and a pigment dispersant, and the black ink composition contains pigment pigment black 7 (abbreviated as PMB-7) and pigment dispersant azisper PB821 (abbreviated as PB821) in a predetermined amount shown in Table 7. It is the one that was mixed in.

(26) 粘度
得られたインク組成物の粘度をJIS K5600−2−3に準じて、コーンプレート型粘度計(装置名:RE550型粘度計 東機産業株式会社製)を使用し、測定した。インクジェット式印刷を踏まえて、20℃におけるインク組成物の粘度は2〜50mPa・s(△評価)であり、又は3〜30mPa・s(○評価)であることが好ましく、更には5〜20mPa・s(◎評価)であることが好ましい。2mPa・s未満(×評価)では吐出後の印刷にじみ、印刷ずれによる吐出追従性の低下が見られ、50mPa・sを超える(×評価)と吐出ノズルのつまりによる吐出安定性の低下がみられるため、好ましくない。
(27) 相溶性
上記の方法により調製したインク組成物を目視により相溶性を確認した。
◎:インク組成物に不溶解物なし
〇:インク組成物にわずかに不溶解物がみられる
△:インク組成物全体に不溶解物がみられる
×:インク組成物に沈殿物あり
(26) Viscosity The viscosity of the obtained ink composition was measured using a cone plate type viscometer (device name: RE550 type viscometer manufactured by Toki Sangyo Co., Ltd.) according to JIS K5600-2-3. Based on inkjet printing, the viscosity of the ink composition at 20 ° C. is preferably 2 to 50 mPa · s (Δ evaluation), preferably 3 to 30 mPa · s (○ evaluation), and more preferably 5 to 20 mPa · s. It is preferably s (⊚ evaluation). If it is less than 2 mPa · s (× evaluation), printing bleeding after ejection and a decrease in ejection followability due to printing misalignment are observed, and if it exceeds 50 mPa · s (× evaluation), a decrease in ejection stability due to clogging of the ejection nozzle is observed. Therefore, it is not preferable.
(27) Compatibility The ink composition prepared by the above method was visually confirmed to be compatible.
⊚: No insoluble matter in the ink composition 〇: Slightly insoluble matter is found in the ink composition Δ: Insoluble matter is found in the entire ink composition ×: Precipitate is found in the ink composition

紫外線照射による印刷物の作製
得られたインク組成物を厚さ100μmのPETフィルムにバーコーター(RDS 12)にて塗布し(乾燥後膜厚10μm)、紫外線照射(装置:アイグラフィックス製インバーター式コンベア装置ECS−4011GX、メタハライドランプ:アイグラフィックス製M04−L41)により硬化させ、印刷物を作製した。
Preparation of printed matter by ultraviolet irradiation The obtained ink composition is applied to a PET film having a thickness of 100 μm with a bar coater (RDS 12) (thickness after drying is 10 μm), and is irradiated with ultraviolet rays (device: inverter type conveyor manufactured by Eye Graphics). A printed matter was produced by curing with an apparatus ECS-4011GX, a metal halide lamp: M04-L41 manufactured by Eye Graphics).

(28) 硬化性
上記方法にて印刷物を作成する際、インク組成物が完全硬化(べたつかない状態)するまでの積算光量を測定し、硬化性を評価した。
◎:1000mJ/cm2で完全硬化
○:1000〜2000mJ/cm2で完全硬化
△:2000〜5000mJ/cm2で完全硬化
×:完全硬化までに5000mJ/cm2以上が必要
(29) 表面乾燥性
上記方法にて作製した印刷物を、室温23℃、相対湿度50%の環境に5分間静置し、印刷面に上質紙を重ね、荷重1kg/cm2の付加を1分間かけ、紙へのインクの転写程度を評価した。
◎:インクが乾燥し、紙への転写が全くなかった。
○:インクが乾燥し、紙への転写がわずかにあった。
△:インクがほぼ乾燥し、紙への転写があった。
×:インクが殆ど乾燥せず、紙への転写が多かった。
(28) Curability When a printed matter was prepared by the above method, the integrated light amount until the ink composition was completely cured (non-sticky state) was measured, and the curability was evaluated.
⊚: Completely cured at 1000 mJ / cm2 ○: Completely cured at 1000 to 2000 mJ / cm2 Δ: Completely cured at 2000 to 5000 mJ / cm2 ×: 5000 mJ / cm2 or more is required for complete curing (29) Surface dryness by the above method The produced printed matter was allowed to stand in an environment of room temperature 23 ° C. and relative humidity 50% for 5 minutes, high-quality paper was placed on the printed surface, a load of 1 kg / cm2 was applied for 1 minute, and the degree of ink transfer to the paper was evaluated. bottom.
⊚: The ink was dried and there was no transfer to paper.
◯: The ink was dried and there was a slight transfer to paper.
Δ: The ink was almost dried and was transferred to paper.
X: The ink was hardly dried and was often transferred to paper.

インクジェット印刷と印刷適性評価
前記で作製したインク組成物を市販インクジェットプリンター(LuxelJet UV350GTW、富士フイルム(株)製)に充填し、コート紙を用いて、ベタ画像を印刷し、インクの印刷適正を以下の方法にて評価した。
Inkjet printing and printability evaluation The ink composition prepared above is filled in a commercially available inkjet printer (LuxelJet UV350GTW, manufactured by Fujifilm Co., Ltd.), and a solid image is printed using coated paper. It was evaluated by the method of.

(30) 吐出安定性
得られた印刷物の印刷状態を目視により評価した。
◎:ノズル抜けなく、良好に印刷されている。
〇:わずかにノズル抜けあり。
△:広い範囲にてノズル抜けがあり。
×:不吐出がある。
(31) 鮮明度
顔料を配合したインク組成物から得られた印刷物の画像鮮明度を目視で観察した。
◎:インクにじみが全く見られなく、画像が鮮明であった。
○:インクにじみが殆どなく、画像が良好であった。
△:インクにじみが若干見られた。
×:インクにじみが著しくみられた。
(32) 耐熱黄変性
得られたクリアインク組成物を用いて、サブストレート基板(#125−E20)に膜厚10μmとなるようにバーコーターで塗布し、上記同様メタルハライドランプで硬化させた。得られた塗膜の色相をSpcetrolino(GretagMacbeth社製)により測定し、60℃に保持した恒温槽に1週間放置した。その後、塗膜の色相を再度測定し、加熱前後の色相値変化(ΔE=加熱後色相−加熱前色相)により耐黄変性を評価した。
◎:0<=ΔE<=0.2
〇:0.2<ΔE<=0.5
△:0.5<ΔE<=1.0
×:1.0<ΔE
(30) Discharge stability The printed state of the obtained printed matter was visually evaluated.
⊚: Good printing without nozzle removal.
〇: There is a slight nozzle omission.
Δ: Nozzle is missing in a wide range.
X: There is non-discharge.
(31) Sharpness The image sharpness of the printed matter obtained from the ink composition containing the pigment was visually observed.
⊚: No ink bleeding was observed, and the image was clear.
◯: There was almost no ink bleeding, and the image was good.
Δ: Some ink bleeding was observed.
X: Ink bleeding was significantly observed.
(32) Heat-resistant yellowing The obtained clear ink composition was applied to a substrate substrate (# 125-E20) with a bar coater so as to have a film thickness of 10 μm, and cured with a metal halide lamp in the same manner as described above. The hue of the obtained coating film was measured by Spcetorolino (manufactured by Gretag Macbeth) and left in a constant temperature bath maintained at 60 ° C. for 1 week. Then, the hue of the coating film was measured again, and the yellowing resistance was evaluated by the change in hue value before and after heating (ΔE = hue after heating-hue before heating).
⊚: 0 <= ΔE <= 0.2
〇: 0.2 <ΔE <= 0.5
Δ: 0.5 <ΔE <= 1.0
X: 1.0 <ΔE

Figure 0006948077
Figure 0006948077

実施例G−1〜4と比較例G−5、6
実施例Fで得られたクリアインク組成物を用いて、立体造形物評価用試験片を下記通り作製し、強度、耐収縮性、耐熱性等を測定し、結果を表8に示す。
Examples G-1 to 4 and Comparative Examples G-5, 6
Using the clear ink composition obtained in Example F, a test piece for evaluating a three-dimensional model was prepared as follows, strength, shrinkage resistance, heat resistance, etc. were measured, and the results are shown in Table 8.

水平に設置したガラス板上に厚さ75μmの重剥離PETフィルム(東洋紡株式会社製、ポリエステルフィルムE7001)を密着させ、厚さ1mm、内部が20mm×40mmのスペーサーを設置し、スペーサーの内側に活性エネルギー線硬化性樹脂組成物を充填した後、更にその上に厚さ50μmの軽剥離PETフィルム(東洋紡株式会社製、ポリエステルフィルムE7002)を重ね、紫外線を照射(装置:アイグラフィックス製、インバーター式コンベア装置ECS−4011GX、メタルハライドランプ:アイグラフィックス製M04−L41、紫外線照度300mW/cm2、積算光量900mJ/cm2)し、組成物の硬化物を取得した。その後、硬化物を温度23℃、相対湿度50%の雰囲気下で、24時間を静止し、両側の剥離PETフィルムを取り除いて、引張特性、曲げ特性等力学的特性や熱的特性、立体造形物の収縮率、表面強度等を測定した。 A 75 μm-thick heavy-release PET film (polyester film E7001 manufactured by Toyobo Co., Ltd.) is adhered to a horizontally installed glass plate, and a spacer with a thickness of 1 mm and an inside of 20 mm × 40 mm is installed and activated inside the spacer. After filling the energy ray-curable resin composition, a light peeling PET film (made by Toyobo Co., Ltd., polyester film E7002) with a thickness of 50 μm is further laminated and irradiated with ultraviolet rays (device: made by Eye Graphics, inverter type). Conveyor device ECS-4011GX, metal halide lamp: M04-L41 manufactured by Eye Graphics, ultraviolet illuminance 300 mW / cm2, integrated light amount 900 mJ / cm2) to obtain a cured product of the composition. After that, the cured product was allowed to stand still for 24 hours in an atmosphere of a temperature of 23 ° C. and a relative humidity of 50%, and the peeled PET films on both sides were removed. Shrinkage rate, surface strength, etc. were measured.

(33)引張試験
JIS K−7113に準じ、精密万能試験機(島津製作所製、AG−X 500N)を用いて得られた硬化試験片の引張試験を行い、引張強度、引張伸度および引張弾性率を測定した。得られた各測定値を以下基準に基づき評価を行った。
引張強度
◎:最大点応力が40MPa以上
〇:最大点応力が30〜40MPa
△:最大点応力が15〜30MPa
×:最大点応力が15MPa以下
引張伸度
◎:破断点伸度が100%以上
〇:破断点伸度が80〜100%
△:破断点伸度が50%〜80%
×:破断点伸度が50%以下
引張弾性率
◎:1500MPa以上
〇:1000〜1500MPa
△:500〜1000MPa
×:500MPa以下
(34)曲げ試験
得られた硬化試験片を用いて、JIS K−7171に準拠したバー状に加工し、曲げ試験の試験片とした。JIS K−7171に準じ、精密万能試験機(島津製作所製のAG−X 500N)を用いて硬化試験片の曲げ試験を行い、試験片の曲げ強度と曲げ弾性率を測定した。得られた各測定値を以下基準に基づき評価を行った。
曲げ強度
◎:最大曲げ応力が80MPa以上
〇:最大曲げ応力が50〜80MPa
△:最大曲げ応力が30〜50MPa
×:最大曲げ応力が30MPa以下
曲げ弾性率
◎:1500MPa以上
〇:1000〜1500MPa
△:500〜1000MPa
×:500MPa以下
(35)表面硬度
上記硬化試験片を用いて、JIS K6253に準拠し、表面硬度を「アスカーD型硬度計(高分子計器社製)」のデュロメーター法より測定し、以下基準に基づき評価を行った。
◎:D80超える
〇:D60超える〜D80
△:D40超える〜D60
×:D40以下
(36)熱変形温度
上記硬化試験片を用いて、JIS K7207に準拠し、熱変形温度を測定し、以下基準に基づき評価を行った。
◎:50℃超える
〇:40℃超える〜50℃
△:25℃超える〜40℃
×:25℃以下
(37)耐光黄変性
得られた硬化試験片を用いて、耐光黄変性評価を前記と同様に行った。
(33) Tensile test According to JIS K-7113, a tensile test was performed on the curing test piece obtained using a precision universal testing machine (manufactured by Shimadzu Corporation, AG-X 500N), and tensile strength, tensile elongation and tensile elasticity were performed. The rate was measured. Each of the obtained measured values was evaluated based on the following criteria.
Tensile strength ⊚: Maximum point stress is 40 MPa or more 〇: Maximum point stress is 30-40 MPa
Δ: Maximum point stress is 15 to 30 MPa
X: Maximum point stress is 15 MPa or less Tensile elongation ◎: Breaking point elongation is 100% or more 〇: Breaking point elongation is 80 to 100%
Δ: Breaking point elongation is 50% to 80%
X: Fracture point elongation is 50% or less Tension elastic modulus ⊚: 1500 MPa or more 〇: 1000 to 1500 MPa
Δ: 500 to 1000 MPa
X: 500 MPa or less (34) Bending test Using the obtained hardening test piece, it was processed into a bar shape conforming to JIS K-7171 to obtain a test piece for the bending test. A bending test of a hardening test piece was performed using a precision universal testing machine (AG-X 500N manufactured by Shimadzu Corporation) according to JIS K-7171, and the bending strength and flexural modulus of the test piece were measured. Each of the obtained measured values was evaluated based on the following criteria.
Bending strength ⊚: Maximum bending stress is 80 MPa or more 〇: Maximum bending stress is 50 to 80 MPa
Δ: Maximum bending stress is 30 to 50 MPa
X: Maximum bending stress is 30 MPa or less Bending elastic modulus ⊚: 1500 MPa or more 〇: 1000 to 1500 MPa
Δ: 500 to 1000 MPa
X: 500 MPa or less (35) Surface hardness Using the above curing test piece, the surface hardness was measured by the durometer method of "Ascar D type hardness tester (manufactured by Polymer Meter Co., Ltd.)" in accordance with JIS K6253, and the following criteria were used. Evaluation was made based on.
⊚: Exceeds D80 〇: Exceeds D60 ~ D80
Δ: Over D40 ~ D60
X: D40 or less (36) Thermal deformation temperature Using the above curing test piece, the thermal deformation temperature was measured in accordance with JIS K7207, and evaluation was performed based on the following criteria.
⊚: Exceeds 50 ° C 〇: Exceeds 40 ° C to 50 ° C
Δ: Over 25 ° C to 40 ° C
X: 25 ° C. or lower (37) Light yellowing resistance Evaluation of the light yellowing resistance was carried out in the same manner as described above using the obtained curing test piece.

上記クリアインク組成物を用い、超高速光造形システム(ナブテスコ社製、SOLIFORM500B)を使用して半導体レーザーで(スペクトラフィジックス社製、半導体励起固体レーザーBL6型、波長355nm)、液面照射量100mJ/cm2の条件で、スライスピッチ0.10mm、1層当たり2分間の時間で立体造形を行い、直方体形状の立体的造形物を作製した。 Using the above clear ink composition, using an ultra-high-speed stereolithography system (manufactured by Nabtesco, SOLIFORM500B) with a semiconductor laser (manufactured by Spectraphysics, semiconductor-pumped solid-state laser BL6 type, wavelength 355 nm), liquid surface irradiation amount 100 mJ / Under the condition of cm2, three-dimensional modeling was performed at a slice pitch of 0.10 mm for a time of 2 minutes per layer to prepare a rectangular three-dimensional model.

(38)耐硬化収縮性
光硬化前のインク組成物の比重(d0)と硬化後得られた造形物の比重(d1)から下記の式より硬化収縮率を求め、耐硬化収縮性を以下基準に基づき評価した。
硬化収縮率(%)={(d1−d0)/d1}×100
◎:2%未満
〇:2%〜5%未満
△:5%〜10%未満
×:10%以上
(38) Curing Shrinkage Resistance The curing shrinkage rate is calculated from the specific gravity (d0) of the ink composition before photocuring and the specific gravity (d1) of the modeled product obtained after curing from the following formula, and the curing shrinkage resistance is used as a reference below. Evaluated based on.
Curing shrinkage rate (%) = {(d1-d0) / d1} × 100
⊚: less than 2% 〇: 2% to less than 5% Δ: 5% to less than 10% ×: 10% or more

Figure 0006948077
Figure 0006948077

実施例H−1〜6と比較例H−7〜10
実施例Aで得られた重合性組成物及び実施例Bで得られた重合物を用い、実施例Cに記載した4タイプ(b、c、d、e)の防曇性塗料組成物を表9に示す組成で調製し、乾燥後の膜厚を1μmになるように、ガラス、アルミ、PETとPC基板に塗布した。その後、各タイプに応じて熱硬化、活性エネルギー線硬化又はそれらの組み合わせにより硬化を行い、得られた防曇膜の性能を下記方法にて評価し、結果は表10に示した。
Examples H-1 to 6 and Comparative Examples H-7 to 10
Using the polymerizable composition obtained in Example A and the polymer obtained in Example B, the four types (b, c, d, e) of the anti-fog coating composition described in Example C are shown in the table. It was prepared with the composition shown in 9, and applied to glass, aluminum, PET and a PC substrate so that the film thickness after drying was 1 μm. Then, depending on each type, it was cured by thermosetting, active energy ray curing, or a combination thereof, and the performance of the obtained anti-fog film was evaluated by the following method, and the results are shown in Table 10.

(39)透明性
防曇塗料を塗装した評価用試験片の透明性、色相を目視で観察し、4段階で評価した。
◎:優れている(無色透明かつ光沢感が良好である。)
○:良い(無色透明であるが、光沢感がやや劣る)
△:やや悪い(僅かに白濁し、光沢感に乏しい。)
×:悪い(ほぼ不透明で、白濁が認められる。)
(40)耐タック性
評価用試験片の塗膜表面を直接指で触れ、べたつき具合を4段階で評価した。
◎:優れている(べたつきが全くない。)
○:良い(若干のべたつきがあるが、塗膜の表面に指が貼りつかない。)
△:やや悪い(べたつきがあり、塗膜の表面に指が貼りつく。)
×:悪い(べたつきが酷く、塗膜の表面に指が貼りつく。)
(41)密着性
JIS K5400に準拠し、カッターナイフで碁盤目を入れ、セロハンテープを貼り付けた後、90度の角度でセロハンテープを剥がし、塗膜の基材からの剥離度合いを4段階で評価した。
◎:優れている(全く剥離しなかった。)
○:良い(若干剥離したが、10%未満。)
△:やや悪い(10%以上、50%未満が剥離した。)
×:悪い(50%以上が剥離した。)
(42)防曇性
防曇塗料を塗装した評価用試験片を用い、呼気防曇法により防曇性を評価した。23℃、相対湿度50%の恒温恒湿室内で、防曇性被膜付きガラス板に15cmの距離から呼気を1秒吹きかけ、曇り状態を目視で観察し、4段階で評価した。
◎:優れている(全く曇らない。)
○:良い(一瞬僅かに曇りが、すぐに曇りが晴れる。)
△:やや悪い(僅かに曇り。)
×:悪い(はっきりと曇りが確認される。)
(43)防汚性
油/カーボン顔料=1/1の混合液を汚染物質として評価用試験片の塗膜上にスジ状付着させ、3時間後に上から流水を1分間かけ、混合液のクリーニング性能を目視で確認を行い、4段階で評価した。
◎:優れている(試験片表面に汚れが全く残らず、汚れの流れた跡が認められない。)
○:良い(試験片表面に汚れが残らないが、汚れの流れた跡が僅かに認められる。)
△:やや悪い(試験片表面に汚れが僅かに残っている。)
×:悪い(試験片表面に汚れがかなり残っている。)
(44)耐水性
評価用試験片を40℃温水に240時間浸漬した後、常温で乾燥させ、塗膜の外観を目視で観察した。試験前の外観と比較し、4段階で評価した。
◎:優れている(変化がない。)
○:良い(わずかに塗膜表面が荒れている。)
△:やや悪い(塗膜表面が荒れているか、またはわずかに白化やシミが認められる。)
×:悪い(塗膜の一部或いは全部が溶解しているか、またははっきり白化やシミが認められる。)
(45)耐久性
評価用試験片を60℃、相対湿度90%恒温恒湿機に5分静置した後、90℃で5分間乾燥した。これを1サイクルとし、5サイクルを行った後、防曇性を上記同様呼気防曇法により評価した。
(46)耐湿熱黄変性
得られた防曇性被膜付き試験片を用いて、耐湿熱黄変性評価を前記と同様に行った。
(47)耐腐食性
耐湿熱黄変性試験後、アルミ基板の表面を目視で観察し、前記と銅箔と同様に硬化膜の耐腐食性を評価した。
(39) Transparency The transparency and hue of the evaluation test piece coated with the anti-fog paint were visually observed and evaluated in four stages.
⊚: Excellent (colorless, transparent and glossy)
◯: Good (colorless and transparent, but slightly inferior in glossiness)
Δ: Slightly bad (slightly cloudy and poorly glossy)
×: Bad (almost opaque, cloudy)
(40) The surface of the coating film of the tack resistance evaluation test piece was directly touched with a finger, and the stickiness was evaluated on a 4-point scale.
◎: Excellent (no stickiness at all)
◯: Good (There is some stickiness, but fingers do not stick to the surface of the coating film.)
Δ: Slightly bad (sticky, fingers stick to the surface of the coating film)
×: Bad (severe stickiness, fingers stick to the surface of the coating film)
(41) Adhesion In accordance with JIS K5400, a grid is made with a cutter knife, cellophane tape is attached, and then the cellophane tape is peeled off at an angle of 90 degrees, and the degree of peeling of the coating film from the substrate is in 4 steps. evaluated.
⊚: Excellent (no peeling at all)
◯: Good (slightly peeled, but less than 10%)
Δ: Slightly bad (10% or more and less than 50% peeled off)
X: Bad (50% or more peeled off)
(42) Anti-fog property The anti-fog property was evaluated by the exhaled anti-fog method using an evaluation test piece coated with an anti-fog paint. In a constant temperature and humidity chamber at 23 ° C. and a relative humidity of 50%, exhaled air was sprayed on a glass plate with an antifog film from a distance of 15 cm for 1 second, and the cloudy state was visually observed and evaluated on a 4-point scale.
◎: Excellent (does not fog at all)
○: Good (slightly cloudy for a moment, but cloudy soon clears)
△: Slightly bad (slightly cloudy)
×: Bad (clearly cloudy)
(43) A mixed solution of antifouling oil / carbon pigment = 1/1 was adhered as a pollutant on the coating film of the evaluation test piece in a streak-like manner, and after 3 hours, running water was poured from above for 1 minute to clean the mixed solution. The performance was visually confirmed and evaluated on a 4-point scale.
⊚: Excellent (no dirt remains on the surface of the test piece, and no trace of dirt flow is observed.)
◯: Good (No dirt remains on the surface of the test piece, but there are slight traces of dirt flowing.)
Δ: Slightly bad (slight dirt remains on the surface of the test piece)
×: Bad (a considerable amount of dirt remains on the surface of the test piece)
(44) The test piece for water resistance evaluation was immersed in warm water at 40 ° C. for 240 hours, dried at room temperature, and the appearance of the coating film was visually observed. Compared with the appearance before the test, it was evaluated on a 4-point scale.
⊚: Excellent (no change)
◯: Good (the surface of the coating film is slightly rough)
Δ: Slightly bad (the surface of the coating film is rough, or slight whitening or stains are observed).
X: Poor (part or all of the coating film is dissolved, or whitening or stains are clearly observed)
(45) The test piece for durability evaluation was allowed to stand in a constant temperature and humidity chamber at 60 ° C. and a relative humidity of 90% for 5 minutes, and then dried at 90 ° C. for 5 minutes. This was set as one cycle, and after 5 cycles, the anti-fog property was evaluated by the exhaled anti-fog method in the same manner as described above.
(46) Moisture-resistant heat-yellowing The evaluation of moisture-resistant heat-yellowing was carried out in the same manner as described above using the obtained test piece with an anti-fog film.
(47) Corrosion resistance After the moisture-heat yellowing test, the surface of the aluminum substrate was visually observed to evaluate the corrosion resistance of the cured film in the same manner as the copper foil.

Figure 0006948077
Figure 0006948077

Figure 0006948077
Figure 0006948077

実施例I−1〜8と比較例I−9〜12
実施例Aで得られた重合性組成物及び実施例Bで得られた重合物を用い、表11に示す組成で活性エネルギー線硬化性ハードコーティング組成物を調製し、その後、下記方法にてPETフィルム上で厚さ3μmのコート層を形成させ、紫外線LEDランプ(UV−LED)で照射することにより硬化し、UV−LED硬化性及び得られたハードコートの物性評価を行った。評価結果は表11に示した。
Examples I-1 to 8 and Comparative Examples I-9 to 12
Using the polymerizable composition obtained in Example A and the polymer obtained in Example B, an active energy ray-curable hard coating composition was prepared with the composition shown in Table 11, and then PET was performed by the following method. A coat layer having a thickness of 3 μm was formed on the film and cured by irradiating with an ultraviolet LED lamp (UV-LED), and the UV-LED curability and the physical properties of the obtained hard coat were evaluated. The evaluation results are shown in Table 11.

活性エネルギー線コーティング膜の作製方法
得られたハードコーティング組成物を用いて、厚さ100μmのPETフィルムアンカーコート面にバーコーター(RDS 1)にて塗布し、乾燥塗膜の厚みが3μmになるように塗膜を作製した。溶媒を含有する場合、得られた塗膜は防爆式乾燥機にて80℃、2分間乾燥を行った。得られた塗膜を1秒当たりに紫外線エネルギーは2.7mJ/cm2であるように塗膜とランプの距離を調節したUV−LED照射器(HOYA CANDEO OPTRONICS株式会社 EXECURE−H−1VC2、スポート式)により硬化させ、UV−LED硬化膜を作製した。UV−LED硬化性については下記方法にて評価し、また硬化膜の密着性、鉛筆強度と耐擦傷性については下記方法にて評価し、結果を表11に示す。
Method for Producing Active Energy Ray Coating Film Using the obtained hard coating composition, apply it to the PET film anchor coat surface with a thickness of 100 μm with a bar coater (RDS 1) so that the thickness of the dry coating film becomes 3 μm. A coating film was prepared in. When a solvent was contained, the obtained coating film was dried at 80 ° C. for 2 minutes in an explosion-proof dryer. UV-LED irradiator (HOYA CANDEO OPTRONICS Co., Ltd. EXECURE-H-1VC2, sport type) in which the distance between the coating film and the lamp is adjusted so that the ultraviolet energy of the obtained coating film is 2.7 mJ / cm2 per second. ) To prepare a UV-LED cured film. The UV-LED curability was evaluated by the following method, and the adhesion, pencil strength and scratch resistance of the cured film were evaluated by the following method, and the results are shown in Table 11.

(48) 硬化性
乾燥した塗膜を用い、上記のUV−LED照射により樹脂組成物を硬化させ、完全硬化するまでの所要時間を測定し、積算光量を算出した。完全硬化とは硬化膜の表面をシリコンゴムでなぞった際に跡がつかなくなる状態とする。
(49)密着性
得られたコーティング膜付き試験片を用いて、密着性評価を前記と同様に行った。
(50)耐擦傷性
#0000のスチールウールを用いて、200g/cmの荷重をかけながら、得られたコーティング膜の表面を10往復摩擦し、傷の発生の有無を目視で評価した。
◎:膜の剥離や傷の発生がほとんど認められない。
○:膜の一部にわずかな細い傷が認められる。
△:膜全面に筋状の傷が認められる。
×:膜の剥離が生じる。
(51)鉛筆硬度
得られたコーティング膜付き試験片を用いて、JIS K 5400 8.4 手かき法(1990年版)に基づき評価した。
(52)耐光黄変性
前記同様にハードコーティング組成物を用いて、PETフィルムの代わりにPC基板上にコーティング膜を作製した。得られたコーティング膜付きPC基板を試験片として用いて、前記同様耐光黄変性評価を実施した。
(48) Using the curable and dried coating film, the resin composition was cured by the above UV-LED irradiation, the time required for complete curing was measured, and the integrated light amount was calculated. Complete curing is a state in which no trace is left when the surface of the cured film is traced with silicone rubber.
(49) Adhesion Using the obtained test piece with a coating film, the adhesion was evaluated in the same manner as described above.
(50) Using steel wool having scratch resistance # 0000, the surface of the obtained coating film was rubbed 10 times back and forth while applying a load of 200 g / cm 2, and the presence or absence of scratches was visually evaluated.
⊚: Almost no peeling of the film or occurrence of scratches is observed.
◯: A slight scratch is observed on a part of the film.
Δ: Streaky scratches are observed on the entire surface of the membrane.
X: The film peels off.
(51) Pencil hardness Using the obtained test piece with a coating film, evaluation was performed based on the JIS K 5400 8.4 hand-drawing method (1990 version).
(52) Light Yellow Degeneration Using the same hard coating composition as described above, a coating film was prepared on a PC substrate instead of a PET film. Using the obtained PC substrate with a coating film as a test piece, a light yellowing resistance evaluation was carried out in the same manner as described above.

Figure 0006948077
Figure 0006948077

前述した各実施例と比較例の評価結果に示されるとおり、本願発明のN−置換(メタ)アクリルアミドを含有する重合性樹脂組成物が、その全塩基価を12.0KOHmg/g以下、全酸価を8.0KOHmg/g以下、かつ、全塩基価と全酸価の差(全塩基価−全酸価)を−1.0〜5.0KOHmg/gの範囲内に制御することによって、熱に対しても光に対しても黄変が起こらず、粘着剤、接着剤、封止剤、インク、防曇剤、ハードコーティング剤等各分野に好適に用いられることが確認できた。また、N−置換(メタ)アクリルアミドは各種有機溶剤、汎用モノマー、オリゴマーとの相溶性が良好であり、各用途に応じて最適な重合性樹脂組成物を容易に調製することができ、さらにN−置換(メタ)アクリルアミドのエネルギー線硬化性が極めて高く、薄膜も厚膜も容易に硬化することができ、得られる硬化物が低収縮性、高透明性及び優れる耐腐食性、耐熱性と強度、伸度等示し、電子材料や光学部品、半導体、太陽電池等幅広く利用することができる。 As shown in the evaluation results of each of the above-mentioned Examples and Comparative Examples, the polymerizable resin composition containing N-substituted (meth) acrylamide of the present invention has a total base value of 12.0 KOHmg / g or less and a total acid. Heat by controlling the valence to 8.0 KOHmg / g or less and the difference between the total base value and the total acid value (total base value-total acid value) within the range of -1.0 to 5.0 KOHmg / g. It was confirmed that yellowing did not occur with respect to light or light, and that it was suitably used in various fields such as adhesives, adhesives, encapsulants, inks, antifogging agents, and hard coating agents. Further, N-substituted (meth) acrylamide has good compatibility with various organic solvents, general-purpose monomers, and oligomers, and an optimum polymerizable resin composition can be easily prepared according to each application. -The energy ray curability of substituted (meth) acrylamide is extremely high, both thin and thick films can be easily cured, and the resulting cured product has low shrinkage, high transparency, excellent corrosion resistance, heat resistance and strength. , Elongation, etc., and can be widely used for electronic materials, optical components, semiconductors, solar cells, etc.

以上説明してきたように、本発明の重合性樹脂組成物は、全塩基価、全酸価及びそれらの差を本願発明に限定される範囲内であれば、特殊な精製工程や懸念のある添加剤の配合を行うことがなく、一般的な製造方法で生産される工業品グレードN−置換(メタ)アクリルアミドを好適に用いられる。また、それの重合性樹脂組成物や、それらからなる重合物を用いた実質上に黄変や着色せず、金属の腐食を発生しない樹脂組成物を提供することができる。また、黄変の懸念がなくなることで、N−置換(メタ)アクリルアミドを樹脂組成物中にも多量に配合することが可能となり、基材に対する密着性、耐候性、耐熱性、対傷性(塗膜硬度)、耐薬品性等を向上させることができる。
As described above, the polymerizable resin composition of the present invention has a special purification process or an addition of concern as long as the total base value, total acid value and their differences are within the range limited to the present invention. Industrial grade N-substituted (meth) acrylamide produced by a general production method without blending agents is preferably used. Further, it is possible to provide a polymerizable resin composition thereof, or a resin composition using a polymer composed of the same, which does not substantially cause yellowing or coloring and does not cause metal corrosion. In addition, by eliminating the concern about yellowing, a large amount of N-substituted (meth) acrylamide can be blended in the resin composition, resulting in adhesion to a substrate, weather resistance, heat resistance, and scratch resistance (scratch resistance). Coating film hardness), chemical resistance, etc. can be improved.

Claims (4)

一般式[1]で表されるN−置換(メタ)アクリルアミドを1〜90重量%含有する活性エネルギー線硬化性粘着剤組成物であって、
粘着剤組成物は、塩基性成分と酸性成分を含有し、
粘着剤組成物の全塩基価は、該粘着剤組成物中の塩基性成分に由来する塩基価の合計として0.4KOHmg/g以上、12.0KOHmg/g以下であり、
粘着剤組成物の全酸価は、該粘着剤組成物中の酸性成分に由来する酸価の合計として0.5KOHmg/g以上、8.0KOHmg/g以下であり、かつ、
粘着剤組成物の全塩基価と全酸価の差(全塩基価−全酸価)は、−1.0〜5.0KOHmg/gであり、
該粘着剤組成物は、ウレタン系多官能モノマーを2〜35重量%及び非ウレタン系多官能モノマーを3〜40重量%さらに含有することを特徴とする活性エネルギー線硬化性粘着剤組成物。
Figure 0006948077
(式中、Rは水素原子またはメチル基を示し、R及びRは同一または異なって、水素原子、水酸基、アミン基、アルコキシ基、カルボニル基で置換されていてもよい炭素数1乃至6の直鎖状または分岐鎖状のアルキル基、炭素数3乃至6の脂肪族または芳香環を示し、また、R及びRは、それらを担持する窒素原子と一緒になって、さらに酸素原子または窒素原子を含まれていてもよい飽和あるいは不飽和の5〜7員環を形成してもよい。但し、R及びRが同時に水素原子の場合を除く。)
An active energy ray-curable pressure-sensitive adhesive composition containing 1 to 90% by weight of N-substituted (meth) acrylamide represented by the general formula [1].
The adhesive composition may contain a basic component and acidic component,
Total base number of the adhesive composition, the total base number derived from the basic component of the adhesive composition 0.4KOHmg / g or more and less 12.0KOHmg / g,
Total acid number of the adhesive composition, 0.5KOHmg / g or more as the sum of acid value derived from the acid component of the adhesive composition, or less 8.0KOHmg / g, and,
Total base number and the difference between the total acid number of the adhesive composition (total base number - total acid number) is Ri -1.0~5.0KOHmg / g der,
PSA compositions, urethane-based multifunctional monomer 2 to 35 wt% and non-urethane-based multifunctional monomer with an active energy ray-curable pressure-sensitive adhesive composition characterized that you further contain 3-40% by weight.
Figure 0006948077
(In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 and R 3 are the same or different, and may be substituted with a hydrogen atom, a hydroxyl group, an amine group, an alkoxy group, or a carbonyl group. It exhibits a linear or branched alkyl group of 6, an aliphatic or aromatic ring having 3 to 6 carbon atoms, and R 2 and R 3 together with a nitrogen atom carrying them further oxygen. contain an atom or a nitrogen atom may form a 5- to 7-membered ring may be saturated or unsaturated., except if R 2 and R 3 are simultaneously hydrogen atom.)
前記N−置換(メタ)アクリルアミドが、(メタ)アクリロイルモルホリン、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−ヒドロキシエチル(メタ)アクリルアミド、N−メチル−N−ヒドロキシエチル(メタ)アクリルアミド、ダイアセトンアクリルアミドから選ばれる1種以上であることを特徴とする請求項1に記載の活性エネルギー線硬化性粘着剤組成物。 The N-substituted (meth) acrylamide is (meth) acryloylmorpholine, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-hydroxyethyl (meth). ) The active energy ray-curable pressure-sensitive adhesive composition according to claim 1, wherein the active energy ray-curable pressure-sensitive adhesive composition is one or more selected from acrylamide, N-methyl-N- hydroxyethyl (meth) acrylamide, and diacetone acrylamide. 請求項1又は2に記載の活性エネルギー線硬化性粘着剤組成物であって、該粘着剤組成物の、全塩基価は該粘着剤組成物中の塩基性成分に由来する塩基価の合計として0.4KOHmg/g以上、3.0KOHmg/g以下であり、全酸価は該粘着剤組成物中の酸性成分に由来する酸価の合計として0.5KOHmg/g以上、2.0KOHmg/g以下であり、かつ、該粘着剤組成物の全塩基価と全酸価の差は−0.2〜1.0KOHmg/gであることを特徴とする光学用活性エネルギー線硬化性粘着剤組成物。 The active energy ray-curable pressure-sensitive adhesive composition according to claim 1 or 2 , wherein the total base value of the pressure-sensitive adhesive composition is the total base value derived from the basic components in the pressure-sensitive adhesive composition. It is 0.4 KOH mg / g or more and 3.0 KOH mg / g or less, and the total acid value is 0.5 KOH mg / g or more and 2.0 KOH mg / g or less as the total acid value derived from the acidic component in the pressure-sensitive adhesive composition. An optical active energy ray-curable pressure-sensitive adhesive composition, wherein the difference between the total base value and the total acid value of the pressure-sensitive adhesive composition is −0.2 to 1.0 KOH mg / g. 請求項1又は2に記載の活性エネルギー線硬化性粘着剤組成物であって、該粘着剤組成物の、全塩基価は該粘着剤組成物中の塩基性成分に由来する塩基価の合計として0.4KOHmg/g以上、4.0KOHmg/g以下であり、全酸価は該粘着剤組成物中の酸性成分に由来する酸価の合計として0.5KOHmg/g以上、2.0KOHmg/g以下であり、かつ、該粘着剤組成物の全塩基価と全酸価の差は−0.8〜2.0KOHmg/gであることを特徴とする金属基材用活性エネルギー線硬化性粘着剤組成物。 The active energy ray-curable pressure-sensitive adhesive composition according to claim 1 or 2 , wherein the total base value of the pressure-sensitive adhesive composition is the total base value derived from the basic components in the pressure-sensitive adhesive composition. It is 0.4 KOH mg / g or more and 4.0 KOH mg / g or less, and the total acid value is 0.5 KOH mg / g or more and 2.0 KOH mg / g or less as the total acid value derived from the acidic component in the pressure-sensitive adhesive composition. The active energy ray-curable pressure-sensitive adhesive composition for a metal substrate, wherein the difference between the total base value and the total acid value of the pressure-sensitive adhesive composition is −0.8 to 2.0 KOH mg / g. thing.
JP2019145326A 2015-04-28 2019-08-07 A polymerizable composition using N-substituted (meth) acrylamide, a polymer thereof, and a molded product comprising them. Active JP6948077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019145326A JP6948077B2 (en) 2015-04-28 2019-08-07 A polymerizable composition using N-substituted (meth) acrylamide, a polymer thereof, and a molded product comprising them.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015091502A JP6634556B2 (en) 2015-04-28 2015-04-28 Polymerizable composition using N-substituted (meth) acrylamide, its polymer, and molded article comprising them
JP2019145326A JP6948077B2 (en) 2015-04-28 2019-08-07 A polymerizable composition using N-substituted (meth) acrylamide, a polymer thereof, and a molded product comprising them.

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015091502A Division JP6634556B2 (en) 2015-04-28 2015-04-28 Polymerizable composition using N-substituted (meth) acrylamide, its polymer, and molded article comprising them

Publications (2)

Publication Number Publication Date
JP2020007552A JP2020007552A (en) 2020-01-16
JP6948077B2 true JP6948077B2 (en) 2021-10-13

Family

ID=69150728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019145326A Active JP6948077B2 (en) 2015-04-28 2019-08-07 A polymerizable composition using N-substituted (meth) acrylamide, a polymer thereof, and a molded product comprising them.

Country Status (1)

Country Link
JP (1) JP6948077B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021134326A (en) * 2020-02-28 2021-09-13 サカタインクス株式会社 Active energy ray-curable composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281318B2 (en) * 2008-05-23 2013-09-04 日東電工株式会社 Adhesive composition and adhesive sheet for metal surface sticking
CN103249797B (en) * 2010-12-10 2015-11-25 日立化成株式会社 Optics adhesion material resin combination, the optics adhesion material sheet material employing said composition and image display device
WO2012117898A1 (en) * 2011-02-28 2012-09-07 積水化成品工業株式会社 Composition for adhesive polymer gel, and adhesive polymer gel
JP2013256552A (en) * 2012-06-11 2013-12-26 Soken Chem & Eng Co Ltd Photopolymerizable adhesive, adhesive sheet, and laminate for touch panel
JP5994445B2 (en) * 2012-07-11 2016-09-21 Dic株式会社 UV-curable adhesive resin composition and adhesive
JP2014181258A (en) * 2013-03-18 2014-09-29 Toray Coatex Co Ltd Acrylic adhesive composition and method of producing adhesive tape using the same
WO2015037431A1 (en) * 2013-09-11 2015-03-19 三洋化成工業株式会社 Active energy ray curable resin composition, and cured product

Also Published As

Publication number Publication date
JP2020007552A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6634556B2 (en) Polymerizable composition using N-substituted (meth) acrylamide, its polymer, and molded article comprising them
KR102150773B1 (en) (Meth)acrylamide-based urethane oligomer and active energy ray-curable resin composition containing the same
JP5954556B2 (en) Urethane oligomer and active energy ray-curable resin composition containing the same
CN107636499B (en) Polarizing film with adhesive layers attached on both sides and image display device
KR101924553B1 (en) Urethane modified (meth) acrylamide compounds and active energy ray-curable resin compositions containing them
JP7470947B2 (en) Coating composition containing t-butylcyclohexyl (meth)acrylate
JP7281218B2 (en) Polymerizable composition using hydroxyalkyl (meth)acrylamide, its polymer, and molded article made of them
JP2015028607A (en) Active energy ray-curable adhesive for polarizing plate
JP2013209487A (en) Photo-curable self-adhesive composition and self-adhesive sheet using the same
JP6948077B2 (en) A polymerizable composition using N-substituted (meth) acrylamide, a polymer thereof, and a molded product comprising them.
JP2023111929A (en) N-substituted (meth)acrylamide-containing coating agent composition
JP2021011516A (en) Adhesive sheet, optical film with adhesive, and manufacturing method of image display device
JP6264000B2 (en) Resin composition, active energy ray-polymerizable adhesive, and laminate
TW202348655A (en) A curable composition, and a coating composition, an adhesive composition, a glue composition, an ink composition, an aqueous ink composition, an ink composition for three-dimensional modeling, an aqueous coating composition, a sealant composition, a nail cosmetic, a dental material and a decorative coating containing the curable composition
TW201720850A (en) (meth)acrylamide-based urethane oligomer and active energy ray curable resin composition containing the same
TW201720851A (en) Urethane-modified (meth)acrylamide compounds and active energy ray curable resin composition containing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210910

R150 Certificate of patent or registration of utility model

Ref document number: 6948077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150