JP6946691B2 - Power storage device and open circuit voltage estimation method - Google Patents

Power storage device and open circuit voltage estimation method Download PDF

Info

Publication number
JP6946691B2
JP6946691B2 JP2017064493A JP2017064493A JP6946691B2 JP 6946691 B2 JP6946691 B2 JP 6946691B2 JP 2017064493 A JP2017064493 A JP 2017064493A JP 2017064493 A JP2017064493 A JP 2017064493A JP 6946691 B2 JP6946691 B2 JP 6946691B2
Authority
JP
Japan
Prior art keywords
open circuit
circuit voltage
time
battery
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017064493A
Other languages
Japanese (ja)
Other versions
JP2018169183A (en
Inventor
隆介 長谷
隆介 長谷
西垣 研治
研治 西垣
俊雄 小田切
俊雄 小田切
裕人 佐藤
裕人 佐藤
順一 波多野
順一 波多野
真一 会沢
真一 会沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2017064493A priority Critical patent/JP6946691B2/en
Publication of JP2018169183A publication Critical patent/JP2018169183A/en
Application granted granted Critical
Publication of JP6946691B2 publication Critical patent/JP6946691B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、開回路電圧推定する蓄電装置及び開回路電圧推定方法に関する。 The present invention relates to a power storage device for estimating open circuit voltage and a method for estimating open circuit voltage.

電池の充電率(SOC:State Of Charge)を推定する場合、電流積算に基づいて充電率を求めるだけでは、電流計測誤差などにより、電流積算に基づいて求めた充電率が徐々に実際の充電率からずれてしまう。そこで、分極解消後に取得した開回路電圧(OCV:Open Circuit Voltage)に基づいて充電率を推定し、推定した充電率を実際の充電率と見做す補正をしている。 When estimating the state of charge (SOC) of a battery, simply obtaining the charge rate based on the current integration will gradually increase the charge rate obtained based on the current integration due to current measurement errors and the like. It deviates from. Therefore, the charge rate is estimated based on the open circuit voltage (OCV) acquired after the polarization is eliminated, and the estimated charge rate is corrected to be regarded as the actual charge rate.

関連する技術として、例えば、特許文献1などがある。 As a related technique, for example, there is Patent Document 1.

特開2004−109007号公報Japanese Unexamined Patent Publication No. 2004-109007

しかしながら、分極解消前に充放電が開始されると、分極解消後の開回路電圧が取得できないため、分極解消後の開回路電圧を用いて充電率を推定できない。そうすると充電率の補正ができないため、充電率が実際の充電率からずれてしまう。 However, if charging / discharging is started before the polarization is eliminated, the open circuit voltage after the polarization is eliminated cannot be obtained, so that the charge rate cannot be estimated using the open circuit voltage after the polarization is eliminated. In that case, the charge rate cannot be corrected, and the charge rate deviates from the actual charge rate.

本発明の一側面に係る目的は、分極解消前に分極解消後の開回路電圧を推定できる蓄電装置及び開回路電圧推定方法を提供することである。 An object of one aspect of the present invention is to provide a power storage device capable of estimating an open circuit voltage after polarization elimination before polarization elimination and a method for estimating open circuit voltage.

本発明に係る一つの形態である蓄電装置は、電池と、電池の充放電を制御する制御回路と、を有する。
制御回路は、電池の充放電終了時刻から、電池の分極が解消したと見做せる分極解消時刻までの時間において、一定時間ごとに計測した開回路電圧を取得し、一定時間ごとに連続して計測した三点の開回路電圧と等比数列とを用いて、電池の分極解消後の開回路電圧を推定する。
The power storage device according to the present invention includes a battery and a control circuit for controlling charging / discharging of the battery.
The control circuit acquires the open circuit voltage measured at regular intervals from the battery charge / discharge end time to the polarization elimination time, which is considered to have eliminated the polarization of the battery, and continuously acquires the open circuit voltage measured at regular intervals. The open circuit voltage after depolarization of the battery is estimated using the measured open circuit voltage at the three points and the equal ratio sequence.

また、制御回路は、充放電終了後、分極解消後の開回路電圧OCVeを以下の式を用いて推定する。

Figure 0006946691
Further, the control circuit estimates the open circuit voltage OCVe after the charge / discharge is completed and the polarization is eliminated by using the following equation.
Figure 0006946691

V1、V2、V3は、一定時間ごとに連続して計測した三点の開回路電圧を示している。 V1, V2, and V3 indicate open circuit voltages at three points measured continuously at regular time intervals.

また、制御回路は、一定時間ごとに連続して計測した四点の開回路電圧Va1、Va2、Va3、Va4を用いて、以下の式を用いて第一の比Aと第二の比Bとを算出する。
A=(Va2−Va3/Va1−Va2)
B=(Va3−Va4/Va2−Va3)
続いて、制御回路は、第一の比Aと第二の比Bとの差が所定範囲である場合、四点の開回路電圧Va1、Va2、Va3、Va4から連続する三点を選択し、開回路電圧V1、V2、V3とする。
Further, the control circuit uses the four open circuit voltages Va1, Va2, Va3, and Va4 measured continuously at regular time intervals, and uses the following equation to set the first ratio A and the second ratio B. Is calculated.
A = (Va2-Va3 / Va1-Va2)
B = (Va3-Va4 / Va2-Va3)
Subsequently, when the difference between the first ratio A and the second ratio B is within a predetermined range, the control circuit selects three consecutive points from the four open circuit voltages Va1, Va2, Va3, and Va4. The open circuit voltages are V1, V2, and V3.

また、制御回路は、一定時間ごとに連続して計測した三点の開回路電圧Vb1、Vb2、Vb3が、充電終了後、開回路電圧Vb1が開回路電圧Vb2より大きく、かつ開回路電圧Vb2が開回路電圧Vb3より大きい第一の条件、又は、放電終了後、開回路電圧Vb1が開回路電圧Vb2より小さく、かつ開回路電圧Vb2が開回路電圧Vb3より小さい第二の条件、を満たしている場合、三点の開回路電圧Vb1、Vb2、Vb3を開回路電圧V1、V2、V3とする。 Further, in the control circuit, the open circuit voltages Vb1, Vb2, and Vb3 at three points measured continuously at regular intervals are such that the open circuit voltage Vb1 is larger than the open circuit voltage Vb2 and the open circuit voltage Vb2 is higher than the open circuit voltage Vb2 after charging is completed. The first condition that is larger than the open circuit voltage Vb3, or the second condition that the open circuit voltage Vb1 is smaller than the open circuit voltage Vb2 and the open circuit voltage Vb2 is smaller than the open circuit voltage Vb3 after the end of discharging is satisfied. In this case, the three open circuit voltages Vb1, Vb2, and Vb3 are set to the open circuit voltages V1, V2, and V3.

なお、制御回路は、充放電終了時刻から待機時間を経過した後、一定時間ごとに計測した開回路電圧を取得する。待機時間とは、充放電終了時刻から、充放電終了後に電池の正極、負極、電解液それぞれに起因して生じる分極のうち、分極解消時間が最も長い分極以外のすべての分極が解消したと見做せる時刻までの時間である。 The control circuit acquires the open circuit voltage measured at regular intervals after the standby time has elapsed from the charge / discharge end time. The standby time means that from the charge / discharge end time, all the polarizations caused by the positive electrode, the negative electrode, and the electrolytic solution of the battery after the charge / discharge end are eliminated except for the polarization having the longest polarization elimination time. It is the time until the time that can be considered.

本発明に係る他の形態である開回路電圧推定方法は、電池の充放電を制御する制御回路が、電池の充放電終了時刻から、電池の分極が解消したと見做せる分極解消時刻までの時間において、一定時間ごとに計測した開回路電圧を取得する。 In the open circuit voltage estimation method according to another embodiment of the present invention, the control circuit that controls the charging / discharging of the battery is from the charging / discharging end time of the battery to the polarization elimination time at which the polarization of the battery is considered to be eliminated. In time, the open circuit voltage measured at regular time intervals is acquired.

続いて、制御回路は、一定時間ごとに連続して計測した三点の開回路電圧と等比数列とを用いて、電池の分極解消後の開回路電圧を推定する。 Subsequently, the control circuit estimates the open circuit voltage after depolarization of the battery by using the three points of open circuit voltage and the geometric progression measured continuously at regular time intervals.

分極解消前に分極解消後の開回路電圧を推定できる。 The open circuit voltage after depolarization can be estimated before depolarization.

蓄電装置の一実施例を示す図である。It is a figure which shows one Example of the power storage device. 充電後の電池の分極解消時間の電圧の変化を示す図である。It is a figure which shows the change of the voltage of the polarization elimination time of a battery after charging. 放電後の電池の分極解消時間の電圧の変化を示す図である。It is a figure which shows the change of the voltage of the polarization elimination time of a battery after discharge. 開回路電圧推定方法の一実施例を示す図である。It is a figure which shows one Example of the open circuit voltage estimation method.

以下図面に基づいて実施形態について詳細を説明する。
<実施形態1>
図1は、蓄電装置1の一実施例を示す図である。蓄電装置1は、電流計2、電圧計3、制御回路4、電池B1、スイッチSW1、スイッチSW2を備える。蓄電装置1は、例えば、車両(例えば、PHV:Plug-in Hybrid Vehicleなど)に搭載された電池パックなどが考えられる。
Hereinafter, embodiments will be described in detail based on the drawings.
<Embodiment 1>
FIG. 1 is a diagram showing an embodiment of the power storage device 1. The power storage device 1 includes an ammeter 2, a voltmeter 3, a control circuit 4, a battery B1, a switch SW1, and a switch SW2. The power storage device 1 may be, for example, a battery pack mounted on a vehicle (for example, PHV: Plug-in Hybrid Vehicle or the like).

電流計2は、電池B1に流れる電流を計測する。電圧計3は、電池B1の両端の電圧を計測する。
制御回路4は、開回路電圧推定部5、充電率推定部6を有する。また、制御回路4は、電池B1の充放電を制御する。
The ammeter 2 measures the current flowing through the battery B1. The voltmeter 3 measures the voltage across the battery B1.
The control circuit 4 has an open circuit voltage estimation unit 5 and a charge rate estimation unit 6. Further, the control circuit 4 controls the charging / discharging of the battery B1.

電池B1は、電池パックに設けられた二次電池であり、例えば、ニッケル水素電池やリチウムイオン電池などの二次電池又は蓄電素子などである。なお、電池B1は複数の電池を接続した組電池を用いてもよい。 The battery B1 is a secondary battery provided in the battery pack, and is, for example, a secondary battery such as a nickel hydrogen battery or a lithium ion battery, or a power storage element. As the battery B1, an assembled battery in which a plurality of batteries are connected may be used.

スイッチSW1、SW2は、充電開始から充電終了までC接点側に接続され、放電開始から放電終了までD接点側に接続される。スイッチSW1、SW2は、例えば、リレー、半導体素子が考えられる。なお、スイッチSW1、SW2は、どちらか一つを設けるだけでもよい。また、スイッチは、充電装置CHG用に一つ、負荷LD用に一つあってもよい。 The switches SW1 and SW2 are connected to the C contact side from the start of charging to the end of charging, and are connected to the D contact side from the start of discharging to the end of discharging. The switches SW1 and SW2 may be, for example, a relay or a semiconductor element. It should be noted that only one of the switches SW1 and SW2 may be provided. Further, there may be one switch for the charging device CHG and one switch for the load LD.

蓄電装置1の回路構成について説明する。
電池B1の正極端子(+)は、電流計2の一方の端子と電圧計3の一方の端子と接続される。電流計2の他方の端子は、スイッチSW1のB端子と接続される。電流計2の出力端子は、制御回路4の制御端子P1に接続される。
The circuit configuration of the power storage device 1 will be described.
The positive electrode terminal (+) of the battery B1 is connected to one terminal of the ammeter 2 and one terminal of the voltmeter 3. The other terminal of the ammeter 2 is connected to the B terminal of the switch SW1. The output terminal of the ammeter 2 is connected to the control terminal P1 of the control circuit 4.

電池B1の負極端子(−)は、電圧計3の他方の端子とスイッチSW2のB端子と接続される。電圧計3の出力端子は、制御回路4の制御端子P2に接続される。
スイッチSW1のC端子は、充電装置CHGの正極端子(+)と接続される。スイッチSW1のD端子は、負荷LD(例えば、モータや補機など)の正極端子(+)と接続される。スイッチSW2のC端子は、充電装置CHGの負極端子(−)と接続される。スイッチSW2のD端子は、負荷LDの負極端子(−)と接続される。また、スイッチSW1、SW2それぞれの制御端子は、制御回路4の制御端子P3に接続される。
The negative electrode terminal (−) of the battery B1 is connected to the other terminal of the voltmeter 3 and the B terminal of the switch SW2. The output terminal of the voltmeter 3 is connected to the control terminal P2 of the control circuit 4.
The C terminal of the switch SW1 is connected to the positive electrode terminal (+) of the charging device CHG. The D terminal of the switch SW1 is connected to the positive electrode terminal (+) of the load LD (for example, a motor, an auxiliary machine, etc.). The C terminal of the switch SW2 is connected to the negative electrode terminal (−) of the charging device CHG. The D terminal of the switch SW2 is connected to the negative electrode terminal (−) of the load LD. Further, the control terminals of the switches SW1 and SW2 are connected to the control terminal P3 of the control circuit 4.

制御回路4について説明する。
制御回路4は、例えば、CPU(Central Processing Unit)、マルチコアCPU、プログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device)など)を用いた回路が考えられる。また、制御回路4は、内部又は外部に記憶部を備え、記憶部に記憶されている蓄電装置1の各部を制御するプログラムを読み出して実行する。
The control circuit 4 will be described.
As the control circuit 4, for example, a circuit using a CPU (Central Processing Unit), a multi-core CPU, a programmable device (FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device), etc.) can be considered. Further, the control circuit 4 is provided with a storage unit inside or outside, and reads and executes a program for controlling each unit of the power storage device 1 stored in the storage unit.

制御回路4は、電池B1の充電をする場合、スイッチSW1、SW2の接点を共にC接点側に接続させる。また、制御回路4は、充電中に充電装置CHGから電池B1に流れる電流(充電電流)に対応する信号又は情報を電流計2から取得すると共に、充電中の電池B1の電圧(閉回路電圧)に対応する信号又は情報を電圧計3から取得する。また、制御回路4は、電池B1が放電をする場合、スイッチSW1、SW2の接点を共にD接点側に接続させる。また、制御回路4は、放電中に電池B1から負荷LDに流れる電流(放電電流)を電流計2から取得すると共に、放電中の電池B1の電圧(閉回路電圧)を電圧計3から取得する。また、制御回路4は、電池B1の充放電後に開回路電圧を取得する場合、スイッチSW1、SW2の接点を共にC接点及びD接点に接続させないようにし、電池B1の充放電後の開回路電圧を電圧計3から取得する。なお、充放電後の開回路電圧は、スイッチSW1、SW2の接点がC接点又はD接点に接続しているときであっても、電池B1に電流が流れていないときの電圧を開回路電圧としてもよい。 When charging the battery B1, the control circuit 4 connects the contacts of the switches SW1 and SW2 to the C contact side. Further, the control circuit 4 acquires a signal or information corresponding to the current (charging current) flowing from the charging device CHG to the battery B1 during charging from the current meter 2, and also acquires the voltage (closed circuit voltage) of the battery B1 being charged. The signal or information corresponding to is acquired from the voltmeter 3. Further, in the control circuit 4, when the battery B1 is discharged, the contacts of the switches SW1 and SW2 are both connected to the D contact side. Further, the control circuit 4 acquires the current (discharge current) flowing from the battery B1 to the load LD during discharging from the current meter 2, and acquires the voltage (closed circuit voltage) of the battery B1 being discharged from the voltmeter 3. .. Further, when the control circuit 4 acquires the open circuit voltage after charging / discharging the battery B1, the contacts of the switches SW1 and SW2 are not connected to both the C contact and the D contact, and the opening circuit voltage after charging / discharging the battery B1 is prevented. Is obtained from the voltmeter 3. The open circuit voltage after charging / discharging is the voltage when no current is flowing through the battery B1 even when the contacts of the switches SW1 and SW2 are connected to the C contact or the D contact. May be good.

開回路電圧推定部5について説明をする。
開回路電圧推定部5は、図2の電池B1の充電終了時刻tcから、電池B1の分極が解消したと見做せる分極解消時刻tocvcまでの時間において、一定時間Tocごとに計測した開回路電圧を取得する。
The open circuit voltage estimation unit 5 will be described.
The open circuit voltage estimation unit 5 measures the open circuit voltage for each Toc for a certain period of time from the charging end time ct of the battery B1 in FIG. 2 to the polarization elimination time tocvc, which is considered to have eliminated the polarization of the battery B1. To get.

図2は、充電後の電池B1の分極解消時間の電圧の変化を示す図である。図2の曲線21は、充電後の電池B1の電圧を示している。図2の時間Tacは、充電終了時刻tcから、電池B1の分極が解消したと見做せる分極解消時刻tocvcまでの時間(分極解消時間)を示す。 FIG. 2 is a diagram showing a change in voltage during the polarization elimination time of the battery B1 after charging. The curve 21 in FIG. 2 shows the voltage of the battery B1 after charging. The time Tac in FIG. 2 indicates the time (polarization elimination time) from the charging end time ct to the polarization elimination time tocvc, which is considered to have eliminated the polarization of the battery B1.

図2の時間Tbcは、充電終了後に電池B1の正極、負極、電解液それぞれに起因して生じる分極のうち、分極解消時間が最も長い分極以外のすべての分極が解消したと見做せる時刻t1cから、分極解消時刻tocvcまでの時間を示す。言い換えると、時間Tbcは、時間Tacにおいて待機時間Tmcを経過した後の、三つの分極のうち一つの分極だけが解消していない時間を示す。待機時間Tmcは、電池B1の充電終了時刻tcから、充電終了後に電池B1の正極、負極、電解液それぞれに起因して生じる分極のうち、分極解消時間が最も長い分極以外のすべての分極が解消したと見做せる時刻t1cまでの時間である。言い換えると、待機時間Tmcは、時間Tacにおいて、三つの分極又は二つの分極が解消していない時間を示す。 The time Tbc in FIG. 2 is the time t1c in which it can be considered that all the polarizations other than the polarization having the longest polarization elimination time among the polarizations caused by the positive electrode, the negative electrode, and the electrolytic solution of the battery B1 after the end of charging are eliminated. The time from to the polarization elimination time tocvc is shown. In other words, the time Tbc indicates the time in which only one of the three polarizations is not resolved after the waiting time Tmc has elapsed in the time Tac. The standby time Tmc is such that from the charging end time ct of the battery B1, all the polarizations other than the polarization having the longest polarization elimination time among the polarizations caused by the positive electrode, the negative electrode, and the electrolytic solution of the battery B1 after the charging is completed are eliminated. It is the time until the time t1c, which can be regarded as having been done. In other words, the waiting time Tmc indicates the time during which the three or two polarizations have not been resolved in the time Tac.

なお、シリコン負極を用いたリチウムイオン電池であれば、負極の分極解消時間が最も長い。また、待機時間Tmcは、実験やシミュレーションにより求められ、予め記憶部に記憶されている。 In the case of a lithium ion battery using a silicon negative electrode, the polarization elimination time of the negative electrode is the longest. Further, the waiting time Tmc is obtained by an experiment or a simulation and is stored in the storage unit in advance.

図2の開回路電圧Vcは、充電終了時刻tcにおける開回路電圧を示す。図2の開回路電圧V1cは、待機時間Tmcを経過した後の時刻t1cにおいて計測した開回路電圧を示す。図2の開回路電圧V2c、V3c、V4cは、時刻t1cから一定時間Tocごとに連続して計測した開回路電圧を示す。すなわち、開回路電圧V1c、V2c、V3c、V4cは、図2の時刻t1c、t2c、t3c、t4cで取得した開回路電圧を示す。一定時間Tocは、実験やシミュレーションにより求められ、予め記憶部に記憶されている。 The open circuit voltage Vc in FIG. 2 indicates the open circuit voltage at the charging end time ct. The open circuit voltage V1c in FIG. 2 indicates the open circuit voltage measured at the time t1c after the standby time Tmc has elapsed. The open circuit voltages V2c, V3c, and V4c in FIG. 2 indicate the open circuit voltages measured continuously at every Toc for a certain period of time from the time t1c. That is, the open circuit voltages V1c, V2c, V3c, and V4c indicate the open circuit voltages acquired at the times t1c, t2c, t3c, and t4c in FIG. The Toc for a certain period of time is obtained by an experiment or a simulation and is stored in a storage unit in advance.

図2の開回路電圧OCVcは、分極解消時刻tocvcに取得される実際の開回路電圧を示す。
続いて、開回路電圧推定部5は、時間Tbcにおいて、一定時間Tocごとに連続して計測した三点の開回路電圧と等比数列とを用いて、電池B1の分極解消後の開回路電圧OCVeを推定する。開回路電圧推定部5は、式1を用いて、充電後の分極解消後の開回路電圧OCVeを推定する。

Figure 0006946691
The open circuit voltage OCVc in FIG. 2 indicates the actual open circuit voltage acquired at the polarization elimination time tocvc.
Subsequently, the open circuit voltage estimation unit 5 uses the three points of the open circuit voltage and the geometric progression measured continuously at each Toc for a certain period of time at the time Tbc to eliminate the polarization of the battery B1. Estimate OCVe. The open circuit voltage estimation unit 5 estimates the open circuit voltage OCVe after depolarization after charging using Equation 1.
Figure 0006946691

すなわち、等比数列(無限等比級数)の収束先を示す式2を用いて、充電後の分極解消後の開回路電圧OCVeを推定する。

Figure 0006946691
That is, the open circuit voltage OCVe after depolarization after charging is estimated by using Equation 2 showing the convergence destination of the geometric progression (infinite geometric series).
Figure 0006946691

なお、式1、式2に含まれる等比数列の初項は(V1−V2)に対応し、式1、式2に含まれる等比数列の公比は(V2−V3V1−V2)に対応する。なお、式1、式2に含まれる等比数列の公比は1より小さい。
The first term of the geometric progression included in Equations 1 and 2 corresponds to (V1-V2), and the common ratio of the geometric progression included in Equations 1 and 2 is (V2-V3) / ( V1-V1- ). Corresponds to V2). The geometric progression included in Equations 1 and 2 has a common ratio smaller than 1.

また、充電後において式1、式2で用いる三点の開回路電圧は、例えば、図2の開回路電圧V1c、V2c、V3cや開回路電圧V2c、V3c、V4cに対応する。
このように、時間Tacの長い電池B1の分極解消時間の電圧の変化が等比数列で表せる場合、式2を用いて、分極解消前に分極解消後の開回路電圧OCVcに近似する開回路電圧OCVeを推定することができる。
Further, the three-point open circuit voltage used in the formulas 1 and 2 after charging corresponds to, for example, the open circuit voltages V1c, V2c, V3c and the open circuit voltages V2c, V3c, V4c of FIG.
In this way, when the change in the voltage of the battery B1 having a long time Tac during the polarization elimination time can be expressed by a geometric progression, the open circuit voltage that approximates the open circuit voltage OCVc before the polarization elimination and after the polarization elimination is used by using Equation 2. OCVe can be estimated.

また、待機時間Tmcを経過した後に、一定時間Tocごとに連続して開回路電圧を取得する理由は、待機時間Tmcにおいては電池B1の正極、負極、電解液それぞれに生じる分極が解消されていないため、電圧変化(電圧差)が安定せず、電池B1の分極解消時間の電圧の変化が等比数列を用いて表せないためである。例えば、分極解消時間が最も長い分極が負極に起因する場合、待機時間Tmcを経過した後は、電池B1の負極に起因する分極のみとなるため、電圧変化が安定し、電池B1の分極解消時間の電圧の変化が等比数列を用いて表すことができる。従って、待機時間Tmcを経過した後に、一定時間Tocごとに連続して開回路電圧を取得することで、等比数列を用いて、推定した充電後の分極解消後の開回路電圧OCVeを充電後の開回路電圧OCVcに精度よく近似させることができる。 Further, the reason why the open circuit voltage is continuously acquired at every Toc for a certain period of time after the standby time Tmc has elapsed is that the polarization generated in each of the positive electrode, the negative electrode, and the electrolytic solution of the battery B1 is not eliminated in the standby time Tmc. Therefore, the voltage change (voltage difference) is not stable, and the voltage change during the polarization elimination time of the battery B1 cannot be represented by using the equal ratio sequence. For example, when the polarization having the longest polarization elimination time is caused by the negative electrode, after the standby time Tmc elapses, only the polarization caused by the negative electrode of the battery B1 is generated, so that the voltage change is stable and the polarization elimination time of the battery B1 is satisfied. The change in the voltage of can be expressed using a geometric progression. Therefore, after the standby time Tmc has elapsed, by continuously acquiring the open circuit voltage at every Toc for a certain period of time, the estimated open circuit voltage OCVe after the polarization is eliminated after charging is charged using the geometric progression. It can be accurately approximated to the open circuit voltage OCVc of.

また、開回路電圧推定部5は、図3の電池B1の放電終了時刻tdから、電池B1の分極が解消したと見做せる分極解消時刻tocvdまでの時間において、一定時間Todごとに計測した開回路電圧を取得する。 Further, the open circuit voltage estimation unit 5 measures the opening time for each Tod for a certain period of time from the discharge end time td of the battery B1 in FIG. 3 to the polarization elimination time tocvd, which is considered to have eliminated the polarization of the battery B1. Get the circuit voltage.

図3は、放電後の電池B1の分極解消時間の電圧の変化を示す図である。図3の曲線31は、放電後の電池B1の電圧を示している。図3の時間Tadは、放電終了時刻tdから、電池B1の分極が解消したと見做せる分極解消時刻tocvdまでの時間(分極解消時間)を示す。 FIG. 3 is a diagram showing a change in voltage during the polarization elimination time of the battery B1 after discharge. The curve 31 in FIG. 3 shows the voltage of the battery B1 after discharging. The time Tad in FIG. 3 indicates the time (polarization elimination time) from the discharge end time td to the polarization elimination time tocvd, which is considered to have eliminated the polarization of the battery B1.

図3の時間Tbdは、放電終了後に電池B1の正極、負極、電解液それぞれに起因して生じる分極のうち、分極解消時間が最も長い分極以外のすべての分極が解消したと見做せる時刻t1dから、分極解消時刻tocvdまでの時間を示す。言い換えると、時間Tbdは、時間Tadにおいて待機時間Tmdを経過した後の、三つの分極のうち一つの分極だけが解消していない時間を示す。待機時間Tmdは、電池B1の放電終了時刻tdから、放電終了後に電池B1の正極、負極、電解液それぞれに起因して生じる分極のうち、分極解消時間が最も長い分極以外のすべての分極が解消したと見做せる時刻t1dまでの時間である。言い換えると、待機時間Tmdは、時間Tadにおいて、三つの分極又は二つの分極が解消していない時間を示す。 The time Tbd in FIG. 3 is the time t1d in which it can be considered that all the polarizations other than the polarization having the longest polarization elimination time among the polarizations caused by the positive electrode, the negative electrode, and the electrolytic solution of the battery B1 after the end of the discharge are eliminated. The time from to the polarization elimination time tocvd is shown. In other words, the time Tbd indicates the time in which only one of the three polarizations is not resolved after the waiting time Tmd has elapsed in the time Tad. The standby time Tmd is such that from the discharge end time td of the battery B1, all the polarizations other than the polarization having the longest polarization elimination time among the polarizations caused by the positive electrode, the negative electrode, and the electrolytic solution of the battery B1 after the discharge is eliminated are eliminated. It is the time until the time t1d which can be regarded as having been done. In other words, the waiting time Tmd indicates the time during which the three polarizations or the two polarizations are not resolved at the time Tad.

なお、シリコン負極を用いたリチウムイオン電池であれば、負極の分極解消時間が最も長い。また、待機時間Tmdは、実験やシミュレーションにより求められ、予め記憶部に記憶されている。 In the case of a lithium ion battery using a silicon negative electrode, the polarization elimination time of the negative electrode is the longest. Further, the standby time Tmd is obtained by an experiment or a simulation and is stored in the storage unit in advance.

図3の開回路電圧Vdは、放電終了時刻tdにおける開回路電圧を示す。図3の開回路電圧V1dは、待機時間Tmdを経過した後の時刻t1dにおいて計測した開回路電圧を示す。図3の開回路電圧V2d、V3d、V4dは、時刻t1dから一定時間Todごとに連続して計測した開回路電圧を示す。すなわち、開回路電圧V1d、V2d、V3d、V4dは、図3の時刻t1d、t2d、t3d、t4dで取得した開回路電圧を示す。一定時間Todは、実験やシミュレーションにより求められ、予め記憶部に記憶されている。 The open circuit voltage Vd in FIG. 3 indicates the open circuit voltage at the discharge end time td. The open circuit voltage V1d in FIG. 3 indicates the open circuit voltage measured at the time t1d after the standby time Tmd has elapsed. The open circuit voltages V2d, V3d, and V4d in FIG. 3 indicate the open circuit voltages measured continuously for each Tod for a certain period of time from the time t1d. That is, the open circuit voltages V1d, V2d, V3d, and V4d indicate the open circuit voltages acquired at the times t1d, t2d, t3d, and t4d in FIG. Tod for a certain period of time is obtained by an experiment or a simulation and is stored in a storage unit in advance.

図3の開回路電圧OCVdは、分極解消時刻tocvdに取得される実際の開回路電圧を示す。
続いて、開回路電圧推定部5は、時間Tbdにおいて、一定時間Todごとに連続して計測した三点の開回路電圧と等比数列とを用いて、電池B1の分極解消後の開回路電圧OCVeを推定する。すなわち、開回路電圧推定部5は、式1、式2を用いて、放電後の分極解消後の開回路電圧OCVeを推定する。
The open circuit voltage OCVd in FIG. 3 indicates the actual open circuit voltage acquired at the polarization elimination time tocvd.
Subsequently, the open circuit voltage estimation unit 5 uses the three points of the open circuit voltage and the geometric progression measured continuously for each Tod for a certain period of time at the time Tbd, and the open circuit voltage after the polarization of the battery B1 is eliminated. Estimate OCVe. That is, the open circuit voltage estimation unit 5 estimates the open circuit voltage OCVe after the polarization is eliminated after the discharge by using the equations 1 and 2.

また、放電後において式1、式2で用いる三点の開回路電圧は、例えば、図3の開回路電圧V1d、V2d、V3dや開回路電圧V2d、V3d、V4dに対応する。
このように、時間Tadの長い電池B1の分極解消時間の電圧の変化が等比数列で表せる場合、式2を用いて、分極解消前に分極解消後の開回路電圧OCVdに近似する開回路電圧OCVeを推定することができる。
The three-point open circuit voltage used in Equations 1 and 2 after discharge corresponds to, for example, the open circuit voltages V1d, V2d, V3d and the open circuit voltages V2d, V3d, V4d in FIG.
In this way, when the change in the voltage of the battery B1 having a long time Tad can be expressed by a geometric progression, the open circuit voltage close to the open circuit voltage OCVd before the polarization elimination and after the polarization elimination is used by using Equation 2. OCVe can be estimated.

また、待機時間Tmdを経過した後に、一定時間Todごとに連続して開回路電圧を取得する理由は、待機時間Tmdにおいては電池B1の正極、負極、電解液それぞれに生じる分極が解消されていないため、電圧変化(電圧差)が安定せず、電池B1の分極解消時間の電圧の変化が等比数列を用いて表せないためである。例えば、分極解消時間が最も長い分極が負極に起因する場合、待機時間Tmdを経過した後は、電池B1の負極に起因する分極のみとなるため、電圧変化が安定し、電池B1の分極解消時間の電圧の変化が等比数列を用いて表すことができる。従って、待機時間Tmdを経過した後に、一定時間Tocごとに連続して開回路電圧を取得することで、等比数列を用いて、推定した放電後の分極解消後の開回路電圧OCVeを放電後の開回路電圧OCVdに精度よく近似させることができる。 Further, the reason why the open circuit voltage is continuously acquired at every Tod for a certain period of time after the standby time Tmd has elapsed is that the polarization generated in each of the positive electrode, the negative electrode, and the electrolytic solution of the battery B1 is not eliminated in the standby time Tmd. Therefore, the voltage change (voltage difference) is not stable, and the voltage change during the polarization elimination time of the battery B1 cannot be represented by using the equal ratio sequence. For example, when the polarization having the longest polarization elimination time is caused by the negative electrode, after the standby time Tmd elapses, only the polarization caused by the negative electrode of the battery B1 is generated, so that the voltage change is stable and the polarization elimination time of the battery B1 is satisfied. The change in the voltage of can be expressed using a geometric progression. Therefore, after the standby time Tmd has elapsed, by continuously acquiring the open circuit voltage at every Toc for a certain period of time, the estimated open circuit voltage OCVe after discharge elimination is discharged using a geometric progression. It can be accurately approximated to the open circuit voltage OCVd of.

充電率推定部6について説明をする。
充電率推定部6は、開回路電圧推定部5で推定した分極解消後の開回路電圧OCVeを用いて、充電率を推定する。
The charge rate estimation unit 6 will be described.
The charge rate estimation unit 6 estimates the charge rate using the open circuit voltage OCVe after polarization elimination estimated by the open circuit voltage estimation unit 5.

このように、分極解消前に推定した分極解消後の開回路電圧OCVeを取得できるため、分極解消前でも、充電率を精度よく推定できる。
<変形例1>
開回路電圧推定部5は、電池B1の充電終了時刻tcから、電池B1の分極が解消したと見做せる分極解消時刻tocvcまでの時間において、一定時間Tocごとに連続して計測した四点の開回路電圧Va1、Va2、Va3、Va4を用いて、式3、式4により第一の比Aと第二の比Bとを算出する。
In this way, since the open circuit voltage OCVe after polarization elimination can be obtained, the charge rate can be estimated accurately even before polarization elimination.
<Modification example 1>
The open circuit voltage estimation unit 5 continuously measures four points for a certain period of time from the charging end time ct of the battery B1 to the polarization elimination time tocvc, which is considered to have eliminated the polarization of the battery B1. Using the open circuit voltages Va1, Va2, Va3, and Va4, the first ratio A and the second ratio B are calculated by the formulas 3 and 4.

A=(Va2−Va3Va1−Va2) 式3
B=(Va3−Va4Va2−Va3) 式4
例えば、図2の時間Tbcにおいて取得した開回路電圧V1c、V2c、V3c、V4cを、式3の開回路電圧Va1、Va2、Va3と、式4の開回路電圧Va2、Va3、Va4として用いた場合、開回路電圧V1c、V2c、V3c、V4cはすべて図2の曲線21上にあるので、第一の比Aと第二の比Bは同じ値になる。また、開回路電圧V1c、V2c、V3c、V4cのいずれかが図2の曲線21上にない場合、第一の比Aと第二の比Bは異なる値になる。
A = (Va2-Va3 ) / ( Va1-Va2) Equation 3
B = (Va3-Va4 ) / ( Va2-Va3) Equation 4
For example, when the open circuit voltages V1c, V2c, V3c, and V4c acquired at the time Tbc in FIG. 2 are used as the open circuit voltages Va1, Va2, and Va3 of the formula 3 and the open circuit voltages Va2, Va3, and Va4 of the formula 4. Since the open circuit voltages V1c, V2c, V3c, and V4c are all on the curve 21 of FIG. 2, the first ratio A and the second ratio B have the same value. Further, when any of the open circuit voltages V1c, V2c, V3c, and V4c is not on the curve 21 of FIG. 2, the first ratio A and the second ratio B have different values.

また、開回路電圧推定部5は、電池B1の放電終了時刻tdから、電池B1の分極が解消したと見做せる分極解消時刻tocvdまでの時間において、一定時間Todごとに連続して計測した四点の開回路電圧Va1、Va2、Va3、Va4を用いて、式3、式4により第一の比Aと第二の比Bとを算出する。 Further, the open circuit voltage estimation unit 5 continuously measures the time from the discharge end time td of the battery B1 to the polarization elimination time tocvd, which is considered to have eliminated the polarization of the battery B1, for a certain period of time. Using the point open circuit voltages Va1, Va2, Va3, and Va4, the first ratio A and the second ratio B are calculated by the equations 3 and 4.

例えば、図3の時間Tbdにおいて取得した開回路電圧V1d、V2d、V3d、V4dを、式3の開回路電圧Va1、Va2、Va3と、式4の開回路電圧Va2、Va3、Va4として用いた場合、開回路電圧V1d、V2d、V3d、V4dはすべて図3の曲線31上にあるので、第一の比Aと第二の比Bは同じ値になる。また、開回路電圧V1d、V2d、V3d、V4dのいずれかが図3の曲線31上にない場合、第一の比Aと第二の比Bは異なる値になる。 For example, when the open circuit voltages V1d, V2d, V3d, and V4d acquired at the time Tbd in FIG. 3 are used as the open circuit voltages Va1, Va2, and Va3 of the formula 3 and the open circuit voltages Va2, Va3, and Va4 of the formula 4. Since the open circuit voltages V1d, V2d, V3d, and V4d are all on the curve 31 of FIG. 3, the first ratio A and the second ratio B have the same value. Further, when any of the open circuit voltages V1d, V2d, V3d, and V4d is not on the curve 31 of FIG. 3, the first ratio A and the second ratio B have different values.

続いて、開回路電圧推定部5は、第一の比Aと第二の比Bとの差が所定範囲である場合、四点の開回路電圧Va1、Va2、Va3、Va4から連続する三点を選択し、開回路電圧V1、V2、V3とする。すなわち、開回路電圧推定部5は、第一の比Aと第二の比Bとの差が所定範囲である場合、開回路電圧Va1、Va2、Va3又は開回路電圧Va2、Va3、Va4のいずれか一つを選択する。 Subsequently, when the difference between the first ratio A and the second ratio B is within a predetermined range, the open circuit voltage estimation unit 5 has three points continuous from the four open circuit voltages Va1, Va2, Va3, and Va4. Is selected, and the open circuit voltages V1, V2, and V3 are set. That is, when the difference between the first ratio A and the second ratio B is within a predetermined range, the open circuit voltage estimation unit 5 has any of the open circuit voltages Va1, Va2, Va3 or the open circuit voltages Va2, Va3, and Va4. Select one.

なお、所定範囲は、四点の開回路電圧が等比数列であると見做せる範囲であるか否かを判定するための値で、実験やシミュレーションにより求められ、予め記憶部に記憶されている。例えば、所定範囲は、四点の開回路電圧のいずれかが、図2の曲線21又は図3の曲線31上になくても、分極解消後の開回路電圧OCVeを精度よく推定できる範囲とする。 The predetermined range is a value for determining whether or not the open circuit voltages at the four points are within a range that can be regarded as a geometric progression. It is obtained by an experiment or a simulation and is stored in the storage unit in advance. There is. For example, the predetermined range is a range in which the open circuit voltage OCVe after depolarization can be estimated accurately even if any of the four points of the open circuit voltage is not on the curve 21 of FIG. 2 or the curve 31 of FIG. ..

また、開回路電圧推定部5は、第一の比Aと第二の比Bとの差が所定範囲でない場合、一定時間Tocごとに連続して計測した次の四点の開回路電圧(Va2、Va3、Va4と新しく計測した開回路電圧Va5)を用いて、第一の比Aと第二の比Bとを算出し、第一の比Aと第二の比Bとの差が所定範囲であるか否かを判定する。 Further, when the difference between the first ratio A and the second ratio B is not within a predetermined range, the open circuit voltage estimation unit 5 continuously measures the open circuit voltage (Va2) at the next four points for each Toc for a certain period of time. , Va3, Va4 and the newly measured open circuit voltage Va5) are used to calculate the first ratio A and the second ratio B, and the difference between the first ratio A and the second ratio B is within a predetermined range. It is determined whether or not it is.

変形例1によれば、等比数列であると見做せる範囲の開回路電圧Va1、Va2、Va3又は開回路電圧Va2、Va3、Va4を、式1、式2の開回路電圧V1、V2、V3として用いることができるため、充放電後の開回路電圧OCVeを精度よく推定できる。また、開回路電圧OCVeを精度よく推定することができるので、分極解消前でも充電率を精度よく推定できる。 According to the first modification, the open circuit voltages Va1, Va2, Va3 or the open circuit voltages Va2, Va3, and Va4 in the range that can be regarded as an equal ratio sequence are set to the open circuit voltages V1, V2 of the equations 1 and 2. Since it can be used as V3, the open circuit voltage OCVe after charging / discharging can be estimated accurately. Further, since the open circuit voltage OCVe can be estimated accurately, the charge rate can be estimated accurately even before the polarization is eliminated.

<変形例2>
開回路電圧推定部5は、電池B1の充電終了時刻tcから、電池B1の分極が解消したと見做せる分極解消時刻tocvcまでの時間において、一定時間Tocごとに連続して計測した三点の開回路電圧Vb1、Vb2、Vb3が、開回路電圧Vb1が開回路電圧Vb2より大きく、かつ開回路電圧Vb2が開回路電圧Vb3より大きい第一の条件(Vb1>Vb2>Vb3)を満たしている場合(減少傾向である場合)、開回路電圧Vb1、Vb2、Vb3を開回路電圧V1、V2、V3とする。
<Modification 2>
The open circuit voltage estimation unit 5 continuously measures three points for a fixed period of time from the charging end time ct of the battery B1 to the polarization elimination time tocvc, which is considered to have eliminated the polarization of the battery B1. When the open circuit voltages Vb1, Vb2, and Vb3 satisfy the first condition (Vb1>Vb2> Vb3) in which the open circuit voltage Vb1 is larger than the open circuit voltage Vb2 and the open circuit voltage Vb2 is larger than the open circuit voltage Vb3. (When the tendency is decreasing), the open circuit voltages Vb1, Vb2, and Vb3 are set to the open circuit voltages V1, V2, and V3.

例えば、図2の時間Tbcにおいて取得した開回路電圧V1c、V2c、V3cを、開回路電圧Vb1、Vb2、Vb3とした場合、開回路電圧V1cが開回路電圧V2cより大きく、かつ開回路電圧V2cが開回路電圧V3cより大きいので、第一の条件を満たしている。 For example, when the open circuit voltages V1c, V2c, and V3c acquired at the time Tbc in FIG. 2 are set to the open circuit voltages Vb1, Vb2, and Vb3, the open circuit voltage V1c is larger than the open circuit voltage V2c and the open circuit voltage V2c is Since it is larger than the open circuit voltage V3c, the first condition is satisfied.

また、開回路電圧推定部5は、電池B1の放電終了時刻tdから、電池B1の分極が解消したと見做せる分極解消時刻tocvdまでの時間において、一定時間Todごとに連続して計測した三点の開回路電圧Vb1、Vb2、Vb3が、開回路電圧Vb1が開回路電圧Vb2より小さく、かつ開回路電圧Vb2が開回路電圧Vb3より小さい第二の条件(Vb1<Vb2<Vb3)を満たしている場合(増加傾向である場合)、開回路電圧Vb1、Vb2、Vb3を開回路電圧V1、V2、V3とする。 Further, the open circuit voltage estimation unit 5 continuously measures the time from the discharge end time td of the battery B1 to the polarization elimination time tocvd, which is considered to have eliminated the polarization of the battery B1, for a certain period of time. The open circuit voltages Vb1, Vb2, and Vb3 at the points satisfy the second condition (Vb1 <Vb2 <Vb3) in which the open circuit voltage Vb1 is smaller than the open circuit voltage Vb2 and the open circuit voltage Vb2 is smaller than the open circuit voltage Vb3. If there is (when there is an increasing tendency), the open circuit voltages Vb1, Vb2, and Vb3 are set to the open circuit voltages V1, V2, and V3.

例えば、図3の時間Tbdにおいて取得した開回路電圧V1d、V2d、V3dを、開回路電圧Vb1、Vb2、Vb3とした場合、開回路電圧V1dが開回路電圧V2dより小さく、かつ開回路電圧V2dが開回路電圧V3dより小さいので、第二の条件を満たしている。 For example, when the open circuit voltages V1d, V2d, and V3d acquired at the time Tbd in FIG. 3 are set to the open circuit voltages Vb1, Vb2, and Vb3, the open circuit voltage V1d is smaller than the open circuit voltage V2d, and the open circuit voltage V2d is Since it is smaller than the open circuit voltage V3d, the second condition is satisfied.

なお、開回路電圧推定部5は、第一の条件又は第二の条件を満たしていない場合、一定時間Tocごとに連続して計測した次の三点の開回路電圧Va2、Va3、Va4を用いて、第一の条件又は第二の条件を満たしているか否かを判定する。 When the first condition or the second condition is not satisfied, the open circuit voltage estimation unit 5 uses the following three open circuit voltages Va2, Va3, and Va4 continuously measured at every Toc for a certain period of time. It is determined whether or not the first condition or the second condition is satisfied.

変形例2によれば、充電後の分極解消時間において電池B1の電圧の変化が減少傾向であると見做せる場合、又は、放電後の分極解消時間において電池B1の電圧の変化が増加傾向であると見做せる場合、開回路電圧Vb1、Vb2、Vb3を、式1、式2の開回路電圧V1、V2、V3として用いることができるため、充放電後の開回路電圧OCVeを精度よく推定できる。また、開回路電圧OCVeを精度よく推定することができるので、分極解消前でも充電率を精度よく推定できる。 According to the second modification, when it can be considered that the change in the voltage of the battery B1 tends to decrease in the polarization elimination time after charging, or when the change in the voltage of the battery B1 tends to increase in the polarization elimination time after discharging. Since the open circuit voltages Vb1, Vb2, and Vb3 can be used as the open circuit voltages V1, V2, and V3 of the formulas 1 and 2, the open circuit voltage OCVe after charging and discharging can be estimated accurately. can. Further, since the open circuit voltage OCVe can be estimated accurately, the charge rate can be estimated accurately even before the polarization is eliminated.

<実施形態2>
図4は、開回路電圧推定方法の一実施例を示す図である。ステップS1において、制御回路4は、電池B1の充電終了時刻tcから、電池B1の分極が解消したと見做せる分極解消時刻tocvcまでの時間において、一定時間Tocごとに計測した開回路電圧を取得する。また、ステップS1において、制御回路4は、電池B1の放電終了時刻tdから、電池B1の分極が解消したと見做せる分極解消時刻tocvdまでの時間において、一定時間Todごとに計測した開回路電圧を取得する。
<Embodiment 2>
FIG. 4 is a diagram showing an embodiment of the open circuit voltage estimation method. In step S1, the control circuit 4 acquires the open circuit voltage measured for each Toc for a certain period of time from the charging end time ct of the battery B1 to the polarization elimination time tocvc, which is considered to have eliminated the polarization of the battery B1. do. Further, in step S1, the control circuit 4 measures the open circuit voltage for each Tod for a certain period of time from the discharge end time td of the battery B1 to the polarization elimination time tocvd, which is considered to have eliminated the polarization of the battery B1. To get.

ステップS2において、制御回路4は、ステップS1で取得した連続して計測した開回路電圧が使用可能であるか否かを判定する。例えば、変形例1又は変形例2で説明した方法を用いて判定をし、ステップS3で用いる開回路電圧を選択する。 In step S2, the control circuit 4 determines whether or not the continuously measured open circuit voltage acquired in step S1 can be used. For example, a determination is made using the method described in the first modification or the second modification, and the open circuit voltage used in step S3 is selected.

ステップS3において、制御回路4は、充電終了後、一定時間Tocごとに連続して計測した三点の開回路電圧と等比数列とを用いて、電池B1の分極解消後の開回路電圧OCVeを推定する。また、ステップS3において、制御回路4は、放電終了後、一定時間Todごとに連続して計測した三点の開回路電圧と等比数列とを用いて、電池B1の分極解消後の開回路電圧OCVeを推定する。制御回路4は、例えば、式2を用いて電池B1の分極解消後の開回路電圧OCVeを推定する。 In step S3, the control circuit 4 uses the three points of open circuit voltage and geometric progression measured continuously at every Toc for a certain period of time after charging is completed to obtain the open circuit voltage OCVe after the polarization of the battery B1 is eliminated. presume. Further, in step S3, the control circuit 4 uses the three-point open circuit voltage and the geometric progression measured continuously for each Tod for a certain period of time after the discharge is completed, and the open circuit voltage after the polarization of the battery B1 is eliminated. Estimate OCVe. The control circuit 4 estimates the open circuit voltage OCVe after the polarization of the battery B1 is eliminated by using, for example, Equation 2.

ステップS1、S2、S3によれば、充電後において、時間Tbcの電池B1の電圧の変化が等比数列で表せる場合、式2を用いて、分極解消前に分極解消後の開回路電圧OCVcに近似する開回路電圧OCVeを推定することができる。また、放電後において、時間Tbdの電池B1の電圧の変化が等比数列を用いて表せる場合、式2を用いて、分極解消前に分極解消後の開回路電圧OCVdに近似する開回路電圧OCVeを推定することができる。 According to steps S1, S2, and S3, when the change in the voltage of the battery B1 at time Tbc can be expressed by a geometric progression after charging, the open circuit voltage OCVc after the polarization is eliminated before the polarization is eliminated by using Equation 2. The approximate open circuit voltage OCVe can be estimated. Further, when the change in the voltage of the battery B1 at time Tbd can be expressed by using a geometric progression after discharging, the open circuit voltage OCVe that approximates the open circuit voltage OCVd before and after the polarization elimination is used by using Equation 2. Can be estimated.

また、ステップS1、S2、S3によれば、充電後において、待機時間Tmcを経過した後に、一定時間Tocごとに連続して計測した開回路電圧を取得することで、充電後の分極解消前の開回路電圧OCVeを精度よく推定できる。また、放電後において、待機時間Tmdを経過した後に、一定時間Todごとに連続して開回路電圧を取得することで、放電後の分極解消前の開回路電圧OCVeを精度よく推定できる。 Further, according to steps S1, S2, and S3, after the standby time Tmc elapses after charging, the open circuit voltage measured continuously at every Toc for a certain period of time is acquired to obtain the open circuit voltage before the polarization is eliminated after charging. The open circuit voltage OCVe can be estimated accurately. Further, by continuously acquiring the open circuit voltage at every Tod for a certain period of time after the standby time Tmd has elapsed after the discharge, the open circuit voltage OCVe before the polarization elimination after the discharge can be estimated accurately.

続いて、ステップS4において、制御回路4は、ステップS3で推定した分極解消後の開回路電圧OCVeを用いて、充電率を推定する。
ステップS4によれば、開回路電圧OCVeを分極解消前に精度よく推定することができるので、分極解消前でも充電率を精度よく推定できる。
Subsequently, in step S4, the control circuit 4 estimates the charge rate using the open circuit voltage OCVe after polarization elimination estimated in step S3.
According to step S4, since the open circuit voltage OCVe can be estimated accurately before the polarization is eliminated, the charge rate can be estimated accurately even before the polarization is eliminated.

また、本発明は、以上の実施の形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。
例えば、充放電終了後、計測した開回路電圧が等比数列から外れる場合は、等比数列の初項及び公比に対して、係数やオフセットなどを用いて補正をしてもよい。
Further, the present invention is not limited to the above embodiments, and various improvements and changes can be made without departing from the gist of the present invention.
For example, when the measured open circuit voltage deviates from the geometric progression after the completion of charging / discharging, the first term and the common ratio of the geometric progression may be corrected by using a coefficient, an offset, or the like.

また、本発明は充電後または放電後にのみ実施してもよい。そして、本発明における充放電とは、充電または放電を示す。
また、本発明の充電後の待機時間Tmcと放電後の待機時間Tmdは、同じであってもよく、異なっていてもよい。
Moreover, the present invention may be carried out only after charging or discharging. The charging / discharging in the present invention means charging or discharging.
Further, the standby time Tmc after charging and the standby time Tmd after discharging of the present invention may be the same or different.

また、本発明の、一定時間ごとに計測する開回路電圧は、待機時間が経過した後に計測したが、待機時間が経過した後に限らず、経過する前でもよい。ただし、待機時間が経過した後に計測した方が分極解消後の開回路電圧を精度よく推定できる。 Further, the open circuit voltage measured at regular intervals in the present invention is measured after the standby time has elapsed, but it is not limited to after the standby time has elapsed, and may be before the standby time has elapsed. However, it is possible to estimate the open circuit voltage after the polarization is eliminated more accurately by measuring after the standby time has elapsed.

1 蓄電装置
2 電流計
3 電圧計
4 制御回路
5 開回路電圧推定部
6 充電率推定部
B1 電池
CHG 充電装置
LD 負荷
SW1、SW2 スイッチ
1 Power storage device 2 Ammeter 3 Voltmeter 4 Control circuit 5 Open circuit Voltage estimation unit 6 Charge rate estimation unit B1 Battery CHG Charging device LD Load SW1, SW2 Switch

Claims (5)

電池と、
前記電池の充放電を制御する制御回路と、を有する蓄電装置であって、
前記制御回路は、
前記電池の充放電終了時刻から、前記電池の分極が解消したと見做せる分極解消時刻までの時間において、一定時間ごとに連続して計測した三点の開回路電圧をそれぞれV1、V2、V3で示したとき、前記電池の分極解消後の開回路電圧OCVe以下の式を用いて推定する、
Figure 0006946691
ことを特徴とする蓄電装置。
Batteries and
A power storage device including a control circuit for controlling charging / discharging of the battery.
The control circuit
From the charge / discharge end time of the battery to the polarization elimination time, which is considered to have eliminated the polarization of the battery, the three open circuit voltages measured continuously at regular intervals are V1, V2, and V3, respectively. When the battery is depolarized, the open circuit voltage OCVe is estimated using the following equation.
Figure 0006946691
A power storage device characterized by this.
請求項に記載の蓄電装置であって、
前記制御回路は、
前記一定時間ごとに連続して計測した四点の開回路電圧Va1、Va2、Va3、Va4を用いて、以下の式を用いて第一の比Aと第二の比Bとを算出し、
A=(Va2−Va3Va1−Va2)
B=(Va3−Va4Va2−Va3)
前記第一の比Aと前記第二の比Bとの差が所定範囲である場合、前記四点の開回路電圧Va1、Va2、Va3、Va4から連続する三点を選択し、前記開回路電圧V1、V2、V3とする、
ことを特徴とする蓄電装置。
The power storage device according to claim 1.
The control circuit
Using the four open-loop voltages Va1, Va2, Va3, and Va4 measured continuously at regular time intervals, the first ratio A and the second ratio B were calculated using the following formula.
A = (Va2-Va3 ) / ( Va1-Va2)
B = (Va3-Va4 ) / ( Va2-Va3)
When the difference between the first ratio A and the second ratio B is within a predetermined range, three consecutive points are selected from the four points of open circuit voltage Va1, Va2, Va3, and Va4, and the open circuit voltage is selected. V1, V2, V3,
A power storage device characterized by this.
請求項に記載の蓄電装置であって、
前記制御回路は、
前記一定時間ごとに連続して計測した三点の開回路電圧Vb1、Vb2、Vb3が、充電終了後、前記開回路電圧Vb1が前記開回路電圧Vb2より大きく、かつ前記開回路電圧Vb2が前記開回路電圧Vb3より大きい第一の条件、又は、放電終了後、前記開回路電圧Vb1が前記開回路電圧Vb2より小さく、かつ前記開回路電圧Vb2が前記開回路電圧Vb3より小さい第二の条件、を満たしている場合、前記三点の開回路電圧Vb1、Vb2、Vb3を前記開回路電圧V1、V2、V3とする、
ことを特徴とする蓄電装置。
The power storage device according to claim 1.
The control circuit
After charging is completed, the open circuit voltage Vb1 is larger than the open circuit voltage Vb2 and the open circuit voltage Vb2 is the open circuit voltage Vb2. The first condition that is larger than the circuit voltage Vb3, or the second condition that the open circuit voltage Vb1 is smaller than the open circuit voltage Vb2 and the open circuit voltage Vb2 is smaller than the open circuit voltage Vb3 after the end of discharging. If the conditions are satisfied, the open circuit voltages Vb1, Vb2, and Vb3 at the three points are set to the open circuit voltages V1, V2, and V3.
A power storage device characterized by this.
請求項1からのいずれか一つに記載の蓄電装置であって、
前記制御回路は、
前記充放電終了時刻から待機時間を経過した後、前記一定時間ごとに計測した前記開回路電圧を取得し、
前記待機時間は、
前記充放電終了時刻から、充放電終了後に前記電池の正極、負極、電解液それぞれに起因して生じる分極のうち、分極解消時間が最も長い分極以外のすべての分極が解消したと見做せる時刻までの時間である、
ことを特徴とする蓄電装置。
The power storage device according to any one of claims 1 to 3.
The control circuit
After the standby time has elapsed from the charge / discharge end time, the open circuit voltage measured at regular intervals is acquired.
The waiting time is
From the charge / discharge end time, it can be considered that all the polarizations other than the polarization having the longest polarization elimination time among the polarizations caused by the positive electrode, the negative electrode, and the electrolytic solution of the battery after the charge / discharge end are eliminated. Time to
A power storage device characterized by this.
電池の開回路電圧推定方法であって、
前記電池の充放電を制御する制御回路は、
前記電池の充放電終了時刻から、前記電池の分極が解消したと見做せる分極解消時刻までの時間において、一定時間ごとに連続して計測した三点の開回路電圧をそれぞれV1、V2、V3で示したとき、前記電池の分極解消後の開回路電圧OCVe以下の式を用いて推定する、
Figure 0006946691
ことを特徴とする開回路電圧推定方法。
It is a method of estimating the open circuit voltage of a battery.
The control circuit that controls the charging and discharging of the battery is
From the charge / discharge end time of the battery to the polarization elimination time, which is considered to have eliminated the polarization of the battery, the three open circuit voltages measured continuously at regular intervals are V1, V2, and V3, respectively. When the battery is depolarized, the open circuit voltage OCVe is estimated using the following equation.
Figure 0006946691
An open-circuit voltage estimation method characterized by this.
JP2017064493A 2017-03-29 2017-03-29 Power storage device and open circuit voltage estimation method Active JP6946691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017064493A JP6946691B2 (en) 2017-03-29 2017-03-29 Power storage device and open circuit voltage estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017064493A JP6946691B2 (en) 2017-03-29 2017-03-29 Power storage device and open circuit voltage estimation method

Publications (2)

Publication Number Publication Date
JP2018169183A JP2018169183A (en) 2018-11-01
JP6946691B2 true JP6946691B2 (en) 2021-10-06

Family

ID=64020142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017064493A Active JP6946691B2 (en) 2017-03-29 2017-03-29 Power storage device and open circuit voltage estimation method

Country Status (1)

Country Link
JP (1) JP6946691B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7394110B2 (en) 2019-02-28 2023-12-07 古河電気工業株式会社 Rechargeable battery status detection device and rechargeable battery status detection method
JP7295658B2 (en) * 2019-02-28 2023-06-21 株式会社デンソーテン state estimator
CN110967646B (en) * 2019-05-24 2021-03-30 宁德时代新能源科技股份有限公司 SOC correction method and apparatus, battery management system, and storage medium
KR20210074005A (en) * 2019-12-11 2021-06-21 주식회사 엘지에너지솔루션 Battery management system, battery management method, battery pack, and electric vehicle
WO2024042874A1 (en) * 2022-08-26 2024-02-29 パナソニックIpマネジメント株式会社 Method for measuring internal resistance of battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798367A (en) * 1993-09-28 1995-04-11 Honda Motor Co Ltd Residual capacity estimating method for battery
JP3986932B2 (en) * 2002-09-19 2007-10-03 矢崎総業株式会社 Battery open circuit voltage estimation method
JP2008256436A (en) * 2007-04-03 2008-10-23 Yazaki Corp Approximate expression calculation apparatus and its method, and battery state monitoring device
US20120200298A1 (en) * 2011-02-09 2012-08-09 GM Global Technology Operations LLC Automotive Battery SOC Estimation Based on Voltage Decay
EP2767841A4 (en) * 2011-10-13 2015-02-25 Toyota Motor Co Ltd Secondary battery control device and method
WO2014119328A1 (en) * 2013-02-01 2014-08-07 三洋電機株式会社 Battery state estimating device

Also Published As

Publication number Publication date
JP2018169183A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6946691B2 (en) Power storage device and open circuit voltage estimation method
US9438059B2 (en) Battery control apparatus and battery control method
US10436850B2 (en) Power storage apparatus and controlling method for the same
EP3663780B1 (en) Deterioration state computation method and deterioration state computation device
KR20190050638A (en) battery management system and method for optimizing an internal resistance of a battery
US11095130B2 (en) Power storage apparatus for estimating an open-circuit voltage
US11469601B2 (en) Battery control unit and battery system
EP2439550B1 (en) Battery state of charge calculation device
KR20090122470A (en) Quick charging method of lithium based secondary battery and electronic apparatus employing it
JP6369340B2 (en) Power storage device and method for controlling power storage device
US20220365139A1 (en) Method for estimating an operating parameter of a battery unit
JP2006337155A (en) Battery-monitoring device
CN108369257B (en) Capacity maintenance rate estimation device or capacity maintenance rate estimation method
TWI613454B (en) Full charge capacity (fcc) calibration method
JP7155486B2 (en) Battery management system, battery management method, battery pack and electric vehicle
JP2020514680A (en) Device and method for estimating capacity retention rate of secondary battery
JP7452924B2 (en) Battery SOH estimation device and method
KR20210074003A (en) Apparatus and method for diagnosing degeneracy of battery
US20240094303A1 (en) Battery state estimation device, battery state estimation system, and battery state estimation method
CN115843397A (en) Method, system and device for determining full charge capacity and health condition of battery pack
EP3828565B1 (en) Vehicle and control method thereof
CN109444750A (en) A kind of capacity of lead acid battery predictor method
KR102427331B1 (en) Apparatus and method for diagnosing current sensor
JP2018146343A (en) Battery management device and battery management method
KR20190083217A (en) battery management system and method for optimizing an internal resistance of a battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R151 Written notification of patent or utility model registration

Ref document number: 6946691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151