JP6944824B2 - Wireless power supply system - Google Patents

Wireless power supply system Download PDF

Info

Publication number
JP6944824B2
JP6944824B2 JP2017132457A JP2017132457A JP6944824B2 JP 6944824 B2 JP6944824 B2 JP 6944824B2 JP 2017132457 A JP2017132457 A JP 2017132457A JP 2017132457 A JP2017132457 A JP 2017132457A JP 6944824 B2 JP6944824 B2 JP 6944824B2
Authority
JP
Japan
Prior art keywords
power
power transmission
frequency
coil
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017132457A
Other languages
Japanese (ja)
Other versions
JP2019017174A (en
Inventor
杉山 由一
由一 杉山
市川 勝英
勝英 市川
城杉 孝敏
孝敏 城杉
秋山 仁
仁 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell Ltd filed Critical Maxell Ltd
Priority to JP2017132457A priority Critical patent/JP6944824B2/en
Publication of JP2019017174A publication Critical patent/JP2019017174A/en
Application granted granted Critical
Publication of JP6944824B2 publication Critical patent/JP6944824B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)

Description

本発明は、送電装置から受電装置へ無線により電力の送受電を行う無線給電システムに関する。 The present invention relates to a wireless power supply system that wirelessly transmits and receives electric power from a power transmitting device to a power receiving device.

人体に装着して生体情報を計測できるウェアラブルセンサや、映像表示するウェアラブルディスプレイ機器が実現されている。これらウェアラブル機器は小型軽量を求められ、かつ電池交換不要のニーズから二次電池への充電が望ましい。これに関し特許文献1には、着用者が金属アレルギーを起こす恐れがなく、衣服型ウェアラブルデバイスに備えられた二次電池に充電できるワイヤレス給電システムについて記載されている。一方近年、伸縮性のある導電材料が実用化されて、衣類へ金属配線を織り込めるようになり、ウェアラブル機器への適用が予想されている。 Wearable sensors that can be attached to the human body to measure biological information and wearable display devices that display images have been realized. These wearable devices are required to be compact and lightweight, and it is desirable to charge the secondary battery because of the need for battery replacement. In this regard, Patent Document 1 describes a wireless power supply system capable of charging a secondary battery provided in a garment-type wearable device without causing the wearer to have a metal allergy. On the other hand, in recent years, elastic conductive materials have been put into practical use, and metal wiring can be woven into clothing, and it is expected to be applied to wearable devices.

特開2016−213915号公報Japanese Unexamined Patent Publication No. 2016-213915

装着したウェアラブル機器へ無線給電すると、人体への電磁波曝露の懸念があり、情報通信研究機構(NICT)電磁環境研究室により、放射電磁界強度と電磁波の人体吸収量が研究されている。また医療現場、病院内で生体情報計測用ウェアラブルセンサへの無線給電が行われると、送電放射電磁波が付近の医療用電子機器へ電磁波妨害を与え、電子機器が誤動作する懸念がある。 There is a concern that electromagnetic waves will be exposed to the human body when the worn wearable device is wirelessly powered, and the National Institute of Information and Communications Technology (NICT) Electromagnetic Environment Laboratory is studying the strength of the radiated electromagnetic field and the amount of electromagnetic waves absorbed by the human body. In addition, when wireless power is supplied to a wearable sensor for measuring biological information in a medical field or hospital, there is a concern that the transmitted electromagnetic waves may interfere with nearby medical electronic devices and cause the electronic devices to malfunction.

前記特許文献1では、衣服型ウェアラブルデバイスにはハンガーから給電を行うことを前提としており、無線給電による人体への電磁波曝露や電子機器への電磁波妨害に関しては特に記載されていない。また、その他の従来技術では、人体への電磁波曝露や電子機器への電磁波妨害を低減する無線給電技術については特に提案されていない。 In Patent Document 1, it is premised that power is supplied from a hanger to a clothing-type wearable device, and there is no particular description regarding electromagnetic wave exposure to the human body or electromagnetic wave interference to electronic devices due to wireless power supply. Further, in other conventional techniques, no particular proposal has been made for a wireless power feeding technique for reducing electromagnetic wave exposure to the human body and electromagnetic wave interference to electronic devices.

本発明の目的は、ウェアラブル機器を装着した人体への電磁波曝露を低減し、また付近の電子機器へ与える電磁波妨害を低減可能な無線給電システムを提供することである。 An object of the present invention is to provide a wireless power supply system capable of reducing electromagnetic wave exposure to a human body equipped with a wearable device and reducing electromagnetic wave interference given to nearby electronic devices.

本発明に係る無線給電システムは、送電装置から受電装置へ電力を無線で給電する無線給電システムであって、送電装置は、電力を伝送する複数の搬送周波数を予め定めた周期と順序で周波数遷移させ、送電コイルを介して電力を送電し、受電装置は、送電装置と電磁界共鳴状態を維持しながら、送電装置と同一の周期と順序で周波数遷移させ、受電コイルを介して電力を受電することを特徴とする。その際、周波数遷移させる複数の搬送周波数は、人体への電磁波吸収量が多い周波数、または他の電子機器へ電磁波妨害を与える周波数を除外した周波数範囲に設定する。 The wireless power supply system according to the present invention is a wireless power supply system that wirelessly supplies electric power from a power transmission device to a power receiving device. The power is transmitted through the power transmission coil, and the power receiving device undergoes frequency transition in the same cycle and order as the power transmission device while maintaining the electromagnetic field resonance state with the power transmission device, and receives power via the power receiving coil. It is characterized by that. At that time, the plurality of transport frequencies for frequency transition are set in a frequency range excluding the frequency in which the amount of electromagnetic wave absorbed by the human body is large or the frequency in which electromagnetic wave interference is caused to other electronic devices.

本発明によれば、人体への電磁波曝露を低減し、付近の電子機器へ与える電磁波妨害を低減可能な無線給電システムを実現できる。 According to the present invention, it is possible to realize a wireless power supply system capable of reducing exposure to electromagnetic waves to the human body and reducing electromagnetic interference to nearby electronic devices.

実施例1に係る無線給電システムの構成を示す図。The figure which shows the structure of the wireless power supply system which concerns on Example 1. FIG. 無線給電周波数の周波数遷移の一例を示す図。The figure which shows an example of the frequency transition of a wireless feeding frequency. 送電動作と受電動作のタイミングチャートを示す図。The figure which shows the timing chart of the power transmission operation and the power reception operation. ウェアラブル機器1の動作を示すフローチャート。The flowchart which shows the operation of the wearable device 1. 送電装置2の動作を示すフローチャート。The flowchart which shows the operation of a power transmission device 2. 実施例2に係る無線給電システムの構成を示す図。The figure which shows the structure of the wireless power supply system which concerns on Example 2. FIG. 無線給電中に電磁波が人体に与える影響を説明する図。The figure explaining the influence of the electromagnetic wave on the human body during wireless power supply. 無線給電中に電磁波が電子機器に与える影響を説明する図。The figure explaining the influence of an electromagnetic wave on an electronic device during wireless power supply. 実施例3における送電動作と受電動作のタイミングチャートを示す図。The figure which shows the timing chart of the power transmission operation and the power reception operation in Example 3. 実施例4に係る無線給電システムの構成を示す図。The figure which shows the structure of the wireless power supply system which concerns on Example 4. FIG. 2つの受電コイルを有するウェアラブル機器の例を示す図。The figure which shows the example of the wearable device which has two power receiving coils. ウェアラブル機器7の動作を示すフローチャート。The flowchart which shows the operation of the wearable device 7. 送電装置2の動作を示すフローチャート。The flowchart which shows the operation of a power transmission device 2. 実施例4に係る無線給電システムの構成を示す図。The figure which shows the structure of the wireless power supply system which concerns on Example 4. FIG. 漏洩検出型のウェアラブル機器8の例を示す図。The figure which shows the example of the leakage detection type wearable device 8. ウェアラブル機器8の動作を示すフローチャート。The flowchart which shows the operation of the wearable device 8. 送電装置2の動作を示すフローチャート。The flowchart which shows the operation of a power transmission device 2. 実施例6に係る無線給電システムの構成を示す図。The figure which shows the structure of the wireless power supply system which concerns on Example 6.

以下、本発明の無線給電システムの実施形態について図面を用いて説明する。無線給電システムでは、送電装置から受電装置へ無線で電力を送受電するものであるが、受電装置が、人体に装着して使用するウェアラブル機器の場合について説明する。 Hereinafter, embodiments of the wireless power supply system of the present invention will be described with reference to the drawings. In the wireless power supply system, electric power is transmitted and received wirelessly from the power transmission device to the power receiving device, and the case where the power receiving device is a wearable device worn on a human body and used will be described.

実施例1では、本発明の無線給電システムの基本構成について説明する。
図1は、実施例1に係る無線給電システムの構成を示す図である。無線給電システムは、送電装置2とウェアラブル機器(受電装置)1を備え、送電装置2からウェアラブル機器1へ電力を供給する。ここにウェアラブル機器1は人体(例えば患者)に装着して、生体情報センサ25(例えば血圧計や心拍計など)にて生体情報を取得する場合を想定する。
In the first embodiment, the basic configuration of the wireless power supply system of the present invention will be described.
FIG. 1 is a diagram showing a configuration of a wireless power supply system according to a first embodiment. The wireless power supply system includes a power transmission device 2 and a wearable device (power receiving device) 1, and supplies power from the power transmission device 2 to the wearable device 1. Here, it is assumed that the wearable device 1 is attached to a human body (for example, a patient) and the biological information sensor 25 (for example, a sphygmomanometer, a heart rate monitor, etc.) acquires biological information.

送電装置2において、11は送電コイル、12は可変容量ダイオード(バラクタダイオードとも呼ばれる)、13は周波数シンセサイザ、14は送電アンプ(PA)、15はプログラマブルディバイダ、16は電圧制御発振器(VCO)、17は送電制御部、18はバラクタ電圧、19は負荷変調復調部、29は基準発振器、31は送電基準クロック発振器、33は負荷変調受信データである。 In the power transmission device 2, 11 is a power transmission coil, 12 is a variable capacitance diode (also called a varicap diode), 13 is a frequency synthesizer, 14 is a power transmission amplifier (PA), 15 is a programmable divider, 16 is a voltage controlled oscillator (VCO), and 17 Is a transmission control unit, 18 is a varicap voltage, 19 is a load modulation / demodulation unit, 29 is a reference oscillator, 31 is a transmission reference clock oscillator, and 33 is load modulation reception data.

ウェアラブル機器(受電装置)1において、21は受電コイル、22は可変容量ダイオード(バラクタダイオード)、23は整流回路、24は二次電池、25は生体情報センサ、26は受電制御部、27は負荷変調部、28は充電スイッチ、32は受電基準クロック発振器、34はバラクタ電圧、35は送信開始データ、36は負荷抵抗である。 In the wearable device (power receiving device) 1, 21 is a power receiving coil, 22 is a variable capacitance diode (varicap diode), 23 is a rectifying circuit, 24 is a secondary battery, 25 is a biometric information sensor, 26 is a power receiving control unit, and 27 is a load. The modulator, 28 is a charging switch, 32 is a power receiving reference clock oscillator, 34 is a varicap voltage, 35 is transmission start data, and 36 is a load resistance.

送電装置2は、周波数シンセサイザ13により電力を伝送する搬送周波数(以下、無線給電周波数)を切り換えながら送電コイル11から電力を送信する。その際、可変容量ダイオード12に印加するバラクタ電圧18を切り換えることで、送電コイル11の共振周波数を無線給電周波数に追従させる。 The power transmission device 2 transmits power from the power transmission coil 11 while switching the transport frequency (hereinafter, wireless power supply frequency) at which power is transmitted by the frequency synthesizer 13. At that time, by switching the varicap voltage 18 applied to the variable capacitance diode 12, the resonance frequency of the power transmission coil 11 is made to follow the radio feeding frequency.

一方ウェアラブル機器1は、可変容量ダイオード22に印加するバラクタ電圧34を切り換えることで、受電コイル21の共振周波数を送電装置2から送信される電力の無線給電周波数に追従させる。 On the other hand, the wearable device 1 switches the varicap voltage 34 applied to the variable capacitance diode 22 so that the resonance frequency of the power receiving coil 21 follows the wireless power feeding frequency of the electric power transmitted from the power transmission device 2.

このようにして送電コイル11から受電コイル21へ電力が無線にて給電され、ウェアラブル機器1の二次電池24が充電され、生体情報センサ25が稼動する。その際、無線給電周波数の切り換えに合わせて、送電コイル11と受電コイル21の共振周波数を同期して切り換えることで、いわゆる電磁界共鳴現象を利用した伝送効率の高い無線給電を行うものとなっている。電磁界共鳴現象は、電磁誘導、磁界共鳴、磁気結合などとも呼ばれ、以下の実施例では全てこの現象を利用している。 In this way, electric power is wirelessly supplied from the power transmission coil 11 to the power reception coil 21, the secondary battery 24 of the wearable device 1 is charged, and the biometric information sensor 25 operates. At that time, by synchronously switching the resonance frequencies of the power transmission coil 11 and the power receiving coil 21 in accordance with the switching of the wireless power feeding frequency, wireless power feeding with high transmission efficiency using the so-called electromagnetic field resonance phenomenon is performed. There is. The electromagnetic field resonance phenomenon is also called electromagnetic induction, magnetic field resonance, magnetic coupling, or the like, and all of the following examples utilize this phenomenon.

図2は、無線給電周波数の周波数遷移の一例を示す図である。ここでは、無線給電周波数Frsの切り換え(F0,F1,F2・・・Fn)に対する、送電装置2が持つバラクタ電圧18及びプログラマブルディバイダ15の設定値(N,P,A)の送電側対応表と、ウェアラブル機器1が持つバラクタ電圧34の受電側対応表を示す。以下の説明ではこの対応表の数値を用いるが、ここに掲げた値はあくまでも一例である。 FIG. 2 is a diagram showing an example of frequency transition of the wireless feeding frequency. Here, the transmission side correspondence table of the varicap voltage 18 and the set values (N, P, A) of the varicap voltage 18 and the programmable divider 15 of the power transmission device 2 with respect to the switching of the wireless power supply frequency Frs (F0, F1, F2 ... Fn). , The power receiving side correspondence table of the varicap voltage 34 which the wearable device 1 has is shown. In the following explanation, the values in this correspondence table are used, but the values listed here are just examples.

送電装置2は初期状態でバラクタ電圧18が0Vであり、この時プログラマブルディバイダ15に(N,P,A)=(32,2,6)を設定すると、VCO16は無線給電周波数Frs=7.0MHzで発振する(この周波数をF0とする)。7.0MHzの搬送周波数信号は送電アンプ14で増幅され、送電コイル11から送電される。 In the power transmission device 2, the varicap voltage 18 is 0V in the initial state, and when (N, P, A) = (32,2,6) is set in the programmable divider 15 at this time, the VCO 16 has a wireless feeding frequency Frs = 7.0MHz. Oscillates at (this frequency is F0). The 7.0 MHz carrier frequency signal is amplified by the power transmission amplifier 14 and transmitted from the power transmission coil 11.

ウェアラブル機器1は初期状態でバラクタ電圧34が0Vであり、受電コイル21は、無線給電周波数Frs=7.0MHzに共振している。送電装置2からの7.0MHz搬送波を受信すると、整流回路23には充電電圧が発生し始める。 In the wearable device 1, the varicap voltage 34 is 0 V in the initial state, and the power receiving coil 21 resonates at the radio feeding frequency Frs = 7.0 MHz. Upon receiving the 7.0 MHz carrier wave from the power transmission device 2, a charging voltage starts to be generated in the rectifier circuit 23.

後述するように、充電電圧が所定の電圧に達すると、送電装置2は無線給電周波数Frsと送電コイル11の共振周波数を順次F1,F2・・・と切り換えて送電コイル11から送電する。そのために、プログラマブルディバイダ15の設定値(N,P,A)とバラクタ電圧18を図2に示すように切り換える。一方ウェアラブル機器1でも、受電コイル21の共振周波数を順次F1,F2・・・と切り換えて受電する。そのために、バラクタ電圧34を図2のように切り換える。バラクタ電圧18、34を切り換えることで、可変容量ダイオード12、22の容量が変化する。 As will be described later, when the charging voltage reaches a predetermined voltage, the power transmission device 2 sequentially switches between the wireless power feeding frequency Frs and the resonance frequency of the power transmission coil 11 between F1, F2, and so on to transmit power from the power transmission coil 11. Therefore, the set value (N, P, A) of the programmable divider 15 and the varicap voltage 18 are switched as shown in FIG. On the other hand, even in the wearable device 1, the resonance frequency of the power receiving coil 21 is sequentially switched between F1, F2, and so on to receive power. Therefore, the varicap voltage 34 is switched as shown in FIG. By switching the varicap voltages 18 and 34, the capacitances of the variable capacitance diodes 12 and 22 change.

ここで無線給電周波数Frsは、(1)式で与えられる。
Frs=1/(2π√(L×(Cp+Cvr))・・・(1)
ここに、L:コイルインダクタンス、Cp:コイル線間容量、Cvr:可変容量ダイオード12,22の容量である。
Here, the radio feeding frequency Frs is given by the equation (1).
Frs = 1 / (2π√ (L × (Cp + Cvr)) ... (1)
Here, L: coil inductance, Cp: coil line capacitance, and Cvr: variable capacitance diodes 12 and 22 are capacitances.

図3は、送電動作と受電動作のタイミングチャートを示す図である。ここには、送電装置2の送信電力、負荷変調受信データ33及びタイミングずれ量と、ウェアラブル機器1の充電電圧、負荷変調データ35、受信電力及びタイミングずれ量を示す。 FIG. 3 is a diagram showing a timing chart of power transmission operation and power reception operation. Here, the transmission power of the power transmission device 2, the load modulation reception data 33 and the timing deviation amount, and the charging voltage of the wearable device 1, the load modulation data 35, the reception power and the timing deviation amount are shown.

送電装置2は、周波数F0で送電を開始する。ウェアラブル機器1は、周波数F0の電力を受電し、整流回路23で整流して発生した二次電池24に充電する。充電電圧が、生体情報センサ25が動作可能となる電圧43(以下、生体センサ動作電圧)に達すると、受電制御部26は、給電の開始を要求する送信開始データ44を送電装置2へ送信する。具体的には負荷変調部27をオン/オフして、送信開始を意味する例えば“01100111”の負荷変調データ35を、受電コイル21と送電コイル11を介して送電装置2へ送信する。 The power transmission device 2 starts power transmission at the frequency F0. The wearable device 1 receives electric power of frequency F0 and charges the secondary battery 24 generated by rectifying with the rectifier circuit 23. When the charging voltage reaches the voltage 43 (hereinafter referred to as the biosensor operating voltage) that enables the biometric information sensor 25 to operate, the power receiving control unit 26 transmits the transmission start data 44 requesting the start of power supply to the power transmission device 2. .. Specifically, the load modulation unit 27 is turned on / off, and the load modulation data 35 of, for example, “01100111”, which means the start of transmission, is transmitted to the power transmission device 2 via the power reception coil 21 and the power transmission coil 11.

送電装置2の送電制御部17はウェアラブル機器1から送信される負荷変調受信データ33から送信開始データ44’を受信すると、受信完了した時点でバラクタ電圧を1.2Vに変え、無線給電周波数Frsと送電コイル11の共振周波数を7.3MHz(F1)に設定して、送電コイル11から送電する。 When the power transmission control unit 17 of the power transmission device 2 receives the transmission start data 44'from the load modulation reception data 33 transmitted from the wearable device 1, it changes the varactor voltage to 1.2V when the reception is completed, and sets the radio feed frequency Frs. The resonance frequency of the power transmission coil 11 is set to 7.3 MHz (F1), and power is transmitted from the power transmission coil 11.

ウェアラブル機器1の受電制御部26は、送信開始データ44の送信完了した時点でバラクタ電圧34を1.2Vに変え、受信コイル21の共振周波数を7.3MHzへ変更する。これにより、送電装置2とウェアラブル機器1との間で、7.3MHz(F1)の無線給電が行われる。 The power receiving control unit 26 of the wearable device 1 changes the varicap voltage 34 to 1.2V and changes the resonance frequency of the receiving coil 21 to 7.3 MHz when the transmission of the transmission start data 44 is completed. As a result, 7.3 MHz (F1) wireless power supply is performed between the power transmission device 2 and the wearable device 1.

送電制御部17及び受電制御部26は、予め定めた周波数遷移周期Thop(例えば2sec)を持ち、Thop経過後は、無線給電周波数(共振周波数)を次の周波数F2(7.1MHz)へ変更する。これを各々、Thop毎に行うことにより、無線給電状態を維持しながら無線給電周波数を変更(遷移)していく。この動作は、予め定めたn番目の周波数Fn(8.6MHz)まで遷移し終わると、再びF1からの周波数遷移を繰り返す。このような周波数遷移動作は、「周波数ホッピング」とも呼ばれる。 The power transmission control unit 17 and the power reception control unit 26 have a predetermined frequency transition period Top (for example, 2 sec), and after the Hop has elapsed, the radio feeding frequency (resonance frequency) is changed to the next frequency F2 (7.1 MHz). .. By performing this for each shop, the wireless power supply frequency is changed (transitioned) while maintaining the wireless power supply state. This operation repeats the frequency transition from F1 again when the transition to the predetermined nth frequency Fn (8.6 MHz) is completed. Such a frequency transition operation is also called "frequency hopping".

周波数ホッピングは、2.4GHz帯近距離無線通信方式IEEE802.15.1規格(Bluetooth(登録商標)とも呼ばれる)で採用されている技術である。免許不要のISM帯である2.4GHz帯は多くの無線機器が使い、電子レンジも2.4GHz帯であるため、電波干渉を回避して通信する必要がある。そこでBluetoothは、0.625msec毎に送信周波数を変えて通信することにより、他の無線機器からの干渉を受けにくくしている。 Frequency hopping is a technique adopted in the 2.4 GHz band short-range wireless communication system IEEE802.5.1 standard (also referred to as Bluetooth®). Since the 2.4 GHz band, which is an ISM band that does not require a license, is used by many wireless devices and the microwave oven is also a 2.4 GHz band, it is necessary to avoid radio wave interference for communication. Therefore, Bluetooth makes it difficult to receive interference from other wireless devices by communicating by changing the transmission frequency every 0.625 msec.

これに対し本実施例では、単一周波数で一定時間の給電を確実に行った上で、後述するように、電磁波吸収が人体に影響を与える周波数や周囲の電子機器に妨害電波となる周波数を避けて、周波数を変更しながら給電継続する。よって、本実施例で用いる周波数ホッピング動作は、目的、用途、効果が本質的に異なるものである。 On the other hand, in this embodiment, after reliably supplying power for a certain period of time at a single frequency, as will be described later, the frequency at which electromagnetic wave absorption affects the human body and the frequency at which the surrounding electronic devices become jamming radio waves are determined. Avoid and continue power supply while changing the frequency. Therefore, the frequency hopping operation used in this embodiment has essentially different purposes, uses, and effects.

またBluetoohは、マスタースレーブ方式でネットワークを構築した上で、マスターが決めた周波数遷移順序(ホッピングシーケンス)で送受信間が同期して通信する。これに対し本実施例は、送電装置2とウェアラブル機器1間のネットワーク構築手順は不要であり、受電側の整流回路23で発生する電圧上昇により通信開始するため、通信開始と同期維持方式が異なる。 In addition, Bluetooh constructs a network by a master-slave method, and then communicates in synchronization between transmission and reception in a frequency transition order (hopping sequence) determined by the master. On the other hand, in this embodiment, the network construction procedure between the power transmission device 2 and the wearable device 1 is not required, and the communication is started by the voltage rise generated in the rectifier circuit 23 on the power receiving side, so that the communication start and the synchronization maintenance method are different. ..

次に、本実施例の無線給電方式では、送電装置2とウェアラブル機器1は周波数遷移周期Thop経過するごとに周波数を切り換えているが、その時間基準として各々のクロック発振器を用いているため、時間経過とともに周波数切り換えタイミングがずれてくることがある。例えば、送電基準クロック発振器31の周波数偏差が+100ppm、受電基準クロック発振器32の周波数偏差が−100ppmの時、送信開始点から1000sec経過すると、送電側は+0.1sec遅れ、受電側は−0.1sec進む(この現象は周波数ドリフトとも呼ばれる)。周波遷移周期Thop=2secとした時、両者のずれ量は0.1−(−0.1)=0.2secで、0.2/2=10%のタイミングずれとなり、給電効率が低下する。 Next, in the wireless power feeding method of the present embodiment, the power transmission device 2 and the wearable device 1 switch the frequency each time the frequency transition cycle Top elapses, but since each clock oscillator is used as the time reference, the time The frequency switching timing may shift over time. For example, when the frequency deviation of the power transmission reference clock oscillator 31 is + 100 ppm and the frequency deviation of the power reception reference clock oscillator 32 is -100 ppm, when 1000 sec elapses from the transmission start point, the power transmission side is delayed by +0.1 sec and the power reception side is -0.1 sec. Advance (this phenomenon is also called frequency drift). When the frequency transition period Top = 2 sec, the amount of deviation between the two is 0.1- (−0.1) = 0.2 sec, which is a timing shift of 0.2 / 2 = 10%, and the feeding efficiency is lowered.

これを補正するため本実施例では、送電基準クロック発振器31と受電基準クロック発振器32のそれぞれの周波数偏差から、両者のタイミングずれ量が許容値(例えば0.2sec=10%)に達するまでの時間(同期ずれ補正時間45)を求めておく。受電制御部26は、この同期ずれ補正時間45(例えば1000sec)が経過したら、負荷変調データ35により補正用の送信開始データ44を送信し、送信完了した時点で受電コイルの共振周波数をF1に切り換える。 In order to correct this, in this embodiment, the time from the frequency deviations of the transmission reference clock oscillator 31 and the power reception reference clock oscillator 32 until the timing deviation between the two reaches an allowable value (for example, 0.2 sec = 10%). (Synchronization deviation correction time 45) is obtained. When the synchronization shift correction time 45 (for example, 1000 sec) elapses, the power receiving control unit 26 transmits the transmission start data 44 for correction by the load modulation data 35, and switches the resonance frequency of the power receiving coil to F1 when the transmission is completed. ..

送電制御部17は、負荷変調受信データ33から送信開始データ44’を受信すると、受信完了した時点で無線給電周波数と送電コイル11の共振周波数をF1に切り換える。これにより、送電装置2とウェアラブル機器1の間の周波数切り換えタイミングずれを解消させる。この動作を定期的に繰り返すことで、長時間にわたり周波数切り換えタイミングずれを許容値以内に抑え、効率を低下させずに給電動作を継続することができる。 When the power transmission control unit 17 receives the transmission start data 44'from the load modulation reception data 33, the power transmission control unit 17 switches the radio feeding frequency and the resonance frequency of the power transmission coil 11 to F1 when the reception is completed. As a result, the frequency switching timing shift between the power transmission device 2 and the wearable device 1 is eliminated. By repeating this operation periodically, the frequency switching timing deviation can be suppressed within the permissible value for a long time, and the power feeding operation can be continued without lowering the efficiency.

以上述べたウェアラブル機器1と送電装置2の動作をフローチャートを用いて説明する。
図4Aは、ウェアラブル機器1の動作を示すフローチャートである。
受電制御部26は、初期状態で受電コイル21の共振周波数をF0に設定する(ステップS101)。二次電池24への充電電圧と生体センサ動作電圧43とを比較し(S102)、充電電圧が生体センサ動作電圧43より高くなったら、送電装置2へ送信開始データ44を送信する(S103)。
The operation of the wearable device 1 and the power transmission device 2 described above will be described with reference to the flowchart.
FIG. 4A is a flowchart showing the operation of the wearable device 1.
The power receiving control unit 26 sets the resonance frequency of the power receiving coil 21 to F0 in the initial state (step S101). The charging voltage to the secondary battery 24 is compared with the biosensor operating voltage 43 (S102), and when the charging voltage becomes higher than the biosensor operating voltage 43, the transmission start data 44 is transmitted to the power transmission device 2 (S103).

受電コイル21の共振周波数をF1に設定し(S104)、送電装置2から受電を開始する。以降、周波数遷移周期Thopの間隔で共振周波数をF1からFnまで順次周波数遷移させる。この一連の処理は、送電装置2の周波数遷移と同期させた受電処理である(S105)。また受電制御部26は、周波数遷移を開始してからの受電時間を計測する。 The resonance frequency of the power receiving coil 21 is set to F1 (S104), and power receiving is started from the power transmission device 2. After that, the resonance frequency is sequentially frequency-transitioned from F1 to Fn at intervals of the frequency transition period Top. This series of processes is a power receiving process synchronized with the frequency transition of the power transmission device 2 (S105). Further, the power receiving control unit 26 measures the power receiving time after the frequency transition is started.

一連の周波数遷移同期受電処理を終了した後、受電制御部26は、周波数遷移による受電時間が同期ずれ補正時間45(例えば1000sec)を経過したかを判定し(S106)、経過したらS103へ戻り、送電装置2へ同期ずれ補正用の送信開始データ44を送信する。そして、受電経過時間の計測値をリセットする。同期ずれ補正時間45が経過していないときはS105へ戻り、周波数遷移に同期した受電処理を継続する。 After completing a series of frequency transition synchronous power receiving processes, the power receiving control unit 26 determines whether the power receiving time due to the frequency transition has passed the synchronization shift correction time 45 (for example, 1000 sec) (S106), and returns to S103 when the time has passed. The transmission start data 44 for synchronization deviation correction is transmitted to the power transmission device 2. Then, the measured value of the elapsed power receiving time is reset. When the synchronization shift correction time 45 has not elapsed, the process returns to S105 and the power receiving process synchronized with the frequency transition is continued.

図4Bは、送電装置2の動作を示すフローチャートである。
送電制御部17は、初期状態で送電周波数と送電コイル11の共振周波数をF0に設定する(S111)。この状態で送電装置2は周波数F0で送電を開始する(S112)。
FIG. 4B is a flowchart showing the operation of the power transmission device 2.
The power transmission control unit 17 sets the power transmission frequency and the resonance frequency of the power transmission coil 11 to F0 in the initial state (S111). In this state, the power transmission device 2 starts power transmission at the frequency F0 (S112).

送電制御部17は、ウェアラブル機器1から送信開始データ44’を受信したかを判定し(S113)、受信したら送電周波数と送電コイル11の共振周波数をF1に設定して送電する(S114)。 The power transmission control unit 17 determines whether or not the transmission start data 44'has been received from the wearable device 1 (S113), and when received, sets the power transmission frequency and the resonance frequency of the power transmission coil 11 to F1 and transmits power (S114).

以降、周波数遷移周期Thopの間隔で送電周波数と共振周波数をF1からFnまで順次周波数遷移させて送電する。この一連の処理は、ウェアラブル機器1の周波数遷移と同期させた送電処理である(S115)。 After that, the transmission frequency and the resonance frequency are sequentially frequency-transitioned from F1 to Fn at intervals of the frequency transition cycle Top to transmit power. This series of processes is a power transmission process synchronized with the frequency transition of the wearable device 1 (S115).

一連の周波数遷移同期送電処理を終了した後、送電制御部17は、ウェアラブル機器1から同期ずれ補正用の送信開始データ44’を受信したかを判定し(S116)、受信したらS114へ戻り、送電周波数と送電コイル11の共振周波数を開始点F1に切り換えて送電する。受信していないときはS115へ戻り、周波数遷移に同期した送電処理を継続する。 After completing a series of frequency transition synchronous power transmission processes, the power transmission control unit 17 determines whether or not transmission start data 44'for synchronization deviation correction has been received from the wearable device 1 (S116), and when received, returns to S114 and transmits power. The frequency and the resonance frequency of the power transmission coil 11 are switched to the start point F1 for power transmission. When not receiving, the process returns to S115 and the power transmission process synchronized with the frequency transition is continued.

上記の処理により、送電装置2からの周波数遷移の開始点(周波数F1)を補正し、これに合わせてウェアラブル機器1の周波数遷移の開始点を補正することができる。なお、補正要否の判定(S106)は周波数遷移の途中で行うことも可能であり、また補正後に開始する周波数はF1以外であってもよい。 By the above processing, the start point of the frequency transition (frequency F1) from the power transmission device 2 can be corrected, and the start point of the frequency transition of the wearable device 1 can be corrected accordingly. The determination of the necessity of correction (S106) can be performed in the middle of the frequency transition, and the frequency starting after the correction may be other than F1.

本実施例によれば、無線給電する際に、周波数を変更しながら給電する周波数遷移動作(周波数ホッピング動作)を採用することで、人体や付近の電子機器に影響を与える周波数を避けることができる。その際、送電装置とウェアラブル機器は所定の周期Thopで所定の順に独立して周波数の切り換えを行うので、無線給電システムの構成が簡略化できる。また、送電装置とウェアラブル機器の周波数切り換えタイミングに同期ずれが発生しても、これを定期的に補正する機能を設けたので、効率を低下させずに無線給電を継続することができる。 According to this embodiment, by adopting a frequency transition operation (frequency hopping operation) in which power is supplied while changing the frequency when wirelessly supplying power, it is possible to avoid frequencies that affect the human body and nearby electronic devices. .. At that time, since the power transmission device and the wearable device independently switch frequencies in a predetermined order at a predetermined cycle shop, the configuration of the wireless power supply system can be simplified. Further, even if a synchronization shift occurs between the frequency switching timings of the power transmission device and the wearable device, a function for periodically correcting this is provided, so that wireless power supply can be continued without lowering the efficiency.

実施例2では、周波数遷移動作により人体や付近の電子機器に影響を与える周波数を避けることについて説明する。 In the second embodiment, avoiding frequencies that affect the human body and nearby electronic devices by the frequency transition operation will be described.

図5は、実施例2に係る無線給電システムの構成を示す図である。ここでは、病室内で患者が装着しているウェアラブル機器(受電装置)に無線給電を行う場合を想定する。 FIG. 5 is a diagram showing a configuration of a wireless power supply system according to a second embodiment. Here, it is assumed that wireless power is supplied to a wearable device (power receiving device) worn by a patient in a hospital room.

病室内のベッド5には、送電装置2をベッドシーツと一体化したベッドシーツ一体型送電装置4が敷かれている。ベッドシーツ一体型送電装置4は、特に送電コイル11には伸縮性導電材料を用いて構成している。衣類一体型ウェアラブル機器3は、ウェアラブル機器1を衣類(例パジャマ)と一体化し、特に受電コイル21には伸縮性導電材料を用いて構成している。 A bed sheet integrated power transmission device 4 in which the power transmission device 2 is integrated with the bed sheets is laid on the bed 5 in the hospital room. The bed sheet integrated power transmission device 4 is configured by using an elastic conductive material particularly for the power transmission coil 11. The clothing-integrated wearable device 3 integrates the wearable device 1 with clothing (eg, pajamas), and in particular, the power receiving coil 21 is configured by using an elastic conductive material.

衣類一体型ウェアラブル機器3は例えば患者が着用し、生体情報センサ25により血圧や心拍数などを計測する。患者がベッド5に横たわっている間、衣類一体型ウェアラブル機器3にはベッドシーツ一体型送電装置4から無線給電が行われ、衣類一体型ウェアラブル機器3内の二次電池24に充電される。 The clothing-integrated wearable device 3 is worn by a patient, for example, and measures blood pressure, heart rate, and the like by a biological information sensor 25. While the patient is lying on the bed 5, the clothing-integrated wearable device 3 is wirelessly powered by the bed-sheet-integrated power transmission device 4 to charge the secondary battery 24 in the clothing-integrated wearable device 3.

このような無線給電システムを病院内で使用する場合、ベッドシーツ一体型送電装置4付近には医療用電子機器6が稼働している。よって、ベッドシーツ一体型送電装置4から無線給電の際に放射される電磁波が、患者及び医療用電子機器6に与える影響について考慮する必要がある。 When such a wireless power supply system is used in a hospital, a medical electronic device 6 is operating in the vicinity of the bed sheet integrated power transmission device 4. Therefore, it is necessary to consider the influence of the electromagnetic wave radiated from the bed sheet integrated power transmission device 4 at the time of wireless power supply on the patient and the medical electronic device 6.

図6は、無線給電中に電磁波が人体に与える影響を説明する図である。
(a)は人体の電磁波吸収特性の周波数依存性を示す。人体の電磁波吸収特性は、30MHzから増加して80MHz付近が吸収しやすく、以降300MHzで吸収量が減少する。また人体への吸収量防護基準は、30MHzから300MHzは平坦であり、0.08W/kgが上限吸収量と定められている。
FIG. 6 is a diagram illustrating the effect of electromagnetic waves on the human body during wireless power supply.
(A) shows the frequency dependence of the electromagnetic wave absorption characteristics of the human body. The electromagnetic wave absorption characteristic of the human body increases from 30 MHz and easily absorbs around 80 MHz, and thereafter the absorption amount decreases at 300 MHz. Further, the absorption amount protection standard for the human body is flat from 30 MHz to 300 MHz, and 0.08 W / kg is set as the upper limit absorption amount.

(b)は従来方式でウェアラブル機器へ無線給電した場合を示す。従来方式では、或る単一周波数で常時無線給電するため、吸収量の多い周波数(80MHz付近)の場合、人体へ吸収されやすくなる。 (B) shows a case where wireless power is supplied to the wearable device by the conventional method. In the conventional method, since wireless power is always supplied at a certain single frequency, a frequency having a large amount of absorption (around 80 MHz) is easily absorbed by the human body.

(c)は本実施例の場合で、吸収量の多い80MHz付近を避けて、例えば30MHz〜50MHzの範囲、及び200MHz〜300MHzの範囲で周波数遷移させることで、人体への曝露を低減できる。 In the case of this embodiment, the exposure to the human body can be reduced by avoiding the vicinity of 80 MHz, which has a large amount of absorption, and shifting the frequency in the range of, for example, 30 MHz to 50 MHz and the range of 200 MHz to 300 MHz.

図7は、無線給電中に電磁波が電子機器に与える影響を説明する図である。
(a)は、一般の電子機器における妨害電磁波の排除能力を示す図である。点線は、妨害排除能力(電磁波強度の許容上限値)の周波数依存性を示している。低周波領域では電子機器内のクロック周波数に近いことが多く、妨害を受けやすい(排除能力が低く誤動作しやすい)。一方、高周波領域では内部回路の感度が低く、妨害を受けにくい(排除能力が高く誤動作しにくい)。
FIG. 7 is a diagram illustrating the effect of electromagnetic waves on electronic devices during wireless power supply.
(A) is a figure which shows the ability to eliminate the disturbing electromagnetic wave in a general electronic device. The dotted line shows the frequency dependence of the interference elimination ability (the upper limit of the allowable electromagnetic wave intensity). In the low frequency region, it is often close to the clock frequency in electronic devices and is susceptible to interference (low exclusion capability and easy malfunction). On the other hand, in the high frequency region, the sensitivity of the internal circuit is low and it is not easily disturbed (the elimination ability is high and it is difficult to malfunction).

(b)は従来方式で無線給電した場合を示す。低周波領域の或る単一周波数で給電した場合、電子機器が受ける妨害電磁波強度は、許容上限値を超えて常時妨害を受けることになる。 (B) shows the case where wireless power is supplied by the conventional method. When power is supplied at a certain single frequency in the low frequency region, the intensity of the disturbing electromagnetic wave received by the electronic device exceeds the permissible upper limit value and is constantly disturbed.

(c)は本実施例の場合を示す。時刻T1〜時刻Tnへ時間の経過と共に、周波数をF1〜Fnへ遷移させて給電する。例えば時刻T1の周波数F1では、許容上限値を下回り妨害を受けにくいが、時刻T2の周波数F2では、許容上限値を超え妨害を受けている。しかし、周波数遷移全体(この例では周波数F1〜Fn)では、許容上限値を下回る周波数を多く用いることが可能であり、妨害を受ける時間比率を低くできる。これにより、電子機器が誤動作を生じる確率が低くなる。 (C) shows the case of this embodiment. With the passage of time from time T1 to time Tn, the frequency is changed to F1 to Fn to supply power. For example, at the frequency F1 at time T1, the frequency F1 falls below the permissible upper limit value and is less likely to be disturbed, but at the frequency F2 at time T2, the permissible upper limit value is exceeded and interference is received. However, in the entire frequency transition (frequency F1 to Fn in this example), it is possible to use many frequencies below the allowable upper limit value, and the time ratio for interference can be lowered. This reduces the probability that the electronic device will malfunction.

本実施例によれば、病院内等で無線給電する際に、人体や付近の電子機器に影響を与える周波数を避けて周波数遷移を行うことで、人体への電磁波の曝露や電子機器の誤動作を低減することができる。 According to this embodiment, when wireless power is supplied in a hospital or the like, frequency transitions are performed while avoiding frequencies that affect the human body and nearby electronic devices, thereby causing exposure to electromagnetic waves to the human body and malfunction of electronic devices. Can be reduced.

実施例3では、複数ペアの無線給電システムが近接して存在する場合に好適な無線給電方法を説明する。
送電装置2とウェアラブル機器(受電装置)1を病室等で使用する場合、複数ペアが同一室内で用いられることが想定される。例えば、送電装置2aとウェアラブル機器1aの間、送電装置2bとウェアラブル機器1bの間で並行して給電動作を行うことになる。この時、送電装置2aと送電装置2bの無線給電周波数が一致すると、ウェアラブル機器1aの受電コイル21aの受電動作と、ウェアラブル機器1bの受電コイル21bの受電動作が相互に干渉し、正常に受電できなくなる。
In the third embodiment, a wireless power supply method suitable for the case where a plurality of pairs of wireless power supply systems are present in close proximity to each other will be described.
When the power transmission device 2 and the wearable device (power receiving device) 1 are used in a hospital room or the like, it is assumed that a plurality of pairs are used in the same room. For example, the power feeding operation is performed in parallel between the power transmission device 2a and the wearable device 1a, and between the power transmission device 2b and the wearable device 1b. At this time, if the wireless power feeding frequencies of the power transmission device 2a and the power transmission device 2b match, the power receiving operation of the power receiving coil 21a of the wearable device 1a and the power receiving operation of the power receiving coil 21b of the wearable device 1b interfere with each other, and the power can be normally received. It disappears.

この問題を回避するため、各ウェアラブル機器には機器固有の識別符号(ウェアラブル機器ID)を付与し、ウェアラブル機器IDごとに図2の無線給電周波数の順序が異なるように設定する。ウェアラブル機器1a,1b及び送電装置2a,2bは、ウェアラブル機器IDごとに設定された受電側対応表と送電側対応表を保持している。 In order to avoid this problem, a device-specific identification code (wearable device ID) is assigned to each wearable device, and the order of the wireless power feeding frequencies in FIG. 2 is set to be different for each wearable device ID. The wearable devices 1a and 1b and the power transmission devices 2a and 2b hold a power receiving side correspondence table and a power transmission side correspondence table set for each wearable device ID.

図8は、実施例3における送電動作と受電動作のタイミングチャートを示す図である。
ウェアラブル機器1aは、送電装置2aに送信開始データ44aを送信する際、自身のウェアラブル機器ID(41a)とともに送信する。送電装置2aはウェアラブル機器ID(41a)に対応した送電側対応表に基づき、例えば周波数F1、F2、・・・の順に切り換えて送電する。ウェアラブル機器1aは自身の受電側対応表に基づき、同じ共振周波数F1、F2、・・・の順に切り換えて受電する。
FIG. 8 is a diagram showing a timing chart of the power transmission operation and the power reception operation in the third embodiment.
When the wearable device 1a transmits the transmission start data 44a to the power transmission device 2a, the wearable device 1a transmits the transmission start data 44a together with its own wearable device ID (41a). The power transmission device 2a transmits power by switching, for example, frequencies F1, F2, ... Based on the power transmission side correspondence table corresponding to the wearable device ID (41a). The wearable device 1a receives power by switching the same resonance frequencies F1, F2, ... In this order based on its own power receiving side correspondence table.

一方、同一室内に有るウェアラブル機器1bは、送電装置2bに送信開始データ44bを送信する際、自身のウェアラブル機器ID(41b)とともに送信する。送電装置2bはウェアラブル機器ID(41b)に対応した送電側対応表に基づき、例えば周波数F5、F3、・・・の順に切り換えて送電する。ウェアラブル機器1bは自身の受電側対応表に基づき、同じ共振周波数F5、F3、・・・の順に切り換えて受電する。 On the other hand, when the wearable device 1b in the same room transmits the transmission start data 44b to the power transmission device 2b, the wearable device 1b transmits the transmission start data 44b together with its own wearable device ID (41b). The power transmission device 2b transmits power by switching, for example, frequencies F5, F3, ... Based on the power transmission side correspondence table corresponding to the wearable device ID (41b). The wearable device 1b receives power by switching the same resonance frequencies F5, F3, ... In this order based on its own power receiving side correspondence table.

本実施例によれば、複数ペアの無線給電システムが近接して存在しても、それぞれの無線給電周波数が異なるため受電動作が干渉することがない。よって、それぞれのペアにおいて正常な無線給電を継続することが可能となる。 According to this embodiment, even if a plurality of pairs of wireless power feeding systems exist in close proximity to each other, the power receiving operations do not interfere with each other because their wireless power feeding frequencies are different. Therefore, it is possible to continue normal wireless power supply in each pair.

実施例4では、ウェアラブル機器が複数の受電コイルを有する場合について説明する。
図9は、実施例4に係る無線給電システムの構成を示す図である。実施例1(図1)との相違点を述べると、ウェアラブル機器(受電装置)7は、第1受電コイル51と第2受電コイル52を有し、53は第1受電コイル用スイッチ(第1スイッチ)、54は第2受電コイル用スイッチ(第2スイッチ)である。第1スイッチ53を閉じると第1受電コイル51にて受電動作を行い、第2スイッチ54を閉じると第2受電コイル52にて受電動作を行う。このとき、スイッチは一方のみを閉じて、一方のコイルのみでの受電動作を行わせる。もしも両方のスイッチを閉じた場合には、各受電コイル51,52の共振周波数が変化して正常な受電動作が行えないからである。ここでは2つの受電コイルを有する場合を示すが、2つ以上の複数の受電コイルを有する場合も同様である。
In the fourth embodiment, a case where the wearable device has a plurality of power receiving coils will be described.
FIG. 9 is a diagram showing a configuration of a wireless power supply system according to a fourth embodiment. The difference from the first embodiment (FIG. 1) is described. The wearable device (power receiving device) 7 has a first power receiving coil 51 and a second power receiving coil 52, and 53 is a switch for the first power receiving coil (first power receiving coil). Switches) and 54 are switches for the second power receiving coil (second switch). When the first switch 53 is closed, the first power receiving coil 51 performs a power receiving operation, and when the second switch 54 is closed, the second power receiving coil 52 performs a power receiving operation. At this time, the switch closes only one of them so that the power receiving operation is performed only by one of the coils. This is because if both switches are closed, the resonance frequencies of the power receiving coils 51 and 52 change and normal power receiving operation cannot be performed. Here, the case of having two power receiving coils is shown, but the same applies to the case of having two or more power receiving coils.

本実施例では、受電制御部26は各受電コイル51,52における受電量を比較し、受電量の大きい方のコイルで受電動作を行わせるよう制御する。すなわち送電装置2から無線給電が開始されると、整流回路23は第1スイッチ53を閉じて第1受電コイル51からの受電量を検出して記憶し、次に第2スイッチ54を閉じて第2受電コイル52からの受電量を検出する。受電制御部26は、検出した第1受電コイル51と第2受電コイル52の受電量を比較し、受電量の大きい方のスイッチを閉じて(他方のスイッチは開く)受電動作を行う。 In this embodiment, the power receiving control unit 26 compares the power receiving amounts of the power receiving coils 51 and 52, and controls the coil having the larger power receiving amount to perform the power receiving operation. That is, when the wireless power supply is started from the power transmission device 2, the rectifier circuit 23 closes the first switch 53 to detect and store the amount of power received from the first power receiving coil 51, and then closes the second switch 54 to obtain the second power. 2 The amount of power received from the power receiving coil 52 is detected. The power receiving control unit 26 compares the detected power receiving amounts of the first power receiving coil 51 and the second power receiving coil 52, closes the switch having the larger power receiving amount (the other switch opens), and performs the power receiving operation.

図10は、2つの受電コイルを有し衣類と一体化したウェアラブル機器7の例を示す図である。ウェアラブル機器7は衣類50(例パジャマ)に縫い込まれおり、(a)は背中側の配置、(b)は腹側の配置を示す。第1受電コイル51は伸縮性導電材料で作られ、衣類50の背中側に配置される。第2受電コイル52も伸縮性導電材料で作られ、衣類50の腹側に配置される。 FIG. 10 is a diagram showing an example of a wearable device 7 having two power receiving coils and integrated with clothing. The wearable device 7 is sewn into a garment 50 (eg, pajamas), where (a) shows a back-side arrangement and (b) shows a ventral-side arrangement. The first power receiving coil 51 is made of an elastic conductive material and is arranged on the back side of the garment 50. The second power receiving coil 52 is also made of an elastic conductive material and is arranged on the ventral side of the garment 50.

実施例2(図5)で述べたように、患者が衣類一体型のウェアラブル機器3を着用してベッド5に横たわっている場合、送電コイル11には衣類50の背中側か腹側のいずれかが対向しているため、第1受電コイル51または第2受電コイル52の一方のコイルの受電量が他方より大きくなる。そこで、受電量の大きい方のコイルを使用する。 As described in Example 2 (FIG. 5), when the patient is lying on the bed 5 wearing a garment-integrated wearable device 3, the power transmission coil 11 is on either the back or ventral side of the garment 50. The amount of power received by one of the first power receiving coil 51 and the second power receiving coil 52 is larger than that of the other coil. Therefore, the coil with the larger amount of power received is used.

本実施例におけるウェアラブル機器7と送電装置2の動作をフローチャートを用いて説明する。
図11Aは、複数受電コイル型のウェアラブル機器7の動作を示すフローチャートである。
The operation of the wearable device 7 and the power transmission device 2 in this embodiment will be described with reference to a flowchart.
FIG. 11A is a flowchart showing the operation of the multiple power receiving coil type wearable device 7.

初期状態は、第1スイッチ53が閉じ(オン)、第2スイッチ54が開いて(オフ)、第1受電コイル51が接続されている(S121)。この状態で受電コイルの共振周波数をF0に設定する(S122)。 In the initial state, the first switch 53 is closed (on), the second switch 54 is opened (off), and the first power receiving coil 51 is connected (S121). In this state, the resonance frequency of the power receiving coil is set to F0 (S122).

受電制御部26は充電電圧を監視し(S123)、生体センサ動作電圧43より高くなったら、第1スイッチ53をオンにして(S124)、送電装置2へ送信開始データを送信する(S125)。受電コイル51,52の共振周波数をF1に設定し、周波数F1の電力を受電する(S126)。まず、第1受電コイル51の受電量Q1を記憶する(S127)。 The power receiving control unit 26 monitors the charging voltage (S123), and when the voltage becomes higher than the biosensor operating voltage 43, the first switch 53 is turned on (S124) and the transmission start data is transmitted to the power transmission device 2 (S125). The resonance frequencies of the power receiving coils 51 and 52 are set to F1, and the power of the frequency F1 is received (S126). First, the power receiving amount Q1 of the first power receiving coil 51 is stored (S127).

次に受電制御部26は第2スイッチ54をオンにして第2受電コイル52を接続し(S128)、第2受電コイル52の受電量Q2を記憶する(S129)する。そして、第1受電コイル51の受電量Q1と第2受電コイル51の受電量Q2を比較する(S130)。 Next, the power receiving control unit 26 turns on the second switch 54, connects the second power receiving coil 52 (S128), and stores the power receiving amount Q2 of the second power receiving coil 52 (S129). Then, the power receiving amount Q1 of the first power receiving coil 51 and the power receiving amount Q2 of the second power receiving coil 51 are compared (S130).

受電量Q1の方が大きければ、第1スイッチ53をオンにして第1受電コイル51へ接続(S131)し、受電量Q2の方が大きければ、第2スイッチ54をオンにして第2受電コイル52へ接続する(S132)。 If the amount of power received Q1 is larger, the first switch 53 is turned on to connect to the first power receiving coil 51 (S131), and if the amount of power received Q2 is larger, the second switch 54 is turned on and the second power receiving coil is connected. Connect to 52 (S132).

受電制御部26は送電装置2へ、送電周波数をF2へ変えることを要求するF2送信開始データを送信し(S133)、受電コイル51,52の共振周波数をF2に設定する(S134)。以降、周波数遷移周期Thopの間隔で周波数F2から順次周波数遷移させる。この一連の処理は、送電装置2の周波数遷移と同期させた受電処理である(S135)。 The power receiving control unit 26 transmits F2 transmission start data requesting that the power transmission frequency be changed to F2 to the power transmission device 2 (S133), and sets the resonance frequencies of the power receiving coils 51 and 52 to F2 (S134). After that, the frequency is sequentially changed from the frequency F2 at the interval of the frequency transition cycle Top. This series of processes is a power receiving process synchronized with the frequency transition of the power transmission device 2 (S135).

受電制御部26は、同期ずれ補正時間45が経過したかを判定(S136)し、経過したらS124へ戻る。そして、第1スイッチ53をオンにして、送信開始データ(同期ずれ補正用)を送信する。同期ずれ補正時間45が経過していないときは、S135へ戻り、周波数遷移に同期した受電処理を継続する。 The power receiving control unit 26 determines whether the synchronization shift correction time 45 has elapsed (S136), and returns to S124 when the synchronization deviation correction time 45 has elapsed. Then, the first switch 53 is turned on to transmit transmission start data (for synchronization deviation correction). When the synchronization shift correction time 45 has not elapsed, the process returns to S135 and the power receiving process synchronized with the frequency transition is continued.

図11Bは、送電装置2の動作を示すフローチャートである。 FIG. 11B is a flowchart showing the operation of the power transmission device 2.

送電制御部17は、初期状態で送電周波数と送電コイル11の共振周波数をF0に設定し(S141)、周波数F0で送電を開始する(S142)。 The power transmission control unit 17 sets the power transmission frequency and the resonance frequency of the power transmission coil 11 to F0 in the initial state (S141), and starts power transmission at the frequency F0 (S142).

送電制御部17は、ウェアラブル機器7から送信開始データを受信したかを判定し(S143)、受信したら送電周波数と送電コイル11の共振周波数をF1に設定して送電を開始する(S144、S145)。 The power transmission control unit 17 determines whether or not transmission start data has been received from the wearable device 7 (S143), and when received, sets the power transmission frequency and the resonance frequency of the power transmission coil 11 to F1 and starts power transmission (S144, S145). ..

次に送電制御部17は、ウェアラブル機器7からF2送信開始データを受信したかを判定(S146)し、受信したら送電周波数と送電コイル11の共振周波数をF2へ変更して送電する(S147)。 Next, the power transmission control unit 17 determines whether or not the F2 transmission start data has been received from the wearable device 7 (S146), and if received, changes the power transmission frequency and the resonance frequency of the power transmission coil 11 to F2 and transmits power (S147).

以降、周波数遷移周期Thopの間隔で送電周波数と共振周波数をF2から順次周波数遷移させて送電する。この一連の処理は、ウェアラブル機器7の周波数遷移と同期させた送電処理である(S148)。 After that, the transmission frequency and the resonance frequency are sequentially frequency-transitioned from F2 at intervals of the frequency transition cycle Top, and power transmission is performed. This series of processes is a power transmission process synchronized with the frequency transition of the wearable device 7 (S148).

送電制御部17は、ウェアラブル機器7から送信開始データ(同期ずれ補正用)を受信したかを判定し(S149)、受信したらS144へ戻り、送電周波数と送電コイル11の共振周波数を開始点F1に切り換えて送電する。受信していないときはS148へ戻り、周波数遷移に同期した送電処理を継続する。 The power transmission control unit 17 determines whether or not transmission start data (for synchronization deviation correction) has been received from the wearable device 7 (S149), returns to S144 when received, and sets the power transmission frequency and the resonance frequency of the power transmission coil 11 to the start point F1. Switch and transmit power. When not receiving, the process returns to S148 and the power transmission process synchronized with the frequency transition is continued.

上記のフローでは、複数の受電コイルから受電量の大きいコイルを選択して切り換えるタイミングは、送電を開始するとき及び同期ずれ補正のタイミングに合わせ送電周波数F1のときに行っているが、これに限定されない。すなわち、受電コイルの選択切り換えタイミングを別途設け、また判定周波数をF1以外としてもよい。 In the above flow, the timing for selecting and switching a coil having a large amount of power received from a plurality of power receiving coils is performed when the power transmission is started and when the power transmission frequency is F1 according to the timing of synchronization deviation correction, but the timing is limited to this. Not done. That is, the selection switching timing of the power receiving coil may be separately provided, and the determination frequency may be set to a frequency other than F1.

本実施例によれば、複数の受電コイルから受電量の多いコイルを選択して受電するとともに、送受間の同期ずれを補正することができる。これにより、ウェアラブル機器7の使用状態が変化して(例えば、ウェアラブル機器7装着者が寝返りを打った場合など)、受電コイルの受電量が変化しても、最大の給電量を確保しつつ無線給電を維持することができる。 According to this embodiment, it is possible to select a coil having a large amount of power received from a plurality of power receiving coils to receive power and to correct a synchronization shift between transmission and reception. As a result, even if the usage state of the wearable device 7 changes (for example, when the wearable device 7 wearer turns over) and the power receiving amount of the power receiving coil changes, the wireless power supply amount is secured while ensuring the maximum power supply amount. Power can be maintained.

実施例5では、ウェアラブル機器が電磁波の漏洩検出機能を有する場合について説明する。 In the fifth embodiment, a case where the wearable device has an electromagnetic wave leakage detection function will be described.

図12は、実施例4に係る無線給電システムの構成を示す図である。実施例1(図1)との相違点を述べると、ウェアラブル機器(受電装置)8は、漏洩検出部61と、複数の漏洩検出コイル62、63、64、65を有する。なお、漏洩検出コイルの数は任意であり1個でもよい。漏洩検出部61が電磁波漏洩を検出すると、受電制御部26は出力制御データ66を送電装置2へ送信し、送電装置2の送電電力を低下させる構成である。 FIG. 12 is a diagram showing a configuration of a wireless power supply system according to a fourth embodiment. To describe the difference from the first embodiment (FIG. 1), the wearable device (power receiving device) 8 has a leak detection unit 61 and a plurality of leak detection coils 62, 63, 64, 65. The number of leakage detection coils is arbitrary and may be one. When the leakage detection unit 61 detects an electromagnetic wave leak, the power reception control unit 26 transmits the output control data 66 to the power transmission device 2 to reduce the power transmission of the power transmission device 2.

図13は、衣類と一体化した漏洩検出型のウェアラブル機器8の例を示す図である。ウェアラブル機器8は衣類(例パジャマ)60に縫い込まれており、伸縮性導電材料からなる受電コイル21は衣類50の背中側に配置される。さらに、受電コイル21から離れた位置(この例では受電コイル21の周囲の4隅位置)に、伸縮性導電材料からなる複数の漏洩検出コイル62、63、64、65を配置している。 FIG. 13 is a diagram showing an example of a leak detection type wearable device 8 integrated with clothing. The wearable device 8 is sewn into a garment (eg, pajamas) 60, and a power receiving coil 21 made of an elastic conductive material is arranged on the back side of the garment 50. Further, a plurality of leakage detection coils 62, 63, 64, 65 made of elastic conductive material are arranged at positions away from the power receiving coil 21 (in this example, four corner positions around the power receiving coil 21).

ここに漏洩検出部61は、各漏洩検出コイル62〜65の共振周波数を受電コイル21の共振周波数に等しく設定しておく。送電装置2からウェアラブル機器8へ無線給電が開始されると、漏洩検出部61は各漏洩検出コイル62〜65の検出レベルを予め定めた電磁波漏洩閾値と比較する。漏洩検出量が閾値を超えた場合、受電制御部26は送電装置2へ出力制御データ66(送信電力低下命令)を送り、送電電力を低下させるよう制御する。 Here, the leakage detection unit 61 sets the resonance frequency of each leakage detection coil 62 to 65 to be equal to the resonance frequency of the power receiving coil 21. When wireless power supply is started from the power transmission device 2 to the wearable device 8, the leakage detection unit 61 compares the detection level of each leakage detection coil 62 to 65 with a predetermined electromagnetic wave leakage threshold value. When the leakage detection amount exceeds the threshold value, the power receiving control unit 26 sends output control data 66 (transmission power reduction command) to the power transmission device 2 to control the power transmission to be reduced.

つまり、漏洩検出量が大きい場合は、送電コイル11から受電コイル21への給電効率が低下し、他の部分へ強く漏洩していることを示している。この場合には、送電電力を低下させ漏洩電磁波の人体への曝露を低下させる必要がある。 That is, when the leakage detection amount is large, it means that the power supply efficiency from the power transmission coil 11 to the power reception coil 21 is lowered and the leak is strongly leaked to other parts. In this case, it is necessary to reduce the transmitted power and reduce the exposure of the leaked electromagnetic wave to the human body.

送電装置2は負荷変調受信データ33で送信電力低下命令を受信したら、送電アンプ14を制御して送電電力を下げて送信する。この制御により、人体のみならず、付近の電子機器への不要な妨害電磁波を低減することができる。 When the power transmission device 2 receives the transmission power reduction command in the load modulation reception data 33, the power transmission device 2 controls the power transmission amplifier 14 to reduce the power transmission power and transmit the power. By this control, it is possible to reduce unnecessary electromagnetic interference not only to the human body but also to nearby electronic devices.

本実施例におけるウェアラブル機器8と送電装置2の動作をフローチャートを用いて説明する。
図14Aは、漏洩検出型のウェアラブル機器8の動作を示すフローチャートである。
初期状態は、受電コイルの共振周波数をF0に設定する(S151)。受電制御部26は充電電圧を監視し(S152)、生体センサ動作電圧43より高くなったら、送電装置2へ送信開始データを送信する(S153)。受電コイル21及び漏洩検出コイル62〜65の共振周波数をF1に設定し、周波数F1の電力を受電する(S154)。
The operation of the wearable device 8 and the power transmission device 2 in this embodiment will be described with reference to a flowchart.
FIG. 14A is a flowchart showing the operation of the leak detection type wearable device 8.
In the initial state, the resonance frequency of the power receiving coil is set to F0 (S151). The power receiving control unit 26 monitors the charging voltage (S152), and when the voltage becomes higher than the biosensor operating voltage 43, the power receiving control unit 26 transmits the transmission start data to the power transmission device 2 (S153). The resonance frequencies of the power receiving coil 21 and the leakage detection coils 62 to 65 are set to F1, and the power of the frequency F1 is received (S154).

次に漏洩検出部61は、漏洩検出コイル62〜65で検出した各々の受電量、すなわち漏洩検出量を記憶し(S155)、電磁界漏洩閾値と比較する(S156)。いずれかの漏洩検出コイルにおける漏洩検出量が閾値を超えたら、受電制御部26は送電装置2へ送信電力を低下させる出力制御データ66(送信電力低下命令)を送信する(S157)。漏洩検出量が閾値を超えていないときは、現在の送信電力を継続する。 Next, the leakage detection unit 61 stores each power received amount detected by the leakage detection coils 62 to 65, that is, the leakage detection amount (S155), and compares it with the electromagnetic field leakage threshold value (S156). When the leak detection amount in any of the leak detection coils exceeds the threshold value, the power receiving control unit 26 transmits the output control data 66 (transmission power reduction command) for reducing the transmission power to the power transmission device 2 (S157). If the leak detection amount does not exceed the threshold value, the current transmission power is continued.

受電制御部26は送電装置2へ、送電周波数をF2へ変えることを要求するF2送信開始データを送信し(S158)、受電コイル21の共振周波数をF2に設定する(S159)。以降、周波数遷移周期Thopの間隔で周波数F2から順次周波数遷移させる。この一連の処理は、送電装置2の周波数遷移と同期させた受電処理である(S160)。その際、必要に応じて、受電コイル21とともに漏洩検出コイル62〜65の共振周波数も順に遷移させる。 The power receiving control unit 26 transmits F2 transmission start data requesting that the power transmission frequency be changed to F2 to the power transmission device 2 (S158), and sets the resonance frequency of the power receiving coil 21 to F2 (S159). After that, the frequency is sequentially changed from the frequency F2 at the interval of the frequency transition cycle Top. This series of processes is a power receiving process synchronized with the frequency transition of the power transmission device 2 (S160). At that time, if necessary, the resonance frequencies of the leakage detection coils 62 to 65 are also changed in order together with the power receiving coil 21.

受電制御部26は、同期ずれ補正時間45が経過したかを判定(S161)し、経過したらS153へ戻る。そして、送信開始データ(同期ずれ補正用)を送信する。同期ずれ補正時間45が経過していないときは、S160へ戻り、周波数遷移に同期した受電処理を継続する。 The power receiving control unit 26 determines whether the synchronization shift correction time 45 has elapsed (S161), and returns to S153 when the synchronization deviation correction time 45 has elapsed. Then, the transmission start data (for synchronization deviation correction) is transmitted. When the synchronization shift correction time 45 has not elapsed, the process returns to S160 and the power receiving process synchronized with the frequency transition is continued.

図14Bは、送電装置2の動作を示すフローチャートである。
送電制御部17は、初期状態で送電周波数と送電コイル11の共振周波数をF0に設定し(S171)、周波数F0で送電を開始する(S172)。
FIG. 14B is a flowchart showing the operation of the power transmission device 2.
The power transmission control unit 17 sets the power transmission frequency and the resonance frequency of the power transmission coil 11 to F0 in the initial state (S171), and starts power transmission at the frequency F0 (S172).

送電制御部17は、ウェアラブル機器8から送信開始データを受信したかを判定し(S173)、受信したら送電周波数と送電コイル11の共振周波数をF1に設定して送電を開始する(S174、S175)。 The power transmission control unit 17 determines whether or not transmission start data has been received from the wearable device 8 (S173), and when received, sets the power transmission frequency and the resonance frequency of the power transmission coil 11 to F1 and starts power transmission (S174, S175). ..

次に送電制御部17は、ウェアラブル機器8から電力低下命令を受信したかを判定し(S176)、受信したら送電アンプ14を制御して送電電力を下げる(S177)。このとき、送電電力を段階的に低下させ、ウェアラブル機器8から電力低下命令を受信しなくなるまで送電電力を変化させてもよい。 Next, the power transmission control unit 17 determines whether or not the power reduction command has been received from the wearable device 8 (S176), and if received, controls the power transmission amplifier 14 to reduce the power transmission power (S177). At this time, the transmitted power may be reduced stepwise, and the transmitted power may be changed until the wearable device 8 no longer receives the power reduction command.

次に送電制御部17は、ウェアラブル機器8からF2送信開始データを受信したかを判定(S178)し、受信したら送電周波数と送電コイル11の共振周波数をF2へ変更して送電する(S179)。 Next, the power transmission control unit 17 determines whether or not the F2 transmission start data has been received from the wearable device 8 (S178), and if received, changes the power transmission frequency and the resonance frequency of the power transmission coil 11 to F2 and transmits power (S179).

以降、周波数遷移周期Thopの間隔で送電周波数と共振周波数をF2から順次周波数遷移させて送電する。この一連の処理は、ウェアラブル機器8の周波数遷移と同期させた送電処理である(S180)。 After that, the transmission frequency and the resonance frequency are sequentially frequency-transitioned from F2 at intervals of the frequency transition cycle Top, and power transmission is performed. This series of processes is a power transmission process synchronized with the frequency transition of the wearable device 8 (S180).

送電制御部17は、ウェアラブル機器8から送信開始データ(同期ずれ補正用)を受信したかを判定し(S181)、受信したらS174へ戻り、送電周波数と送電コイル11の共振周波数を開始点F1に切り換えて送電する。受信していないときはS180へ戻り、周波数遷移に同期した送電処理を継続する。 The power transmission control unit 17 determines whether or not transmission start data (for synchronization deviation correction) has been received from the wearable device 8 (S181), returns to S174 when received, and sets the power transmission frequency and the resonance frequency of the power transmission coil 11 to the start point F1. Switch and transmit power. When not receiving, the process returns to S180 and the power transmission process synchronized with the frequency transition is continued.

上記のフローでは、漏洩検出部61と漏洩検出コイル62〜65による電磁波漏洩を判定するタイミングは、送電を開始するとき及び同期ずれ補正のタイミングに合わせ送電周波数F1のときに行っているが、これに限定されない。すなわち、電磁波漏洩の判定タイミングを別途設け、また判定周波数をF1以外としてもよい。 In the above flow, the timing for determining the electromagnetic wave leakage by the leakage detection unit 61 and the leakage detection coils 62 to 65 is performed when the power transmission is started and when the power transmission frequency is F1 in accordance with the timing of the synchronization deviation correction. Not limited to. That is, the determination timing of electromagnetic wave leakage may be provided separately, and the determination frequency may be other than F1.

本実施例によれば、送電コイル11から受電コイル21への給電効率が低下し、他の部分へ電磁波が漏洩している場合、送電電力を低下させて人体への曝露や電子機器への妨害を低減することができる。 According to this embodiment, when the power feeding efficiency from the power transmitting coil 11 to the power receiving coil 21 is lowered and electromagnetic waves are leaking to other parts, the transmitted power is lowered to expose to the human body or interfere with electronic devices. Can be reduced.

実施例6では、病室の患者が使用するのに好適な無線給電システムについて説明する。
図15は、実施例6に係る無線給電システムの構成を示す図である。ここでは、病室でベッド5上のマットレス71に患者72が横たわっている状態を想定する。
In Example 6, a wireless power supply system suitable for use by a patient in a hospital room will be described.
FIG. 15 is a diagram showing a configuration of a wireless power supply system according to a sixth embodiment. Here, it is assumed that the patient 72 is lying on the mattress 71 on the bed 5 in the hospital room.

マットレス71の裏面側には送電装置2が一体化され、伸縮性導電材料からなる送電コイル11が布の平面上に縫い合わされて配置される。一方、マットレス71の表面側では、患者72の着用する衣類にはウェアラブル機器1が一体型され、伸縮性導電材料からなる受電コイル21が衣類の平面上に縫い合わされて配置される。ウェアラブル機器1には図示しない生体情報センサ25等が含まれている。 A power transmission device 2 is integrated on the back surface side of the mattress 71, and a power transmission coil 11 made of an elastic conductive material is sewn on a flat surface of the cloth and arranged. On the other hand, on the surface side of the mattress 71, the wearable device 1 is integrated with the clothes worn by the patient 72, and the power receiving coil 21 made of the stretchable conductive material is sewn and arranged on the flat surface of the clothes. The wearable device 1 includes a biological information sensor 25 and the like (not shown).

送電装置2からウェアラブル機器1への給電動作において、マットレス71は繊維材料(非金属材料)をクッションとして用いているため、電磁波を通過させる(綿を包含した布団でも良い)。送電コイル11はマットレス71の裏面に配置されるので、受電コイル21との間で、マットレスの厚さH(例えば10cm)の距離を隔てて送受電することになる。 In the power feeding operation from the power transmission device 2 to the wearable device 1, the mattress 71 uses a fiber material (non-metal material) as a cushion, so that electromagnetic waves pass through (a futon containing cotton may be used). Since the power transmission coil 11 is arranged on the back surface of the mattress 71, power is transmitted and received at a distance of a mattress thickness H (for example, 10 cm) from the power receiving coil 21.

電磁界共鳴現象を利用した無線給電では、送電コイル11と受電コイル21とが近すぎると密結合状態になり、単一であった共振状態が分裂して双峰特性になることが知られている。双峰特性の場合、給電効率が低下するので好ましくない。 It is known that in wireless power feeding using the electromagnetic field resonance phenomenon, if the power transmission coil 11 and the power reception coil 21 are too close to each other, a tightly coupled state occurs, and the single resonance state splits into a bimodal characteristic. There is. In the case of the bimodal characteristic, the power feeding efficiency is lowered, which is not preferable.

本実施例の構成では、送電コイル11と受電コイル21の間に所定の距離(マットレスの厚さH)が確保されるので、密結合を避け、単一の共振状態を維持しながら高効率での無線給電が可能となる。 In the configuration of this embodiment, since a predetermined distance (mattress thickness H) is secured between the power transmission coil 11 and the power reception coil 21, tight coupling is avoided and high efficiency is achieved while maintaining a single resonance state. Wireless power supply is possible.

上記した各実施例は、本発明を分かり易く説明するために装置及びシステムの構成を詳細かつ具体的に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることは可能であり、さらにはある実施例の構成に他の実施例の構成を加えることも可能である。 Each of the above-described embodiments describes in detail and concretely the configurations of the apparatus and the system in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and further, it is possible to add the configuration of another embodiment to the configuration of one embodiment.

1,3,4,7,8:ウェアラブル機器(受電装置)、
2,4:送電装置、
5:医療用電子機器、
11:送電コイル、
12,22:可変容量ダイオード(バラクタダイオード)、
13:周波数シンセサイザ、
14:送電アンプ、
15:プログラマブルディバイダ、
16:電圧制御発振器(VCO)、
17:送電制御部、
18,34:バラクタ電圧、
21,51,52:受電コイル、
23:整流回路
24:二次電池、
25:生体情報センサ、
26:受電制御部、
27:負荷変調部、
31:送電基準クロック発振器、
32:受電基準クロック発振器、
33:負荷変調受信データ、
35:負荷変調データ、
41:ウェアラブル機器ID、
43:生体センサ動作電圧、
44:送信開始データ、
45:同期ずれ補正時間、
61:漏洩検出部、
62〜65:漏洩検出コイル。
1,3,4,5,8: Wearable device (power receiving device),
2,4: Power transmission device,
5: Medical electronic devices,
11: Power transmission coil,
12, 22: Variable capacitance diode (varicap diode),
13: Frequency synthesizer,
14: Power transmission amplifier,
15: Programmable divider,
16: Voltage Control Oscillator (VCO),
17: Power transmission control unit,
18,34: Varicap voltage,
21, 51, 52: Power receiving coil,
23: Rectifier circuit 24: Secondary battery,
25: Biometric information sensor,
26: Power receiving control unit,
27: Load modulator,
31: Transmission reference clock oscillator,
32: Power receiving reference clock oscillator,
33: Load modulation received data,
35: Load modulation data,
41: Wearable device ID,
43: Biosensor operating voltage,
44: Transmission start data,
45: Synchronization deviation correction time,
61: Leakage detector,
62-65: Leakage detection coil.

Claims (9)

送電装置から受電装置へ電力を無線で給電する無線給電システムであって、
前記送電装置は、
前記受電装置へ電力を送電する送電コイルと、
前記送電コイルに接続された送電側可変容量ダイオードと、
前記送電コイルに電力を送る送電アンプと、
電力を伝送する搬送周波数を生成する周波数シンセサイザと、
複数の搬送周波数を予め定めた周期と順序で周波数遷移させるため、前記周波数シンセサイザの発振周波数を設定し、前記送電コイルの共振周波数が前記搬送周波数となるように前記送電側可変容量ダイオードへ電圧を印加する送電制御部と、を備え、
前記受電装置は、
前記送電装置から電力を受電する受電コイルと、
前記受電コイルに接続された受電側可変容量ダイオードと、
前記受電コイルが受電した電力を整流する整流回路と、
前記整流回路から充電される二次電池と、
前記送電装置における複数の搬送周波数の周波数遷移に同期させるため、前記受電コイルの共振周波数が前記搬送周波数となるように前記受電側可変容量ダイオードへ電圧を印加する受電制御部と、を備え、
前記送電制御部と前記受電制御部は、前記搬送周波数の遷移について同一の周波数遷移表を保持することで、前記送電コイルと前記受電コイルは互いに電磁界共鳴状態を維持しながら電力を送受電し、
前記受電制御部は前記送電装置からの受電量が所定値に達したら、前記送電装置へ送信開始データを送信するとともに、前記周波数遷移表に従い前記受電側可変容量ダイオードへの電圧印加を開始し、
前記送電装置の前記送電制御部は、前記送信開始データを受信した時点で、前記周波数遷移表に従い前記周波数シンセサイザの発振周波数の設定と前記送電側可変容量ダイオードへの電圧印加を開始することを特徴とする無線給電システム。
A wireless power supply system that wirelessly supplies power from a power transmission device to a power reception device.
The power transmission device
A power transmission coil that transmits power to the power receiving device,
A power transmission side variable capacitance diode connected to the power transmission coil,
A power transmission amplifier that sends power to the power transmission coil and
A frequency synthesizer that produces a carrier frequency that transmits power,
In order to make frequency transitions of a plurality of transport frequencies in a predetermined period and order, the oscillation frequency of the frequency synthesizer is set, and a voltage is applied to the power transmission side variable capacitance diode so that the resonance frequency of the power transmission coil becomes the transport frequency. Equipped with a power transmission control unit to apply
The power receiving device is
A power receiving coil that receives power from the power transmission device and
The power receiving side variable capacitance diode connected to the power receiving coil and
A rectifier circuit that rectifies the power received by the power receiving coil and
The secondary battery charged from the rectifier circuit and
In order to synchronize with the frequency transition of a plurality of transport frequencies in the power transmission device, a power reception control unit that applies a voltage to the power receiving side variable capacitance diode so that the resonance frequency of the power receiving coil becomes the transport frequency is provided.
The power transmission control unit and the power reception control unit maintain the same frequency transition table for the transition of the carrier frequency, so that the power transmission coil and the power reception coil transmit and receive power while maintaining an electromagnetic field resonance state with each other. ,
When the amount of power received from the power transmission device reaches a predetermined value, the power reception control unit transmits transmission start data to the power transmission device, and starts applying a voltage to the power receiving side variable capacitance diode according to the frequency transition table.
The power transmission control unit of the power transmission device is characterized in that when it receives the power transmission start data, it starts setting the oscillation frequency of the frequency synthesizer and applying a voltage to the power transmission side variable capacitance diode according to the frequency transition table. Wireless power transmission system.
送電装置から受電装置へ電力を無線で給電する無線給電システムであって、
前記送電装置は、
前記受電装置へ電力を送電する送電コイルと、
前記送電コイルに接続された送電側可変容量ダイオードと、
前記送電コイルに電力を送る送電アンプと、
電力を伝送する搬送周波数を生成する周波数シンセサイザと、
複数の搬送周波数を予め定めた周期と順序で周波数遷移させるため、前記周波数シンセサイザの発振周波数を設定し、前記送電コイルの共振周波数が前記搬送周波数となるように前記送電側可変容量ダイオードへ電圧を印加する送電制御部と、を備え、
前記受電装置は、
前記送電装置から電力を受電する受電コイルと、
前記受電コイルに接続された受電側可変容量ダイオードと、
前記受電コイルが受電した電力を整流する整流回路と、
前記整流回路から充電される二次電池と、
前記送電装置における複数の搬送周波数の周波数遷移に同期させるため、前記受電コイルの共振周波数が前記搬送周波数となるように前記受電側可変容量ダイオードへ電圧を印加する受電制御部と、を備え、
前記送電制御部と前記受電制御部は、前記搬送周波数の遷移について同一の周波数遷移表を保持することで、前記送電コイルと前記受電コイルは互いに電磁界共鳴状態を維持しながら電力を送受電し、
前記受電制御部は、前記送電装置へ送信開始データを送信するとともに、前記周波数遷移表に従い前記受電側可変容量ダイオードへの電圧印加を開始し、
前記送電装置の前記送電制御部は、前記送信開始データを受信した時点で、前記周波数遷移表に従い前記周波数シンセサイザの発振周波数の設定と前記送電側可変容量ダイオードへの電圧印加を開始し、
前記受電装置には固有の識別符号(ID)を付与しておき、前記受電制御部は前記送電装置へ、前記送信開始データとともに当該受電装置の識別符号を送信し、
前記送電装置の前記送電制御部は、前記複数の搬送周波数が前記識別符号ごとに異なる順序で記述された前記周波数遷移表を保持し、受信した前記識別符号を基に、前記周波数遷移表に従い搬送周波数を遷移させることを特徴とする無線給電システム。
A wireless power supply system that wirelessly supplies power from a power transmission device to a power reception device.
The power transmission device
A power transmission coil that transmits power to the power receiving device,
A power transmission side variable capacitance diode connected to the power transmission coil,
A power transmission amplifier that sends power to the power transmission coil and
A frequency synthesizer that produces a carrier frequency that transmits power,
In order to make frequency transitions of a plurality of transport frequencies in a predetermined period and order, the oscillation frequency of the frequency synthesizer is set, and a voltage is applied to the power transmission side variable capacitance diode so that the resonance frequency of the power transmission coil becomes the transport frequency. Equipped with a power transmission control unit to apply
The power receiving device is
A power receiving coil that receives power from the power transmission device and
The power receiving side variable capacitance diode connected to the power receiving coil and
A rectifier circuit that rectifies the power received by the power receiving coil and
The secondary battery charged from the rectifier circuit and
In order to synchronize with the frequency transition of a plurality of transport frequencies in the power transmission device, a power reception control unit that applies a voltage to the power receiving side variable capacitance diode so that the resonance frequency of the power receiving coil becomes the transport frequency is provided.
The power transmission control unit and the power reception control unit maintain the same frequency transition table for the transition of the carrier frequency, so that the power transmission coil and the power reception coil transmit and receive power while maintaining an electromagnetic field resonance state with each other. ,
The power receiving control unit transmits transmission start data to the power transmission device, and starts applying a voltage to the power receiving side variable capacitance diode according to the frequency transition table.
When the power transmission control unit of the power transmission device receives the power transmission start data, it starts setting the oscillation frequency of the frequency synthesizer and applying a voltage to the power transmission side variable capacitance diode according to the frequency transition table.
A unique identification code (ID) is assigned to the power receiving device, and the power receiving control unit transmits the power receiving device identification code together with the transmission start data to the power transmission device.
The power transmission control unit of the power transmission device holds the frequency transition table in which the plurality of transport frequencies are described in a different order for each identification code, and transports the power transmission according to the frequency transition table based on the received identification code. A wireless power transmission system characterized by changing frequencies.
請求項1または2に記載の無線給電システムであって、
前記受電装置の前記受電制御部は、初期状態で前記受電側可変容量ダイオードに電圧0Vを印加し、
前記送電装置の前記送電制御部は、前記送電側可変容量ダイオードへの印加電圧が0Vのときの前記送電コイルの共振周波数を、前記周波数遷移表の初期状態の搬送周波数とすることを特徴とする無線給電システム。
The wireless power supply system according to claim 1 or 2.
In the initial state, the power receiving control unit of the power receiving device applies a voltage of 0 V to the power receiving side variable capacitance diode.
The power transmission control unit of the power transmission device is characterized in that the resonance frequency of the power transmission coil when the voltage applied to the power transmission side variable capacitance diode is 0 V is set as the carrier frequency in the initial state of the frequency transition table. Wireless power transmission system.
請求項1または2に記載の無線給電システムであって、
前記送電制御部における周波数遷移の周期と、前記受電制御部における周波数遷移周期の差から、両者の周波数切り換えタイミングのずれ量が許容値に達するまでの時間(以下、同期ずれ補正時間)を予め求めておき、
前記受電制御部は、前記送電装置からの周波数遷移による受電時間が前記同期ずれ補正時間を経過したら、前記送電装置へ同期ずれ補正用の送信開始データを送信するとともに、前記周波数遷移表に従い所定の搬送周波数から前記受電側可変容量ダイオードへの電圧印加を開始し、
前記送電装置の前記送電制御部は、前記同期ずれ補正用の送信開始データを受信した時点で、前記周波数遷移表に従い所定の搬送周波数から、前記周波数シンセサイザの発振周波数の設定と前記送電側可変容量ダイオードへの電圧印加を開始することを特徴とする無線給電システム。
The wireless power supply system according to claim 1 or 2.
From the difference between the frequency transition cycle in the power transmission control unit and the frequency transition cycle in the power reception control unit, the time until the deviation amount of the frequency switching timing between the two reaches an allowable value (hereinafter, synchronization deviation correction time) is obtained in advance. Aside,
When the power receiving time due to the frequency transition from the power transmission device elapses, the power receiving control unit transmits transmission start data for synchronization deviation correction to the power transmission device, and determines predetermined according to the frequency transition table. Starting to apply voltage from the carrier frequency to the power receiving side variable capacitance diode,
When the power transmission control unit of the power transmission device receives the transmission start data for synchronization deviation correction, the transmission control unit sets the oscillation frequency of the frequency synthesizer and the variable capacity on the power transmission side from a predetermined transport frequency according to the frequency transition table. A wireless power supply system characterized by initiating voltage application to a diode.
請求項1または2に記載の無線給電システムであって、
周波数遷移させる前記複数の搬送周波数は、人体への電磁波吸収量が多い周波数、または他の電子機器へ電磁波妨害を与える周波数を除外した周波数範囲に設定することを特徴とする無線給電システム。
The wireless power supply system according to claim 1 or 2.
A wireless power feeding system characterized in that the plurality of transport frequencies for frequency transition are set in a frequency range excluding a frequency having a large amount of electromagnetic wave absorption to the human body or a frequency that causes electromagnetic wave interference to other electronic devices.
請求項1または2に記載の無線給電システムであって、
前記受電装置は、前記受電コイルとして複数の受電コイルが並列に接続され、スイッチを介して1つの受電コイルを選択して受電することが可能であり、
前記受電制御部は前記スイッチを操作して、前記送電装置から送電された電力に対する前記複数の受電コイルにおける受電量を検出し、検出した受電量が最大となる受電コイルを選択して受電動作を行わせることを特徴とする無線給電システム。
The wireless power supply system according to claim 1 or 2.
In the power receiving device, a plurality of power receiving coils are connected in parallel as the power receiving coil, and one power receiving coil can be selected and received via a switch.
The power receiving control unit operates the switch to detect the amount of power received by the plurality of power receiving coils with respect to the power transmitted from the power transmission device, selects the power receiving coil having the maximum detected power receiving amount, and performs the power receiving operation. A wireless power transmission system characterized by being done.
請求項1または2に記載の無線給電システムであって、
前記受電装置は、前記送電装置からの電力を受電するときに前記受電コイルの周囲における電磁波の漏洩を検出する漏洩検出コイルと、
前記漏洩検出コイルの共振周波数を受電する搬送波周波数に設定し、前記漏洩検出コイルで検出した電磁波の漏洩量を予め定めた閾値と比較する漏洩検出部を有し、
前記漏洩検出部での比較の結果、前記漏洩量が前記閾値を超えた場合、前記受電制御部は前記送電装置へ、送電電力を低下させる出力制御データを送信し、
前記送電装置の前記送電制御部は、前記出力制御データを受信したとき、前記送電アンプに対し送電電力を下げるように制御することを特徴とする無線給電システム。
The wireless power supply system according to claim 1 or 2.
The power receiving device includes a leakage detection coil that detects leakage of electromagnetic waves around the power receiving coil when receiving power from the power transmission device.
It has a leakage detection unit that sets the resonance frequency of the leakage detection coil to the carrier frequency to receive power and compares the leakage amount of electromagnetic waves detected by the leakage detection coil with a predetermined threshold value.
As a result of comparison by the leak detection unit, when the leakage amount exceeds the threshold value, the power reception control unit transmits output control data for reducing the transmitted power to the power transmission device.
A wireless power supply system, characterized in that, when the power transmission control unit of the power transmission device receives the output control data, the power transmission control unit controls the power transmission amplifier so as to reduce the power transmission.
請求項1または2に記載の無線給電システムであって、
前記送電装置は布と一体化され、前記送電コイルは伸縮性導電材料からなり前記布の平面上に縫い合わされて配置されるとともに、
前記受電装置は生体情報センサを有し、衣類と一体化されたウェアラブル機器であり、前記受電コイルは伸縮性導電材料からなり前記衣類の平面上に縫い合わされて配置されることを特徴とする無線給電システム。
The wireless power supply system according to claim 1 or 2.
The power transmission device is integrated with the cloth, and the power transmission coil is made of an elastic conductive material and is sewn and arranged on a flat surface of the cloth.
The power receiving device is a wearable device having a biometric information sensor and integrated with clothing, and the power receiving coil is made of an elastic conductive material and is sewn and arranged on a flat surface of the clothing. Power supply system.
請求項8に記載の無線給電システムであって、
前記送電装置は厚みを持った繊維材料の裏面側に一体化して配置され、前記ウェアラブル機器は前記繊維材料の表面側に配置して使用されるものであって、
前記送電装置の前記送電コイルと前記受電装置の前記受電コイルは、前記繊維材料の厚さの距離を隔てて送受電することを特徴とする無線給電システム。
The wireless power supply system according to claim 8.
The power transmission device is integrally arranged on the back surface side of the thick fiber material, and the wearable device is arranged and used on the front surface side of the fiber material.
A wireless power feeding system, wherein the power transmitting coil of the power transmitting device and the power receiving coil of the power receiving device transmit and receive power at a distance of a thickness of the fiber material.
JP2017132457A 2017-07-06 2017-07-06 Wireless power supply system Active JP6944824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017132457A JP6944824B2 (en) 2017-07-06 2017-07-06 Wireless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017132457A JP6944824B2 (en) 2017-07-06 2017-07-06 Wireless power supply system

Publications (2)

Publication Number Publication Date
JP2019017174A JP2019017174A (en) 2019-01-31
JP6944824B2 true JP6944824B2 (en) 2021-10-06

Family

ID=65357040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017132457A Active JP6944824B2 (en) 2017-07-06 2017-07-06 Wireless power supply system

Country Status (1)

Country Link
JP (1) JP6944824B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010244A (en) * 2019-07-01 2021-01-28 株式会社東芝 Power transmission device, wireless power transmission system, and power transmission method
CN114175452A (en) * 2019-07-25 2022-03-11 株式会社电装 Non-contact power supply system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551174B2 (en) * 2009-09-24 2014-07-16 株式会社東芝 Wireless power transmission system
JP2012044827A (en) * 2010-08-23 2012-03-01 Midori Anzen Co Ltd Non-contact charger
JP2012075249A (en) * 2010-09-28 2012-04-12 Sanyo Electric Co Ltd Wireless power transmission apparatus and power reception apparatus
JP2013192420A (en) * 2012-03-15 2013-09-26 Sharp Corp Non contact power supply device and non contact power supply system
JP2014176173A (en) * 2013-03-07 2014-09-22 Fujitsu Ltd Power transmission device, power receiving device, and transmission apparatus
JP6141175B2 (en) * 2013-11-12 2017-06-07 京セラ株式会社 Electronics

Also Published As

Publication number Publication date
JP2019017174A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
EP3552300B1 (en) Apparatus for transmitting wireless power and method of transmitting wireless power according to position type
KR102623589B1 (en) Wireless power transmitter, electronic device and method for controlling thereof
US10938253B2 (en) Wireless power system with battery charge indicators
JP6261774B2 (en) Humanoid communication device with synchronization
RU2604703C2 (en) Wireless medical device, based on location
JP7145888B2 (en) Foreign object detection in wireless power transmission system
US9250104B2 (en) Sensor for acquiring physiological signals of a patient
EP3011660B1 (en) Wireless power transmission apparatus and method
JP6944824B2 (en) Wireless power supply system
CN104953626B (en) Wireless power in local calculation environment uses
JP5551174B2 (en) Wireless power transmission system
EP3280027B1 (en) Method for transmitting power and electronic device supporting the same
US9853456B2 (en) Wireless power transmission apparatus and energy charging apparatus
US11271439B2 (en) Wireless power system with interference avoidance
KR102267854B1 (en) Method for data scheduling and power control and electronic device thereof
Desai et al. A scalable, 2.9 mW, 1 Mb/s e-textiles body area network transceiver with remotely-powered nodes and bi-directional data communication
JPWO2017221590A1 (en) Communication device and communication system
JP2018526137A (en) Rechargeable intraocular implant
US20190334387A1 (en) Proximity based wireless power transmission modification
US20220216735A1 (en) Far-field wireless charging of medical devices
US11909230B2 (en) Wearable article and electronics arrangement for transferring power
KR20160025261A (en) The Wireless Power Transmitting Communication System and thereof Method for Wireless Power Transmission
Dmitriev et al. Ultrawideband wireless body-area sensor networks
KR101851026B1 (en) Wireless power charge device and method
RU2665286C1 (en) Device and method for installing radio frequency communication by meaning of user touch

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R150 Certificate of patent or registration of utility model

Ref document number: 6944824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111