JP6944388B2 - Power coordination control system at multiple stations - Google Patents

Power coordination control system at multiple stations Download PDF

Info

Publication number
JP6944388B2
JP6944388B2 JP2018011110A JP2018011110A JP6944388B2 JP 6944388 B2 JP6944388 B2 JP 6944388B2 JP 2018011110 A JP2018011110 A JP 2018011110A JP 2018011110 A JP2018011110 A JP 2018011110A JP 6944388 B2 JP6944388 B2 JP 6944388B2
Authority
JP
Japan
Prior art keywords
power
control
station
demand
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018011110A
Other languages
Japanese (ja)
Other versions
JP2019129654A (en
Inventor
篤 桑村
篤 桑村
歩 堀口
歩 堀口
朋子 保坂
朋子 保坂
崇雅 宮川
崇雅 宮川
裕一 小野田
裕一 小野田
里香 齊藤
里香 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2018011110A priority Critical patent/JP6944388B2/en
Publication of JP2019129654A publication Critical patent/JP2019129654A/en
Application granted granted Critical
Publication of JP6944388B2 publication Critical patent/JP6944388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

この発明は、空調装置や照明装置等の電気設備を備えている電力協調制御システムに関し、特に複数駅における電力需要に応じて供給電力を制御するデマンド協調制御に活用することができる技術に関するものである。 The present invention relates to a power coordinated control system equipped with electrical equipment such as an air conditioner and a lighting device, and more particularly to a technology that can be utilized for demand coordinated control that controls power supply according to power demand at a plurality of stations. be.

鉄道会社の駅舎に対して必要な電力を供給する従来の受配電設備は、変電所もしくは電力会社から供給される交流電力を利用するものが一般的である。
一方、鉄道では、直流き電系統において、電気車の回生ブレーキによって発生した回生電力を、き電線を介して他の電気車の力行電力として利用することが行われている。そこで、直流き電系の直流を交流に変換するインバータを設けて、所定値以上の回生電力が発生した際にインバータを動作させて駅舎の電力供給系にインバータで変換した電力を供給可能にすることで、電気車の余剰回生電力を有効活用することができるようにした駅舎電源装置に関する発明が提案されている(例えば、特許文献1)。
Conventional power receiving and distribution equipment that supplies the necessary power to the station building of a railway company generally uses AC power supplied from a substation or an electric power company.
On the other hand, in railways, in a DC feeder system, the regenerative power generated by the regenerative brake of an electric vehicle is used as the power running power of another electric vehicle via a feeder. Therefore, an inverter that converts the direct current of the DC power supply system to alternating current is provided, and when regenerative power exceeding a predetermined value is generated, the inverter is operated so that the power converted by the inverter can be supplied to the power supply system of the station building. As a result, an invention relating to a station building power supply device that enables effective utilization of surplus regenerated electric power of an electric vehicle has been proposed (for example, Patent Document 1).

さらに、変電区間内の余剰回生電力を貯蔵する蓄電部と、蓄電部から供給される直流電力を駅設備に供給する交流電力に変換する電力変換部とを設け、余剰回生電力を一旦蓄電部に蓄積して、蓄電部の充電量が所定の閾値を上回った場合に電力変換部を制御して蓄電部から駅設備へ電力を供給するようにした駅舎電源装置に関する発明も提案されている(例えば、特許文献2)。 Further, a power storage unit for storing the surplus regenerated power in the substation section and a power conversion unit for converting the DC power supplied from the power storage unit into the AC power supplied to the station equipment are provided, and the surplus regenerated power is temporarily stored in the power storage unit. An invention relating to a station building power supply device that accumulates and controls a power conversion unit to supply power from the power storage unit to station equipment when the charge amount of the power storage unit exceeds a predetermined threshold has also been proposed (for example). , Patent Document 2).

特開2015−107766号公報Japanese Unexamined Patent Publication No. 2015-107766 特開2014−40127号公報Japanese Unexamined Patent Publication No. 2014-40127 特開2017−153191号公報Japanese Unexamined Patent Publication No. 2017-153191

ところで、近年、駅設備の拡張や駅構内店舗、融雪設備等の拡大に伴って各駅舎で消費する電力が増加する傾向があり、既存の駅舎への電力供給系では要求される電力をまかなうことが困難になることがある。また、駅舎への電力供給に用いる配電線路は、列車運転用電力を供給する直流変電所に設けられた配電用変圧器から鉄道線路沿線へ敷設されていることが多く、電力会社による一般的な面状の配電線路とは異なり線状であるため、供給する電力が増加すると配電線路の電圧が低下して負荷(駅電気設備)の動作不良を発生させるおそれがある。 By the way, in recent years, the power consumed by each station building has tended to increase with the expansion of station equipment, stores in the station premises, snow melting equipment, etc., and the power supply system to the existing station building must meet the required power. Can be difficult. In addition, the distribution line used to supply power to the station building is often laid along the railway line from the distribution transformer installed in the DC substation that supplies power for train operation, and is generally used by electric power companies. Since it is linear unlike a planar distribution line, if the power supplied increases, the voltage of the distribution line may drop, causing malfunction of the load (station electrical equipment).

かかる課題を解決するために、特許文献1や特許文献2の発明に係る駅舎電源装置を利用して、電圧の低下を抑制する対策も考えられるが、特許文献1や特許文献2の駅舎電源装置は、電気車の余剰回生電力を有効活用することに向けて開発されたもので、要求される電力を長時間に亘って安定して駅設備に供給することは困難である。そのため、使用電力が許容値を超える場合には、配電線路等、インフラの増強が必要となる。
また、配電線の太径化による電気抵抗の低減や、SVR(自動電圧調整装置)を設置する対策も考えられるが、これらの対策はいずれもハードウェアの価格や設置コストが高いため大幅なコストアップを招くという課題がある。しかも、これらの対策は、電圧降下抑制という要求は満たすが、需要電力のピークカット等は期待できず、インフラ設備の低減にはつながらない。
In order to solve such a problem, it is conceivable to take measures to suppress a decrease in voltage by using the station building power supply device according to the inventions of Patent Document 1 and Patent Document 2, but the station building power supply device of Patent Document 1 and Patent Document 2 is considered. Was developed for the effective utilization of surplus regenerated electric power of electric vehicles, and it is difficult to stably supply the required electric power to station facilities for a long period of time. Therefore, if the power consumption exceeds the permissible value, it is necessary to strengthen the infrastructure such as distribution lines.
In addition, it is possible to reduce the electrical resistance by increasing the diameter of the distribution line and to install an SVR (automatic voltage regulator), but all of these measures are significant costs due to the high hardware price and installation cost. There is a problem of inviting up. Moreover, although these measures satisfy the requirement of suppressing the voltage drop, the peak cut of the demand power cannot be expected, which does not lead to the reduction of the infrastructure equipment.

さらに、駅舎の電力供給系においては、1系統の直線状の配電線路に、お互いの距離が離れている複数の駅舎の設備が接続されているので、系全体を監視して一部設備への電源供給を減少させる制御をする必要がある。
そこで、本出願人は、2つの変電所のうち配電線路終端側の変電所からき電線に供給される直流電力を交流電力に変換して配電線路の終端側へ供給可能な電源融通装置と、複数の駅舎のうち配電線路の始端側の変電所から遠い側の電圧値を検出する終端交流電圧検出手段と、検出された終端交流電圧が所定の電圧値以下となったと判定した場合に電源融通装置を一時的に動作させる機能と制御対象機器と電力供給度合いを段階的に示すテーブルデータを参照して複数の駅舎のいずれかの電気設備に供給される交流電力を減少させる機能とを備えた協調制御装置を設けた電力制御システムに関する発明をなし出願した(特許文献3)。
Furthermore, in the power supply system of a station building, since the equipment of multiple station buildings that are separated from each other is connected to one linear distribution line, the entire system is monitored and some equipment is connected. It is necessary to control to reduce the power supply.
Therefore, the applicant has a plurality of power interchange devices capable of converting the DC power supplied from the substation on the terminal side of the distribution line to the AC power and supplying it to the terminal side of the distribution line among the two substations. Terminal AC voltage detection means that detects the voltage value on the side of the station building on the side far from the substation on the start side of the distribution line, and the power interchange device when it is determined that the detected terminal AC voltage is less than or equal to the predetermined voltage value. Coordination with a function to temporarily operate the device and a function to reduce the AC power supplied to any of the electrical equipment of multiple station buildings by referring to the table data showing the controlled device and the degree of power supply in stages. An application has been filed for an invention relating to a power control system provided with a control device (Patent Document 3).

しかながら、特許文献3に記載されているシステムは、余剰回生電力を交流電力に変換して駅舎に供給する機能を有する電源装置(インバータ)が既に設置されている区間においては、その電源装置を配電線路の終端側へ電力を供給する電源融通装置として利用することができるため、ハードウェアの増加を抑えることができるものの、そのような電源装置が設置されていない区間に適用したい場合にはハードウェアの増加を招くという課題がある。
本発明は上記のような背景の下になされたもので、ハードウェアの増加を招くことなく需要電力のピークカットを行い、配電線路の電圧低下を回避することができる電力協調制御システムを提供することを目的とするものである。
However, the system described in Patent Document 3 uses the power supply device in the section where the power supply device (inverter) having a function of converting the surplus regenerated power into AC power and supplying it to the station building is already installed. Since it can be used as a power supply interchange device that supplies power to the terminal side of the distribution line, it is possible to suppress the increase in hardware, but if you want to apply it to a section where such a power supply device is not installed, it is hard. There is a problem that the number of wear is increased.
The present invention has been made in the background as described above, and provides a power cooperative control system capable of cutting the peak demand power without causing an increase in hardware and avoiding a voltage drop in a distribution line. The purpose is to do that.

上記目的を達成するため本発明は、
変電所から交流電力の供給を受けて複数の駅舎に電力を供給する配電線路と、
前記複数の駅舎のそれぞれに設けられ、対応する駅舎の電気設備に対して需要電力を減らす指示を出力可能な複数の局所デマンド制御装置と、
前記複数の局所デマンド制御装置から受電電力値および制御状態に関する情報を取得して、前記複数の局所デマンド制御装置のそれぞれに対して需要電力に関する制御指令値を送出する協調制御装置と、を備え、前記配電線路から前記複数の駅舎の電気設備のそれぞれに供給される交流電力を調整する複数駅における電力協調制御システムにおいて、
前記局所デマンド制御装置は、
それぞれの駅舎の受電電力を計測する電力計測手段と、
複数の節電制御段階と自己の駅舎の電気設備における節電量との関係を示す省エネ制御テーブルを記憶する記憶装置と、
前記電力計測手段により計測された電力値に基づいて受電電力が予め設定されている値を超えた場合に自らの節電制御段階を決定し決定した節電制御段階に基いて前記省エネ制御テーブルを参照し自己の駅舎の電気設備に対して需要電力を減らす指示を出力する機能および前記協調制御装置からの制御指令に応じて自己の駅舎の電気設備に対して需要電力を減らす指示を出力する機能を有する電力抑制手段と、を備え、
前記協調制御装置は、前記複数の局所デマンド制御装置から取得した受電電力値の合計値が予め設定されている値を超えた場合に、取得した制御状態情報に基づいて協調制御の節電制御段階と各駅舎の節電制御段階とを加算して合計節電制御段階を算出し、最も合計節電制御段階の低い駅舎を抽出して、対応する局所デマンド制御装置へ節電制御段階を上げる制御指令を送出するように構成したものである。
In order to achieve the above object, the present invention
A distribution line that receives AC power from a substation and supplies power to multiple station buildings,
A plurality of local demand control devices provided in each of the plurality of station buildings and capable of outputting instructions for reducing power demand to the electrical equipment of the corresponding station building.
A cooperative control device that acquires information on a received power value and a control state from the plurality of local demand control devices and sends a control command value related to the demand power to each of the plurality of local demand control devices. In a power coordination control system at a plurality of stations that regulates AC power supplied from the distribution line to each of the electrical equipment of the plurality of station buildings.
The local demand control device is
A power measuring means that measures the received power of each station building,
A storage device that stores an energy-saving control table that shows the relationship between multiple power-saving control stages and the amount of power saved in the electrical equipment of the station building.
When the received power exceeds a preset value based on the power value measured by the power measuring means, the power saving control stage is determined and the energy saving control table is referred to based on the determined power saving control stage. It has a function to output an instruction to reduce the power demand to the electric equipment of its own station building and a function to output an instruction to reduce the power demand to the electric equipment of its own station building in response to a control command from the cooperative control device. Equipped with power suppression means,
When the total value of the received power values acquired from the plurality of local demand control devices exceeds a preset value, the coordinated control device sets the power saving control stage of coordinated control based on the acquired control state information. Calculate the total power saving control stage by adding the power saving control stage of each station building, extract the station building with the lowest total power saving control stage, and send a control command to raise the power saving control stage to the corresponding local demand control device. It is configured in.

上記した手段によれば、配電線路に接続されているいずれかの駅舎で需要電力が増加した場合に、複数の駅舎のいずれかの電気設備に供給される電力を減少させるため、余剰回生電力を交流電力に変換して各駅舎に供給する機能を有する電源装置(インバータ)を設けることなく電力需要のピークを抑え、配電線路の電圧低下を回避することができる。また、協調制御の節電制御段階と各駅舎の節電制御段階とを加算して合計節電制御段階を算出し、最も合計節電制御段階の低い駅舎を抽出して節電制御段階を上げる制御指令を送出するため、電力需要がひっ迫した際に各駅で設備機器の消費電力を下げる節電制御が平等に実行され、極端に節電制御が強いられる駅舎が発生するのを回避することができる。 According to the above means, when the power demand increases in any of the station buildings connected to the distribution line, the surplus regenerated power is used to reduce the power supplied to any of the electric facilities in the multiple station buildings. It is possible to suppress the peak of power demand and avoid a voltage drop in the distribution line without providing a power supply device (inverter) having a function of converting the power into AC power and supplying it to each station building. In addition, the total power saving control stage is calculated by adding the power saving control stage of cooperative control and the power saving control stage of each station building, the station building with the lowest total power saving control stage is extracted, and a control command for raising the power saving control stage is sent. Therefore, when the power demand is tight, the power saving control for reducing the power consumption of the equipment is equally executed at each station, and it is possible to avoid the occurrence of a station building where the power saving control is extremely forced.

ここで、望ましくは、前記省エネ制御テーブルには、対応する駅舎の電気設備のうち予め設定された複数のエリアごとにこれらのエリアに配置されている電気設備の節電率に関する情報が記述されており、
前記局所デマンド制御装置は、自らの節電制御段階を決定し決定した節電制御段階または前記協調制御装置からの制御指令により指定された節電制御段階に基づいて自己の駅舎の電気設備の需要電力を決定する際に、前記省エネ制御テーブルを参照して、エリアごとに各エリアの電気設備の節電量を決定して、電気設備に対して節電の指示を出力するように構成する。
かかる構成によれば、省エネ制御テーブルを参照してエリアごとに各エリアの電気設備の節電量を決定して、電気設備に対して節電の指示を出力するので、複雑なアルゴリズムや計算式を使用することなく節電量を決定して、対応する電気設備に対して節電の指示を出力することができる。
Here, preferably, the energy-saving control table describes information on the power saving rate of the electric equipment arranged in each of a plurality of preset areas of the electric equipment of the corresponding station building. ,
The local demand control device determines the power demand of the electrical equipment of its own station building based on the power saving control stage determined by determining its own power saving control stage or the power saving control stage designated by the control command from the cooperative control device. At that time, the power saving amount of the electric equipment in each area is determined with reference to the energy saving control table, and the power saving instruction is output to the electric equipment.
According to this configuration, the power saving amount of the electric equipment in each area is determined by referring to the energy saving control table, and the power saving instruction is output to the electric equipment, so that a complicated algorithm or calculation formula is used. It is possible to determine the amount of power saving without doing so and output a power saving instruction to the corresponding electrical equipment.

さらに、望ましくは、前記電気設備には、少なくとも照明機器と空調機器が含まれており、
前記省エネ制御テーブルにおいては、照明機器と空調機器とで異なる節電率が節電制御段階ごとに記述されているようにする。
かかる構成によれば、電力需要が一時的に増加した際に各駅舎に無理な節電を強いることがなく、利用者に対するサービスの低下を抑制することができる。
Further, preferably, the electrical equipment includes at least lighting equipment and air conditioning equipment.
In the energy saving control table, different power saving rates for the lighting equipment and the air conditioning equipment are described for each power saving control stage.
According to such a configuration, it is possible to suppress a decrease in service to users without forcing each station building to save power when the demand for electric power temporarily increases.

また、望ましくは、二次電池および該二次電池の充放電制御手段を備えた蓄電装置が前記配電線路に接続されてなり、
前記協調制御装置は、前記複数の局所デマンド制御装置から取得した受電電力値の合計値が予め設定されている値を超えた場合に、前記充放電制御手段に対して放電を開始する指令を送出するように構成する。
かかる構成によれば、蓄電装置を備えるため、各駅舎ごとに照明機器と空調機器のうち優先して電力削減する機器を設定することができるため、適用する電力供給システムの構成等に応じた節電を実行させることができ、各駅舎の事情に応じた適切な節電制御を実行しつつ配電線路の電圧低下を回避することができる。
Further, preferably, a secondary battery and a power storage device provided with charge / discharge control means for the secondary battery are connected to the distribution line.
The cooperative control device sends a command to start discharging to the charge / discharge control means when the total value of the received power values acquired from the plurality of local demand control devices exceeds a preset value. Configure to do.
According to such a configuration, since the power storage device is provided, it is possible to preferentially set the equipment for reducing power among the lighting equipment and the air conditioning equipment for each station building, so that the power can be saved according to the configuration of the power supply system to be applied. It is possible to avoid a voltage drop in the distribution line while executing appropriate power saving control according to the circumstances of each station building.

さらに、望ましくは、前記充放電制御手段は、少なくとも充放電の状態および充電量を表わす情報を前記協調制御装置へ送信する機能を備え、
前記協調制御装置は、前記複数の局所デマンド制御装置から取得した受電電力値の合計値が予め設定されている値を超えた場合に、前記蓄電装置の充電量が所定値以上であることを条件に放電を開始する指令を生成し、前記充放電制御手段に対して送出するように構成する。
かかる構成によれば、蓄電装置の充電量が所定値以上であることを条件に放電を開始する指令を送出するため、過放電による電池の劣化を回避しつつ電力需要が増加した際に配電線路の電圧低下を回避することができる。
Further, preferably, the charge / discharge control means has a function of transmitting at least information indicating a charge / discharge state and a charge amount to the cooperative control device.
The cooperative control device is conditioned on the charge amount of the power storage device being equal to or more than a predetermined value when the total value of the received power values acquired from the plurality of local demand control devices exceeds a preset value. It is configured to generate a command to start discharging and send it to the charge / discharge control means.
According to this configuration, since a command to start discharging is sent on condition that the charge amount of the power storage device is equal to or higher than a predetermined value, the distribution line is used when the power demand increases while avoiding the deterioration of the battery due to over-discharging. It is possible to avoid the voltage drop of.

本発明によれば、ハードウェアの増加を招くことなく需要電力のピークカットを行い、配電線路の電圧低下を回避することができる電力協調制御システムを実現することができるという効果がある。 According to the present invention, there is an effect that it is possible to realize a power cooperative control system capable of cutting the peak demand power without inviting an increase in hardware and avoiding a voltage drop in the distribution line.

本発明に係る電力協調制御システムを適用した駅舎電力供給システムの一実施形態を示すシステム構成図である。It is a system block diagram which shows one Embodiment of the station building electric power supply system to which the electric power cooperative control system which concerns on this invention is applied. 実施形態に係る電力協調制御システムにおいて駅デマンド制御装置が使用する省エネ制御テーブルの一例を示す図である。It is a figure which shows an example of the energy saving control table used by the station demand control device in the electric power coordinated control system which concerns on embodiment. (A)は実施形態に係る電力協調制御システムを構成する協調制御装置における節電制御の考え方を示す制御テーブル、(B)は節電制御の過程の例を示すタイムチャート、(C)は状態の変化を時系列的に示すタイムテーブルを示す図である。(A) is a control table showing the concept of power saving control in the cooperative control device constituting the power cooperative control system according to the embodiment, (B) is a time chart showing an example of the process of power saving control, and (C) is a state change. It is a figure which shows the timetable which shows in time series. 実施形態に係る電力協調制御システムを構成する駅デマンド制御装置における自立節電制御の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of self-sustaining power saving control in the station demand control device which comprises the power cooperative control system which concerns on embodiment. 実施形態に係る電力協調制御システムを構成する協調制御装置における協調制御の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the cooperative control in the cooperative control device which comprises the electric power cooperative control system which concerns on embodiment. 協調制御装置における協調制御の他の手順(変形例)を示すフローチャートである。It is a flowchart which shows the other procedure (modification example) of the cooperative control in a cooperative control device.

以下、図面を参照しつつ、本発明に係る電力協調制御システムの実施形態について説明する。図1は、本発明に係る電力協調制御システムを適用した駅舎電力供給システムの一実施形態を示すシステム構成図である。
なお、図1には、2つの変電区間の配電線路を取り出して示しているが、他の変電区間も図1と同様に構成される。
Hereinafter, embodiments of the power cooperative control system according to the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram showing an embodiment of a station building power supply system to which the power cooperative control system according to the present invention is applied.
Although the distribution lines of the two substation sections are taken out and shown in FIG. 1, the other substation sections are also configured in the same manner as in FIG.

図1に示すように、1つの変電区間には、変電区間にある複数の駅の駅舎(駅設備)10A,10B……10Cに対して交流電力(例えばAC6600V系)を供給する一対の配電線路20が設けられている。配電線路20には変電区間の両端に位置する変電所30A,30Bの一方の変電所(例えば変電所30A)から交流電力が供給される。一対の配電線路20のうち一方が常用の配電線路、他方は予備の配電線路である。ここで、配電線路20の変電所30A側の端部を始端と呼ぶと、配電線路20の始端側には遮断器41が設けられ、終端側には遮断器42が設けられており、通常は始端側の遮断器41の常用配電線路の遮断器が導通され、終端側の遮断器42は常用と予備の配電線路の遮断器が遮断状態にされる。 As shown in FIG. 1, in one substation section, a pair of distribution lines that supply AC power (for example, AC6600V system) to station buildings (station equipment) 10A, 10B ... 10C of a plurality of stations in the substation section. 20 is provided. AC power is supplied to the distribution line 20 from one of the substations 30A and 30B (for example, the substation 30A) located at both ends of the substation section. Of the pair of distribution lines 20, one is a regular distribution line and the other is a spare distribution line. Here, when the end of the distribution line 20 on the substation 30A side is called the start end, a circuit breaker 41 is provided on the start end side of the distribution line 20 and a circuit breaker 42 is provided on the end side. The circuit breaker of the regular distribution line of the circuit breaker 41 on the start end side is conducted, and the circuit breaker of the regular and spare distribution lines of the circuit breaker 42 on the terminal side is cut off.

一方、配電線路20の終端側の常用の配電線路の遮断器42が導通状態にされる際には、配電線路20の始端側の遮断器41の常用と予備の遮断器が遮断状態にされる。2つの変電所から送出される交流電力は位相が異なる場合があるため、1つの配電線路20に両端の変電所から同時に交流電力を供給すると混触事故が発生するおそれがあるので、これを回避するために、配電線路20の両端の遮断器の一方が導通状態にされる際には、必ず他方の端部の遮断器は遮断状態にされる。 On the other hand, when the circuit breaker 42 of the regular distribution line on the terminal side of the distribution line 20 is put into a conductive state, the regular and spare circuit breakers of the circuit breaker 41 on the starting end side of the distribution line 20 are put into a cutoff state. .. Since the AC power sent from the two substations may be out of phase, if AC power is supplied to one distribution line 20 from the substations at both ends at the same time, a touching accident may occur, so avoid this. Therefore, when one of the circuit breakers at both ends of the distribution line 20 is brought into a conductive state, the circuit breaker at the other end is always put into a cutoff state.

特に限定されるものではないが、本実施形態の電力協調制御システムにおいては、配電線路20の終端側に蓄電装置50が遮断器43を介して接続されている。
蓄電装置50は、鉛蓄電池のような二次電池からなるバッテリー51と、変圧器52、直流電流を交流電流に変換したり交流電流を直流電流に変換したりするPCS(パワーコンデショニングシステム)53、中央制御装置60からの充放電指令を受けてPCS53を制御する充放電制御装置54などを備える。また、遮断器43は、常用と予備の配電線路のそれぞれの電圧を監視して、保守停電時に誤って放電しないようにする機能を有している。
Although not particularly limited, in the power coordination control system of the present embodiment, the power storage device 50 is connected to the terminal side of the distribution line 20 via the circuit breaker 43.
The power storage device 50 includes a battery 51 made of a secondary battery such as a lead storage battery, a transformer 52, and a PCS (power conditioning system) 53 that converts a direct current into an alternating current or an alternating current into a direct current. A charge / discharge control device 54 that controls the PCS 53 in response to a charge / discharge command from the central control device 60 is provided. Further, the circuit breaker 43 has a function of monitoring the voltages of the regular and spare distribution lines to prevent accidental discharge during a maintenance power failure.

図1には示されていないが、駅舎10A,10B……10Cには、局所デマンド制御装置としての駅デマンド制御装置11A,11B……11Cがそれぞれ設けられているとともに、配電線路20から供給された高圧の交流電力(AC6600V系)を低圧の交流電力(例えばAC210V系)に変換する変圧器が駅電気室等に設置され、駅構内の空調装置や照明装置、昇降機等の各電気設備に低圧で電力が供給されるようになっている。
また、それぞれの駅舎10には、自駅舎で消費している電力もしくは電流を測定する電力計もしくは電流計が設けられており、計測された電力値もしくは電流値は駅デマンド制御装置11に入力され、各駅デマンド制御装置11は自駅舎の最大許容電力値と消費電力値とを比較して、最大許容電力値に近づいた際に段階的な省エネ制御を行うように構成されている。
Although not shown in FIG. 1, the station buildings 10A, 10B ... 10C are provided with station demand control devices 11A, 11B ... 11C as local demand control devices, respectively, and are supplied from the distribution line 20. A transformer that converts high-voltage AC power (AC6600V system) to low-voltage AC power (for example, AC210V system) is installed in the station electric room, etc. Power is supplied by.
Further, each station building 10 is provided with a wattmeter or ammeter for measuring the power or current consumed in the own station building, and the measured power value or current value is input to the station demand control device 11. Each station demand control device 11 is configured to compare the maximum permissible power value and the power consumption value of the own station building and perform stepwise energy saving control when the maximum permissible power value is approached.

本実施形態の電力供給システムにおいては、駅デマンド制御装置11A,11B……11Cおよび蓄電装置50の充放電制御装置54と通信回線を介して接続されこれらを統括的に制御する中央協調制御装置60が設けられており、駅デマンド制御装置11A,11B……11Cから中央協調制御装置60へは受電電力量および実施中の制御段階を示す値が送信され、中央協調制御装置60から駅デマンド制御装置11A,11B……11Cへは制御値が送信される。 In the power supply system of the present embodiment, the central cooperative control device 60 is connected to the station demand control devices 11A, 11B ... 11C and the charge / discharge control device 54 of the power storage device 50 via a communication line and controls them in an integrated manner. The station demand control device 11A, 11B ... 11C transmits a value indicating the amount of power received and the control stage being executed to the central cooperative control device 60, and the central cooperative control device 60 sends the station demand control device 60. Control values are transmitted to 11A, 11B ... 11C.

また、蓄電装置50の充放電制御装置54から中央協調制御装置60へは放電量(放電率)が送信され、中央協調制御装置60は放電量に応じて充放電制御装置54へ充電/放電制御指令を送信するように構成されている。
なお、配電線路20の終端部である駅舎10Aの電力入力点(図1のノードNa)の電圧を検出する電圧計を設け、該電圧計からの検出信号を中央協調制御装置60へ送信し、その検出電圧も考慮して充放電制御装置54へ放電制御指令を送信したり駅デマンド制御装置11A,11B……11Cへ制御値を生成し送信するように構成しても良い。
Further, the discharge amount (discharge rate) is transmitted from the charge / discharge control device 54 of the power storage device 50 to the central coordinated control device 60, and the central coordinated control device 60 charges / discharge controls the charge / discharge control device 54 according to the discharge amount. It is configured to send commands.
A voltmeter for detecting the voltage at the power input point (node Na in FIG. 1) of the station building 10A, which is the terminal end of the distribution line 20, is provided, and the detection signal from the voltmeter is transmitted to the central cooperative control device 60. In consideration of the detected voltage, a discharge control command may be transmitted to the charge / discharge control device 54, or a control value may be generated and transmitted to the station demand control devices 11A, 11B ... 11C.

ここで、上記中央協調制御装置60は、一般的な制御装置と同様な構成を有する装置、例えばマイクロプロセッサおよび該マイクロプロセッサが実行するプログラムや参照テーブルなどの固定データを格納した記憶装置(メモリ)、マイクロプロセッサに対する指令等を入力可能な入力操作装置、液晶表示パネルやランプなどの出力装置を備えたコンピュータ装置を使用して構成することができるので、詳しい説明は省略する。中央協調制御装置60と駅デマンド制御装置11A,11B……11または充放電制御装置54との間のデータ送受信は、ケーブルを利用して行うようにしてもよい。 Here, the central coordinated control device 60 is a device having the same configuration as a general control device, for example, a microprocessor and a storage device (memory) for storing fixed data such as a microprocessor and a reference table executed by the microprocessor. , A computer device equipped with an input operation device capable of inputting commands to the microprocessor and an output device such as a liquid crystal display panel and a lamp can be used, and detailed description thereof will be omitted. Data transmission / reception between the central cooperative control device 60 and the station demand control devices 11A, 11B ... 11 or the charge / discharge control device 54 may be performed by using a cable.

本実施形態における協調制御の考え方は、全駅のトータルの消費電力が最大許容電力値よりも十分に低い間は、それぞれの駅デマンド制御装置11が自駅舎の最大許容電力値と消費電力値とを比較して段階的な省エネ制御を行う一方、全駅のトータルの消費電力が最大許容電力値の所定割合(例えば95%)に達した場合には、中央協調制御装置60が各駅舎における省エネ制御のレベルを参照して、それぞれの駅舎の駅デマンド制御装置11に対する消費電力抑制のための制御レベルを決定して制御値を生成し、対応する駅デマンド制御装置11へ送信して、駅デマンド制御装置11が受け取った制御値に応じた制御レベルで省エネ制御を行うというものである。 The concept of cooperative control in this embodiment is that while the total power consumption of all stations is sufficiently lower than the maximum allowable power value, each station demand control device 11 sets the maximum allowable power value and the power consumption value of its own station building. When the total power consumption of all stations reaches a predetermined ratio (for example, 95%) of the maximum allowable power value, the central cooperative control device 60 saves energy in each station building. With reference to the control level, the control level for suppressing the power consumption of the station demand control device 11 of each station building is determined, the control value is generated, and the control value is transmitted to the corresponding station demand control device 11 to perform the station demand. Energy saving control is performed at a control level according to the control value received by the control device 11.

なお、各駅舎の駅デマンド制御装置11は、それぞれ制御レベルに応じて対象エリアおよび対象設備機器ごとに電力抑制率を設定した省エネ制御テーブルデータをメモリに保持しており、駅デマンド制御装置11は中央協調制御装置60から制御値を受け取ると、受け取った制御値に基づいて省エネ制御テーブルを参照して制御対象の設備機器および目標電力値を決定し、電力制御を実行する。
以下、上記考え方を適用した場合における、上記駅デマンド制御装置11および中央協調制御装置60による具体的な制御の仕方の例を、図2および図3を用いて説明する。
The station demand control device 11 of each station building holds in memory energy-saving control table data in which the power suppression rate is set for each target area and target equipment according to the control level, and the station demand control device 11 When the control value is received from the central coordinated control device 60, the equipment to be controlled and the target power value are determined with reference to the energy saving control table based on the received control value, and the power control is executed.
Hereinafter, an example of a specific control method by the station demand control device 11 and the central cooperative control device 60 when the above concept is applied will be described with reference to FIGS. 2 and 3.

各駅舎の駅デマンド制御装置11は、図2に示すような省エネ制御テーブルをそれぞれ保有しており、図2の省エネ制御テーブルに従って自立制御を実行する。図2において、「バックヤード」とは駅社員が活動するエリアの電気設備を意味し、「コンコース」とは利用客が往来するエリアの電気設備を意味している。
なお、各駅舎の駅デマンド制御装置11が保有する省エネ制御テーブルの内容は、自駅舎内に配置されている設備機器の種類ごとの台数や最大許容電力に応じて異なる内容が設定される。図2の省エネ制御テーブルにおいて、「制御レベル0」は省エネ制御をしない段階であることを意味している。また、「ホーム」の欄の「*1」は、タイマーまたは照度センサの検出信号等による制御を行い、駅デマンド制御装置11の制御下にないことを意味している。地下駅の場合には、駅ホームにおいても、「コンコース」等に準じた制御を行うようにしても良い。
The station demand control device 11 of each station building has an energy-saving control table as shown in FIG. 2, and executes independent control according to the energy-saving control table of FIG. In FIG. 2, the “backyard” means the electrical equipment in the area where station employees are active, and the “concourse” means the electrical equipment in the area where passengers come and go.
The contents of the energy-saving control table held by the station demand control device 11 of each station building are set differently according to the number of equipment and devices arranged in the own station building and the maximum allowable power. In the energy saving control table of FIG. 2, "control level 0" means that the energy saving control is not performed. Further, "* 1" in the "home" column means that the control is performed by a timer, a detection signal of the illuminance sensor, or the like, and is not under the control of the station demand control device 11. In the case of an underground station, the station platform may also be controlled according to a "concourse" or the like.

なお、省エネ制御テーブルに示されている値は一例であって、このような値に限定されるものでない。また、図2のテーブルでは、バックヤード−コンコース−窓口の順に省エネ率が大きくなるように設定しているが、駅の構造等に応じて順序を変えても良い。
さらに、図2のテーブルでは、「コンコース」において空調装置の方を照明装置の消費電力よりも優先して電力削減するようにしているが、空調装置よりも照明装置を優先して電力削減するように制御してもよい。「その他」の設備機器としてはエスカレータやエレベータなどがあり、これらの機器に関しては、電力抑制制御をする場合、稼働する台数を順次減らすようにしても良い。その場合、例えば4台のうち1台の稼働を停止すると、消費電力としては75%(25%の電力削減)となる。
The values shown in the energy saving control table are examples, and are not limited to such values. Further, in the table of FIG. 2, the energy saving rate is set to increase in the order of backyard-concourse-window, but the order may be changed according to the structure of the station or the like.
Further, in the table of FIG. 2, in the "concourse", the air conditioner is given priority over the power consumption of the lighting device to reduce the power, but the lighting device is given priority over the air conditioner to reduce the power. It may be controlled as follows. “Other” equipment includes escalators and elevators, and for these equipment, the number of operating units may be gradually reduced when power suppression control is performed. In that case, for example, if one of the four units is stopped, the power consumption will be 75% (25% reduction in power consumption).

図2のテーブルを使用した本実施形態における中央協調制御装置60による制御は、図3(A)に示すように、駅舎ごとの段階的な自立制御(縦軸方向)に、中央協調制御装置60からの制御指令に基づく段階的な制御(横軸方向)を加算することで実行する。
なお、図3(A)では、自立制御と協調制御がそれぞれ3段階であるものを示しているが、制御段数は「3」に限定されるものでない。また、自立制御との段数と中央協調制御の段数が異なっていても良い。
As shown in FIG. 3A, the control by the central cooperative control device 60 in the present embodiment using the table of FIG. 2 is performed by the central cooperative control device 60 in the stepwise independent control (vertical direction) for each station building. It is executed by adding stepwise control (horizontal axis direction) based on the control command from.
Although FIG. 3A shows that the independent control and the cooperative control each have three stages, the number of control stages is not limited to “3”. Further, the number of stages of the independent control and the number of stages of the central cooperative control may be different.

ここで、一例としてシステム全体の需要電力(3駅の合計需要電力)が、図3(B)のように、時間を追うごとに増加した場合における協調制御の進行の仕方について、図3(C)を用いて説明する。
なお、図3(B)において、横軸は時間、縦軸は合計需要電力(率)、THpは中央協調制御装置60が制御指令を出す条件となる電力しきい値であり、例えばTHpはシステム全体の最大許容電力の95%(あるいは90%)のような値を意味している。また、図3(C)において、(0,0),(3,0),(0,1)等は自立制御の制御段数と協調制御の制御段数をそれぞれ表わし、等記号(=)の右辺は括弧内の値の合計を表わしている。
Here, as an example, FIG. 3 (C) shows how the cooperative control proceeds when the demand power of the entire system (total demand power of the three stations) increases with time as shown in FIG. 3 (B). ) Will be described.
In FIG. 3B, the horizontal axis is time, the vertical axis is the total power demand (rate), THp is the power threshold value that is a condition for the central cooperative control device 60 to issue a control command, and for example, THp is the system. It means a value such as 95% (or 90%) of the total maximum allowable power. Further, in FIG. 3C, (0,0), (3,0), (0,1) and the like represent the number of control stages for independent control and the number of control stages for cooperative control, respectively, and the right side of the equal symbol (=). Represents the sum of the values in parentheses.

図3(C)の「状態イベント」の初期状態(t1)の欄は、図3(B)のグラフの時刻t1において、A駅では自立制御および協調制御で電力抑制制御を行なっていないつまり制御段数がそれぞれ「0」であり、B駅では自立制御で3段階目の電力抑制制御(自立制御段数=「3」)を行う一方、協調制御で電力抑制制御を行なっていない(制御段数=「0」)ことを、またC駅では自立制御を行なっていない(制御段数=「0」)一方、協調制御で1段階目の電力抑制制御(自立制御段数=「1」)を行なっていることを表わしている。 In the column of the initial state (t1) of the "state event" in FIG. 3 (C), at the time t1 in the graph of FIG. The number of stages is "0", and at station B, the third stage power suppression control (number of independent control stages = "3") is performed by independent control, while the power suppression control is not performed by cooperative control (number of control stages = "". 0 "), and the C station does not perform self-sustaining control (number of control stages =" 0 "), while the first-stage power suppression control (number of self-sustaining control stages =" 1 ") is performed by coordinated control. Represents.

この状態から、図3(B)の時刻t2のように、合計需要電力が電力しきい値THpを超えると、図3(C)の「状態イベント」は第2行目のように、「THp通過」となり、中央協調制御装置60から協調制御指令(目標節電率等)が出される。この際、初期状態(t1)でB駅とC駅が既に電力抑制制御を行なっておりA駅が最もトータルの組合せ段数が低いので、中央協調制御装置60はA駅の駅デマンド制御装置11Aに対して、電力抑制制御を1段上げるための協調制御指令を出す。
これにより、A駅の制御状態(制御段数)は(0,1)=1となる。そして、協調制御指令を受けたA駅における節電制御により、図3(B)の時刻t3のように、一旦需要電力率が低くなるものの、例えばA駅の自立節電制御が実行されたとすると、図3(C)の「状態イベント」は第3行目のように、「A駅制御段数+1」となり、A駅の制御状態(制御段数)は(1,1)=2となる。これにより、合計需要電力率は電力しきい値THpよりも低くなる(時刻t4)。
From this state, when the total power demand exceeds the power threshold THp as shown at time t2 in FIG. 3 (B), the “state event” in FIG. 3 (C) becomes “THp” as shown in the second line. "Pass", and a coordinated control command (target power saving rate, etc.) is issued from the central coordinated control device 60. At this time, since the B station and the C station have already performed the power suppression control in the initial state (t1) and the A station has the lowest total number of combinations, the central cooperative control device 60 is used as the station demand control device 11A of the A station. On the other hand, a cooperative control command is issued to raise the power suppression control by one step.
As a result, the control state (number of control stages) of station A becomes (0,1) = 1. Then, if the power saving control at the station A that receives the cooperative control command causes the power demand rate to drop once as shown at time t3 in FIG. 3 (B), for example, if the self-sustaining power saving control at the station A is executed, the figure shows. The "state event" of 3 (C) is "A station control stage number +1" as in the third line, and the control state (control stage number) of A station is (1,1) = 2. As a result, the total power demand rate becomes lower than the power threshold THp (time t4).

その後、再び合計需要電力が増加して図3(B)の時刻t5のように、電力しきい値THpを超えると、図3(C)の「状態イベント」は第4行目のように、「THp通過」となり、中央協調制御装置60から協調制御指令が出される。このとき、トータルの組合せ段数は、A駅が「2」、B駅が「3」、C駅が「1」であるため、組合せ段数の最も低いC駅に対して協調制御指令が出され、C駅の制御状態(制御段数)は(0,2)=2となる。 After that, when the total power demand increases again and exceeds the power threshold THp as shown at time t5 in FIG. 3 (B), the “state event” in FIG. 3 (C) becomes as shown in the fourth line. It becomes "THp passage", and a cooperative control command is issued from the central cooperative control device 60. At this time, since the total number of combined stages is "2" for station A, "3" for station B, and "1" for station C, a coordinated control command is issued to station C, which has the lowest number of combined stages. The control state (number of control stages) of station C is (0,2) = 2.

これにより、図3(B)の時刻t6のように、合計需要電力が電力しきい値THpよりも一旦下がるものの再び増加し、図3(B)の時刻t7のように、合計需要電力が電力しきい値THpを超えたとすると、図3(C)の「状態イベント」は第5行目のように、「THp通過」となり、中央協調制御装置60から協調制御指令が出される。このとき、組合せ段数は、A駅が「2」、B駅が「3」、C駅が「2」であるため、組合せ段数の低いC駅に対して協調制御指令が出され、C駅の制御状態(制御段数)は(0,3)=3となる。なお、このとき、中央協調制御装置60は、組合せ段数がC駅と同じであるA駅に対して協調制御指令を出すようにしても良い。これにより、A駅の制御状態(制御段数)は(1,2)=3となる。 As a result, the total demand power temporarily falls below the power threshold THp but increases again as shown at time t6 in FIG. 3 (B), and the total demand power becomes power as shown at time t7 in FIG. 3 (B). Assuming that the threshold value THp is exceeded, the “state event” in FIG. 3C becomes “THp passage” as shown in the fifth line, and the central cooperative control device 60 issues a cooperative control command. At this time, since the number of combined stages is "2" for station A, "3" for station B, and "2" for station C, a cooperative control command is issued to station C, which has a low number of combined stages, and the number of combined stages is "2". The control state (number of control stages) is (0,3) = 3. At this time, the central coordinated control device 60 may issue a coordinated control command to station A, which has the same number of combined stages as station C. As a result, the control state (number of control stages) of station A becomes (1, 2) = 3.

次に、上記制御を図1の電力供給システムに適用する場合における各駅舎の駅デマンド制御装置11と協調制御装置60による具体的な電力削減制御の手順の一例について、図4および図5のフローチャートを用いて説明する。
なお、図1の給電システムは蓄電装置50を備えているため、協調制御装置60から蓄電装置50へ制御指令を行う処理も含む必要がある。また、蓄電装置50への協調制御のための指令の出し方として、電力需要を優先する考え方と省エネを優先する考え方とがあるが、先ず電力需要を優先する考え方を採用した場合の制御手順について説明する。
Next, the flowcharts of FIGS. 4 and 5 show an example of a specific power reduction control procedure by the station demand control device 11 and the cooperative control device 60 of each station building when the above control is applied to the power supply system of FIG. Will be described using.
Since the power supply system of FIG. 1 includes a power storage device 50, it is necessary to include a process of issuing a control command from the cooperative control device 60 to the power storage device 50. Further, as a method of issuing a command for cooperative control to the power storage device 50, there are an idea of giving priority to electric power demand and an idea of giving priority to energy saving. First, regarding the control procedure when the idea of giving priority to electric power demand is adopted. explain.

図4および図5のうち、図4は駅デマンド制御装置11の制御手順を、また図5は協調制御装置60の制御手順を示す。
図4の制御処理が開始されると、駅デマンド制御装置11は、先ず自駅の電力計から自駅設備機器の受電電力値Wを読み込み(ステップS1)、予め設定されている自駅のしきい値電力THaよりも受電電力値Wが大きいか否か判定する(ステップS2)。しきい値電力THaは、例えば最大需要電力値の95%とすることが考えられるが90%等であってもよい。なお、上記「最大需要電力値」は、蓄電装置50が放電をしている場合、変電所からの最大供給電力と蓄電装置の放電電力との和となる。
Of FIGS. 4 and 5, FIG. 4 shows the control procedure of the station demand control device 11, and FIG. 5 shows the control procedure of the cooperative control device 60.
When the control process of FIG. 4 is started, the station demand control device 11 first reads the received power value W of the own station equipment from the wattmeter of the own station (step S1), and sets the preset power of the own station. It is determined whether or not the received power value W is larger than the threshold power THa (step S2). The threshold power THa may be, for example, 95% of the maximum demand power value, but may be 90% or the like. The "maximum demand power value" is the sum of the maximum power supply from the substation and the discharge power of the power storage device when the power storage device 50 is discharging.

上記ステップS2で、受電電力値Wがしきい値電力THaよりも大きくない(No)と判定するとステップS6へ移行する。また、受電電力値Wがしきい値電力THaよりも大きい(ステップS2:Yes)と判定するとステップS3へ進む。
ステップS3では、現在の自駅の自立制御段数(図3(A)参照)を1段階増加させ、図2に示すテーブルを参照して新たな自立制御段数に応じて節電すべき設備機器を選択して対象機器へ節電指令を出す(ステップS4)。その後、節電指令により電力値が変化する応答時間に相当する所定時間T1が経過するのを待ち(ステップS5)、所定時間T1が経過するとステップS1へ戻り、再度電力計から受電電力値Wを読み込む。
If it is determined in step S2 that the received power value W is not larger than the threshold power THa (No), the process proceeds to step S6. Further, if it is determined that the received power value W is larger than the threshold power THa (step S2: Yes), the process proceeds to step S3.
In step S3, the current number of independent control stages of the own station (see FIG. 3 (A)) is increased by one step, and the equipment to be power-saving is selected according to the new number of independent control stages by referring to the table shown in FIG. Then, a power saving command is issued to the target device (step S4). After that, it waits for the predetermined time T1 corresponding to the response time when the power value changes due to the power saving command elapses (step S5), returns to step S1 when the predetermined time T1 elapses, and reads the received power value W from the wattmeter again. ..

そして、次のステップS2で受電電力値Wが自駅のしきい値電力THaよりも大きい(Yes)と判定すると上記手順S3〜S5を繰り返す一方、ステップS2で受電電力値Wがしきい値電力THaよりも大きくない(No)と判定するとステップS6へ移行して、受電電力値Wが(THa−△p)よりも小さいか否か判定する。△pは例えば5%とし、(THa−△p)を90%とすることが考えられる。 Then, if it is determined in the next step S2 that the received power value W is larger than the threshold power THa of the own station (Yes), the above steps S3 to S5 are repeated, while the received power value W is the threshold power in step S2. If it is determined that the value is not larger than THa (No), the process proceeds to step S6, and it is determined whether or not the received power value W is smaller than (THa−Δp). It is conceivable that Δp is, for example, 5% and (THa−Δp) is 90%.

上記ステップS6で受電電力値Wが(THa−△p)よりも小さくない(No)と判定するとステップS1へ戻り、受電電力値Wが(THa−△p)よりも小さい(Yes)と判定するとステップS7へ進み、現在の自駅の自立制御段数を1段階減少させ、図2に示す省エネ制御テーブルを参照して新たな自立制御段数に応じて電力増加を許可する設備機器を選択して対象機器へ指令を出す(電力のピークカット実施)。その後、節電指令により電力値が変化する応答時間に相当する所定時間T1が経過するのを待ち(ステップS8)、所定時間T1が経過するとステップS1へ戻り、上記手順を繰り返す。 If it is determined in step S6 that the received power value W is not smaller than (THa−Δp) (No), the process returns to step S1, and if it is determined that the received power value W is smaller than (THa−Δp) (Yes). Proceed to step S7, reduce the number of independent control stages of the current own station by one step, refer to the energy-saving control table shown in FIG. 2, and select and target the equipment that permits the increase in power according to the new number of independent control stages. Issue a command to the equipment (implementation of peak power cut). After that, it waits for the predetermined time T1 corresponding to the response time when the power value changes due to the power saving command elapses (step S8), and when the predetermined time T1 elapses, the process returns to step S1 and the above procedure is repeated.

図5の協調制御装置60による制御が開始されると、協調制御装置60は、先ずA駅〜C駅の駅デマンド制御装置11から各駅の受電電力値Wと節電制御段数を取得する(ステップS11)。また、協調制御装置60は、蓄電装置50の制御装置54から電池充電量および充電中か放電中かを示す状態情報を取得する(ステップS12)。
次に、協調制御装置60は、全受電電力値すなわちA駅〜C駅の受電電力値の合計TWを算出する(ステップS13)。続いて、予め設定されているしきい値電力THpよりも需要電力の合計電力値TWが大きいか否か判定する(ステップS14)。
When the control by the cooperative control device 60 of FIG. 5 is started, the cooperative control device 60 first acquires the received power value W and the number of power saving control stages of each station from the station demand control devices 11 of stations A to C (step S11). ). Further, the cooperative control device 60 acquires the battery charge amount and the state information indicating whether the battery is being charged or discharged from the control device 54 of the power storage device 50 (step S12).
Next, the cooperative control device 60 calculates the total received power value, that is, the total TW of the received power values of stations A to C (step S13). Subsequently, it is determined whether or not the total power value TW of the demand power is larger than the preset threshold power THp (step S14).

ステップS14で、合計電力値TWがしきい値電力THpよりも大きくない(No)と判定するとステップS15へ進む。また、合計電力値TWがしきい値電力THpよりも大きい(ステップS14:Yes)と判定するとステップS18へ移行する。
ステップS15では、蓄電装置50の電池充電量が、予め設定されているしきい値THcよりも大きいか否か判定する。そして、しきい値THcよりも大きくない(No)と判定するとステップS18へ移行する。また、ステップS15で充電量がしきい値THcよりも大きい(Yes)と判定するとステップS16へ進み、蓄電装置50の制御装置54に対して放電開始指令を出してから、所定時間T2が経過するのを待ち(ステップS17)、ステップS11へ戻る。
If it is determined in step S14 that the total power value TW is not larger than the threshold power THp (No), the process proceeds to step S15. Further, if it is determined that the total power value TW is larger than the threshold power THp (step S14: Yes), the process proceeds to step S18.
In step S15, it is determined whether or not the battery charge amount of the power storage device 50 is larger than the preset threshold value THc. Then, if it is determined that the threshold value is not greater than THc (No), the process proceeds to step S18. Further, if it is determined in step S15 that the charge amount is larger than the threshold value THc (Yes), the process proceeds to step S16, and a predetermined time T2 elapses after issuing a discharge start command to the control device 54 of the power storage device 50. (Step S17), and the process returns to step S11.

ステップS14で合計電力値TWがしきい値電力THpよりも大きくない(No)と判定またはステップS15で充電量がしきい値THcよりも大きくない(No)と判定して移行したステップS18では、合計制御段数の最も小さな駅を求める。また、蓄電装置50の制御装置54に対して充電開始指令を出す。続いて、当該駅の駅デマンド制御装置11へ制御段数を1段増加させる制御指令を送信する(ステップS19)。その後、所定時間T3が経過するのを待ち(ステップS20)、ステップS21へ進み、合計電力値TWが(THp−△p)よりも小さいか否か判定する。 In step S18, when it is determined in step S14 that the total power value TW is not greater than the threshold power THp (No) or in step S15 it is determined that the charge amount is not greater than the threshold value THc (No), the transition is made. Find the station with the smallest total number of control stages. In addition, a charging start command is issued to the control device 54 of the power storage device 50. Subsequently, a control command for increasing the number of control stages by one is transmitted to the station demand control device 11 of the station (step S19). After that, it waits for the predetermined time T3 to elapse (step S20), proceeds to step S21, and determines whether or not the total power value TW is smaller than (THp−Δp).

また、上記ステップS21で合計電力値TWが(THp−△p)よりも小さくない(No)と判定するとステップS11へ戻り、合計電力値TWが(THp−△p)よりも小さい(Yes)と判定するとステップS22へ進み、合計制御段数の最も大きな駅を求める。続いて、当該駅の駅デマンド制御装置11へ制御段数を1段減少させる制御指令を送信する(ステップS23)。その後、指令により電力値が変化する応答時間に相当する所定時間T3が経過するのを待ち(ステップS24)、所定時間T3が経過するとステップS11へ戻り、上記手順を繰り返す。 Further, if it is determined in step S21 that the total power value TW is not smaller than (THp−Δp) (No), the process returns to step S11, and the total electric power value TW is smaller than (THp−Δp) (Yes). If it is determined, the process proceeds to step S22, and the station having the largest total number of control stages is obtained. Subsequently, a control command for reducing the number of control stages by one is transmitted to the station demand control device 11 of the station (step S23). After that, it waits for the predetermined time T3 corresponding to the response time when the power value changes according to the command to elapse (step S24), and when the predetermined time T3 elapses, the process returns to step S11 and the above procedure is repeated.

協調制御装置60が上記のような制御を行うことにより、電力需要が増大すると各駅で設備機器の消費電力を下げる節電制御が平等に実行され、配電線路20の終端側の電圧が許容値以下に下がるのを回避することができるとともに、極端に節電制御が強いられる駅舎が発生するのを回避することができる。
なお、ステップS16で協調制御装置60から放電開始指令を受けた蓄電装置50の制御装置54は、放電を開始するとともに充電量を監視して、充電量が所定値以下になると協調制御装置60からの指令によって放電を停止し、電池の充電を開始する。また、蓄電装置50の制御装置54は、自らの判断で放電を停止し、放電をしていない間は電池の充電を実施する制御を行うように構成しても良い。
By performing the above control by the cooperative control device 60, when the power demand increases, the power saving control for reducing the power consumption of the equipment is equally executed at each station, and the voltage on the terminal side of the distribution line 20 becomes equal to or less than the allowable value. It is possible to avoid lowering, and it is possible to avoid the occurrence of a station building where extremely power saving control is forced.
The control device 54 of the power storage device 50 that received the discharge start command from the cooperative control device 60 in step S16 starts discharging and monitors the charge amount, and when the charge amount becomes equal to or less than a predetermined value, the cooperative control device 60 starts. Discharge is stopped by the command of, and charging of the battery is started. Further, the control device 54 of the power storage device 50 may be configured to stop the discharge at its own discretion and control to charge the battery while the discharge is not performed.

(変形例)
次に、上記実施形態の変形例について説明する。この変形例は、蓄電装置50への充電指令に際して省エネを優先する考え方を採用した場合における協調制御装置60の制御手順であり、そのフローチャートが図6に示されている。
図6のフローチャートは、図5のフローチャートのステップS14とS15との間に、全ての駅舎において節電のための制御段数が最も大きくなっているか否か判定するステップS14aを設けたものである。
(Modification example)
Next, a modified example of the above embodiment will be described. This modification is a control procedure of the cooperative control device 60 in the case where the concept of giving priority to energy saving is adopted when the charge command to the power storage device 50 is given, and the flowchart thereof is shown in FIG.
In the flowchart of FIG. 6, a step S14a for determining whether or not the number of control stages for power saving is the largest in all station buildings is provided between steps S14 and S15 of the flowchart of FIG.

このフローチャートに従うと、ステップS14aで全駅の制御段数が最大である(Yes)と判定した場合にステップS15へ進んで、蓄電装置50の制御装置54に対して放電開始指令を出し、全駅の制御段数が最大ではない(No)と判定するとステップS18へ進み、駅デマンド制御装置11へ制御段数を1段減少させる制御指令を送信することとなる。
上記のような制御を実行することで、蓄電装置50の放電時間が限られている場合に、システム内の全駅の電力需要が高い状態が長時間続くような場合にも、配電線路20の終端側の電圧が許容値以下に下がるのを回避することができる。
According to this flowchart, when it is determined in step S14a that the number of control stages at all stations is the maximum (Yes), the process proceeds to step S15, a discharge start command is issued to the control device 54 of the power storage device 50, and all stations If it is determined that the number of control stages is not the maximum (No), the process proceeds to step S18, and a control command for reducing the number of control stages by one is transmitted to the station demand control device 11.
By executing the above control, when the discharge time of the power storage device 50 is limited and the power demand of all stations in the system continues to be high for a long time, the distribution line 20 It is possible to prevent the voltage on the terminal side from dropping below the permissible value.

以上本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は前記実施形態に限定されるものではない。例えば、前記実施形態では、蓄電装置50のバッテリー51が変電所30Aまたは30Bからの電力のみで充電されるように構成されているが、き電線に接続されて直流を交流に変換するインバータを備え、インバータによって生成された回生電力によって充電されるように構成しても良い。
また、前記実施形態では、本発明を配電線路に接続された蓄電装置が設けられている給電システムに適用した場合について説明したが、本発明は蓄電装置が設けられていない給電システムに適用することも可能である。
Although the invention made by the present inventor has been specifically described above based on the embodiment, the present invention is not limited to the above embodiment. For example, in the above embodiment, the battery 51 of the power storage device 50 is configured to be charged only by the electric power from the substation 30A or 30B, but includes an inverter connected to the electric wire to convert direct current into alternating current. , It may be configured to be charged by the regenerative power generated by the inverter.
Further, in the above embodiment, the case where the present invention is applied to a power supply system provided with a power storage device connected to a distribution line has been described, but the present invention is applied to a power supply system not provided with a power storage device. Is also possible.

10A,10B,10C 駅舎(駅電気設備)
11A,11B,11C 駅デマンド制御装置
20 配電線路
30A,30B 変電所
41,42,43 遮断器
50 蓄電装置
51 バッテリー
54 充放電制御装置
60 協調制御装置
10A, 10B, 10C Station building (station electrical equipment)
11A, 11B, 11C Station demand controller 20 Distribution line 30A, 30B Substation 41, 42, 43 Circuit breaker 50 Power storage device 51 Battery 54 Charge / discharge control device 60 Coordinated control device

Claims (5)

変電所から交流電力の供給を受けて複数の駅舎に電力を供給する配電線路と、
前記複数の駅舎のそれぞれに設けられ、対応する駅舎の電気設備に対して需要電力を減らす指示を出力可能な複数の局所デマンド制御装置と、
前記複数の局所デマンド制御装置から受電電力値および制御状態に関する情報を取得して、前記複数の局所デマンド制御装置のそれぞれに対して需要電力に関する制御指令値を送出する協調制御装置と、を備え、前記配電線路から前記複数の駅舎の電気設備のそれぞれに供給される交流電力を調整する複数駅における電力協調制御システムであって、
前記局所デマンド制御装置は、
それぞれの駅舎の受電電力を計測する電力計測手段と、
複数の節電制御段階と自己の駅舎の電気設備における節電量との関係を示す省エネ制御テーブルを記憶する記憶装置と、
前記電力計測手段により計測された電力値に基づいて受電電力が予め設定されている値を超えた場合に自らの節電制御段階を決定し決定した節電制御段階に基いて前記省エネ制御テーブルを参照し自己の駅舎の電気設備に対して需要電力を減らす指示を出力する機能および前記協調制御装置からの制御指令に応じて自己の駅舎の電気設備に対して需要電力を減らす指示を出力する機能を有する電力抑制手段と、を備え、
前記協調制御装置は、前記複数の局所デマンド制御装置から取得した受電電力値の合計値が予め設定されている値を超えた場合に、取得した制御状態情報に基づいて協調制御の節電制御段階と各駅舎の節電制御段階とを加算して合計節電制御段階を算出し、最も合計節電制御段階の低い駅舎を抽出して、対応する局所デマンド制御装置へ節電制御段階を上げる制御指令を送出するように構成されていることを特徴とする複数駅における電力協調制御システム。
A distribution line that receives AC power from a substation and supplies power to multiple station buildings,
A plurality of local demand control devices provided in each of the plurality of station buildings and capable of outputting instructions for reducing power demand to the electrical equipment of the corresponding station building.
A cooperative control device that acquires information on a received power value and a control state from the plurality of local demand control devices and sends a control command value related to the demand power to each of the plurality of local demand control devices. A power coordination control system at a plurality of stations that regulates AC power supplied from the distribution line to each of the electrical equipment of the plurality of station buildings.
The local demand control device is
A power measuring means that measures the received power of each station building,
A storage device that stores an energy-saving control table that shows the relationship between multiple power-saving control stages and the amount of power saved in the electrical equipment of the station building.
When the received power exceeds a preset value based on the power value measured by the power measuring means, the power saving control stage is determined and the energy saving control table is referred to based on the determined power saving control stage. It has a function to output an instruction to reduce the power demand to the electric equipment of its own station building and a function to output an instruction to reduce the power demand to the electric equipment of its own station building in response to a control command from the cooperative control device. Equipped with power suppression means,
When the total value of the received power values acquired from the plurality of local demand control devices exceeds a preset value, the coordinated control device sets the power saving control stage of coordinated control based on the acquired control state information. Calculate the total power saving control stage by adding the power saving control stage of each station building, extract the station building with the lowest total power saving control stage, and send a control command to raise the power saving control stage to the corresponding local demand control device. A power coordination control system at multiple stations, which is characterized by being configured in.
前記省エネ制御テーブルには、対応する駅舎の電気設備のうち予め設定された複数のエリアごとにこれらのエリアに配置されている電気設備の節電率に関する情報が記述されており、
前記局所デマンド制御装置は、自らの節電制御段階を決定し決定した節電制御段階または前記協調制御装置からの制御指令により指定された節電制御段階に基づいて自己の駅舎の電気設備の需要電力を決定する際に、前記省エネ制御テーブルを参照して、エリアごとに各エリアの電気設備の節電量を決定して、電気設備に対して節電の指示を出力することを特徴とする請求項1に記載の複数駅における電力協調制御システム。
In the energy saving control table, information on the power saving rate of the electric equipment arranged in each of a plurality of preset areas among the electric equipment of the corresponding station building is described.
The local demand control device determines the power demand of the electrical equipment of its own station building based on the power saving control stage determined by determining its own power saving control stage or the power saving control stage designated by the control command from the cooperative control device. The first aspect of claim 1, wherein the amount of power saving of the electric equipment in each area is determined with reference to the energy saving control table, and an instruction for power saving is output to the electric equipment. Power coordination control system at multiple stations.
前記電気設備には、少なくとも照明機器と空調機器が含まれており、
前記省エネ制御テーブルにおいては、照明機器と空調機器とで異なる節電率が節電制御段階ごとに記述されていることを特徴とする請求項2に記載の複数駅における電力協調制御システム。
The electrical equipment includes at least lighting equipment and air conditioning equipment.
The power coordination control system at a plurality of stations according to claim 2, wherein in the energy saving control table, different power saving rates for the lighting equipment and the air conditioning equipment are described for each power saving control stage.
二次電池および該二次電池の充放電制御手段を備えた蓄電装置が前記配電線路に接続されてなり、
前記協調制御装置は、前記複数の局所デマンド制御装置から取得した受電電力値の合計値が予め設定されている値を超えた場合に、前記充放電制御手段に対して放電を開始する指令を送出するように構成されていることを特徴とする請求項1〜3のいずれかに記載の複数駅における電力協調制御システム。
A secondary battery and a power storage device provided with charge / discharge control means for the secondary battery are connected to the distribution line.
The cooperative control device sends a command to start discharging to the charge / discharge control means when the total value of the received power values acquired from the plurality of local demand control devices exceeds a preset value. The power cooperative control system at a plurality of stations according to any one of claims 1 to 3, wherein the power cooperative control system is configured to be used.
前記充放電制御手段は、少なくとも充放電の状態および充電量を表わす情報を前記協調制御装置へ送信する機能を備え、
前記協調制御装置は、前記複数の局所デマンド制御装置から取得した受電電力値の合計値が予め設定されている値を超えた場合に、前記蓄電装置の充電量が所定値以上であることを条件に放電を開始する指令を生成し、前記充放電制御手段に対して送出するように構成されていることを特徴とする請求項4に記載の複数駅における電力協調制御システム。
The charge / discharge control means has a function of transmitting at least information indicating a charge / discharge state and a charge amount to the cooperative control device.
The cooperative control device is conditioned on the charge amount of the power storage device being equal to or more than a predetermined value when the total value of the received power values acquired from the plurality of local demand control devices exceeds a preset value. The power cooperative control system at a plurality of stations according to claim 4, wherein a command for starting discharge is generated and sent to the charge / discharge control means.
JP2018011110A 2018-01-26 2018-01-26 Power coordination control system at multiple stations Active JP6944388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018011110A JP6944388B2 (en) 2018-01-26 2018-01-26 Power coordination control system at multiple stations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018011110A JP6944388B2 (en) 2018-01-26 2018-01-26 Power coordination control system at multiple stations

Publications (2)

Publication Number Publication Date
JP2019129654A JP2019129654A (en) 2019-08-01
JP6944388B2 true JP6944388B2 (en) 2021-10-06

Family

ID=67472511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018011110A Active JP6944388B2 (en) 2018-01-26 2018-01-26 Power coordination control system at multiple stations

Country Status (1)

Country Link
JP (1) JP6944388B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102446481B1 (en) * 2020-06-18 2022-09-22 서울교통공사 Method and apparatus for power controlling of urban railway

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125372B2 (en) * 2013-08-21 2017-05-10 株式会社東芝 Railway power management system
JP2016032950A (en) * 2014-07-30 2016-03-10 株式会社東芝 Control device
JP6690962B2 (en) * 2016-02-22 2020-04-28 東日本旅客鉄道株式会社 Power supply adjustment system for station electrical equipment

Also Published As

Publication number Publication date
JP2019129654A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
EP2366132B1 (en) On demand elevator load shedding
JP5900249B2 (en) Power supply system
WO2012118184A1 (en) Charging power control system
US11056906B2 (en) Integrated power supply system
JP5396549B1 (en) Charge / feed device, charge / feed management device, energy management system, and charge / feed management method
JP2012253952A (en) Fast charger, fast charging apparatus and fast charging method
EP3556604B1 (en) Station building power supply device
KR101437349B1 (en) Charging power feeding system for ev charging infra based on multi function energy storage system of railway traction system
JP6944388B2 (en) Power coordination control system at multiple stations
JP2001069668A (en) Power management device
JP2016046829A (en) Power supply system
JP2013013174A (en) Power supply system
EP3718815A1 (en) Electric power management system
CN111510001A (en) Method and apparatus for power supply rectification
JP6690962B2 (en) Power supply adjustment system for station electrical equipment
JP6132753B2 (en) Station building power supply
JP2022072557A (en) Charge and discharge system
EP3782254A1 (en) A method and system for power balancing
JP2014107901A (en) Power management system for mobile
JP7487633B2 (en) Distributed Power Systems and Power Conditioners
JP7357018B2 (en) Substation system and control method of substation system, electric railway system
JP2022112553A (en) Charge/discharge control method for storage battery in power supply system
JP2019112036A (en) Power storage device for railway
JP6977167B2 (en) Energy storage system
JP7104473B2 (en) Energy management system, power conversion control device, and power conversion control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210910

R150 Certificate of patent or registration of utility model

Ref document number: 6944388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150